EP0998589B1 - Verfahren und anlage zur herstellung von "leichtstahl" in form von strangguss unter gaseinschluss - Google Patents

Verfahren und anlage zur herstellung von "leichtstahl" in form von strangguss unter gaseinschluss Download PDF

Info

Publication number
EP0998589B1
EP0998589B1 EP98939634A EP98939634A EP0998589B1 EP 0998589 B1 EP0998589 B1 EP 0998589B1 EP 98939634 A EP98939634 A EP 98939634A EP 98939634 A EP98939634 A EP 98939634A EP 0998589 B1 EP0998589 B1 EP 0998589B1
Authority
EP
European Patent Office
Prior art keywords
gas
strand
cavities
continuous casting
material strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98939634A
Other languages
English (en)
French (fr)
Other versions
EP0998589A1 (de
Inventor
Emil Dengler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dipl-Ing Emil Dengler Unternehmensberatung
Original Assignee
Dipl-Ing Emil Dengler Unternehmensberatung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dipl-Ing Emil Dengler Unternehmensberatung filed Critical Dipl-Ing Emil Dengler Unternehmensberatung
Publication of EP0998589A1 publication Critical patent/EP0998589A1/de
Application granted granted Critical
Publication of EP0998589B1 publication Critical patent/EP0998589B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/003Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using inert gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores

Definitions

  • the invention relates to a continuous casting process for Manufacture of material profiles that have cavities and a continuous casting device for performing such Procedure.
  • German patent application 38 14 030 A1 relates a foam steel as a structural dressing material. This will by sticking together of spherical or with Trough-provided sheet metal, which then has a honeycomb structure form, manufactured.
  • German published patent application 44 16 371 A1 is a Process for producing long, porous metal foam bodies known on aluminum basis. Increase these metal foam bodies, inserted in aluminum hollow profiles, their section modulus against bending and twisting.
  • the metal foam body are made of metal powder and blowing agent under heating this mixture to at least the melting temperature of the Foamed metal to a porous metal body.
  • German Offenlegungsschrift 35 16 737 A1 are a Method and device for producing gas bubbles as cavities penetrated by metallic materials in Form of profiles known, which in relation to their own weight a higher section modulus at bending, buckling and have torsional stresses.
  • the method described there has the disadvantage that the introduced gas bubbles can not be positioned because them into an upward strand of material in the still liquid Condition and are therefore due to their First move the buoyancy in the melt until it melts stiffens. In addition, only one is relative in this method slight reduction in the specific gravity of the starting material possible.
  • US-A-3 941 182 discloses a method and an apparatus for covering steel wires with a metal foam compound described.
  • the metal foam is used only for protection the wires from breaking.
  • the production of material profiles cavities are not addressed there.
  • the Gas is introduced to produce the metal foam via feed lines to which a stirrer for distributing the gas bubbles is connected downstream within the molten metal is arranged. An exact positioning of cavities in the metal foam is not possible due to the stirrer.
  • the invention has for its object a continuous casting process for the production of material profiles, especially steel profiles, which have cavities, and a continuous casting device to carry out such a procedure the material weight of the profiles by insertion of gas bubbles, which are preferred in their location and extent can be designed flexibly and form cavities becomes.
  • This process can be used to create voids in material profiles position as desired, because the gas bubbles will introduced into those material strand areas in which one pasty structure of the material is present. Under a batter Structure becomes a between liquid melt and solidification understood the lying state of the material in which there are still gas bubbles - possibly under high pressure - allow to be introduced into the material by means of nozzles or the like. There is therefore an inherent movement of the gas bubbles in the material strand - if at all - only possible to a very limited extent and should be completely omitted if a certain position and Structure of the cavities is sought.
  • Metallic materials are preferably used as the material.
  • the gas is preferably at several points initiated within the strand of material on a Isothermal area. This way you can simultaneously several cavities created by the inclusion of gas bubbles become.
  • a noble gas for example, is preferred as the gas Argon, used to avoid unwanted chemical reactions between the material and the gas a change in the material structure in the solidified state can take place.
  • step c) the gas can be continuous or pulsed be fed.
  • the gas can be continuous or pulsed be fed.
  • the structure of the cavities created can by at least an ultrasonic measuring device to be monitored in the area of running material strand is arranged.
  • the outer skin of the strand of material is preferably through Fibers reinforced.
  • step c) the speed of the material strand is preferred greater than the rate of buoyancy from bubbles formed in the gas.
  • the initiated Gas bubbles do not go up towards the liquid material area escape. Because of the doughy Structure of the material part in which the gas bubbles are introduced is, however, the rate of buoyancy in the normal case negligible small. Because of their dependence on in individual cases, however, it can contribute to the size of the cavities very large cavities of some importance.
  • This device ensures both guidance of the Strands of material from top to bottom as well as an introduction the gas bubbles in the area inside the mold, in the material with the appropriate pasty structure is present.
  • a control device for example a controllable valve block, provided with which the gas inlet in the strand of material in their amount by that gas pressure used depends, and / or their shape, continuously or pulsed, can be controlled.
  • the supply of gas can be at the outlet end of the gas pipes Arranged nozzles are made, the openings of which depend on the desired cross-sectional shape for the cavities, for example a round, slit-shaped or rectangular cross-section can have.
  • At least one ultrasound measuring device for monitoring is preferred the structure of the voids of the running strand of material intended.
  • the structure of the cavities can reproduce the control device are supplied so that, depending on the measurement results of the Ultrasonic measuring device, the desired structure of the cavities can be generated. For example, by increasing the Gas pressure in the cross section of the material strand larger voids or by extending the gas pulse width in the direction of the string more extensive cavities are formed.
  • the process and one adapted to the material to be processed Device can be used to manufacture profiles Light metal, non-ferrous metal or plastic are used, the method and apparatus according to the requirements of are designed for processing materials.
  • FIG. 1 shows an embodiment of a continuous casting device, which is partly shown in section.
  • the Position of a feed line 1 from a transport container is marked with an arrow.
  • a storage container 2 is for example filled with liquid steel, which by a Heater is kept at temperature.
  • At the bottom of the Storage container 2 is a closable, as Funnel-shaped outlet opening that is regulated by a Valve 3 can be opened and closed, whereby level control by means of an ultrasonic sensor 17 is provided.
  • the reservoir 2 is of an electromagnetic type Agitator 4 surround so that the liquid steel degassed and can be homogenized.
  • the melt is in an under the outlet opening of the storage container 2 arranged vertically Chilled mold 6, which is liquid-cooled.
  • the mold 6 is in vertically arranged slide elements attached to the stage 5.
  • steel If steel is used as a material, it can melt for example, enter the mold area at around 1400 ° C and after cooling through the mold 6, a temperature of about 800 ° C, at which the melt becomes pasty becomes. Regardless of the temperatures mentioned, as explained later, but mainly on the Area of the melt at which this has a doughy structure shows.
  • melt tubes 7 are made of a high temperature resistant Material, such as ceramics, immersed in the a valve block 14 are connected.
  • a cooling device is provided in addition to the gas supply 13 If necessary.
  • the gas is an inert gas, for example Argon, which has no connection with the steel.
  • the Gas is pressure controlled and can so via the valve block 14 can be controlled so that each individual tube 7 is open in time and can be closed and if necessary different pressures can be set.
  • the gas pressure must be constantly controlled and regulated that no steel is pushed back into the gas pipes can.
  • the gas is supplied through openings in the pipes 7 in an area where the melt is in batter is located, preferably along or near an area of the same Temperature, as shown in Figure 1 by an isotherm I. is.
  • the gas bubbles 8 that form can thus be positioned exactly and controllable in their extent, so that in the Material strand predeterminable cavities arise.
  • the mold 6 is designed and by means of a vertical guide 12 guided so that a vertical oscillation with a frequency of approx. 1 Hz is possible to prevent caking the melt on the mold wall and on the gas pipes 7 prevent and the introduced gas bubbles 8 better from each other to be able to separate.
  • a mounted, additional ultrasonic measuring device 15 enables an assessment of the bladder structure, with a water-cooled Graphite mass can serve as a transmission medium.
  • Advantageous is about 2 measuring devices at an angle of 90 ° to each other to arrange a spatial assessment of the generated To be able to make bubble structure.
  • the electrical Output signal of the ultrasonic measuring device 15 can be used for control of the valve block 14, for example the one set there Gas pressure and the gas pulse width used there, used to create the desired bubble and cavity structure to create.
  • an X-ray device can also be used, to get information about the bubble structure.
  • the gas bubbles 8 can be positioned according to the position of the gas pipes 7 and in their vertical and horizontal dimensions and Distribution on the cross section can be controlled.
  • the latter can, for example, about the shape of the openings of the gas pipes 7 in connection with a corresponding gas pressure control be accomplished.
  • the falling and still externally cooled strand is below the mold 6 by a transport device 11 taken over, which regulated in their speed can be that an optimal process control is possible.
  • the strand When the strand has reached the horizontal level, it can be divided, and the separated sections can be used for Further processing can be performed. Below the facility is the drip pan 9 for any escaping liquid material.
  • the possible cross-sectional shapes of the material profiles produced range from plate-like structure, rectangular shape, U shape up to the double-T support structure, etc.
  • FIGS. 2A, 2B, 3A, 3B, 4A and 4B show the cross-sectional shapes, as described above, with the associated Longitudinal sections, however, the shape of the gas bubbles is variable.
  • the entire device is controlled by a process controller regulated that continuous production is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

