EP0994235A2 - Durchlauf-Mischanlage für Bohrflüssigkeit - Google Patents

Durchlauf-Mischanlage für Bohrflüssigkeit Download PDF

Info

Publication number
EP0994235A2
EP0994235A2 EP99120187A EP99120187A EP0994235A2 EP 0994235 A2 EP0994235 A2 EP 0994235A2 EP 99120187 A EP99120187 A EP 99120187A EP 99120187 A EP99120187 A EP 99120187A EP 0994235 A2 EP0994235 A2 EP 0994235A2
Authority
EP
European Patent Office
Prior art keywords
mixing
pressure pump
mixing system
high pressure
drilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99120187A
Other languages
English (en)
French (fr)
Other versions
EP0994235A3 (de
EP0994235B1 (de
Inventor
Manfred Schauerte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tracto Technik GmbH and Co KG
Original Assignee
Tracto Technik GmbH and Co KG
Tracto Technik Paul Schmidt Spezialmaschinen KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE29818289U external-priority patent/DE29818289U1/de
Application filed by Tracto Technik GmbH and Co KG, Tracto Technik Paul Schmidt Spezialmaschinen KG filed Critical Tracto Technik GmbH and Co KG
Publication of EP0994235A2 publication Critical patent/EP0994235A2/de
Publication of EP0994235A3 publication Critical patent/EP0994235A3/de
Application granted granted Critical
Publication of EP0994235B1 publication Critical patent/EP0994235B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/56Mixing liquids with solids by introducing solids in liquids, e.g. dispersing or dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/59Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation

Definitions

  • the invention relates to a mixing system as used for mixing a drilling fluid is used for horizontal drilling.
  • drilling or flushing fluids are used are fed to the drilling device and, for example, in the area of the drilling head emerge and thus be directed into the borehole, an improvement and facilitated drilling by softening the soil and the cuttings are removed.
  • a bentonite-water suspension enforced, depending on the given soil conditions with different Consistency.
  • Such a suspension has the ability to hold the cuttings in suspension to keep them out of the borehole to be able to transport and also has one when pulling in new pipe string the advantage that it is lubricated and after drawing after a certain hardening phase against the surrounding earth is protected. It is for varying the properties of the suspension known, polymers and other substances such as soda ash, to adjust to adjust the pH.
  • Known mixing plants work on the principle that the desired Amount of drilling fluid is mixed in a storage tank, its content is then available for the drilling process. Such mixing plants are referred to as a batch mixer because one batch for each mixing process drilling can be provided.
  • the storage tank is run through Mixing a new batch filled up. Because this is disruptive in practice Delays in drilling leads to a second storage tank provide so that the batches of liquid in a tank can be set up while the other tank supplies the drilling rig.
  • the disadvantage of such systems is the increased space requirement and additional costs.
  • Another disadvantage of the known batch mixers is that the required mixing pumps due to the aggressiveness of an abrasive medium such as bentonite have a special durability have to. This either leads to increased costs or to increased costs Wear.
  • the drilling fluid is usually supplied to the drilling rig by a high pressure pump fed.
  • Such pumps are usually not self-priming pumps. Because the drilling fluid is not uncommon very high viscosity must be pumped, the use of a self-priming Charge pump required, the high pressure pump on the suction side loaded. The use of such a charge pump also leads to one considerable cost increase.
  • the invention is therefore based on the problem of simplified loading to enable a drilling rig with a drilling fluid.
  • the solution to the problem is based on the principle of aggregates, such as the powdered bentonite, in front of or behind the high pressure pump initiate.
  • the pump When it is introduced before the high-pressure pump, the pump becomes hot water fed via a hydrant, being between hydrant and high pressure pump an introduction to the addition medium is provided.
  • the introduction the addition medium can be mechanically supported and via various Measured variables are regulated.
  • a mixing section for another can be located behind the high-pressure pump Mixing may be provided.
  • a source section can be attached to the mixing section connect if a certain duration of swelling is desired.
  • the initiation route can also connect additional mixing and source sections.
  • the mixing plant according to the invention allows continuous, i.e. "Online mixing" of the aggregates for the drilling fluid with the process water. Additional storage tanks are avoided so that the Mixing plant has extremely small dimensions and directly on the drilling rig can be used. Due to its small size, the Mixing system can be designed as components of mobile drilling equipment.
  • drilling fluid is avoided by the mixing system according to the invention.
  • Another advantage is the simplified option of reprocessed To use drilling fluid.
  • the large amounts of liquid that are often used in horizontal drilling have resulted in a "recycling" of the drilling fluid from economic and ecological Reasons is required.
  • reprocessed drilling fluid with regard to its viscosity by a preselected one Ratio of water added to the added medium be optimally set for the new drilling process.
  • the compact design realized with the invention allows to connect the mixing plant with mobile drilling rigs of any size, because a high variability with regard to the possible addition quantity and mixing capacity consists.
  • the mixing plant then only has to be on site a hydrant can be connected, the desired amount Drilling fluid available for drilling in any constellation stands.
  • the mixing plant is preferably used Silos or a so-called "Big Bag” as a storage container for the Aggregates for use.
  • the usual batch tanks, the larger ones Drilling rigs take on considerable dimensions.
  • the mixing plant according to the invention has one lower energy consumption and a longer lifespan than conventional ones Devices, not least due to the elimination of those required in the prior art Additional pumps.
  • Mixing system can be implemented is a fully automatic process of Drilling process in relation to the drilling fluid possible by a Automation of reprocessing can be supplemented.
  • the service water of the high pressure pump be fed. This can be done either through a hydrant through the High pressure pump itself or by a conventional water pump.
  • the high pressure pump itself does not need to be resistant to abrasive To be media.
  • the suspension medium the process water before the high pressure pump (Fig. 1, 2, 5, 6).
  • the mixing system turns on the process water fed to the low pressure side of a high pressure pump via a hydrant.
  • the mixing system also has a pressure reducing valve on the low pressure side 12, via which the process water of the high pressure pump 7 via a filter element 13 and a shut-off valve 14 is supplied.
  • the hot water supply can be switched on and off as well of control commands from control electronics connected to valve 14 1 regulate according to certain parameters.
  • the control electronics 1 is with connected to a sensor 8, which actually flows through water measures that by the flow rate of the high pressure pump 7 with adjustable Drive 24 is determined which by hand (e.g. via a potentiometer) is adjustable or automatically adjustable.
  • the amount of addition medium required for the desired mixing ratio (Bentonite as a suspension amount) is conveyed via a conveyor 6 connected to a so-called Big Bag 5 or other storage containers which contains the bentonite supply, the exact Dosing via a drive 3 of the conveyor 6, which with the control electronics 1 is connected via an actuator 2 takes place.
  • Bentonite reaches the conveyor 6 via a feed line 21 this in an amount dependent on the speed of the drive 3 to the high pressure pump 7, with the engine speed of the drive above a sensor 20 is transmitted to the control electronics 1.
  • the control electronics 1 ensures setpoint / actual value comparison via the actuator 2 that the desired speed of the drive 3 is maintained.
  • the Suspension medium arrives behind the shut-off valve 14 on the low pressure side the high pressure pump 7 in the process water and is together with this from the high pressure pump 7 into a high pressure mixing section 15 conveyed, the pumping process of the high pressure pump 7 intensive mixing takes place.
  • the mixing section 15 consists of several static or dynamic operated in series or in parallel Mixers, with static mixers being preferred, since only the too mixing components are moved.
  • the mixing is done by Splitting, redirecting and reuniting the media intensified.
  • the spherical structure of the bentonite components is characterized by the high shear forces acting in the mixer are broken up. This leads to a reduction the swelling time, since the surface of the suspension medium at which the water molecules accumulate, is enlarged.
  • a source section 16 is provided, which depending on the version, a more or less long swelling time of the drilling suspension enables.
  • the source section 16 can be from an intermediate container or consist of a coiled tubing or by the length of the drill pipe 10 be realized, via which the suspension of the drill head 11 or Expanding tool 17 is fed.
  • the drilling suspension can be connected to other lines 18, 19 Additives, such as polymers or soda ash, added are also initiated immediately before the high pressure pump 7 become.
  • Process water can also be supplied via a storage tank 9.
  • the suspension medium enters the process water in a buffer tank 23.
  • the buffer tank has a level switch (a, b) which supplies the bentonite switches on and off, depending on whether the medium is the upper one Mark a exceeds or falls below the lower mark b.
  • the buffer tank 23 is preferably designed as a narrow vertically arranged tube, the segregating the process water drilling suspension mixture prior to entry prevented in the pump 7.
  • the buffer container 23 also prevents the high pressure pump 7 is inadvertently supplied with air.
  • the suspension medium on the high pressure side of the high pressure pump 7 fed arrives in the area of the water jet nozzle 22 of the high pressure pump in the domestic water, creating a intensive mixing is achieved.
  • the mixing situation can be influenced.
  • the diameter of the water jet nozzle is adjustable depending on the flow rate, to ensure an intense water jet at all times.

