EP0994235B1 - Durchlauf-Mischanlage für Bohrflüssigkeit - Google Patents

Durchlauf-Mischanlage für Bohrflüssigkeit Download PDF

Info

Publication number
EP0994235B1
EP0994235B1 EP99120187A EP99120187A EP0994235B1 EP 0994235 B1 EP0994235 B1 EP 0994235B1 EP 99120187 A EP99120187 A EP 99120187A EP 99120187 A EP99120187 A EP 99120187A EP 0994235 B1 EP0994235 B1 EP 0994235B1
Authority
EP
European Patent Office
Prior art keywords
mixing
pressure pump
mixing system
high pressure
drilling fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99120187A
Other languages
English (en)
French (fr)
Other versions
EP0994235A2 (de
EP0994235A3 (de
Inventor
Manfred Schauerte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tracto Technik GmbH and Co KG
Original Assignee
Tracto Technik Paul Schmidt Spezialmaschinen KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE29818289U external-priority patent/DE29818289U1/de
Application filed by Tracto Technik Paul Schmidt Spezialmaschinen KG filed Critical Tracto Technik Paul Schmidt Spezialmaschinen KG
Publication of EP0994235A2 publication Critical patent/EP0994235A2/de
Publication of EP0994235A3 publication Critical patent/EP0994235A3/de
Application granted granted Critical
Publication of EP0994235B1 publication Critical patent/EP0994235B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/56Mixing liquids with solids by introducing solids in liquids, e.g. dispersing or dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/59Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation

Definitions

  • the invention relates to a mixing system as used for mixing a drilling fluid for horizontal drilling.
  • drilling or rinsing fluids that are fed into the drilling rig and, for example, emerge in the area of the drill head and are thus directed into the borehole, improve and facilitate the drilling process by softening the soil and removing the cuttings.
  • the storage tank is refilled by mixing a new batch. Since in practice this leads to disturbing delays in drilling, it is common to provide a second storage tank so that the batches of liquid can be placed in one tank while the other tank supplies the drilling rig.
  • the disadvantage of such systems is the increased space requirement and additional costs.
  • Another disadvantage of the known batch mixers is that the mixing pumps required must have a particularly long service life due to the aggressiveness of an abrasive medium such as bentonite. This either leads to increased costs or increased wear.
  • the required amount of drilling suspension cannot usually be estimated precisely, so that the drilling fluid is often not completely used up after the drilling process has ended and must be disposed of. Leaving the drilling fluid in the tank can cause the drilling fluid to swell. Due to the increased viscosity, problems may arise when drilling with this drilling fluid. In winter, frost damage to the equipment due to incomplete drilling fluid cannot be ruled out.
  • the drilling fluid is usually fed to the drilling rig by a high pressure pump.
  • a high pressure pump see US-A-5 213 414, DE-A-4 217 373.
  • Such pumps are mostly non-self-priming pumps.
  • a self-priming charging pump see US-A-36 91 070 which pumps the high-pressure pump on the suction side fed.
  • the use of such a charge pump also leads to a considerable increase in costs.
  • the invention is therefore based on the problem of making it easier to load a drilling rig with a drilling fluid.
  • the solution to the problem is based on the principle of introducing additives, such as powdered bentonite, upstream or downstream of the high-pressure pump.
  • the pump In the case of an introduction before the high-pressure pump, the pump is supplied with process water via a hydrant, an introduction for the addition medium being provided between the hydrant and the high-pressure pump.
  • the introduction of the addition medium can be mechanically supported and regulated via various measured variables.
  • additional additives such as polymers or soda ash.
  • a mixing section for further mixing can be provided behind the high-pressure pump.
  • a swelling section can be connected to the mixing section if a certain swelling time is desired.
  • the addition medium When the addition medium is introduced downstream of the high-pressure pump, it is introduced in the region of the high-pressure jet of the high-pressure pump, which leads to an intensive mixing of the addition medium with the process water. Additional mixing and source sections can also be connected to the introduction section.
  • the mixing plant according to the invention allows a continuous, i.e. "Online mixing" of the aggregates for the drilling fluid with the process water. Additional storage tanks are avoided, so that the mixing plant has extremely small dimensions and can be used directly on the drilling rig. Due to its small size, the mixing plant can be designed as components of mobile drilling equipment.
  • the reprocessed drilling fluid can be optimally adjusted for the new drilling operation with regard to its viscosity by means of a preselected ratio of added water to added addition medium.
  • the compact design realized with the invention allows the mixing plant to be connected to mobile drilling rigs of any size, since there is a high degree of variability with regard to the possible addition quantity and mixing capacity.
  • the mixing system then only has to be connected to a hydrant on site, the desired amount of drilling fluid being available for the drilling process in any constellation.
  • the mixing plant preferably uses a silo or a so-called "big bag” as a storage container for the additives.
  • the mixing plant according to the invention has a lower energy consumption and a longer service life than conventional devices, not least because the additional pumps required in the prior art are no longer required.
  • the suspension medium is fed to the process water upstream of the high-pressure pump (FIGS. 1, 2, 5, 6).
  • the process water is fed on the low pressure side of a high pressure pump via a hydrant.
  • the mixing system also has a pressure-reducing valve 12, via which the process water of the high-pressure pump 7 is supplied via a filter element 13 and a shut-off valve 14.
  • the hot water supply can be switched on and off and can be regulated according to certain parameters on the basis of control commands from control electronics 1 connected to the valve 14.
  • the control electronics 1 is connected to a sensor 8, which measures the amount of water actually flowing through, which is determined by the delivery rate of the high-pressure pump 7 with a controllable drive 24, which can be adjusted manually (for example via a potentiometer) or automatically controlled.
  • the amount of addition medium required for the desired mixing ratio (bentonite as a suspension amount) is supplied via a conveyor device 6, which is connected to a so-called big bag 5 or other storage container which contains the bentonite supply, the exact dosage being fed to the conveyor device via a drive 3 6, which is connected to the control electronics 1 via an actuator 2, takes place.
  • Bentonite enters the conveyor 6 via a feed line 21, which conveys it in an amount dependent on the speed of the drive 3 to the high-pressure pump 7, the engine speed of the drive being transmitted to the control electronics 1 via a sensor 20. With the aid of a setpoint / actual value comparison, the control electronics 1 ensures via the steep link 2 that the desired speed of the drive 3 is maintained.
  • the suspension medium reaches the service water behind the shut-off valve 14 on the low-pressure side of the high-pressure pump 7 and is conveyed together with the latter by the high-pressure pump 7 into a high-pressure mixing section 15, intensive mixing already taking place as a result of the pumping process of the high-pressure pump 7.
  • the mixing section 15 consists of a plurality of static or dynamic mixers operated in series or in parallel, with static mixers being preferred since only the components to be mixed are moved in these. Mixing is intensified by dividing, redirecting and recombining the media. The spherical structure of the bentonite components is broken up by the high shear forces acting in the mixer. This leads to a reduction in the swelling time, since the surface of the suspension medium on which the water molecules attach is enlarged.
  • a swelling section 16 is provided which, depending on the design, permits a more or less long swelling time of the drilling suspension.
  • the swelling section 16 can consist of an intermediate container or a coiled tubing or can also be realized by the section of the drill pipe 10 via which the suspension is fed to the drill head 11 or the expansion tool 17.
  • the drilling suspension can be mixed with additional additives, such as polymers or soda ash, via the feed lines 18, 19, which are also introduced immediately before the high-pressure pump 7.
  • additional additives such as polymers or soda ash
  • the process water can also be supplied via a storage tank 9.
  • the suspension medium reaches the service water in a buffer container 23.
  • the buffer tank has a level switch (a, b) that switches the bentonite supply on and off, depending on whether the medium exceeds the upper mark a or the lower mark b.
  • the buffer tank 23 is preferably designed as a narrow, vertically arranged tube, which prevents the process water / drilling suspension mixture from segregating before entering the pump 7.
  • the buffer tank 23 also prevents the high pressure pump 7 from being inadvertently supplied with air.
  • the suspension medium is supplied to the high-pressure pump 7 on the high-pressure side.
  • the suspension medium reaches the process water in the area of the water jet nozzle 22 of the high-pressure pump, as a result of which intensive mixing is achieved.
  • the mixing situation can be influenced by the configuration of the water jet nozzle 22.
  • the diameter of the water jet nozzle can be adjusted depending on the flow rate in order to ensure an intensive water jet at all times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Accessories For Mixers (AREA)
  • Soil Working Implements (AREA)