Die Erfindung bezieht sich auf ein Stranggußverfahren zum Herstellen von Material-Profilen, die Hohlräume aufweisen, und eine Strangguß-Vorrichtung zur Durchführung eines solchen Verfahrens.
Gemäß dem Stand der Technik sind verschiedene Verfahren zur Herstellung poriger Metallschaumkörper, Wabenstrukturen aus Stahlteilen und Verfahren zum kontinuierlichen Gießen von Metallsträngen nach dem Prinzip der kommunizierenden Röhren, auch mit Gaszufuhr, aus folgenden Patent- bzw. Offenlegungsschriften bekannt:
Die deutsche Offenlegungsschrift 38 14 030 A1 betrifft einen Schaumstahl als Struktur-Verbandwerkstoff. Dieser wird durch Aufeinanderkleben von metallkugelförmigen, oder mit Mulden versehenen Feinblechen, die dann eine Wabenstruktur bilden, hergestellt.
Aus der deutschen Offenlegungsschrift 44 16 371 A1 ist ein Verfahren zur Herstellung langer, poriger Metallschaumkörper auf Aluminiumbasis bekannt. Diese Metallschaumkörper erhöhen, eingefügt in Aluminium-Hohlprofile, deren Widerstandsmoment gegen Biegung und Verdrehung. Die Metallschaumkörper werden aus Metallpulver und Treibmittel unter Erwärmung dieser Mischung auf mindestens die Schmelztemperatur des Metalles zu einem porösen Metallkörper aufgeschäumt.
Der Nachteil des Standes der Technik aus der DE 38 14 030 A1 und der DE 44 16 371 A1 besteht darin, daß die dort beschriebenen Verfahren zwar die Herstellung von Bauteilen aus mehreren vorbereiteten Teilen mit als Poren ausgebildeten Hohlräumen erlaubt. Eine Herstellung von Material-Profilen mit Hohlräumen aus einem Guß ist jedoch nicht möglich.
In der WO 86/06 431 und der WO 88/04 586 werden Verfahren beschrieben, die zwar eine gute Formgebung für Hohlräume in Material-Profilen gestatten, jedoch für einen Leichtbau von tragenden Bauteilen nicht besonders geeignet sind. In der WO 88/04 586 werden ein Verfahren und eine Vorrichtung zum kontinuierlichen Gießen von Metallsträngen aus hochschmelzenden Metallen mit endabmessungsnahen Querschnitten nach dem Prinzip der kommunizierenden Röhren beschrieben.
Aus der deutschen Offenlegungsschrift 35 16 737 A1 sind ein Verfahren und eine Vorrichtung zum Herstellen von mit Gasblasen als Hohlräume durchsetzten metallischen Werkstoffen in Form von Profilen bekannt, welche im Verhältnis zu ihrem Eigengewicht ein höheres Widerstandsmoment bei Biege-, Knick- und Verdrehbeanspruchungen aufweisen.
Das dort beschriebene Verfahren hat den Nachteil, daß die eingebrachten Gasblasen nicht positioniert werden können, da sie in einen nach oben geführten Materialstrang im noch flüssigen Zustand eingebracht werden und sich somit aufgrund ihrer Auftriebskraft zunächst in der Schmelze bewegen, bis diese erstarrt. Außerdem ist bei diesem Verfahren nur eine relativ geringe Verminderung des spezifischen Gewichtes des Ausgangsmaterials möglich.
In der US-A-3 941 182 wird ein Verfahren und eine Vorrichtung zur Bedeckung von Stahldrähten mit einer Metallschaummasse beschrieben. Der Metallschaum dient ausschließlich zum Schutz der Drähte vor einem Zerbrechen. Die Herstellung von Material-profilen mit Hohlräumen wird dort nicht angesprochen. Die Einleitung von Gas zur Herstellung des Metallschaums erfolgt über Zuleitungen, denen ein Rührer zur Verteilung der Gasblasen nachgeschaltet ist, der innerhalb der Metallschmelze angeordnet ist. Eine exakte Positionierung von Hohlräumen in dem Metallschaum ist aufgrund des Rührers nicht möglich.
Der Erfindung liegt die Aufgabe zugrunde, ein Stranggußverfahren zum Herstellen von Material-Profilen, insbesondere Stahl-Profilen, die Hohlräume aufweisen, und eine Strangguß-Vorrichtung zur Durchführung eines solchen Verfahrens zu schaffen, wobei das Materialgewicht der Profile durch Einbringung von Gasblasen, die bevorzugt in ihrer Lage und Ausdehnung flexibel gestaltet werden können und Hohlräume bilden, vermindert wird.
Diese Aufgabe wird gelöst durch ein Stranggußverfahren zum Herstellen von Material-Profilen, die Hohlräume aufweisen, mit den Schritten:
  • a) Schmelzen des Materials und Bilden eines Strangs aus dem Material;
  • b) Abkühlen oder Abkühlenlassen des Materialstrangs, so daß wenigstens ein Teil des Materialstrangs eine Temperatur aufweist, bei der eine teigige Struktur vorliegt;
  • c) Einleiten von Gas in den Materialstrangteil teigiger Struktur zur Ausbildung der Hohlräume, wobei der Materialstrang von oben nach unten geführt wird; und
  • d) Erstarrenlassen des Materials.
  • Mit diesem Verfahren lassen sich Hohlräume in Material-Profilen wie gewünscht positionieren, denn die Gasblasen werden in solche Materialstrangbereiche eingeleitet, bei denen eine teigige Struktur des Materials vorliegt. Unter einer teigigen Struktur wird ein zwischen flüssiger Schmelze und Erstarren liegender Zustand des Materials verstanden, bei dem sich noch Gasblasen - gegebenenfalls unter hohem Druck - mittels Düsen oder dgl. in das Material einbringen lassen. Daher ist eine Eigenbewegung der Gasblasen im Materialstrang - wenn überhaupt - nur äußerst eingeschränkt möglich und sollte ganz unterbleiben, wenn eine bestimmte Position und Struktur der Hohlräume angestrebt wird.
