EP0992761A1 - Verfahren zum Korrigieren einer vorprogrammierten Auslösung eines Vorganges in einem drallstabilisierten Geschoss, Vorrichtung zur Durchführung des Verfahrens und Verwendung der Vorrichtung - Google Patents
Verfahren zum Korrigieren einer vorprogrammierten Auslösung eines Vorganges in einem drallstabilisierten Geschoss, Vorrichtung zur Durchführung des Verfahrens und Verwendung der Vorrichtung Download PDFInfo
- Publication number
- EP0992761A1 EP0992761A1 EP99117580A EP99117580A EP0992761A1 EP 0992761 A1 EP0992761 A1 EP 0992761A1 EP 99117580 A EP99117580 A EP 99117580A EP 99117580 A EP99117580 A EP 99117580A EP 0992761 A1 EP0992761 A1 EP 0992761A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- projectile
- actual
- time
- muzzle velocity
- rotations
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C11/00—Electric fuzes
- F42C11/06—Electric fuzes with time delay by electric circuitry
- F42C11/065—Programmable electronic delay initiators in projectiles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C17/00—Fuze-setting apparatus
- F42C17/04—Fuze-setting apparatus for electric fuzes
Definitions
- the invention relates to a method for correcting a preprogrammed triggering of a process in a spin-stabilized projectile according to the preamble of claim 1 , a device for carrying out this method according to the preamble of claim 8 and a use of the device according to the preamble of claim 12 .
- Methods and devices of this type are in connection with the pre-programmable Triggering functions in a spin-stabilized ballistic projectile used, the triggering of the function at a specific trigger location and thus in a certain triggering distance from the launch site or at a certain triggering time and thus should take place after a certain flight time.
- timers the Disassembly after a certain or determinable time interval, for example starts at launch; initiated; in the case of revolving fuses, the decomposition is a certain or determinable number of revolutions that the floor after the Carried out, initiated.
- the detonator can be timed for Disassembly can be communicated, for example, by remote reporting.
- Such facilities point but various disadvantages; firstly, they require complex implementation a receiver and secondly there is a risk of hostile interference with the telecommunications processes, which can lead to incorrect temping. These disadvantages are so serious That is why it is often preferred to only provide a preprogrammed temp. which are no longer influenced during the flight, so none Telecommunication connection is necessary.
- Pre-programmable revolution detonators are preprogrammed, preferably when charging, that the ignition after a certain, predetermined number of revolutions of the floor. Such preprogramming can be carried out without corrective measures to relatively inaccurate results because they reflect the deviations of the actual The flight behavior of the projectile does not depend on the theoretically determined flight behavior may take into account.
- the effective muzzle velocity outside the gun barrel immediately after its mouth by means of a coil arrangement with two spaced apart Measuring coils can be determined.
- Such measuring coils are proportionate sensitive and therefore form a particularly vulnerable, at least for mobile guns Assembly.
- the effective muzzle velocity can also be obtained by extrapolation from within of the gun barrel in the area of the muzzle cross-section measured bullet speed be determined.
- the floor speed is measured here by means of two sensors arranged at a certain mutual distance from one another. The disadvantage of this is that this procedure is relatively complex Facilities on the gun barrel are necessary, and that results as a result extrapolation are not very accurate.
- the bullet rotations are counted in conventional methods of this type Help of the earth's magnetic field.
- the detonator has a counter that shows the number of round rotations continuously integrated.
- the counter adds up continuously, i.e. throughout the entire period Floor flight time, the number of pulses between two rectified zero crossings this tension.
- the ignition or the story dismantling takes place at one Detonator, which, as mentioned above, is referred to as a revolution detonator once the Number of summed pulses has reached a pre-programmed value.
- EP-0 661 516-A1 discloses a multifunctional detonator for spin-stabilized projectiles, in which the actual muzzle velocity is calculated on the basis of the actual rotation frequency of the projectile.
- the earth's magnetic field is used to determine the rotation frequency, with each projectile rotation providing a pulse.
