EP0995027A1 - Procede de fabrication d'une culasse a sieges de soupape integres et culasse a sieges de soupape integres - Google Patents

Procede de fabrication d'une culasse a sieges de soupape integres et culasse a sieges de soupape integres

Info

Publication number
EP0995027A1
EP0995027A1 EP98930847A EP98930847A EP0995027A1 EP 0995027 A1 EP0995027 A1 EP 0995027A1 EP 98930847 A EP98930847 A EP 98930847A EP 98930847 A EP98930847 A EP 98930847A EP 0995027 A1 EP0995027 A1 EP 0995027A1
Authority
EP
European Patent Office
Prior art keywords
cylinder head
alloy
coating layer
valve seats
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98930847A
Other languages
German (de)
English (en)
Other versions
EP0995027B1 (fr
Inventor
Adel Ben Abdallah
Philippe Cachot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP0995027A1 publication Critical patent/EP0995027A1/fr
Application granted granted Critical
Publication of EP0995027B1 publication Critical patent/EP0995027B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials

Definitions

  • the present invention relates generally to a method of manufacturing a cylinder head with integrated valve seats, in particular an aluminum alloy cylinder head for an internal combustion engine. More particularly, the present invention relates to a method for manufacturing valve seats integrated in a cylinder head by plasma arc deposition transferred from a coating alloy layer onto seat areas of a raw foundry cylinder head, in particular an aluminum alloy cylinder head.
  • thermomechanical stresses can lead to cracking of the cylinder head in the inter-seat area, of the trigger guard or to loosening of the attached seat.
  • the valve is the most stressed element in this configuration because it must evacuate a large amount of heat. Therefore, its manufacture requires advanced techniques such as the use of multimaterials and stellitage.
  • Deposition by laser beam is advantageous in that it allows rapid cooling rates and energy management of the process for manufacturing the valve seats. This process provides deposits with reduced dilution and having a typical rapid cooling microstructure.
  • the document JP-A-61-76742 describes a method for manufacturing valve seats integrated in a light alloy cylinder head in which the seat area of the cylinder head is reinforced by ceramic fibers during the casting of the cylinder head and which consists in forming a layer of an anti-wear material by means of a laser beam.
  • the coating material is deposited in the form of a paste on the seat areas of the cylinder head, then melted by means of a laser beam and rapidly cooled in air.
  • the coating materials are very specific alloys,
  • the use of a fibrous reinforcement in the alloy of the cylinder head in the seat areas considerably complicates the process. Indeed, it is necessary to introduce into the casting a fibrous preform with the problems of wettability which result therefrom.
  • the integrated seat produced has a space equivalent to the attached seats.
  • the use of a laser beam as an energy source requires that the surface of the seat area on which the deposition will be carried out is homogeneous, that is to say without surface irregularities which can scatter the beam randomly so as to obtain uniform heating throughout the seating area. A step of polishing the seat area of the cylinder head is therefore necessary.
  • the diameter of the molten bath created by the laser beam is incompatible with a high yield because all the powder outside the bath does not participate in the formation of the coating layer.
  • the present invention therefore relates to a method of manufacturing a cylinder head with integrated valve seats which overcomes the drawbacks of the prior art, and in particular which does not require the use of a fibrous reinforcement in the seat areas of the breech.
  • the present invention also relates to a method of manufacturing a cylinder head with integrated valve seats which does not require p ⁇ âs machining, and in particular a polishing of the seat areas of the cylinder head.
  • the present invention also relates to a method of manufacturing a cylinder head with integrated valve seats which overcomes the drawbacks of deposition by laser beam.
  • a method of manufacturing a light alloy cylinder head, preferably of aluminum alloy, comprising integrated valve seats which comprises:
  • a preferred alloy according to the invention is the alloy having the following composition, in percent by weight:
  • the method of the invention may further comprise, prior to "the step of depositing the coating layer valve seat, a cleaning of the seat areas of the cylinder head by means of an etchant, for example a stripper brazing on aluminum such as Castolin® C 190 stripper in the case of an aluminum alloy cylinder head
  • an etchant for example a stripper brazing on aluminum such as Castolin® C 190 stripper in the case of an aluminum alloy cylinder head
  • This stripping step improves the metallurgical bond between the coating layer and the seat areas of the cylinder head and allows elimination impurities such as residual oxides and fats.
  • the deposition of a coating layer by plasma transfer arc projection is a coating technique known in itself. Briefly, a transferred arc plasma torch is used, by example a Castolin® torch type GAP-E52.
  • the cladding gas and the carrier gas are generally helium, while the plasma gas is generally argon.
  • the powder having the desired composition for the coating is injected by the torch at the foot of the arch.
  • the deposit cycle has three phases. An arc ignition phase, a deposition phase of a coating layer on the seat area, and an arc extinction phase with anti-crater effect.
  • the duration of the deposition cycle will obviously depend on the thickness desired for the deposition, the composition of the powder and the conditions for obtaining the plasma. In general, the complete cycle takes approximately 20 seconds to obtain a coating layer having a thickness of 0.5 to 1.2 mm.
  • the pilot arc is started between the cathode and the torch nozzle, then that of the main arc between the cathode and the cylinder head.
  • the powder of the coating alloy is then injected and the displacement of the torch is initiated over the seat area to be coated with a radial oscillating movement of the latter.
  • the deposition phase mainly consists in continuing the displacement of the torch over the seat area to be coated while maintaining the conditions established in the priming phase until complete deposition of the coating layer is obtained.
  • a decreasing arc intensity profile is applied all along this phase.
  • the last phase of the cycle is an extinction phase in which the arc is passed out, then the arrival of the alloy powder is cut off and the movement of the torch is stopped. Finally, the gases are cut last.