    Zudem wird durch die Führung des Materialstrangs von oben nach unten, entgegen der Auftriebsrichtung der Gasblasen im Materialstrang, erreicht, daß die Gasblasen den teigigen Materialstrangbereich weitestgehend nicht in Richtung auf den flüssigen Bereich verlassen können, sondern bestimmungsgemäß einen Hohlraum ausbilden, der mit dem Gas gefüllt ist.
    Bevorzugt werden als Material metallische Werkstoffe verwendet.
    Vorzugsweise wird in Schritt c) das Gas an mehreren Stellen innerhalb des Materialstrangs eingeleitet, die auf einer Isothermenfläche liegen. Auf diese Weise können gleichzeitig mehrere Hohlräume durch Einschluß von Gasblasen erzeugt werden.
    Bevorzugt wird in Schritt c) als Gas ein Edelgas, beispielsweise Argon, verwendet, um zu vermeiden, daß unerwünschte chemische Reaktionen zwischen dem Material und dem Gas, die eine Änderung der Materialstruktur im erstarrten Zustand nach sich ziehen können, stattfinden.
    In Schritt c) kann das Gas kontinuierlich oder impulsförmig zugeführt werden. Somit lassen sich bei kontinuierlicher Bewegung des Materialstrangs entlang der Kokille sowohl langgestreckte, durchgehende Hohlräume als auch in Längsrichtung des Materialstrangs hintereinander angeordnete Hohlräume ausbilden.
    Die Struktur der erzeugten Hohlräume kann durch mindestens ein Ultraschallmeßgerät überwacht werden, das im Bereich des ablaufenden Materialstrangs angeordnet ist.
    Bevorzugt wird die Außenhaut des Materialstranges durch Fasern verstärkt.
    Vorzugsweise ist in Schritt c) die Geschwindigkeit des Materialstrangs größer als die Auftriebsgeschwindigkeit von aus dem Gas gebildeten Blasen. In diesem Fall können die eingeleiteten Gasblasen nicht nach oben, in Richtung auf den flüssigen Materialbereich entweichen. Aufgrund der teigigen Struktur des Materialteils, in den die Gasblasen eingebracht werden, ist jedoch die Auftriebsgeschwindigkeit im Normalfall vernachlässigbar klein. Aufgrund ihrer Abhängigkeit von der Größe der Hohlräume kann sie in Einzelfällen jedoch bei sehr großen Hohlräumen von gewisser Bedeutung sein.
    Gegenstand der Erfindung ist auch eine Strangguß-Vorrichtung zum Herstellen von Material-Profilen, die Hohlräume aufweisen, mit
    • einem Vorratsbehälter für flüssiges Material, der eine verschließbare, bodenseitige Auslaßöffnung aufweist; und
    • einer gekühlten Kokille zum Abkühlen von aus der Auslaßöffnung als Strang austretendem, flüssigem Material,
    wobei
    • die Kokille unterhalb der Auslaßöffnung und im wesentlichen senkrecht angeordnet ist;
    • mindestens ein Gasrohr zum Einleiten von Gas vorgesehen ist, und
    • das Gasrohr eine Austrittsöffnung hat, die, abhängig von dem verwendeten Material, im Inneren der Kokille in einem Bereich angeordnet ist, in dem der Materialstrang aufgrund der Abkühlung durch die Kokille eine teigige Struktur hat.
    Diese Vorrichtung gewährleistet sowohl eine Führung des Materialstranges von oben nach unten als auch eine Einleitung der Gasblasen in dem Bereich im Inneren der Kokille, in dem Material mit der geeigneten, teigigen Struktur vorliegt.
    Bevorzugt ist eine Steuervorrichtung, beispielsweise ein steuerbarer Ventilblock, vorgesehen, mit der die Gaseinleitung in den Materialstrang in ihrem Betrag, der von dem verwendeten Gasdruck abhängt, und/oder ihrer Form, kontinuierlich oder impulsförmig, gesteuert werden kann.
    Die Zuführung von Gas kann über am Austrittsende der Gasrohre angeordnete Düsen erfolgen, deren Öffnungen, abhängig von der gewünschten Querschnittsform für die Hohlräume, beispielsweise einen runden, schlitzförmigen oder rechteckigen Querschnitt haben können.
    Bevorzugt ist mindestens ein Ultraschallmeßgerät zur Überwachung der Struktur der Hohlräume des ablaufenden Materialstrangs vorgesehen.
    Elektrische Signale des Ultraschallmeßgerätes, die die Struktur der Hohlräume wiedergeben, können der Steuervorrichtung zugeleitet werden, so daß, abhängig von den Meßergebnissen des Ultraschallmeßgerätes, die gewünschte Struktur der Hohlräume erzeugt werden kann. Beispielsweise können durch Erhöhung des Gasdrucks im Querschnitt des Materialstrangs größere Hohlräume oder durch Verlängerung der Gasimpulsbreite in Strangrichtung weiter ausgedehnte Hohlräume gebildet werden.
    Das Verfahren und eine an das zu verarbeitende Material angepaßte Vorrichtung kann zur Herstellung von Profilen aus Leichtmetall, Buntmetall oder Kunststoff eingesetzt werden, wobei Verfahren und Vorrichtung gemäß den Erfordernissen der zu verarbeitenden Materialien gestaltet sind.
    Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsformen unter Bezugnahme auf die Zeichnungen noch näher erläutert. Es zeigen:
    Fig. 1
    eine Ansicht einer Ausführungsform einer Strangguß-Vorrichtung, teilweise im Schnitt;
    Fig. 2A und 2B
    eine Querschnitt- und eine Längsschnitt-Ansicht eines plattenförmigen Material-Profils;
    Fig. 3A und 3B
    eine Querschnitt- und eine Längsschnitt-Ansicht eines U-förmigen Material-Profils; und
    Fig. 4A und 4B
    eine Querschnitt- und eine Längsschnitt-Ansicht eines T-förmigen Material-Profils.
    Die Figur 1 zeigt eine Ausführungsform einer Strangguß-Vorrichtung, welche zum Teil im Schnitt dargestellt ist. Die Position einer Zuleitung 1 aus einem Transportbehälter ist mit einem Pfeil bezeichnet. Ein Vorratsbehälter 2 ist beispielsweise mit flüssigem Stahl gefüllt, welcher durch eine Heizvorrichtung auf Temperatur gehalten wird. Am Boden des Vorratsbehälters 2 befindet sich eine verschließbare, als Trichter ausgebildete Auslaßöffnung, die durch ein geregeltes Ventil 3 geöffnet und verschlossen werden kann, wobei eine Niveauregelung mittels eines Ultraschallsensors 17 vorgesehen ist.