Abstract

Die Erfindung betrifft eine Mischanlage zum Herstellen einer Bohrflüssigkeit für Horizontalbohrverfahren mit einer Hochdruckpumpe (7) und einer Zuleitung (21) für das Zugabemedium, die in Flußrichtung vor der Hochdruckpumpe (7) angeordnet ist. <IMAGE>

Description

Die Erfindung betrifft eine Mischanlage, wie sie zum Anmischen einer Bohrflüssigkeit für das Horizontalbohren eingesetzt wird.
Beim Horizontalbohren wird mit Hilfe von Bohr- oder Spülflüssigkeiten, die dem Bohrgerät zugeführt werden und beispielsweise im Bereich des Bohrkopfes austreten und damit in das Bohrloch geleitet werden, eine Verbesserung und Erleichterung des Bohrvorgangs erreicht, indem das Erdreich aufgeweicht und das Bohrklein abtransportiert wird.
In der Praxis hat sich die Verwendung einer Bentonit-Wasser-Suspension durchgesetzt, die je nach den gegebenen Bodenverhältnissen mit unterschiedlicher Konsistenz zum Einsatz kommt. Eine solche Suspension besitzt die Eigenschaft, das Bohrklein in Schwebe zu halten, um es aus dem Bohrloch transportieren zu können und besitzt zudem beim Einziehen eines neuen Rohrstrangs den Vorteil, daß dieser geschmiert und nach dem Einziehen nach einer gewissen Aushärtephase gegen das umgebende Erdreich geschützt wird. Zur Variation der Eigenschaften der Suspension ist es bekannt, Polymere sowie weitere Substanzen, wie beispielsweise Sodaasche, zum Einstellen des pH-Wertes beizumischen.
Bekannte Mischanlagen arbeiten nach dem Prinzip, daß die gewünschte Menge Bohrflüssigkeit in einem Vorratstank angemischt wird, dessen Inhalt dann für den Bohrvorgang zur Verfügung steht. Solche Mischanlagen werden als Chargenmischer bezeichnet, da je Mischvorgang eine Charge für das Bohren zur Verfügung gestellt werden kann.
Nachdem die Bohrflüssigkeit verbraucht ist, wird der Vorratstank durch Anmischen einer neuen Charge aufgefüllt. Da dies in der Praxis zu störenden Zeitverzögerungen beim Bohren führt, ist es üblich, einen zweiten Vorratstank bereitzustellen, so daß die Flüssigkeitschargen in einem Tank angesetzt werden können, während der andere Tank die Bohranlage versorgt. Der Nachteil solcher Systeme besteht in erhöhtem Platzbedarf und zusätzlichen Kosten. Ein weiterer Nachteil der bekannten Chargenmischer besteht darin, daß die erforderlichen Mischpumpen aufgrund der Aggressivität eines abrasiven Mediums wie Bentonit eine besondere Haltbarkeit aufweisen müssen. Das führt entweder zu erhöhten Kosten oder zu erhöhtem Verschleiß.
Darüber hinaus läßt sich die erforderliche Menge Bohrsuspension in der Regel nicht genau abschätzen, so daß die Bohrflüssigkeit nach Beendigung des Bohrvorgangs häufig nicht vollständig aufgebraucht ist und entsorgt werden muß. Beläßt man die Bohrflüssigkeit im Tank, kann es zu einem Nachquellen der Bohrflüssigkeit kommen. Aufgrund der erhöhten Viskosität kann es beim Bohren zu Problemen bei erneutem Einsatz dieser Bohrflüssigkeit kommen. In der Winterzeit sind zudem Frostschäden an den Geräten durch nicht vollständig aufgebrauchte Bohrflüssigkeit nicht ausgeschlossen.
Die Bohrflüssigkeit wird dem Bohrgerät in aller Regel durch eine Hochdruckpumpe zugeführt. Bei solchen Pumpen handelt es sich meist um nicht selbstansaugende Pumpen. Da die Bohrflüssigkeit allerdings nicht selten mit sehr hoher Viskosität verpumpt werden muß, ist der Einsatz einer selbstansaugenden Ladepumpe erforderlich, die die Hochdruckpumpe saugseitig beschickt. Der Einsatz einer solchen Ladepumpe führt ebenfalls zu einer erheblichen Kostensteigerung.
Der Erfindung liegt daher das Problem zugrunde, ein vereinfachtes Beschicken einer Bohranlage mit einer Bohrflüssigkeit zu ermöglichen.
Das Problem wird durch den Gegenstand der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind den Unteransprüchen zu entnehmen.
Die Lösung des Problems basiert auf dem Prinzip, Zuschlagstoffe, wie beispielsweise das pulverförmige Bentonit, vor oder hinter der Hochdruckpumpe einzuleiten.
Bei einer Einleitung vor der Hochdruckpumpe wird der Pumpe Brauchwasser über einen Hydranten zugeführt, wobei zwischen Hydrant und Hochdruckpumpe eine Einleitung für das Zugabemedium vorgesehen ist. Die Einleitung des Zugabemediums kann mechanisch unterstützt und über verschiedene Meßgrößen geregelt werden. Gleiches gilt für die Zugabe ergänzender Zuschlagstoffe, wie beispielsweise Polymere oder Sodaasche.
Nach dem Einleiten des Zugabemediums gelangt dieses mit dem Brauchwasser in die Hochdruckpumpe, in der eine intensive Vermischung erfolgt. Zusätzlich kann hinter der Hochdruckpumpe eine Mischstrecke für ein weiteres Vermischen vorgesehen sein. An die Mischstrecke kann sich eine Quellstrecke anschließen, sofern eine bestimmte Quelldauer erwünscht ist.