  • This extinction phase is to avoid the formation of a crater in the deposited coating layer.
  • the alloy powder injected at the foot of the arc forms a molten bath on the surface of the breech seat area. Due to the high thermal conductivity of the material constituting the cylinder head, for example a light alloy, in particular an aluminum alloy such as alloy AS 5U3, there is rapid cooling of the coating layer / cylinder head assembly. A very fine microstructure is thus obtained for the coating layer, which promotes the mechanical and chemical resistance of the coating layer.
  • this interface will have a thickness of the order of 100 ⁇ m and the dilution rate of the alloy of the coating layer in the alloy of the cylinder head in this interface is maintained at less than 10% and even less 5% by volume.
  • the coating layers according to the invention have a particular composite microstructure developed in situ during deposition on the cylinder head. These layers consist of a matrix 5 consisting of a solid solution whose exact composition depends on the constituents of the coating in which solid particles are dispersed 6. "" As shown in FIG.
  • the deposition by transferred arc plasma generates in the alloy of the cylinder head 1 a thermally affected zone 4 of a depth of about 0.5 to 1 mm in which the micro structure of the alloy of the cylinder head is refined with respect to the rest of the cylinder head 1.
  • This is due to the generally high thermal conductivity of the cylinder head alloys, in particular light alloys and very particularly aluminum alloys.
  • a hardness HVQ 5 of 120 to 150 was measured in the region thermally affected, while the parts which are not thermally affected by the process of the invention have a hardness HVQ 5 about 80.
  • the coatings forming the valve seats according to the invention generally have a thickness of 0.5 to 1.2 mm before machining, which allows them to be self-supporting with respect to the cylinder head in order to withstand mechanical stresses. They have very high mechanical and thermal characteristics, such as a hardness HVQ 5 ranging from 200 to 500, a thermal conductivity greater than 30 W / mK and a coefficient of thermal expansion of approximately 18.10 ⁇ 6 K _ 1 at a temperature from 400 ° C to 600 ° C (which makes them compatible with cylinder head alloys, in particular aluminum alloys such as the AS5U3 alloy).
  • the coating layer is machined to obtain the desired geometry and surface finish for the valve seat. This machining step can be done during the machining of the valve guide or the housing of the valve guide.
  • the method of the invention also provides a reinforcement of the area of the cross-seat trigger guard by reducing the thermomechanical stresses compared to those induced by hooping and the difference in coefficient of expansion between the insert and the cylinder head. It would also be possible to remove the bridge reinforcement insert.
  • LPG liquid petroleum gas
  • the present invention also relates to a cylinder head, in particular an aluminum alloy cylinder head, comprising integrated valve seats constituted by a coating layer of an alloy having the compositions indicated above within the framework of the manufacturing process.
  • a coating layer of the Nil8-Mo6-Co6-Fe6-Si3-B l-Cu alloy has been deposited on the seat areas of an AS5U3 aluminum alloy cylinder head. foundry gross.
  • the seat areas can be initially stripped with a solution of an aluminum stripper (Castolin® C 190) applied to the seat areas.
  • an aluminum stripper (Castolin® C 190) applied to the seat areas.
  • the alloy coating layer is then deposited on the seat areas by plasma transfer arc projection with a Castolin® torch type GAP-E52, under the following conditions:
  • Plasma gas Argon 4 to 6 1 / minute
  • Cladding gas Helium 20 to 40 1 / minute
  • Carrier gas Helium 6 to 10 1 / minute.
  • the pilot arc cathode / nozzle
  • main arc cathode / cylinder head
  • the intensity of the main arc is around 70 Amps when it starts.
  • the alloy powder is injected and the displacement of the torch on the workpiece is initiated with a radial oscillating movement of the torch.
  • the cylinder head is fixed and the torch is mounted on a 5-axis robot.
  • the torch follows a circular trajectory conforming to the seat area associated with an oscillating movement perpendicular to its main movement.
  • the torch turns on itself in order to preserve the configuration of the powder injector relative to the displacement.
  • the circular displacement speed of the torch is between 200 and 450 rnrn / rninute, while the oscillation takes place at a frequency of 2 to 3 Hz over a width of approximately 3 mm.
  • the cylinder head is rotated (rotation relative to the axis of the seat) and a torch driven only by oscillating movements.
  • the coating layer is deposited while keeping the kinematic parameters of phase 1. However, the intensity of the main arc is decreased throughout this phase, for example from 70 to 60 amperes, in order to maintain identical conditions around the entire perimeter of the seat.
  • the duration of this deposit phase is generally of the order of 15 to
  • the cylinder head is at room temperature.
  • the rise in temperature of the aluminum is localized to an area close to the surface (under the arch foot, melting depth less than 1 mm), because the thermal conductivity and the mass of the cylinder head are high.
  • the valve seats are then machined. This step is already part of the machining range for large displacement engines where perfect alignment between the seat and the valve guide is sought.
  • the cutting conditions are quite conventional because the coating material has very good machinability.
  • the seat obtained has a special microstructure which gives it its mechanical, thermal and chemical resistance properties.
  • the dense structure and without porosity of the coating allows obtaining after machining a seat having the required geometry and surface condition.
  • the metallurgical connection between the covering bead and the cylinder head participates in the thermal transfer to the cylinder head.
  • the thermodynamic stability of the coating cord-aluminum couple guarantees resistance to thermomechanical fatigue.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Le procédé comprend: l'obtention d'une culasse en alliage léger brute de fonderie comportant des zones de siège de soupape; le dépôt par plasma à arc transféré sur les zones de siège d'une couche de revêtement d'un alliage ayant la composition suivante, en pourcent en poids: Ni 13 - 20, Mo 2 - 8, Co 0 - 10, Fe 2 - 8, Si 2 - 4, B 1 - 3, Cu Complément; et l'usinage de la couche de revêtement pour obtenir la géométrie et l'état de surface voulus pour les sièges de soupapes intégrés. Application: aux culasses en alliage d'aluminium pour moteurs à combustion interne.