- the number of storey rotations is counted by summing the impulses caused by the storey rotations.
- the actual muzzle velocity is determined according to the following formula ( 1 ):
- EP-0 661 516-A1 it is proposed, among other things, to carry out the ongoing determination of the flight duration or the flight path during a first flight phase of approximately 1000 meters via the number of storeys rotation; At the beginning of a second flight phase, starting at around 1000 meters, the transition from revolution counting to time counting should then be carried out, since it has been shown that the accuracy of revolution detonators is quite good at flight distances of up to around 1000 meters, but it is more accurate at longer flight distances was subject to timers.
- the earth's magnetic field is thus during the relatively long first flight phase of 1000 meters or during the time required to fly this distance continuous counting of the floor rotations used. Disturbances in the earth's magnetic field can therefore affect the count for a very long time and thereby the accuracy severely affect the function of the igniter.
- the measurement is carried out to determine the rotational frequency of the projectile only for a relatively short period of time, known as the calibration phase immediately after the projectile is fired.
- the new process delivers Relatively accurate results because the bullet speed during this calibration phase only to a very small extent due to the floor rotation frequency determined muzzle velocity deviates. It is also advantageous that the influence of Interference of the earth's magnetic field remains low, since it only occurs during the relatively short Calibration phase affects.
- Another advantage of the time limitation according to the invention Use of the earth's magnetic field is that that required for signal amplification in the igniter Energy is low.
- the calibration phase is preferably calculated, specifically ideally so that the total error from the relevant unavoidable errors is possible becomes low.
- the way in which such a calculation is carried out is described below; the requirements and simplifications made in such a calculation will of course affect their accuracy; higher accuracy needs to be done as usual can be bought with a greater effort.
- the accuracy of the determination of the muzzle velocity essentially depends on the number of storey rotations during which the measurement or counting of the Pulses of the internal oscillator or frequency generator takes place. Will during measured on a large number of projectile rotations, the measuring method is on itself more precisely because of the influence of uncounted impulses, especially at the beginning and at the end the measurement, decreases proportionally; to keep the errors of the measurement method too small, is therefore the measurement during a large number of floor rotations advantageous.
- the first relative error is determined as follows: An in-storey oscillator with a fixed oscillator frequency delivers M pulses while the storey is performing a certain number of rotations, where M is calculated according to the following formula (2):
- the first relative error thus decreases with increasing R , as stated above.
- the second relative error relates to the deviation of the flight path or flight time from the theoretical value and is calculated according to the following formula (4) as follows:
- the second relative error increases with increasing R, as stated above.
- Ropt By pulling the root out of Ropt 2 you finally get Ropt . It is not possible to determine an Ropt in the manner of an invariant key figure; Ropt can - even with the underlying simplifications - only be calculated taking into account the respective geometric conditions such as caliber D and final twist angle ⁇ e and the respective muzzle velocity V0 .
- Eight floor rotations correspond to a distance of approximately 10 meters that the floor travels on its trajectory.
- the earth's magnetic field is exemplary in this Use case according to the above calculation during a flight path of approx. 10 meters; in the previously known method, however, the earth's magnetic field is during a flight path of 1000 meters, i.e. on a 100 times longer route and therefore during one used more than 100 times longer.
- the inventive Method is far more accurate than the previously known method because during the limited Number of storey rotations the drop in speed is insignificant and since a disturbance of the earth's magnetic field only occurs during the very limited calibration phase affects and thereby results in significantly fewer errors than the previously known Method. This also applies if it is taken into account that the above calculation with numerous Simplifications and inaccuracies.
- the new method uses the earth's magnetic field to determine the effective muzzle velocity of the projectile via the effective projectile rotation frequency.
- the conventional method takes place in such a way that each projectile rotation delivers a pulse and that during a defined time interval, which is given by an internal projectile oscillator, the number of projectile rotations is counted by summing the pulses caused by the projectile rotations.