    Der Vorratsbehälter 2 ist von einem elektromagnetischen Rührwerk 4 umgeben, so daß der flüssige Stahl entgast und homogenisiert werden kann. Die Schmelze wird in eine unter der Auslaßöffnung des Vorratsbehälters 2 senkrecht angeordnete Kokille 6 abgelassen, welche flüssigkeitsgekühlt ist. Die Kokille 6 ist in senkrecht angeordneten Schlittenelementen an der Bühne 5 befestigt.
    Wenn Stahl als Material verwendet wird, kann dessen Schmelze beispielsweise bei etwa 1400°C in den Kokillenbereich eintreten und nach Abkühlung durch die Kokille 6 eine Temperatur von etwa 800°C erreichen, bei der die Schmelze teigig wird. Unabhängig von den genannten Temperaturen kommt es, wie später erläutert wird, jedoch hauptsächlich auf den Bereich der Schmelze an, bei dem diese eine teigige Struktur zeigt.
    In die Schmelze werden Rohre 7 aus einem hochtemperaturfesten Material, beispielsweise Keramik, eingetaucht, die an einen Ventilblock 14 angeschlossen sind. Neben der Gaszufuhr 13 ist erforderlichenfalls eine Kühleinrichtung vorgesehen. Bei dem Gas handelt sich um ein inertes Gas, beispielsweise Argon, welches mit dem Stahl keine Verbindung eingeht. Das Gas wird druckgeregelt und kann über den Ventilblock 14 so gesteuert werden, daß jedes einzelne Rohr 7 zeitlich geöffnet und geschlossen werden kann und erforderlichenfalls verschiedene Drücke eingestellt werden können.
    Der Gasdruck muß ständig so gesteuert und geregelt werden, daß in die Gasleitungen kein Stahl zurückgedrückt werden kann. Die Gaszufuhr erfolgt über Öffnungen der Rohre 7 in einem Bereich, in dem die Schmelze sich in teigigem Zustand befindet, vorzugsweise längs oder nahe eines Bereichs gleicher Temperatur, wie in Figur 1 durch eine Isotherme I gekennzeichnet ist.
    Die sich bildenden Gasblasen 8 sind dadurch genau positionierbar und in ihrer Ausdehnung steuerbar, so daß in dem Materialstrang vorherbestimmbar Hohlräume entstehen.
    Die Kokille 6 ist so ausgebildet und mittels einer Senkrechtführung 12 so geführt, daß eine vertikale Oszillation mit einer Frequenz von ca. 1 Hz möglich ist, um das Anbacken der Schmelze an der Kokillenwand und an den Gasrohren 7 zu verhindern und die eingebrachten Gasblasen 8 besser voneinander trennen zu können.
    Ein angebautes, weiteres Ultraschallmeßgerät 15 ermöglicht eine Beurteilung der Blasenstruktur, wobei eine wassergekühlte Grafitmasse als Übertragungsmedium dienen kann. Vorteilhaft ist es, ca. 2 Meßgeräte im Winkel von 90° zueinander anzuordnen, um eine räumliche Beurteilung der erzeugten Blasenstruktur vornehmen zu können. Das elektrische Ausgangssignal des Ultraschallmeßgerätes 15 kann zur Steuerung des Ventilblocks 14, beispielsweise des dort eingestellten Gasdrucks und der dort verwendeten Gasimpulsbreite, verwendet werden, um die gewünschte Blasen- und Hohlraumstruktur zu erzeugen.
    Wahlweise kann zusätzlich ein Röntgengerät eingesetzt werden, um Information über die Blasenstruktur zu gewinnen.
    Die Gasblasen 8 können nach Lage der Gasrohre 7 positioniert und in ihrer vertikalen und horizontalen Ausdehnung und Verteilung auf dem Querschnitt gesteuert werden. Letzeres kann beispielsweise über die Form der Öffnungen der Gasrohre 7 in Verbindung mit einer entsprechenden Gasdrucksteuerung bewerkstelligt werden.
    Der abfallende und weiterhin von außen gekühlte Strang wird unterhalb der Kokille 6 durch eine Transporteinrichtung 11 übernommen, welche in ihrer Geschwindigkeit so geregelt werden kann, daß eine optimale Prozeßführung möglich ist. Dies bedeutet u.a., daß z.B. die Geschwindigkeit des Stranges größer ist als die Geschwindigkeit des Auftriebs der eingebrachten Gasblasen 8, sofern überhaupt eine solche Eigenbewegung in der teigigen Struktur des Materials möglich ist.
    Wenn der Strang die horizontale Ebene erreicht hat, kann er geteilt werden, und die abgetrennten Abschnitte können zur Weiterverarbeitung geführt werden. Unterhalb der Anlage befindet sich die Auffangwanne 9 für evtl. austretendes flüssiges Material.
    Die möglichen Querschnittsformen der hergestellten Material-Profile reichen von plattenähnlicher Struktur, Rechteckform, U-Form bis zur Doppel-T-Trägerstruktur usw. Zusätzlich ist es möglich, vorzugsweise in der Außenhaut des Material-Profils eine Faserverstärkung einzubringen, um die Widerstandmomente gegen Biegung, Knickung, Verdrehung wesentlich zu erhöhen, wobei die Fasern von einer Faserverstärkungs-Vorrichtung 16 in Form von Rollen, welche entsprechend über den Umfang verteilt sind, abgespult werden. Eine Vorspannung der Fasern in gewissen Bereichen, welche durch die Verwendungsweise des Material-Profils zweckmäßig erscheint, ist ebenfalls möglich.
    Die Figuren 2A, 2B, 3A, 3B, 4A und 4B zeigen die Querschnittsformen, wie sie oben beschrieben sind, mit den zugehörigen Längsschnitten, wobei jedoch die Form der Gasblasen variabel ist.
    Die gesamte Vorrichtung wird durch eine Prozeßsteuerung so geregelt, daß eine kontinuierliche Produktion möglich ist.