Description

Procédé de fabrication d'une culasse à sièges de soupape intégrés et culasse à sièges de soupape intégrés.
La présente invention concerne de manière générale un procédé de fabrication d'une culasse à sièges de soupape intégrés, en particulier une culasse en alliage d'aluminium pour moteur à combustion interne. Plus particulièrement, la présente invention concerne un procédé de fabrication de sièges de soupape intégrés dans une culasse par dépôt par plasma à arc transféré d'une couche d'alliage de revêtement sur des zones de sièges d'une culasse brutes de fonderie, en particulier une culasse en alliage d'aluminium.
La technologie actuelle courante de fabrication des sièges de soupape d'une culasse d'un moteur consiste à insérer par frettage dans des logements ménagés à cet effet dans la culasse des sièges rapportés (inserts) en acier coulé ou fritte. Cette technique nécessite un usinage précis des logements de réception des inserts et requière des épaisseurs relativement importantes de la paroi entre la chambre de combustion et le circuit de refroidissement dans la culasse. De plus, l'emploi d'inserts pour la réalisation des sièges de soupape laisse une couche d'air entre l'insert et la culasse qui constitue une barrière thermique nuisant au transfert thermique entre la chambre de combustion et la culasse. La mise en place par frittage d'un insert induit des contraintes dans la culasse, notamment dans la zone du pontet intersiège. Les cylcs thermiques propres au fonctionnement des moteurs provoquent des contraintes thermomécaniques importantes sur le couple insert- culasse. Ces contraintes thermomécaniques peuvent conduire à la fissuration de la culasse dans la zone intersièges, du pontet ou au déchaussement du siège rapporté. Outre la culasse, la soupape est l'élément le plus sollicité dans cette configuration car elle doit évacuer une grande quantité de chaleur. De ce fait, sa fabrication nécessite des techniques de pointe telles que l'emploi de multimatériaux et le stellitage.
Par conséquent, il serait souhaitable de disposer d'un procédé de fabrication des sièges de soupape d'une culasse de moteur qui remédie aux inconvénients associés aux sièges de soupapes rapportés.
On a proposé dans le document JP-A-61-76742, de réaliser des sièges de soupapes intégrés. L'approche choisie dans ce document est le dépôt par faisceau laser de couches de revêtements d'alliages spécifiques sur des zones de siège de la culasse.
Le dépôt par faisceau laser est avantageux en ce qu'il permet des vitesses de refroidissement rapides et une gestion énergétique du procédé de fabrication des sièges de soupape. Ce procédé permet d'obtenir des dépôts avec une dilution réduite et ayant une microstructure typique de refroidissement rapide.
Plus particulièrement, le document JP-A-61-76742 décrit un procédé de fabrication de sièges de soupape intégrés dans une culasse en alliage léger dans lequel la zone des sièges de la culasse est renforcée par des fibres céramiques lors de la coulée de la culasse et qui consiste à former une couche d'un matériau anti-usure au moyen d'un faisceau laser.
En pratique, le matériau de revêtement est déposé sous forme d'une pâte sur les zones de siège de la culasse, puis fondu au moyen d'un faisceau laser et refroidi rapidement à l'air. Les matériaux de revêtement sont des alliages très spécifiques,
% en poids
Sièges de soupapes d'échappement Sièges de soupapes d'admiss ion
Co Complément 10
Cr 10 - - - -
W 5 - - - -
Mo 1 8 5 6 5
V 0,5 - - - -
C 1,5 1 1 0,8 -
Fe - Complément Complément - -
Ni - 2 2 30 -
Cu - - - Complément 4,5
Al - - - - Complément
Si - - - - 17
ayant les compositions suivantes Le procédé du document JP-A-61-74742 présente plusieurs inconvénients.
Tout d'abord, l'utilisation d'un renforcement fibreux dans l'alliage de la culasse dans les zones de siège complique passablement le procédé. En effet, il faut introduire à la coulée une préforme fibreuse avec les problèmes de mouillabilité qui en découlent. D'autre part, le siège intégré réalisé a un encombrement équivalent aux sièges rapportés. L'utilisation d'un faisceau laser comme source d'énergie impose que la surface de la zone de siège sur laquelle s'effectuera le dépôt soit homogène, c'est-à-dire sans irrégularités superficielles pouvant diffuser le faisceau de façon aléatoire afin d'obtenir un chauffage uniforme en tout point de la zone de siège. Une étape de polissage de la zone de siège de la culasse est par conséquent nécessaire. Enfin, le diamètre du bain fondu créé par le faisceau laser est incompatible avec un rendement élevé car toute la poudre en dehors du bain ne participe pas à la formation de la couche de revêtement.