- the actual muzzle velocity is determined according to formula ( 1 ):
- the muzzle velocity V0s calculated in this way is directly proportional to the measured value, i.e. the measured value of the number of projectile rotations.
- the procedure is preferably such that the pulses of an internal frequency generator or oscillator are measured or counted during a certain number of projectile rotations and the actual muzzle velocity is then calculated using the following formula ( 8 ):
- the number of pulses of the frequency generator per floor rotation is measured or counted, by changing the position of the floor, i.e. the floor rotation, in the Course of its rotation by changing a tension in a suitably arranged Coil arrangement on the floor determines what voltage is caused by the earth's magnetic field is induced. It should be mentioned here again that to determine a floor rotation instead of the physical properties of the earth's magnetic field also the physical ones Properties of another magnetic field can be used.
- a coil device is generally used to determine the earth's magnetic field, in which changes the earth's magnetic field sinusoidally with the natural rotation of the projectile Voltage is induced.
- a coil can be used to harness the earth's magnetic field also another suitable device, for example magnetic sensors such as Hall elements or field plates.
- Fig. 1 shows schematically a fire control device 1 and an igniter 2 of a floor, not shown in the following.
- the igniter 2 receives an input from the fire control device 1 via a gun electronics via a decoder 3 with the standard muzzle velocity or the standard rotation frequency and the standard final twist angle or, if applicable, the actual final twist angle, which has otherwise been determined and entered, as well as with data regarding the movement of the flight target, which is to be hit by the projectile, whereby the temping or the theoretical standard decomposition time. is set.
- a measuring device 5 is used for the autonomous measurement of the effective rotational frequency of the projectile using the earth's magnetic field 4 immediately after the muzzle.
- the result of the autonomous measurement is then compared at 6 with the corresponding standard values, from which a correction or update of the standard values to updated values can be determined at 7 ;
- the correction shows the updated programmed disassembly time.
- This is compared at 8 with the current time, and as soon as the current time reaches the value of the updated programmed disassembly time, the disassembly is initialized at 9 and an ignition pulse I is given to disassemble the projectile.
- FIGS. 2 and 3 are to pre-program a detonator in a spin-stabilized projectile fired by a gun before the launch phase in such a way that the projectile is broken down into projectile fragments or sub-projectiles after a certain flight duration takes place at a certain point in time and then updates this programming.
- the gun has a gun electronics, via which it is connected to a fire control device, not shown.
- the fire control device calculates in the usual way the theoretical or standard disassembly time of the projectile fired from a gun barrel of the gun. This calculation assumes that the muzzle velocity is the theoretical muzzle velocity.
- the final twist angle can be the theoretically known final twist angle or, preferably, the effective final twist angle, in the first case the correction of the final twist angle has already been carried out by the fire control device or the gun electronics.
- the programming of the disassembly time is then corrected or updated, taking into account the actual muzzle velocity or projectile rotation frequency and, if appropriate, the actual, measured end twist angle.
- the example shown in FIG. 2 is to pre-program a detonator in a spin-stabilized projectile 100 fired by a gun 10 prior to the launch phase in such a way that the projectile 100 is broken down into projectile fragments or sub-projectiles after a specific flight duration or to a specific one Time takes place.
- the detonator does not know the speed VT of the target.
- the gun 10 has a gun electronics 11 , via which it is connected to a fire control device, not shown.
- the fire control device calculates in the usual way the distance a between the gun 10 and the location of the disassembly of the projectile shot from a gun barrel of the gun as a function of the speed of the target.
- the theoretical flight time TP N until the projectile is disassembled is calculated.
- This calculation assumes that the muzzle velocity is the theoretical muzzle velocity or standard muzzle velocity V0 N and the final helix angle is the theoretical final helix angle ⁇ e N.
- the theoretical disassembly time or flight time to disassembly calculated in this way is transmitted to the gun 10 and passed on to a first counter or a shift register 102 of the projectile 100 via a coil driver 12 and a decoder 14 , and there as a theoretical or preprogrammed flight duration or disassembly time memorized.