Beim Einleiten des Zugabemediums in Flußrichtung hinter der Hochdruckpumpe wird dieses im Bereich des Hochdruckstrahls der Hochdruckpumpe eingeleitet, was zu einer intensiven Vermischung des Zugabemediums mit dem Brauchwasser führt. An die Einleitungsstrecke können sich ebenfalls zusätzliche Misch- sowie Quellstrecken anschließen.
Die erfindungsgemäße Mischanlage erlaubt ein kontinuierliches, d.h. "Online-Mischen" der Zuschlagstoffe für die Bohrflüssigkeit mit dem Brauchwasser. Dabei werden zusätzliche Vorratstanks vermieden, so daß die Mischanlage außerordentlich geringe Abmessungen aufweist und direkt an der Bohranlage einsetzbar ist. Aufgrund ihrer geringen Größe kann die Mischanlage als Bestandteile mobiler Bohrgeräte ausgebildet sein.
Ferner wird beim Bohren nur diejenige Flüssigkeitsmenge angesetzt, die unmittelbar verbraucht wird. Nach dem Bohren unverbrauchter Restmengen an Bohrflüssigkeit werden durch die erfindungsgemäße Mischanlage vermieden.
Darüber hinaus wird ein minimaler Materialaufwand realisiert, da neben den Vorratstanks auch Misch-, Umwälz- oder Ladepumpen vermieden werden können. Dies ist auch bei nicht saugenden Hochdruckpumpen dadurch möglich, daß die auf der Saugseite zugeleitete Flüssigkeit erfindungsgemäß eine niedrige Viskosität besitzt, da es sich entweder um reines Brauchwasser handelt (Einleitung hinter der Hochdruckpumpe) oder um Brauchwasser mit noch nicht gequollenem Bentonit (Einleitung vor der Hochdruckpumpe).
Ein weiterer Vorteil besteht in der vereinfachten Möglichkeit, wieder aufbereitete Bohrflüssigkeit zu verwenden. Die großen Flüssigkeitsmengen, die beim Horizontalbohren häufig eingesetzt werden, haben dazu geführt, daß ein "Recycling" der Bohrflüssigkeit aus ökonomischen und ökologischen Gründen erforderlich ist. Mit der erfindungsgemäßen Mischanlage kann die wieder aufbereitete Bohrflüssigkeit bezüglich ihrer Viskosität durch ein vorgewähltes Verhältnis von zugegebenem Wasser zu zugeschlagenem Zugabemedium für den neuen Bohrvorgang optimal eingestellt werden.
Die sich mit der Erfindung verwirklichende kompakte Bauweise erlaubt es, die Mischanlage mit mobilen Bohrgeräten beliebiger Größe zu verbinden, da eine hohe Variabilität bezüglich der möglichen Zuschlagmenge und Mischleistung besteht. Die Mischanlage muß dann auf der Baustelle lediglich an einen Hydranten angeschlossen werden, wobei die gewünschte Menge Bohrflüssigkeit für den Bohrvorgang in jeder Konstellation zur Verfügung steht. Dabei kommt für die Mischanlage vorzugsweise der Einsatz eines Silos oder eines sogenannten "Big Bag" als Vorratsbehälter für die Zuschlagstoffe zum Einsatz. Die sonst üblichen Chargentanks, die bei größeren Bohranlagen erhebliche Ausmaße annehmen, entfallen.
Konstruktionsbedingt besitzt die erfindungsgemäße Mischanlage einen geringeren Energieverbrauch und eine längere Lebensdauer als herkömmliche Geräte, nicht zuletzt durch den Wegfall der im Stande der Technik erforderlichen Zusatzpumpen.
Mit einem automatisierten Mischvorgang, der sich mit der erfindungsgemäßen Mischanlage verwirklichen läßt, ist ein vollautomatischer Ablauf des Bohrvorgangs in bezug auf die Bohrflüssigkeit möglich, der durch eine Automatisierung der Wiederaufbereitung ergänzt werden kann.
Beim Einsatz des Ausführungsbeispiels einer druckseitigen Zugabe des Zugabemediums muß lediglich das Brauchwasser der Hochdruckpumpe zugeführt werden. Dies kann entweder über einen Hydranten durch die Hochdruckpumpe selbst oder durch eine herkömmliche Wasserpumpe erfolgen. Die Hochdruckpumpe selbst braucht nicht resistent gegen abrasive Medien zu sein.
Im folgenden wird die Erfindung anhand von in der Zeichnung dargestellten Ausführungsbeispielen des näheren erläutert.
In der Zeichnung zeigen:
Fig. 1
eine erfindungsgemäße Mischanlage mit Zuleitung des Supensionsmediums in Flußrichtung vor der Hochdruckpumpe,
Fig. 2
die Mischanlage der Fig. 1 mit Zuleitungen für Zusatzstoffe,
Fig. 3
die Mischanlage der Fig. 1 mit Zuleitung für das Zugabemedium hinter der Hochdruckpumpe,
Fig. 4
die Mischanlage der Fig. 3 mit einer Zuleitung für Zusatzstoffe,
Fig. 5
die Mischanlage der Fig. 1 mit Pufferrohr und Niveauregulierung,
Fig. 6
die Mischanlage der Fig. 5 mit ergänzender Zuleitung für Zusatzstoffe.
Nach einer ersten Ausführungsform der Erfindung wird das Suspensionsmedium dem Brauchwasser vor der Hochdruckpumpe zugeleitet (Fig. 1, 2, 5, 6).