La présente invention a donc pour objet un procédé de fabrication d'une culasse à sièges de soupape intégrés qui remédie aux inconvénients de l'art antérieur, et en particulier qui ne nécessite pas l'emploi d'un renforcement fibreux dans les zones de siège de la culasse.
La présente invention a encore pour objet un procédé de fabrication d'une culasse à sièges de soupape intégrés qui ne nécessite p~âs un usinage, et en particulier un polissage des zones de siège de la culasse.
La présente invention a aussi pour objet un procédé de fabrication d'une culasse à sièges de soupape intégrés qui remédie aux inconvénients du dépôt par faisceau laser. Les objectifs ci-dessus sont atteints selon l'invention par un procédé de fabrication d'une culasse en alliage léger, de préférence en alliage d'aluminium, comportant des sièges de soupape intégrés, qui comprend :
- l'obtention d'une culasse en alliage léger brute de fonderie comportant des zones de siège de soupape; - le dépôt par plasma à arc transféré sur les zones de siège d'une couche de revêtement d'un alliage ayant la composition suivante, en pourcent en poids :
Ni 13 - 20
Mo 2 - 8
Co 0 - 10
Fe 2 - 8
Si 2 - 4
B 1 - 3
Cu Complément ; et
- l'usinage de la couche de revêtement pour obtenir la géométrie et l'état de surface voulus pour les sièges de soupape intégrés.
Un alliage préféré selon l'invention est l'alliage ayant la composition suivante, en pourcent en poids :
Ni 18
Mo 6
Co 6
Fe 6
Si 3
B 1
Cu Complément
Le procédé de l'invention peut en outre comporter, préalablement a" l'étape de dépôt de la couche de revêtement formant siège de soupape, un nettoyage des zones de siège de la culasse au moyen d'un décapant, par exemple un décapant pour brasage sur aluminium tel que le décapant Castolin® C 190 dans le cas d'une culasse en alliage d'aluminium. Cette étape de décapage améliore la liaison métallurgique entre la couche de revêtement et les zones de siège de la culasse et permet l'élimination des impuretés telles que les oxydes et graisses résiduelles.
Le dépôt d'une couche de revêtement par projection par plasma à arc transféré est une technique de revêtement connue en elle-même. Brièvement, on utilise une torche à plasma à arc transféré, par exemple une torche Castolin® type GAP-E52.
Le gaz de gainage et le gaz porteur sont généralement de l'hélium, cependant que le gaz plasmagène est généralement de l'argon.
La poudre ayant la composition voulue pour le revêtement est injectée par la torche au pied de l'arc.
Le cycle de dépôt comporte trois phases. Une phase d'amorçage de l'arc, une phase de dépôt d'une couche de revêtement sur la zone du siège, et une phase d'extinction de l'arc avec effet anti-cratère. La durée du cycle de dépôt dépendra bien évidemment de l'épaisseur voulue pour le dépôt, de la composition de la poudre et des conditions d'obtention du plasma. En général, le cycle complet dure environ 20 secondes pour l'obtention d'une couche de revêtement ayant une épaisseur de 0,5 à 1,2 mm.
Lors de la phase d'amorçage après l'ouverture des gaz, on procède à l'amorçage de l'arc pilote entre la cathode et la tuyère de la torche, puis à celui de l'arc principal entre la cathode et la culasse. On injecte alors la poudre de l'alliage de revêtement et on initie le déplacement de la torche sur la zone de siège à revêtir avec un mouvement oscillant radial de celle-ci. La phase de dépôt consiste principalement à poursuivre le déplacement de la torche sur la zone de siège à revêtir en conservant les conditions établies dans la phase d'amorçage jusqu'à obtention du dépôt complet de la couche de revêtement. Au cours de cette phase, on applique un profil d'intensité d'arc décroissant tout le long de cette pϋase.