    Claims (12)

    1. Stranggußverfahren zum Herstellen von Material-Profilen, die Hohlräume aufweisen, mit den Schritten:
      a) Schmelzen des Materials und Bilden eines Strangs aus dem Material;
      b) Abkühlen oder Abkühlenlassen des Materialstrangs, so daß wenigstens ein Teil des Materialstrangs eine Temperatur aufweist, bei der eine teigige Struktur vorliegt;
      c) Einleiten von Gas in den Materialstrangteil teigiger Struktur zur Ausbildung der Hohlräume, wobei der Materialstrang von oben nach unten geführt wird; und
      d) Erstarrenlassen des Materials.
    2. Verfahren nach Anspruch 1, bei dem als Material metallische Werkstoffe verwendet werden.
    3. Verfahren nach einem der Ansprüche 1 oder 2, bei dem in Schritt c) das Gas an einer oder mehreren Stellen innerhalb des Materialstrangs eingeleitet wird.
    4. Verfahren nach Anspruch 3, bei dem, wenn das Gas in Schritt c) an mehreren Stellen innerhalb des Materialstranges eingeleitet wird, diese nahe oder auf einer Isothermenfläche liegen.
    5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem in Schritt c) als Gas ein Edelgas, beispielsweise Argon, verwendet wird.
    6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem in Schritt c) das Gas kontinuierlich oder impulsförmig zugeführt wird.
    7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem die Struktur der erzeugten Hohlräume durch mindestens ein Ultraschallmeßgerät (15) überwacht wird.
    8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem die Außenhaut des Materialstranges durch Fasern (16) verstärkt wird.
    9. Strangguß-Vorrichtung zum Herstellen von Material-Profilen, die Hohlräume aufweisen, mit
      einem Vorratsbehälter (2) für flüssiges Material, der eine verschließbare, bodenseitige Auslaßöffnung aufweist; und
      einer gekühlten Kokille (6) zum Abkühlen von aus der Auslaßöffnung als Strang austretendem, flüssigem Material,
      dadurch gekennzeichnet, daß
      die Kokille (6) unterhalb der Auslaßöffnung und im wesentlichen senkrecht angeordnet ist;
      mindestens ein Gasrohr (7) zum Einleiten von Gas vorgesehen ist, und
      das Gasrohr (7) eine Austrittsöffnung hat, die, abhängig von dem verwendeten Material, im Inneren der Kokille (6) in einem Bereich angeordnet ist, in dem der Materialstrang aufgrund der Abkühlung durch die Kokille (6) eine teigige Struktur hat.
    10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß eine Steuervorrichtung (14) vorgesehen ist, mit der die Gaseinleitung in den Materialstrang in ihrem Betrag und/oder ihrer Form, kontinuierlich oder impulsförmig, gesteuert werden kann.
    11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß mindestens ein Ultraschallmeßgerät (15) zur Überwachung der Struktur der Hohlräume des ablaufenden Materialstrangs (10) vorgesehen ist.
    12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß Signale der Ultraschallmeßgerätes (15), die die Struktur der Hohlräume wiedergeben, der Steuervorrichtung (14) zugeleitet werden.
    EP98939634A 1997-07-14 1998-07-13 Verfahren und anlage zur herstellung von "leichtstahl" in form von strangguss unter gaseinschluss Expired - Lifetime EP0998589B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19730084 1997-07-14
    DE19730084 1997-07-14
    PCT/EP1998/004348 WO1999004047A1 (de) 1997-07-14 1998-07-13 Verfahren und anlage zur herstellung von 'leichtstahl' in form von strangguss unter gaseinschluss