- An oscillator 106 is arranged on the projectile 100 or on its igniter, the oscillator frequency of which is considered to be constant is fZ . Furthermore, a coil 108 is arranged on the projectile 100 or on the detonator, in which the earth's magnetic field H induces a voltage which changes sinusoidally when the projectile 100 rotates. This voltage is amplified by means of an amplifier 110 and the rotational frequency fG of the projectile is determined therefrom. Element 112 then determines a calibration value which is equal to the quotient fZ / fG (switch S2 open, switch S1 .
- the oscillator frequency fZ is divided by the calibration value at 116 , and the result of this division is then divided by 117 divides a previously determined reduction factor K1 (switch S2 closed , switch S1 open). The result of this second division reaches a second counter 118 and is summed up there during the flight time of the projectile.
- TP TP N * V0 N / V0
- the above-described device according to FIG. 2 is suitable for carrying out the new method in cases in which targets which are at rest or moving at relatively low speeds have to be combated; these are terrestrial targets or, if necessary, slow flight targets such as combat helicopters.
- the device described below with reference to FIG. 3 is more complex to implement than the device according to FIG. 2 , but it is also suitable for cases in which rapidly approaching flight destinations have to be combated.
- the detonator knows the speed of the target VT .
- the ignition is programmed first, with two switches, namely S1 and S2 , open.
- This programming is carried out by transferring three pulse packets serially from the fire control device (not shown) via the gun electronics (not shown) and the coil driver (not shown) through the decoder 14 to the igniter 200 and storing them in three registers 202 , 204 , 206 , namely: (see K1 from Formula 15); in principle, this is the standard frequency of the floor rotation. these are predetermined sizes.
- Third pulse package: TP N the disassembly time or norm disassembly time calculated with the standard data
- K and K1 are factors that are used to take into account certain variable, but each for at least one shot of fixed sizes.
- the factor K is determined by the fire control system.
- the factor K1 takes into account the final twist angle ⁇ e .
- the distance between the projectile and the target is s . It is assumed that the projectile has the constant speed V0 N and the target has the speed VT . The target and the floor meet after the time TP N. The effective bullet speed is V0.
- the autonomous measurement for determining the effective muzzle velocity V0 now takes place second, the switch S1 being closed and the switch S2 being open.
- the actual muzzle velocity depends on the final twist angle. Since the value of the actual final twist angle deviates from the value of the standard final twist angle or differs from gun barrel to gun barrel, it must also be determined and included in the calculations. This angle is preferably determined beforehand, and a value with the actual final twist angle is already fed into the register 204 .
- the earth's magnetic field H induces a voltage in the coil 208 , which is amplified by means of the amplifier 220 .
- the first counter 221 then gives the value R1 :
- an oscillator 206 with a frequency of 5 MHz is used to determine the actual muzzle velocity, and a division by 5 takes place in a divider 226 .
- (V0 * K1) is calculated, switch S1 being open and switch S2 being closed.
- the programmable divisor which essentially comprises a second counter 222 and a comparator 230 , is started.
- the programmable divisor results in a reduction.
- the second counter 222 counts up to the counter reading of the first counter 221 , whereupon a reset takes place and the second counter 222 is reset to zero.
- the serial result is summed in a third counter 223 during exactly 200 ms. This time of 200 ms is determined by a precision oscillator 228 with 4KHZ.
- the counter reading of the third counter 223 after 200 ms corresponds to the actual muzzle velocity used in the following, multiplied by the factor K1. He is
- R1 comes from formula ( 25 ).
- the difference between the standard muzzle velocity stored in the register 202 and the actual muzzle velocity of the third counter 223 determined by the autonomous measurement is determined with the aid of a subtraction stage 232 , the switches S1 and S2 being open.
- the difference of the speeds multiplied by K1 is actually formed: The result is available at the output of the subtraction level.
- a fifth step the just calculated differential speed is multiplied by the value K / K1 stored in the register 204 in a multiplier 234 , whereby the factor K1 is eliminated.