La dernière phase du cycle est une phase d'extinction dans laquelle on procède à l'évanouissement de l'arc, puis on coupe l'arrivée de la poudre d'alliage et on arrête le déplacement de la torche. Enfin, on coupe en dernier les gaz. Cette phase d'extinction a pour but d'éviter la formation d'un cratère dans la couche de revêtement déposée.
Au cours de cette étape de dépôt par plasma à arc transféré, la poudre d'alliage injectée au pied de l'arc forme un bain fondu sur la surface de la zone de siège de la culasse. Du fait de la conductivité thermique élevée du matériau constituant la culasse, par exemple un alliage léger, en particulier un alliage d'aluminium tel que l'alliage AS 5U3, il y a un refroidissement rapide de l'ensemble couche de revêtement/culasse. On obtient ainsi une microstructure très fine pour la couche de revêtement, ce qui favorise la résistance mécanique et chimique de la couche de revêtement.
On a représenté schématiquement sur la figure 1, avant usinage, une couche de revêtement déposée sur une zone de siège de culasse par le procédé de l'invention.
Comme on le voit sur la figure 1, il existe une interface 3 entre la couche de revêtement 2 et la culasse 1 qui constitue une liaison métallurgique entre l'alliage de la couche de revêtement 2 et l'alliage de la culasse 1. Cette inferface, qui est constituée d'une couche de diffusion de l'alliage du revêtement 2 dans celui de la culasse 1 , garantit la tenue de la couche de revêtement formant le siège sur la culasse 1 , notamment par le contrôle des composés intermétalliques
(nature, volume et répartition). En général, cette interface aura une épaisseur de l'ordre de 100 μm et le taux de dilution de l'alliage de la couche de revêtement dans l'alliage de la culasse dans cette interface est maintenu à moins de 10% et même à moins de 5% en volume. Les couches de revêtement selon l'invention ont une microstructure composite particulière élaborée in situ lors du dépôt sur la culasse. Ces couches se composent d'une matrice 5 constituée par une solution solide dont la composition exacte dépend des constituants du revêtement dans laquelle sont dispersées des particules solides 6. "" Comme le montre la figure 1, le dépôt par plasma à arc transféré engendre dans l'alliage de la culasse 1 une zone therrniquement affectée 4 d'une profondeur d'environ 0,5 à 1 mm dans laquelle la micro structure de l'alliage de la culasse est affinée par rapport au reste de la culasse 1. Ceci est dû à la conductivité thermique généralement élevée des alliages de culasse, en particulier des alliages légers et tout particulièrement des alliages d'aluminium. Ainsi, pour l'alliage d'aluminium AS5U3, on a mesuré une dureté HVQ 5 de 120 à 150 dans la zone therrniquement affectée, cependant que les parties qui ne sont pas affectées therrniquement par le procédé de l'invention ont une dureté HVQ 5 de 80 environ. Les revêtements formant les sièges de soupape selon l'invention ont en général une épaisseur de 0,5 à 1,2 mm avant usinage, ce qui leur permet d'être auto-portants par rapport à la culasse afin de résister aux sollicitations mécaniques. Ils possèdent des caractéristiques mécaniques et thermiques très élevées, telles qu'une dureté HVQ 5 allant de 200 à 500, une conductivité thermique supérieure à 30 W/m.K et un coefficient de dilatation thermique d'environ 18.10~6K_ 1 à une température de 400°C à 600°C (ce qui les rend compatibles avec les alliages de culasse, en particulier les alliages d'aluminium comme l'alliage AS5U3).
En outre, ils présentent une résistance élevée à l'usure par érosion, abrasion et adhésion, à la corrosion chimique et thermique et une stabilité thermique élevée, en particulier vis-à-vis des alliages d'aluminium. Comme indiqué précédemment, la couche de revêtement est usinée pour obtenir la géométrie et l'état de surface voulus pour le siège de soupape. Cette étape d'usinage peut se faire lors de l'usinage du guide de soupape ou du logement du guide de soupape.
Le procédé de l'invention présente de nombreux avantages par rapport à l'art antérieur.
Il permet de supprimer l'utilisation d'insert et supprime les opérations d'usinage des zones de siège et de frettage de la culasse.
Il permet de réduire l'encombrement de la culasse.