    Publications (2)

    Publication Number Publication Date
    EP0998589A1 EP0998589A1 (de) 2000-05-10
    EP0998589B1 true EP0998589B1 (de) 2001-10-17

    Family

    ID=7835633

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98939634A Expired - Lifetime EP0998589B1 (de) 1997-07-14 1998-07-13 Verfahren und anlage zur herstellung von "leichtstahl" in form von strangguss unter gaseinschluss

    Country Status (6)

    Country Link
    US (1) US6263953B1 (de)
    EP (1) EP0998589B1 (de)
    JP (1) JP2001510096A (de)
    AT (1) ATE207131T1 (de)
    DE (1) DE59801803D1 (de)
    WO (1) WO1999004047A1 (de)

    Families Citing this family (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6682174B2 (en) * 1998-03-25 2004-01-27 Silverbrook Research Pty Ltd Ink jet nozzle arrangement configuration
    EP1231287B1 (de) * 1999-07-09 2005-12-07 Hideo Nakajima Herstellungsverfahren für poröse metallgegenstände
    DE102006013557B4 (de) * 2005-03-30 2015-09-24 Alstom Technology Ltd. Rotor für eine Dampfturbine
    US7594530B1 (en) 2007-11-19 2009-09-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Orbital foamed material extruder
    US7807097B1 (en) 2008-05-19 2010-10-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Orbital fabrication of aluminum foam and apparatus therefore
    CN106363150A (zh) * 2016-11-22 2017-02-01 中冶连铸技术工程有限责任公司 一种侧移式连铸坯在线定尺称重装置
    CN114505457B (zh) * 2020-11-16 2023-08-18 鞍钢股份有限公司 一种泡沫钢的水平连铸系统及泡沫钢制备工艺