Der Mischanlage gemäß dieser Ausführungsform wird das Brauchwasser an der Niederdruckseite einer Hochdruckpumpe über einen Hydranten Zugeführt. Niederdruckseitig besitzt die Mischanlage ferner ein Druckminderungsventil 12, über das das Brauchwasser der Hochdruckpumpe 7 über ein Filterelement 13 und ein Absperrventil 14 zugeführt wird. Mit Hilfe des Absperrventils 14 läßt sich die Brauchwasserzufuhr zu- und abschalten sowie aufgrund von Steuerbefehlen einer mit dem Ventil 14 verbundenen Steuerelektronik 1 nach bestimmten Parametern regeln. Die Steuerelektronik 1 ist mit einem Sensor 8 verbunden, der die tatsächlich durchlaufende Wassermenge mißt, die durch die Fördermenge der Hochdruckpumpe 7 mit regelbarem Antrieb 24 bestimmt wird, welche von Hand (z.B. über ein Potentiometer) einstellbar oder automatisch regelbar ist.
Mit Hilfe der Stellglieder 4 lassen sich bestimmte Sollwerte vorgeben, um ein gewünschtes Mischverhältnis zu erreichen, wobei die einzelnen Stellgrößen durch die Steuerelektronik 1 ermittelt werden.
Die für das gewünschte Mischverhältnis erforderliche Menge an Zugabemedium (Bentonit als Suspensionsmenge) wird über eine Fördereinrichtung 6, die mit einem sogenannten Big Bag 5 oder anderen Vorratsbehältem verbunden ist, der den Bentonitvorrat enthält, zugeleitet, wobei die genaue Dosierung über einen Antrieb 3 der Fördereinrichtung 6, der mit der Steuerelektronik 1 über ein Stellglied 2 in Verbindung steht, erfolgt.
Über eine Zuleitung 21 gelangt dabei Bentonit in die Fördereinrichtung 6, die dieses in einer von der Geschwindigkeit des Antriebs 3 abhängigen Menge zur Hochdruckpumpe 7 fördert, wobei die Motordrehzahl des Antriebs über einen Sensor 20 an die Steuerelektronik 1 übermittelt wird. Mit Hilfe eines Soll-Istwert-Vergleichs gewährleistet die Steuerelektronik 1 über das Stellglied 2, daß die gewünschte Drehzahl des Antriebs 3 eingehalten wird. Das Suspensionsmedium gelangt hinter dem Absperrventil 14 auf der Niederdruckseite der Hochdruckpumpe 7 in das Brauchwasser und wird zusammen mit diesem von der Hochdruckpumpe 7 in eine Hochdruckmischstrecke 15 befördert, wobei bereits durch den Pumpvorgang der Hochdruckpumpe 7 eine intensive Vermischung erfolgt. Die Mischstrecke 15 besteht aus mehreren in Reihe oder parallel betriebenen statischen oder dynamischen Mischern, wobei statische Mischer bevorzugt sind, da bei diesen nur die zu mischenden Komponenten bewegt werden. Das Vermischen wird durch Aufteilen, Umlenken und Wiederzusammenführen der Medien intensiviert. Dabei wird die kugelartige Struktur der Bentonitbestandteile durch die hohen im Mischer wirkenden Scherkräfte aufgebrochen. Dies führt zu einer Verringerung der Quellzeit, da die Oberfläche des Suspensionsmediums, an der sich die Wassermoleküle anlagern, vergrößert wird.
Im Anschluß an die Mischstrecke 15 ist eine Quellstrecke 16 vorgesehen, die je nach Ausführung eine mehr oder minder lange Quellzeit der Bohrsuspension ermöglicht. Die Quellstrecke 16 kann aus einem Zwischenbehälter oder einem Rohrwendel bestehen oder auch durch die Strecke des Bohrgestänges 10 verwirklicht sein, über die die Suspension dem Bohrkopf 11 bzw. dem Aufweitwerkzeug 17 zugeleitet wird.
Die Bohrsuspension kann über die Zuleitungen 18, 19 mit weiteren Zuschlagstoffen, wie beispielsweise Polymeren oder Sodaasche, versetzt werden, die ebenfalls unmittelbar vor der Hochdruckpumpe 7 eingeleitet werden.
Bei unzureichender oder nicht vorhandener Wasserversorgung kann das Brauchwasser auch über einen Vorratstank 9 zugeleitet werden.
Bei der in den Fig. 5 und 6 dargestellten bevorzugten Ausführungsform gelangt das Suspensionsmedium in einem Pufferbehälter 23 in das Brauchwasser. Der Pufferbehälter besitzt einen Niveauschalter (a, b), der die Bentonitzufuhr aus- und einschaltet, je nach dem, ob das Medium die obere Marke a über- oder die untere Marke b unterschreitet. Der Pufferbehälter 23 ist vorzugsweise als schmale senkrecht angeordnete Röhre ausgebildet, die ein Entmischen des Brauchwasser-Bohrsuspensionsgemischs vor dem Eintritt in die Pumpe 7 verhindert. Der Pufferbehälter 23 verhindert ferner, daß der Hochdruckpumpe 7 unbeabsichtigt Luft zugeführt wird.
Bei einer anderen Ausführungsform der Erfindung (siehe Fig. 3 und 4) wird das Suspensionsmedium auf der Hochdruckseite der Hochdruckpumpe 7 zugeführt. Das Suspensionsmedium gelangt dabei im Bereich der Wasserstrahldüse 22 der Hochdruckpumpe in das Brauchwasser, wodurch eine intensive Vermischung erreicht wird. Über die Ausgestaltung der Wasserstrahldüse 22 kann die Mischsituation beeinflußt werden. Vorzugsweise ist der Durchmesser der Wasserstrahldüse je nach Durchflußmenge verstellbar, um jederzeit einen intensiven Wasserstrahl zu gewährleisten.