Ainsi, il est possible de redéfinir le moule de fonderie pour supprimer de la matière dans les zones de siège. En diminuant l'encombrement du siège, on peut diminuer, à puissance égale, la taille du moteur ou augmenter sa puissance pour un même encombrement en augmentant le diamètre utile des sièges. On peut encore réduire l'épaisseur de la paroi de la chambre de combustion/circuit de refroidissement, ce qui favorisera les échanges thermiques entre la chambre de combustion et le circuit de refroidissement. En augmentant le transfert thermique vers la culasse, on diminue la température globale de la soupape ainsi que les gradients thermiques habituellement recontrés entre la portée et la tige. Cette homogénéisation de la température globale de la chambre avec la suppression des points chauds permet de réduire la consommation en carburant du moteur, particulièrement à haut régime. La diminution des sollicitations thermomécaniques sur la soupape peut permettre une simplification de l'usinage de celle-ci. Le procédé de l'invention assure également un renforcement de la zone du pontet intersiège en réduisant les contraintes thermomécaniques par rapport à celles induites par le frettage et la différence de coefficient de dilatation entre l'insert et la culasse. Il serait également possible de supprimer l'insert de renforcement du pontet.
Enfin, la liaison métallurgique et les matériaux utilisés pour réaliser les sièges intégrés sont compatibles avec une motorisation fonctionnant au gaz de pétrole liquide (GPL).
La présente invention concerne également une culasse, en particulier une culasse en alliage d'aluminium, comportant des sièges de soupapes intégrés constitués par une couche de revêtement d'un alliage ayant les compositions indiquées précédemment dans le cadre du procédé de fabrication.
A titre d'exemple, on a réalisé le dépôt d'une couche de revêtement de l'alliage Nil8-Mo6-Co6-Fe6-Si3-B l-Cu sur des zones de siège d'une culasse en alliage d'aluminium AS5U3 brute de fonderie.
Les zones de siège peuvent être initialement décapées avec une solution d'un décapant pour aluminium (Castolin® C 190) appliquée sur les zones de siège.
On procède alors au dépôt de la couche de revêtement d'alliage sur les zones de siège par projection plasma à arc transféré avec une torche Castolin® type GAP-E52, dans les conditions suivantes :
Phase 1 - Amorçage et transfert d'arc. Gaz plasmagène : Argon 4 à 6 1/minute Gaz de gainage : Hélium 20 à 40 1/minute Gaz porteur : Hélium 6 à 10 1/minute.
Après ouverture des gaz, on procède à l'amorçage de l'arc pilote (cathode/tuyère) puis au transfert pour établir l'arc principal (cathode/culasse). L'intensité de l'arc principal est de 70 Ampères environ à son amorçage. On injecte la poudre d'alliage et on initie le déplacement de la torche sur la pièce avec un mouvement oscillant radial de la torche. Dans le présent exemple, la culasse est fixe et la torche est montée sur un robot 5-axes. La torche suit une trajectoire circulaire conforme à la zone de siège associée à un mouvement d'oscillation perpendiculaire à son déplacement principal. Enfin, la torche tourne sur elle-même afin de conserver la configuration de l'injecteur de poudre par rapport au déplacement. La vitesse de déplacement circulaire de la torche est comprise entre 200 et 450 rnrn/rninute, cependant que l'oscillation s'effectue à une fréquence de 2 à 3 Hz sur une largeur de 3 mm environ. En variante, on peut employer une configuration dans laquelle on fait tourner la culasse (rotation par rapport à l'axe du siège) et une torche animée seulement de mouvements oscillants.
Phase 2 - Cycle principal de dépôt.
Le dépôt de la couche de revêtement s'effectue en conservant les paramètres cinématiques de la phase 1. Toutefois, on fait décroître, tout au long de cette phase, l'intensité de l'arc principal, par exemple de 70 à 60 Ampères, afin de maintenir des conditions identiques sur tout le périmètre du siège.
La durée de cette phase de dépôt est en général de l'ordre de 15 à
20 secondes.
Phase 3 - évanouissement de l'arc.