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3941182A (en) 1971-10-29 1976-03-02 Johan Bjorksten Continuous process for preparing unidirectionally reinforced metal foam
    CH553606A (de) 1972-07-27 1974-09-13 Concast Ag Verfahren und einrichtung zum stranggiessen von metall mit gegenueber dem eingegossenen metall wesentlich geringerem spezifischem stranggewicht.
    JPS5699057A (en) * 1980-01-11 1981-08-10 Nisshin Steel Co Ltd Manufacture of continuously casting ingot superior in cleaning ability
    DE3516737A1 (de) 1985-05-09 1986-11-13 Hoesch Stahl AG, 4600 Dortmund Verfahren und anlage zum herstellen von mit gasblasen durchsetzten metallischen werkstoffen in form von profilen
    US4898034A (en) * 1988-08-23 1990-02-06 The United States Of America As Represented By The Department Of Energy High temperature ultrasonic testing of materials for internal flaws
    EP0587619B1 (de) 1991-05-31 1996-07-10 Alcan International Limited Verfahren und vorrichtung zum herstellen profilierter platten aus teilchenstabilisiertem metallschaum
    DE4139020C2 (de) 1991-11-27 1994-02-24 Pantec Paneltechnik Gmbh Vorrichtung und Verfahren zur Herstellung eines Metallschaums

    Also Published As

    Publication number Publication date
    WO1999004047A1 (de) 1999-01-28
    EP0998589A1 (de) 2000-05-10
    US6263953B1 (en) 2001-07-24
    DE59801803D1 (de) 2001-11-22
    JP2001510096A (ja) 2001-07-31
    ATE207131T1 (de) 2001-11-15

    Similar Documents

    Publication Publication Date Title
    EP1227908B1 (de) Verfahren zur herstellung metallischer gitternetzstrukturen
    EP1046444B1 (de) Druckgiessverfahren
    AT408076B (de) Verfahren zur herstellung von schaummetall- bzw. schaummetall/metall-verbund-formkörpern, anlage zu deren herstellung und deren verwendung
    DE2124424A1 (de) Verfahren und Vorrichtung zum kontinuierlichen aufwärtsgerichteten Gießen von Rohren, Stangen, Platten u. dgl
    EP0998589B1 (de) Verfahren und anlage zur herstellung von "leichtstahl" in form von strangguss unter gaseinschluss
    DE602004007628T2 (de) Verfahren zum stranggiessen
    DE2011474B2 (de) Vorrichtung zum herstellen von einkristallen
    DE3146417C2 (de)
    DE102006041627A1 (de) Einteilige verlorene Gießform für Gussteile aus Metall sowie Verfahren zu ihrer Herstellung
    DE2162977A1 (de) Verfahren und vorrichtung zum herstellen von metallstangen im strangguss sowie nach diesem verfahren hergestellte stranggussmetallstange
    DE2118149B2 (de) Verfahren und Vorrichtung zum Konstanthalten des Badspiegels in einer Stranggießkokille
    DD141276A5 (de) Verfahren und anlage fuer den strangguss roehrenfoermiger erzeugnisse
    DE60114779T2 (de) Verbessertes tauchrohr für das stranggiessen
    EP0968778B1 (de) Vorrichtung und Verfahren zum Stranggiessen von Werkstücken mit innerem Hohlraum
    DE4400693C2 (de) Verfahren zur Herstellung geschäumter Aluminiumprodukte
    AT393652B (de) Vorrichtung und verfahren zur herstellung von metallmatrixverbundmaterial
    DE19710887C2 (de) Verwendung einer Kokille zum Herstellen von Barren aus Leichtmetall oder einer Leichtmetallegierung, insbesondere aus Magnesium oder einer Magnesiumlegierung
    DE4006842A1 (de) Bandgiessanlage mit oszillierender durchlaufkokille
    AT412454B (de) Verfahren und vorrichtung zur temperaturführung einer schmelze in einer gekühlten stranggiesskokille
    DE8233113U1 (de) Schwimmer fuer metallschmelzen
    EP0295270A1 (de) Verfahren und vorrichtung zum giessen dünner bänder oder folien aus einer schmelze
    DE1956550B2 (de) Vorrichtung zur schmelzenzufuhr fuer eine giessanordnung zum stranggiessen von draht
    DE2024747C3 (de) Verfahren zum halbkontinuierllchen Stranggießen, insbesondere von Stahl, und Vorrichtung zur Durchführung des Verfahrens *
    DE2935840A1 (de) Giesskopf fuer stranggiesskokillen
    DE2055154B2 (de) Verfahren zur kontinuierlichen Herstellung von Glasbändern und Vorrichtung zur Durchführung des Verfahrens

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20000203

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE FR GB IT LI NL SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20001110

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE FR GB IT LI NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011017

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20011017

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011017

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011017

    REF Corresponds to:

    Ref document number: 207131

    Country of ref document: AT

    Date of ref document: 20011115

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59801803

    Country of ref document: DE

    Date of ref document: 20011122

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020117

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDU

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20011017

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020731

    EN Fr: translation not filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    BERE Be: lapsed

    Owner name: EMIL *DENGLER UNTERNEHMENSBERATUNG

    Effective date: 20020731

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20030725

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20030728

    Year of fee payment: 6

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040713

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040731

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040731

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20060727

    Year of fee payment: 9

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080201