Description

  • Die Erfindung betrifft eine Mischanlage, wie sie zum Anmischen einer Bohrflüssigkeit für das Horizontalbohren eingesetzt wird.
  • Beim Horizontalbohren wird mit Hilfe von Bohr- oder Spülflüssigkeiten, die dem Bohrgerät zugeführt werden und beispielsweise im Bereich des Bohrkopfes austreten und damit in das Bohrloch geleitet werden, eine Verbesserung und Erleichterung des Bohrvorgangs erreicht, indem das Erdreich aufgeweicht und das Bohrklein abtransportiert wird.
  • In der Praxis hat sich die Verwendung einer Bentonit-Wasser-Suspension durchgesetzt, die je nach den gegebenen Bodenverhältnissen mit unterschiedlicher Konsistenz zum Einsatz kommt. Eine solche Suspension besitzt die Eigenschaft, das Bohrklein in Schwebe zu halten, um es aus dem Bohrloch transportieren zu können und besitzt zudem beim Einziehen eines neuen Rohrstrangs den Vorteil, daß dieser geschmiert und nach dem Einziehen nach einer gewissen Aushärtephase gegen das umgebende Erdreich geschützt wird. Zur Variation der Eigenschaften der Suspension ist es bekannt, Polymere sowie weitere Substanzen, wie beispielsweise Sodaasche, zum Einstellen des pH-Wertes beizumischen
  • Bekannte Mischanlagen (siehe US-A-2 631 017, US-A-4 444 277) arbeiten nach dem Prinzip, daß die gewünschte Menge Bohrflüssigkeit in einem Vorratstank angemischt wird, dessen Inhalt dann für den Bohrvorgang zur Verfügung steht. Solche Mischanlagen werden als Chargenmischer bezeichnet, da je Mischvorgang eine Charge für das Bohren zur Verfügung gestellt werden kann.
  • Nachdem die Bohrflüssigkeit verbraucht ist, wird der Vorratstank durch Anmischen einer neuen Charge aufgefüllt. Da dies in der Praxis zu störenden Zeitverzögerungen beim Bohren führt, ist es üblich, einen zweiten Vorratstank bereitzustellen, so daß die Flüssigkeitschargen in einem Tank angesetzt werden können, während der andere Tank die Bohranlage versorgt. Der Nachteil solcher Systeme besteht in erhöhtem Platzbedarf und zusätzlichen Kosten. Ein weiterer Nachteil der bekannten Chargenmischer besteht darin, daß die erforderlichen Mischpumpen aufgrund der Aggressivität eines abrasiven Mediums wie Bentonit eine besondere Haltbarkeit aufweisen müssen. Das führt entweder zu erhöhten Kosten oder zu erhöhtem Verschleiß.
  • Darüber hinaus läßt sich die erforderliche Menge Bohrsuspension in der Regel nicht genau abschätzen, so daß die Bohrflüssigkeit nach Beendigung des Bohrvorgangs häufig nicht vollständig aufgebraucht ist und entsorgt werden muß. Beläßt man die Bohrflüssigkeit im Tank, kann es zu einem Nachquellen der Bohrflüssigkeit kommen. Aufgrund der erhöhten Viskosität kann es beim Bohren zu Problemen bei erneutem Einsatz dieser Bohrflüssigkeit kommen. In der Winterzeit sind zudem Frostschäden an den Geräten durch nicht vollständig aufgebrauchte Bohrflüssigkeit nicht ausgeschlossen.
  • Die Bohrftüssigkeit wird dem Bohrgerät in aller Regel durch eine Hochdruckpumpe zugeführt. (siehe US-A-5 213 414, DE-A-4 217 373), Bei solchen Pumpen handelt es sich meist um nicht selbstansaugende Pumpen. Da die Bohrflüssigkeit allerdings nicht selten mit sehr hoher Viskosität verpumpt werden muß, ist der Einsatz einer selbstansaugenden Ladepumpe (siehe US-A-36 91 070) erforderlich, die die Hochdruckpumpe saugseitig beschickt. Der Einsatz einer solchen Ladepumpe führt ebenfalls zu einer erheblichen Kostensteigerung.
  • Der Erfindung liegt daher das Problem zugrunde, ein vereinfachtes Beschicken einer Bohranlage mit einer Bohrflüssigkeit zu ermöglichen.
  • Das Problem wird durch den Gegenstand der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind den Unteransprüchen zu entnehmen.
  • Die Lösung des Problems basiert auf dem Prinzip, Zuschlagstoffe, wie beispielsweise das pulverförmige Bentonit, vor oder hinter der Hochdruckpumpe einzuleiten.
  • Bei einer Einleitung vor der Hochdruckpumpe wird der Pumpe Brauchwasser über einen Hydranten zugeführt, wobei zwischen Hydrant und Hochdruckpumpe eine Einleitung für das Zugabemedium vorgesehen ist. Die Einleitung des Zugabemediums kann mechanisch unterstützt und über verschiedene Meßgrößen geregelt werden. Gleiches gilt für die Zugabe ergänzender Zuschlagstoffe, wie beispielsweise Polymere oder Sodaasche.
  • Nach dem Einleiten des Zugabemediums gelangt dieses mit dem Brauchwasser in die Hochdruckpumpe, in der eine intensive Vermischung erfolgt. Zusätzlich kann hinter der Hochdruckpumpe eine Mischstrecke für ein weiteres Vermischen vorgesehen sein. An die Mischstrecke kann sich eine Quellstrecke anschließen, sofern eine bestimmte Quelldauer erwünscht ist.