On procède à l'évanouissement de l'arc, on coupe l'arrivée de la poudre d'alliage, et on arrête le mouvement. Enfin, on coupe l'arrivée des gaz. Pendant le traitement, la culasse est à température ambiante. La montée en température de l'aluminium est localisée à une zone proche de la surface (sous le pied d'arc, profondeur de fusion inférieure à 1 mm), car la conductivité thermique et la masse de la culasse sont élevées. On procède ensuite à l'usinage des sièges de soupape. Cette étape s'inscrit déjà dans la gamme d'usinage des moteurs de grosse cylindrée où l'on recherche un alignement parfait entre le siège et le guide de soupape. Les conditions de coupe sont tout à fait classiques car le matériau du revêtement a une très bonne usinabilité. Le siège obtenu possède une microstructure particulière qui lui confère ses propriétés de résistance mécanique, thermique et chimique. La structure dense et sans porosité du revêtement permet l'obtention après usinage d'un siège ayant la géométrie et l'état de surface requis. La liaison métallurgique entre le cordon de revêtement et la culasse participe au transfert thermique vers la culasse. La stabilité thermodynamique du couple cordon de revêtement-aluminium garantit la tenue à la fatigue thermomécanique.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une culasse en alliage léger comportant des sièges de soupape intégrés, caractérisé en ce qu'il comprend :
- l'obtention d'une culasse en alliage léger brute de fonderie comportant des zones de siège de soupape;
- le dépôt par plasma à arc transféré sur les zones de siège d'une couche de revêtement d'un alliage ayant la composition suivante, en pourcent en poids :
Ni 13 - 20
Mo 2 - 8
Co 0 - 10
Fe 2 - 8
Si 2 - 4
B 1 - 3
Cu Complément ; et - l'usinage de la couche de revêtement pour obtenir la géométrie et l'état de surface voulus pour les sièges de soupape intégrés.
2. Procédé selon la revendication 1, caractérisé en ce que l'alliage de la couche de revêtement a la composition suivante, en pourcent en poids :
Ni 18
Mo 6
Co 6
Fe 6
Si 3
B 1
Cu Complément.
3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce qu'il comprend en outre préalablement à l'étape de dépôt de la couche de revêtement, une étape de décapage des zones de siège.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'étape de dépôt par plasma à arc transféré comporte une phase d'amorçage de l'arc, une phase de dépôt et une phase d'extinction de l'arc.
5. Procédé selon la revendication 4, caractérisé en ce que la phase de dépôt est mise en oeuvre avec un arc d'intensité décroissante.
6. Procédé selon la revendication 4 ou 5, caractérisé en ce que la phase d'extinction de l'arc est une phase avec effet anti-cratère.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche de revêtement a une épaisseur de 0,5 à 1,2 mm.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la culasse est en alliage d'aluminium.
9. Culasse en alliage léger à sièges de soupape intégrés, caractérisée en ce que les sièges de soupape intégrés sont constitués par une couche de revêtement d'un alliage de composition, en pourcent en poids :
Ni 13 - 20 Mo 2 - 8
Co 0 - 10
Fe 2 - 8
Si 2 - 4
B 1 - 3 Cu Complément.
10. Culasse en alliage léger selon la revendication 9, caractérisée en ce que l'alliage de la couche de revêtement a pour composition, en pourcent en poids :
Ni 18
Mo 6
Co 6
Fe 6
Si 3
B 1 Cu Complément.
1 1. Culasse en alliage léger selon la revendication 10, caractérisée en ce que l'alliage de la couche de revêtement a une dureté HVQ 5 de 200 à 500, une conductivité thermique supérieure à 30 W/m.K et un coefficient de dilatation thermique a une température de 400 à 600°C de 18.10-6 K_1.
12. Culasse en alliage léger selon l'une quelconque des revendications 9 à 11, caractérisée en ce que l'alliage léger est un alliage d'aluminium.
EP98930847A 1997-07-10 1998-06-12 Procede de fabrication d'une culasse a sieges de soupape integres et culasse a sieges de soupape integres Expired - Lifetime EP0995027B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9708806A FR2765915B1 (fr) 1997-07-10 1997-07-10 Procede de fabrication d'une culasse a sieges de soupape integres et culasse a sieges de soupape integres
FR9708806 1997-07-10
PCT/FR1998/001232 WO1999002839A1 (fr) 1997-07-10 1998-06-12 Procede de fabrication d'une culasse a sieges de soupape integres et culasse a sieges de soupape integres