Claims (15)

  1. Mischanlage zum Herstellen einer Bohrflüssigkeit für Horizontalbohrverfahren mit
    einer Hochdruckpumpe (7) und
    einer Zuleitung (21) für das Zugabemedium, die in Flußrichtung vor der Hochdruckpumpe (7) angeordnet ist.
  2. Mischanlage nach Anspruch 1, dadurch gekennzeichnet, daß die Zuleitung für das Zugabemedium in Flußrichtung nicht vor, sondern hinter der Hochdruckpumpe (7) angeordnet ist.
  3. Mischanlage nach Anspruch 1, dadurch gekennzeichnet, daß das Zugabemedium in einem Pufferbehälter (23), der vor der Hochdruckpumpe (7) angeordnet ist, in das Brauchwasser eingeleitet wird und der Pufferbehälter (23) eine Niveauregulierung (a, b) aufweist.
  4. Mischanlage nach Anspruch 2, dadurch gekennzeichnet, daß das Zugabemedium unmittelbar hinter einer Wasserstrahldüse (22) der Hochdruckpumpe (7) in das Brauchwasser eingeleitet wird.
  5. Mischanlage nach Anspruch 4, dadurch gekennzeichnet, daß die Wasserstrahldüse (22) verstellbar ist.
  6. Mischanlage nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Fördereinrichtung (6) für die Zufuhr des Zugabemediums.
  7. Mischanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Fördereinrichtung (6) und/oder die Hochdruckpumpe (7) einen regelbaren Antrieb (24) aufweist.
  8. Mischanlage nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Absperrventil (14), welches zusammen mit den regelbaren Antrieben über eine Steuerelektronik (1) und mit Hilfe von Stellgliedem (4) und eines Durchflußsensors (8) geregelt wird.
  9. Mischanlage nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Mischstrecke (15) hinter der Pumpe (7).
  10. Mischanlage nach Anspruch 9, gekennzeichnet durch eine statische Mischstrecke (15).
  11. Mischanlage nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine hinter der Pumpe (7) angeordnete Quellstrecke (16).
  12. Mischanlage nach Anspruch 11, dadurch gekennzeichnet, daß die Quellstrecke (16) aus einem Rohrwendel besteht.
  13. Mischanlage nach Anspruch 11, dadurch gekennzeichnet, daß die Quellstrecke (16) aus dem Bohrgestänge gebildet ist.
  14. Mischanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Antrieb der Mischanlage hydraulisch erfolgt.
  15. Verfahren zum Herstellen einer Bohrflüssigkeit, dadurch gekennzeichnet, daß das Zugabemedium dem Brauchwasser vor oder hinter einer Hochdruckpumpe (7) zugeleitet wird.
EP99120187A 1998-10-14 1999-10-09 Durchlauf-Mischanlage für Bohrflüssigkeit Expired - Lifetime EP0994235B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE29818289U DE29818289U1 (de) 1998-10-14 1998-10-14 Durchlauf-Mischanlage
DE29818289U 1998-10-14
DE19918775A DE19918775B4 (de) 1998-10-14 1999-04-24 Durchlauf-Mischanlage und Verfahren zum Herstellen einer Bohrflüssigkeit
DE19918775 1999-04-24