  • Beim Einleiten des Zugabemediums in Flußrichtung hinter der Hochdruckpumpe wird dieses im Bereich des Hochdruckstrahls der Hochdruckpumpe eingeleitet, was zu einer intensiven Vermischung des Zugabemediums mit dem Brauchwasser führt. An die Einleitungsstrecke können sich ebenfalls zusätzliche Misch- sowie Quellstrecken anschließen.
  • Die erfindungsgemäße Mischanlage erlaubt ein kontinuierliches, d.h. "Online-Mischen" der Zuschlagstoffe für die Bohrflüssigkeit mit dem Brauchwasser. Dabei werden zusätzliche Vorratstanks vermieden, so daß die Mischanlage außerordentlich geringe Abmessungen aufweist und direkt an der Bohranlage einsetzbar ist. Aufgrund ihrer geringen Größe kann die Mischanlage als Bestandteile mobiler Bohrgeräte ausgebildet sein.
  • Ferner wird beim Bohren nur diejenige Flüssigkeitsmenge angesetzt, die unmittelbar verbraucht wird. Nach dem Bohren unverbrauchter Restmengen an Bohrflüssigkeit werden durch die erfindungsgemäße Mischanlage vermieden.
  • Darüber hinaus wird ein minimaler Materialaufwand realisiert, da neben den Vorratstanks auch Misch-, Umwälz- oder Ladepumpen vermieden werden können. Dies ist auch bei nicht saugenden Hochdruckpumpen dadurch möglich, daß die auf der Saugseite zugeleitete Flüssigkeit erfindungsgemäß eine niedrige Viskosität besitzt, da es sich entweder um reines Brauchwasser handelt (Einleitung hinter der Hochdruckpumpe) oder um Brauchwasser mit noch nicht gequollenem Bentonit (Einleitung vor der Hochdruckpumpe).
  • Ein weiterer Vorteil besteht in der vereinfachten Möglichkeit, wieder aufbereitete Bohrflüssigkeit zu verwenden. Die großen Flüssigkeitsmengen, die beim Horizontalbohren häufig eingesetzt werden, haben dazu geführt, daß ein "Recycling" der Bohrflüssigkeit aus ökonomischen und ökologischen Gründen erforderlich ist. Mit der erfindungsgemäßen Mischanlage kann die wieder aufbereitete Bohrflüssigkeit bezüglich ihrer Viskosität durch ein vorgewähltes Verhältnis von zugegebenem Wasser zu zugeschlagenem Zugabemedium für den neuen Bohrvorgang optimal eingestellt werden.
  • Die sich mit der Erfindung verwirklichende kompakte Bauweise erlaubt es, die Mischanlage mit mobilen Bohrgeräten beliebiger Größe zu verbinden, da eine hohe Variabilität bezüglich der möglichen Zuschlagmenge und Mischleistung besteht. Die Mischanlage muß dann auf der Baustelle lediglich an einen Hydranten angeschlossen werden, wobei die gewünschte Menge Bohrflüssigkeit für den Bohrvorgang in jeder Konstellation zur Verfügung steht. Dabei kommt für die Mischanlage vorzugsweise der Einsatz eines Silos oder eines sogenannten "Big Bag" als Vorratsbehälter für die Zuschlagstoffe zum Einsatz. Die sonst üblichen Chargentanks, die bei größeren Bohranlagen erhebliche Ausmaße annehmen, entfallen.
  • Konstruktionsbedingt besitzt die erfindungsgemäße Mischanlage einen geringeren Energieverbrauch und eine längere Lebensdauer als herkömmliche Geräte, nicht zuletzt durch den Wegfall der im Stande der Technik erforderlichen Zusatzpumpen.
  • Mit einem automatisierten Mischvorgang, der sich mit der erfindungsgemäßen Mischanlage verwirklichen läßt, ist ein vollautomatischer Ablauf des Bohrvorgangs in bezug auf die Bohrflüssigkeit möglich, der durch eine Automatisierung der Wiederaufbereitung ergänzt werden kann.
  • Beim Einsatz des Ausführungsbeispiels einer druckseitigen Zugabe des Zugabemediums muß lediglich das Brauchwasser der Hochdruckpumpe zugeführt werden. Dies kann entweder über einen Hydranten durch die Hochdruckpumpe selbst oder durch eine herkömmliche Wasserpumpe erfolgen. Die Hochdruckpumpe selbst braucht nicht resistent gegen abrasive Medien zu sein.
  • Im folgenden wird die Erfindung anhand von in der Zeichnung dargestellten Ausführungsbeispielen des näheren erläutert.
  • In der Zeichnung zeigen:
  • Fig. 1
    eine erfindungsgemäße Mischanlage mit Zuleitung des Supensionsmediums in Flußrichtung vor der Hochdruckpumpe,
    Fig. 2
    die Mischanlage der Fig. 1 mit Zuleitungen für Zusatzstoffe,
    Fig. 3
    die Mischanlage der Fig. 1 mit Zuleitung für das Zugabemedium hinter der Hochdruckpumpe,
    Fig. 4
    die Mischanlage der Fig. 3 mit einer Zuleitung für Zusatzstoffe,
    Fig. 5
    die Mischanlage der Fig. 1 mit Pufferrohr und Niveauregulierung,
    Fig. 6
    die Mischanlage der Fig. 5 mit ergänzender Zuleitung für Zusatzstoffe.
  • Nach einer ersten Ausführungsform der Erfindung wird das Suspensionsmedium dem Brauchwasser vor der Hochdruckpumpe zugeleitet (Fig. 1, 2, 5, 6).