Publications (2)

Publication Number Publication Date
EP0995027A1 true EP0995027A1 (fr) 2000-04-26
EP0995027B1 EP0995027B1 (fr) 2003-03-12

Family

ID=9509111

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98930847A Expired - Lifetime EP0995027B1 (fr) 1997-07-10 1998-06-12 Procede de fabrication d'une culasse a sieges de soupape integres et culasse a sieges de soupape integres

Country Status (5)

Country Link
EP (1) EP0995027B1 (fr)
DE (1) DE69812101T2 (fr)
ES (1) ES2194329T3 (fr)
FR (1) FR2765915B1 (fr)
WO (1) WO1999002839A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1155320B (it) * 1982-04-22 1987-01-28 Fiat Auto Spa Metodo per l'ottenimento di una sede valvola su una testata di un motore endotermico e motore con sedi valvola ottenute con tale metodo
JPS62150014A (ja) * 1985-12-25 1987-07-04 Toyota Motor Corp アルミニウム合金製バルブシ−トレスシリンダヘツド
JPH0610081A (ja) * 1992-06-29 1994-01-18 Toyota Motor Corp 排気用チタンバルブを備えたエンジン
JPH08312800A (ja) * 1995-05-15 1996-11-26 Yamaha Motor Co Ltd 接合型バルブシート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9902839A1 *

Also Published As

Publication number Publication date
FR2765915B1 (fr) 1999-08-27
WO1999002839A1 (fr) 1999-01-21
ES2194329T3 (es) 2003-11-16
DE69812101D1 (de) 2003-04-17
FR2765915A1 (fr) 1999-01-15
DE69812101T2 (de) 2003-11-20
EP0995027B1 (fr) 2003-03-12

Similar Documents

Publication Publication Date Title
AU614158B2 (en) Pistons
EP0986653B1 (fr) Piece mecanique frittee a surface antiabrasion et procede pour sa realisation
CA2096916C (fr) Piece en superalliage comportant un apport et procede de realisation de l'apport
EP1357201B1 (fr) Formation d'un revetement céramique à gradient de composition par dépot physique en phase vapeur sous faisceau d'electrons
EP2540433B1 (fr) Procédé de rechargement d'un moule de verrerie par rechargement laser de poudres
FR2518123A1 (fr) Procede pour appliquer un revetement de matiere ceramique sur un substrat metallique et article obtenu
EP0904881B1 (fr) Procédé d'assemblage ou de rechargement par brasage-diffusion de pièces en aluminiure de titane
FR2644088A1 (fr) Procede de fabrication de coude de fonderie
JP2000506790A (ja) 金属物体のチャネル加工
FR2891553A1 (fr) Alliage de cuivre a dispersion de particules et procede pour sa production
JP3835694B2 (ja) バルブシートの製造方法
US20080124469A1 (en) Method For Producing A Component Covered With A Wear-Resistant Coating
EP0466603B1 (fr) Structures réfractaires refroidies et procédé pour leur fabrication
KR100609300B1 (ko) 미끄럼 베어링 등의 열 코팅 방법
JPH0527706B2 (fr)
EP2209579B1 (fr) Procédé de rechargement par soudage d'une pièce, avec incorporation de particules céramiques dans la soudure
EP0995027B1 (fr) Procede de fabrication d'une culasse a sieges de soupape integres et culasse a sieges de soupape integres
US5173339A (en) Poppet valve manufacture
FR2941964A1 (fr) Methode de traitement d'une barriere thermique recouvrant un substrat metallique en superalliage et piece thermomecanique resultant de cette methode de traitement
JPH028894B2 (fr)
EP1104846B1 (fr) Procédé de renforcement d'un piston de moteur à combustion interne et piston renforcé selon le procédé
EP0670190A1 (fr) Moule de fonderie et son procédé de réalisation
EP0272527A2 (fr) Procédé de revêtement d'un support avec une couche de métallisation et produit obtenu par celui-ci
EP4192635A1 (fr) Protection contre l'oxydation ou la corrosion d'une piece creuse en superalliage
WO2022258932A1 (fr) Procédé de production de disques de turbomachines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CACHOT, PHILIPPE

Inventor name: BEN ABDALLAH, ADEL

17Q First examination report despatched

Effective date: 20001215

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S.

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20030312

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030312

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69812101

Country of ref document: DE

Date of ref document: 20030417

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030312

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2194329

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060616

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060629

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070613