Publications (3)

Publication Number Publication Date
EP0994235A2 true EP0994235A2 (de) 2000-04-19
EP0994235A3 EP0994235A3 (de) 2002-01-30
EP0994235B1 EP0994235B1 (de) 2004-12-29

Family

ID=26053078

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99120187A Expired - Lifetime EP0994235B1 (de) 1998-10-14 1999-10-09 Durchlauf-Mischanlage für Bohrflüssigkeit

Country Status (2)

Country Link
EP (1) EP0994235B1 (de)
AU (1) AU762491C (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6588516B2 (en) 1999-03-03 2003-07-08 Vermeer Manufacturing Company Method and apparatus for directional boring under mixed conditions
US7878705B2 (en) 2000-04-20 2011-02-01 Tt Schmidt Gmbh Static mixing element and method of mixing a drilling liquid
US8196677B2 (en) 2009-08-04 2012-06-12 Pioneer One, Inc. Horizontal drilling system
CN103739108A (zh) * 2013-06-24 2014-04-23 四川海普流体技术有限公司 一种污水处理工艺中加入添加剂的方法
CN104633452A (zh) * 2015-03-10 2015-05-20 汤晓辉 水泥浆液远距离输送防沉积装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108222865B (zh) * 2018-01-04 2021-02-26 中国石油大学(华东) 自反馈三相体系钻井液混合系统及混合钻井液的方法
CN111088955B (zh) * 2019-12-27 2021-09-28 四川石油天然气建设工程有限责任公司 一种钻井液储备工作站

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2631017A (en) * 1947-05-05 1953-03-10 Gibson Roy Clyde Mud and chemical mixer
US3115195A (en) * 1961-08-28 1963-12-24 Jersey Prod Res Co Method of reducing viscosity of drilling fluids during drilling
US3691070A (en) * 1970-04-27 1972-09-12 Nat Lead Co Employment of bentonite in brine muds
US4444277A (en) * 1981-09-23 1984-04-24 Lewis H Roger Apparatus and method for conditioning oil well drilling fluid
US5213414A (en) * 1989-12-04 1993-05-25 Baker Hughes Incorporated Mixing apparatus
DE4217373A1 (de) * 1992-05-26 1993-12-16 Klaus Obermann Gmbh Vorrichtung zur Aufbereitung von wenigstens einen flüssigen Bestandteil enthaltenden Mischungen oder Suspensionen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893655A (en) * 1972-07-10 1975-07-08 Union Oil Co Apparatus and method for dispersing solid particles in a liquid
SU1755907A1 (ru) * 1990-04-20 1992-08-23 Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам Научно-производственного объединения "Бурение" Смеситель
WO1999054588A1 (en) * 1998-04-21 1999-10-28 Bulk Mixer, Inc. Drilling fluid mixing apparatus and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2631017A (en) * 1947-05-05 1953-03-10 Gibson Roy Clyde Mud and chemical mixer
US3115195A (en) * 1961-08-28 1963-12-24 Jersey Prod Res Co Method of reducing viscosity of drilling fluids during drilling
US3691070A (en) * 1970-04-27 1972-09-12 Nat Lead Co Employment of bentonite in brine muds
US4444277A (en) * 1981-09-23 1984-04-24 Lewis H Roger Apparatus and method for conditioning oil well drilling fluid
US5213414A (en) * 1989-12-04 1993-05-25 Baker Hughes Incorporated Mixing apparatus
DE4217373A1 (de) * 1992-05-26 1993-12-16 Klaus Obermann Gmbh Vorrichtung zur Aufbereitung von wenigstens einen flüssigen Bestandteil enthaltenden Mischungen oder Suspensionen