  • Der Mischanlage gemäß dieser Ausführungsform wird das Brauchwasser an der Niederdruckseite einer Hochdruckpumpe über einen Hydranten zugeführt. Niederdruckseitig besitzt die Mischanlage ferner ein Druckminderungsventil 12, über das das Brauchwasser der Hochdruckpumpe 7 über ein Filterelement 13 und ein Absperrventil 14 zugeführt wird. Mit Hilfe des Absperrventils 14 läßt sich die Brauchwasserzufuhr zu- und abschalten sowie aufgrund von Steuerbefehlen einer mit dem Ventil 14 verbundenen Steuerelektronik 1 nach bestimmten Parametern regeln. Die Steuerelektronik 1 ist mit einem Sensor 8 verbunden, der die tatsächlich durchlaufende Wassermenge mißt, die durch die Fördermenge der Hochdruckpumpe 7 mit regelbarem Antrieb 24 bestimmt wird, welche von Hand (z.B. über ein Potentiometer) einstellbar oder automatisch regelbar ist.
  • Mit Hilfe der Stellglieder 4 lassen sich bestimmte Sollwerte vorgeben, um ein gewünschtes Mischverhältnis zu erreichen, wobei die einzelnen Stellgrößen durch die Steuerelektronik 1 ermittelt werden.
  • Die für das gewünschte Mischverhältnis erforderliche Menge an Zugabemedium (Bentonit als Suspensionsmenge) wird über eine Fördereinrichtung 6, die mit einem sogenannten Big Bag 5 oder anderen Vorratsbehältem verbunden ist, der den Bentonitvorrat enthält, zugeleitet, wobei die genaue Dosierung über einen Antrieb 3 der Fördereinrichtung 6, der mit der Steuerelektronik 1 über ein Stellglied 2 in Verbindung steht, erfolgt.
  • Über eine Zuleitung 21 gelangt dabei Bentonit in die Fördereinrichtung 6, die dieses in einer von der Geschwindigkeit des Antriebs 3 abhängigen Menge zur Hochdruckpumpe 7 fördert, wobei die Motordrehzahl des Antriebs über einen Sensor 20 an die Steuerelektronik 1 übermittelt wird. Mit Hilfe eines Soll-Istwert-Vergleichs gewährleistet die Steuerelektronik 1 über das Steilglied 2, daß die gewünschte Drehzahl des Antriebs 3 eingehalten wird. Das Suspensionsmedium gelangt hinter dem Absperrventil 14 auf der Niederdruckseite der Hochdruckpumpe 7 in das Brauchwasser und wird zusammen mit diesem von der Hochdruckpumpe 7 in eine Hochdruckmischstrecke 15 befördert, wobei bereits durch den Pumpvorgang der Hochdruckpumpe 7 eine intensive Vermischung erfolgt. Die Mischstrecke 15 besteht aus mehreren in Reihe oder parallel betriebenen statischen oder dynamischen Mischern, wobei statische Mischer bevorzugt sind, da bei diesen nur die zu mischenden Komponenten bewegt werden. Das Vermischen wird durch Aufteilen, Umlenken und Wiederzusammenführen der Medien intensiviert. Dabei wird die kugelartige Struktur der Bentonitbestandteile durch die hohen im Mischer wirkenden Scherkräfte aufgebrochen. Dies führt zu einer Verringerung der Quellzeit, da die Oberfläche des Suspensionsmediums, an der sich die Wassermoleküle anlagern, vergrößert wird.
  • Im Anschluß an die Mischstrecke 15 ist eine Quellstrecke 16 vorgesehen, die je nach Ausführung eine mehr oder minder lange Quellzeit der Bohrsuspension ermöglicht. Die Quellstrecke 16 kann aus einem Zwischenbehälter oder einem Rohrwendel bestehen oder auch durch die Strecke des Bohrgestänges 10 verwirklicht sein, über die die Suspension dem Bohrkopf 11 bzw. dem Aufweitwerkzeug 17 zugeleitet wird.
  • Die Bohrsuspension kann über die Zuleitungen 18, 19 mit weiteren Zuschlagstoffen, wie beispielsweise Polymeren oder Sodaasche, versetzt werden, die ebenfalls unmittelbar vor der Hochdruckpumpe 7 eingeleitet werden.
  • Bei unzureichender oder nicht vorhandener Wasserversorgung kann das Brauchwasser auch über einen Vorratstank 9 zugeleitet werden.
  • Bei der in den Fig. 5 und 6 dargestellten bevorzugten Ausführungsform gelangt das Suspensionsmedium in einem Pufferbehälter 23 in das Brauchwasser. Der Pufferbehälter besitzt einen Niveauschalter (a, b), der die Bentonitzufuhr aus- und einschaltet, je nach dem, ob das Medium die obere Marke a über- oder die untere Marke b unterschreitet. Der Pufferbehälter 23 ist vorzugsweise als schmale senkrecht angeordnete Röhre ausgebildet, die ein Entmischen des Brauchwasser-Bohrsuspensionsgemischs vor dem Eintritt in die Pumpe 7 verhindert. Der Pufferbehälter 23 verhindert ferner, daß der Hochdruckpumpe 7 unbeabsichtigt Luft zugeführt wird.
  • Bei einer anderen Ausführungsform der Erfindung (siehe Fig. 3 und 4) wird das Suspensionsmedium auf der Hochdruckseite der Hochdruckpumpe 7 zugeführt. Das Suspensionsmedium gelangt dabei im Bereich der Wasserstrahldüse 22 der Hochdruckpumpe in das Brauchwasser, wodurch eine intensive Vermischung erreicht wird. Über die Ausgestaltung der Wasserstrahldüse 22 kann die Mischsituation beeinflußt werden. Vorzugsweise ist der Durchmesser der Wasserstrahldüse je nach Durchflußmenge verstellbar, um jederzeit einen intensiven Wasserstrahl zu gewährleisten.