- the result that is present in the output register of multiplier 234 is ⁇ T is the deviation of the updated programmed disassembly time from the standard disassembly time. (See for K equation ( 24 ).
- the moment of disassembly is determined in a seventh step.
- the pulses of the 4 kHz oscillator 228 are summed in a fourth counter 224 .
- the counter reading of the fourth counter 224 is compared with the determined value for the actual disassembly time. As soon as the count of the fourth counter 224 coincides with the actual disassembly time from the addition stage 236 , a pulse I is issued for the disassembly. of the floor.
- the disassembly is blocked during a safety time, for example during 220 ms, which are supplied by the oscillator 228 or the counter 224 over 240 .
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
- Electrotherapy Devices (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Debugging And Monitoring (AREA)
- Control Of Turbines (AREA)
Abstract
Description
- V0s
- die aufgrund der Messung berechnete Mündungsgeschwindigkeit
- Ts
- die Messzeitspanne
- N1s
- die gemessene Anzahl der Geschossrotationen
- es
- den Enddrallwinkel
- Ds
- das Kaliber
- Tg
- die Tangensfunktion
- ein verbessertes Verfahren der eingangs genannten Art vorzuschlagen, mit welchem die Nachteile des Standes der Technik vermieden werden,
- eine Vorrichtung zur Durchführung dieses Verfahrens zu schaffen; und
- eine Verwendung dieser Vorrichtung vorzuschlagen.
- für das Verfahren durch die Merkmale des kennzeichnenden Teils des Anspruchs 1;
- für die Vorrichtung durch die Merkmale des kennzeichneden Teils des Anspruchs 9; und
- für die Verwendung durch die Merkmale des kennzeichnenden Teils des Anspruchs 12.
- M
- die Anzahl der gezählten Impulse des geschossinternen Oszillators
- R
- die Anzahl der Geschossrotationen während welchen die Impulse des Oszil lators gezählt werden
- V0
- die tatsächliche Mündungsgeschwindigkeit
- e
- den Endrallwinkel
- D
- das Kaliber
- fZ
- die konstante Frequenz des geschossinternen Frequenzgenerators bzw. Oszillators
- tg
- die Tangensfunktion.
- s
- den vom Geschoss theoretisch zurückgelegten Weg
- Δs
- den Unterschied zwischen dem theoretisch vom Geschoss zurückgelegten Weg und dem tatsächlich vom Geschoss zurückgelegten Weg
- (2a-k)
- ein Korrekturglied, wobei a der Antonio-Faktor ist.
- ΔM
- = 2 Impulse
- fz
- = 1 MHz
- V0
- = 1050 m/sec
- (2a-k)
- = 71.2 * 1/1 000 000
- D
- = 35 mm
- e
- = 6.5 °
- Fig. 1
- das erfindungsgemässe Verfahren in schematischer Darstellung;
- Fig. 2
- ein erstes Ausführungsbeispiel der Erfindung, in schematischer Darstellung;
- Fig. 3
- ein zweites Ausführungsbeispiel der Erfindung, in schematischer Darstellung; und
- TPN:
- programmierte Zeit der Zerlegungs bzw. Norm-Zerlegungszeit; diese wird unter Berücksichtigung der theoretischen Mündungsgeschwindigkeit bzw. Umdrehungsfrequenz und aufgrund des theoretischen Enddrallwinkels ermittelt.