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6588516B2 (en) 1999-03-03 2003-07-08 Vermeer Manufacturing Company Method and apparatus for directional boring under mixed conditions
USRE44427E1 (en) 1999-03-03 2013-08-13 Vermeer Manufacturing Company Apparatus for directional boring under mixed conditions
US7878705B2 (en) 2000-04-20 2011-02-01 Tt Schmidt Gmbh Static mixing element and method of mixing a drilling liquid
US8196677B2 (en) 2009-08-04 2012-06-12 Pioneer One, Inc. Horizontal drilling system
US8746370B2 (en) 2009-08-04 2014-06-10 Pioneer One, Inc. Horizontal drilling system
CN103739108A (zh) * 2013-06-24 2014-04-23 四川海普流体技术有限公司 一种污水处理工艺中加入添加剂的方法
CN103739108B (zh) * 2013-06-24 2016-03-02 四川海普流体技术有限公司 一种污水处理工艺中加入添加剂的方法
CN104633452A (zh) * 2015-03-10 2015-05-20 汤晓辉 水泥浆液远距离输送防沉积装置

Also Published As

Publication number Publication date
AU5348999A (en) 2000-04-20
AU762491B2 (en) 2003-06-26
AU762491C (en) 2005-02-17
EP0994235A3 (de) 2002-01-30
EP0994235B1 (de) 2004-12-29

Similar Documents

Publication Publication Date Title
DE19918775B4 (de) Durchlauf-Mischanlage und Verfahren zum Herstellen einer Bohrflüssigkeit
EP0160805B1 (de) Verfahren zur Rückgewinnung von Rohöl oder Raffinerieprodukten aus zu schlammigem verdicktem bis kompaktem, sedimentiertem Rohöl oder Raffinerieprodukten, sowie Vorrichtung zur Durchführung des Verfahrens
DE2735602C2 (de) Vorrichtung und Verfahren zum Steuern des Mengenstroms durch eine Förderleitung und zur Injektion eines chemischen Mediums in die Förderleitung
DE60221414T2 (de) Verfahren zur bohrloch-flüssigkeitsbehandlung und pumpengestänge dafür
DE1962343A1 (de) Verfahren und Vorrichtung zum Herstellen und Ausgeben eines halbgefrorenen kohlensaeurehaltigen Getraenkes
DE60216793T2 (de) Flüssigkeitsdichtung für nassankerbohrer
DE2655453A1 (de) Vorrichtung zum mischen von materialien
EP0994235B1 (de) Durchlauf-Mischanlage für Bohrflüssigkeit
EP0293584B1 (de) Bohrvorrichtung für ein Hochdruck-Injektions-Bohrverfahren
DE10115233C5 (de) Horizontalbohranlage
DE4400100A1 (de) Liefervorrichtung
DE8120151U1 (de) In brunnen einsetzbares geraet zum reinigen des brunnenfilters und der diesen umgebenden kieshinterfuellung
DE102005004264A1 (de) Vorrichtung und Verfahren zur Herstellung und zum Ausbringen von flüssigem, bituminösem Kaltmischgut
DE1557980A1 (de) Duengerstreuer
DE102017005798B3 (de) Mischanlage und Verfahren zum Herstellen einer Bohrflüssigkeit für eine Erdbohrung sowie Verwendung beim Herstellen einer Bohrflüssigkeit für eine Erdbohrung
EP2666911B1 (de) Verfahren zum Herstellen einer Bodenmörtelwand im Boden
EP0690953B1 (de) Bohrvorrichtung mit bohrgestänge und senkhammer-bohrkopf
DE3029963A1 (de) Duese und verfahren zum stroemungsmittelstrahl-bohren
EP0924149A2 (de) Verfahren zum hydraulischen Fördern eines Schüttgutes
EP4186602B1 (de) Verfahren und vorrichtung zur reinigung von rohrleitungen oder systemen mittels modulierenden druckgasimpulsen
DE2931177C2 (de) Verfahren und Vorrichtung zum Abteufen eines Gefrierschachtes
EP3530871B1 (de) Vorrichtung zum erzeugen oder aufweiten einer erdbohrung
DE19717971C1 (de) Verfahren zur Herstellung eines hydraulisch förderbaren Feststoff-Flüssigkeits-Gemisches
DE2232510C3 (de) Anlage zum Klären von öl- und emulsionshaltigen Abwässern
DE2925790C2 (de) Einrichtung zum Zubereiten und Zuführen einer ein Schleifmittel enthaltenden Suspension zum Wirkungsbereich der Werkzeuge von Polier- und Läppmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A2

Designated state(s): CH GB LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020726

AKX Designation fees paid

Free format text: CH GB LI

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17Q First examination report despatched

Effective date: 20021018

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141024

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151009