Claims (15)

  1. Misch- und Beschickungsanlage, zur Versorgung eines Bohrgestänges (10) für Horizontalbohrverfahren mit Bohrflüssigkeit, mit einer Hochdruckpumpe (7) und einer Zuleitung (21) für ein Zugabemedium, dadurch gekennzeichnet, daß die Zuleitung (21) in Flußrichtung vor der Hochdruckpumpe (7) angeordnet ist, so daß die durch die Hochdruckpumpe (7) induzierte Wirbelbewegung zu einer Vermischung der Bohrflüssigkeit führt und die Hochdruckpumpe (7) die erforderliche Energie zur Versorgung des Bohrgestänges (10) auf die Bohrflüssigkeit überträgt.
  2. Mischanlage nach Anspruch 1, dadurch gekennzeichnet, daß die Zuleitung für das Zugabemedium in Flußrichtung nicht vor, sondern hinter der Hochdruckpumpe (7) angeordnet ist.
  3. Mischanlage nach Anspruch 1, dadurch gekennzeichnet, daß das Zugabemedium in einem Pufferbehälter (23), der vor der Hochdruckpumpe (7) angeordnet ist, in das Brauchwasser eingeleitet wird und der Pufferbehälter (23) eine Niveauregulierung (a, b) aufweist.
  4. Mischanlage nach Anspruch 2, dadurch gekennzeichnet, daß das Zugabemedium unmittelbar hinter einer Wasserstrahldüse (22) der Hochdruckpumpe (7) in das Brauchwasser eingeleitet wird.
  5. Mischanlage nach Anspruch 4, dadurch gekennzeichnet, daß die Wasserstrahldüse (22) verstellbar ist.
  6. Mischanlage nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Fördereinrichtung (6) für die Zufuhr des Zugabemediums.
  7. Mischanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Fördereinrichtung (6) und/oder die Hochdruckpumpe (7) einen regelbaren Antrieb (24) aufweist.
  8. Mischanlage nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Absperrventil (14), welches zusammen mit den regelbaren Antrieben über eine Steuerelektronik (1) und mit Hilfe von Stellgliedem (4) und eines Durchflußsensors (8) geregelt wird.
  9. Mischanlage nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Mischstrecke (15) hinter der Pumpe (7).
  10. Mischanlage nach Anspruch 9, gekennzeichnet durch eine statische Mischstrecke (15).
  11. Mischanlage nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine hinter der Pumpe (7) angeordnete Quellstrecke (16).
  12. Mischanlage nach Anspruch 11, dadurch gekennzeichnet, daß die Quellstrecke (16) aus einem Rohrwendel besteht.
  13. Mischanlage nach Anspruch 11, dadurch gekennzeichnet, daß die Quellstrecke (16) aus dem Bohrgestänge gebildet ist.
  14. Mischanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Antrieb der Mischanlage hydraulisch erfolgt.
  15. Verfahren zum Bereitstellen einer Bohrflüssigkeit, dadurch gekennzeichnet, daß die von einer Hochdruckpumpe (7) auf die Bohrflüssigkeit übertragene Energie zum Mischen einer weitgehend ungequollenen Bohrflüssigkeit und zu dessen Transport durch ein Bohrgestänge (10) verwendet wird.
EP99120187A 1998-10-14 1999-10-09 Durchlauf-Mischanlage für Bohrflüssigkeit Expired - Lifetime EP0994235B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE29818289U DE29818289U1 (de) 1998-10-14 1998-10-14 Durchlauf-Mischanlage
DE29818289U 1998-10-14
DE19918775A DE19918775B4 (de) 1998-10-14 1999-04-24 Durchlauf-Mischanlage und Verfahren zum Herstellen einer Bohrflüssigkeit
DE19918775 1999-04-24

Publications (3)

Publication Number Publication Date
EP0994235A2 EP0994235A2 (de) 2000-04-19
EP0994235A3 EP0994235A3 (de) 2002-01-30
EP0994235B1 true EP0994235B1 (de) 2004-12-29

Family

ID=26053078

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99120187A Expired - Lifetime EP0994235B1 (de) 1998-10-14 1999-10-09 Durchlauf-Mischanlage für Bohrflüssigkeit

Country Status (2)

Country Link
EP (1) EP0994235B1 (de)
AU (1) AU762491C (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3719300A (en) 1999-03-03 2000-10-04 Earth Tool Company, Llc Method and apparatus for directional boring
DE10019759C2 (de) 2000-04-20 2003-04-30 Tracto Technik Statisches Mischsystem
US8196677B2 (en) 2009-08-04 2012-06-12 Pioneer One, Inc. Horizontal drilling system
CN103739108B (zh) * 2013-06-24 2016-03-02 四川海普流体技术有限公司 一种污水处理工艺中加入添加剂的方法
CN104633452A (zh) * 2015-03-10 2015-05-20 汤晓辉 水泥浆液远距离输送防沉积装置
CN108222865B (zh) * 2018-01-04 2021-02-26 中国石油大学(华东) 自反馈三相体系钻井液混合系统及混合钻井液的方法
CN111088955B (zh) * 2019-12-27 2021-09-28 四川石油天然气建设工程有限责任公司 一种钻井液储备工作站

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2631017A (en) * 1947-05-05 1953-03-10 Gibson Roy Clyde Mud and chemical mixer
US3115195A (en) * 1961-08-28 1963-12-24 Jersey Prod Res Co Method of reducing viscosity of drilling fluids during drilling
US3691070A (en) * 1970-04-27 1972-09-12 Nat Lead Co Employment of bentonite in brine muds
US3893655A (en) * 1972-07-10 1975-07-08 Union Oil Co Apparatus and method for dispersing solid particles in a liquid
US4444277A (en) * 1981-09-23 1984-04-24 Lewis H Roger Apparatus and method for conditioning oil well drilling fluid
US5213414A (en) * 1989-12-04 1993-05-25 Baker Hughes Incorporated Mixing apparatus
SU1755907A1 (ru) * 1990-04-20 1992-08-23 Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам Научно-производственного объединения "Бурение" Смеситель
DE4217373C2 (de) * 1992-05-26 2003-02-20 Klaus Obermann Gmbh Vorrichtung zur Aufbereitung und Bereitstellung von wenigstens einen flüssigen Bestandteil enthaltenden Mischungen oder Suspensionen
WO1999054588A1 (en) * 1998-04-21 1999-10-28 Bulk Mixer, Inc. Drilling fluid mixing apparatus and methods

Also Published As

Publication number Publication date
EP0994235A2 (de) 2000-04-19
EP0994235A3 (de) 2002-01-30
AU5348999A (en) 2000-04-20
AU762491C (en) 2005-02-17
AU762491B2 (en) 2003-06-26

Similar Documents

Publication Publication Date Title
DE19918775B4 (de) Durchlauf-Mischanlage und Verfahren zum Herstellen einer Bohrflüssigkeit
DE69118158T2 (de) Verfahren und system zur entsorgung von bohrklein
EP0160805B1 (de) Verfahren zur Rückgewinnung von Rohöl oder Raffinerieprodukten aus zu schlammigem verdicktem bis kompaktem, sedimentiertem Rohöl oder Raffinerieprodukten, sowie Vorrichtung zur Durchführung des Verfahrens
DE60221414T2 (de) Verfahren zur bohrloch-flüssigkeitsbehandlung und pumpengestänge dafür
DE112019000986T5 (de) Integrierte Fluid-Abgabeplattform
DE69826804T2 (de) Flüssigkeitsverteilvorrichtung und Verfahren
DE3039342A1 (de) Verfahren und vorrichtung zum mischen fliessfaehigen materials mit zusaetzen
DE2526462B2 (de) Verfahren und Vorrichtung zum hydraulischen Fördern von Feststoffen
EP0994235B1 (de) Durchlauf-Mischanlage für Bohrflüssigkeit
DE10115233C5 (de) Horizontalbohranlage
AT8455U1 (de) Vorrichtung und verfahren zur herstellung und zum ausbringen von flüssigem, bituminösen kaltmischgut
DE1557980A1 (de) Duengerstreuer
DE3444816A1 (de) Pneumatische foerdervorrichtung
DE102004026477B4 (de) Mischvorrichtung für Fluide
DE3303491A1 (de) Verfahren und vorrichtung fuer die ablaufsteuerung des transportes aufgeschlaemmten, kleinstueckigen gutes in senkrechte richtung
DE102017005798B3 (de) Mischanlage und Verfahren zum Herstellen einer Bohrflüssigkeit für eine Erdbohrung sowie Verwendung beim Herstellen einer Bohrflüssigkeit für eine Erdbohrung
EP0674945B1 (de) Verfahren zum Einbringen von Mahlhilfsmittel
EP0690953B1 (de) Bohrvorrichtung mit bohrgestänge und senkhammer-bohrkopf
DE19745766B4 (de) Schlammaufbereitungsstation für eine Tunnelvortriebsmaschine, deren Strebspitze aus durch Druck verdichtetem Schlamm besteht
EP0924149A2 (de) Verfahren zum hydraulischen Fördern eines Schüttgutes
DE2232510C3 (de) Anlage zum Klären von öl- und emulsionshaltigen Abwässern
DE202023104427U1 (de) Schlammschild-Zirkulationssystem für eine wasserreiche, sandige Kiesschicht
DE19749771C1 (de) Verfahren zum Einbringen von Gleit- und Füllmittel beim grabenlosen Verlegen von Versorgungsleitungen und Vorrichtung zur Durchführung des Verfahrens
EP4338826A1 (de) Vorrichtung und verfahren zum mischen eines weichgelmediums
DE102016001032A1 (de) Tunnelbohrvorrichtung und System zum hydraulischen Abfördern von Bohrklein

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A2

Designated state(s): CH GB LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020726

AKX Designation fees paid

Free format text: CH GB LI

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17Q First examination report despatched

Effective date: 20021018

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141024

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151009