- V0N:
- theoretische Mündungsgeschwindigkeit bzw. Norm-Mündungsgeschwindigkeit
- eN:
- theoretischer Enddrallwinkel bzw. Norm-Enddrallwinkel des Geschosses an der Mündung
- TP:
- tatsächliche bzw. aktualisierte Zeit der Zerlegung
- V0:
- tatsächliche bzw. aktualisierte Mündungsgeschwindigkeit
- e:
- tatsächlicher Enddrallwinkel
- D:
- Kaliber
- fZ:
- konstante Oszillator-Frequenz
- tg:
- Tangens-Funktion
- fGN:
- theoretische Rotationsfrequenz bzw. Norm-Rotationsfrequenz des Geschosses an der Mündung; es gilt:
- fG:
- tatsächliche Rotationsfrequenz des Geschosses an der Mündung; es gilt:
- TGN:
- theoretische Zeitperiode bzw. Norm-Zeitperiode für eine Geschossrotation an der Mündung; es gilt:
- TG:
- tatsächliche Zeitperiode für eine Geschossrotation an der Mündung; es gilt:
- M1N:
- theoretische Anzahl bzw. Norm-Anzahl Impulse des Oszillators während ei ner Geschossrotation an der Mündung; es gilt
- R1:
- tatsächliche Anzahl Impulse des Oszillators während einer Geschossrotation an der Mündung; es gilt
- x0:
- Rotationslänge, das heisst Strecke der Flugbahn, die das Geschoss auf der Flugbahn unmittelbar nach der Mündung während einer Geschossrotation zurücklegt; x0 ist invariant mit der Mündungsgeschwindigkeit V0; es gilt:
Für die Distanz s1 gilt im Ueberschallbereich
Drittes Impulspaket: TPN = die mit den Norm-Daten berechnete Zerlegungszeit bzw. Norm-Zerlegungszeit
Claims (12)
- Verfahren zum Korrigieren einer vorprogrammierten Auslösung eines Vorganges in einem drallstabilisierten Geschoss, insbesondere seiner Zerlegung, durch Berücksichtigung der Abweichung der tatsächlichen Mündungsgeschwindigkeit (V0) des Geschosses von der theoretischen Mündungsgeschwindigkeit (V0N ) des Geschosses, wobei die tatsächliche Mündungsgeschwindigkeit (V0N ) mit Hilfe der Auswirkung eines Magnetfeldes auf das Geschoss mittelbar über die tatsächliche Rotationsfrequenz (fG) des Geschosses bestimmt wird,
dadurch gekennzeichnet,
dass die tatsächliche Rotationsfrequenz (fG) des Geschosses während einer zeitlich limitierten Eichphase unmittelbar nach dem Abschuss des Geschosses ermittelt wird. - Verfahren nach Patentanspruch 1,
dadurch gekennzeichnet,
dass das Magnetfeld (H) das Erdmagnetfeld ist. - Verfahren nach Patentanspruch 1,
dadurch gekennzeichnet,
dass die Dauer der Eichphase unter Minimierung eines auftretenden Gesamtfehlers (ε) berechnet wird, welcher mindestens einen relevanten Fehler umfasst. - Verfahren nach Patentanspruch 3,
dadurch gekennzeichnet,
dass zur Berechnung der Dauer der Eichphaseein erster, vom Verfahren zur Ermittlung der tatsächlichen Rotationsfrequenz abhängiger relativer Fehler (ΔM / M) in Funktion der Anzahl Geschossrotationen (R) ermittelt wird,ein zweiter, von der zurückgelegten Distanz des Geschosses abhängiger, relativer Fehler (Δs / s ) in Funktion der Anzahl Geschossrotationen (R) ermittelt wird,die genannten relativen Fehler (ΔM / M, Δs / s) zu einem relativen Gesamtfehler (ε) addiert werden,der relative Gesamtfehler (ε) nach der Anzahl der Geschossrotationen (R) differenziert, das Ergebnis der Differenzierung Null gesetzt und daraus die Anzahl (R) der Geschossrotationen berechnet wird, welche dem optimalen Wert der Geschossrotationen (Ropt) bei einem minimalen relativen Gesamtfehler (ε) entspricht, unddie Eichphase abgebrochen wird, sobald die Anzahl der Geschossrotationen mindestens annähernd im Bereich des genannten optimalen Wertes (Ropt) liegt. - Verfahren nach mindestens einem der obigen Patentansprüche,
dadurch gekennzeichnet,dass die theoretische Zeit der Auslösung (TP N ) gespeichert wird,dass die tatsächliche Zeit der Auslösung (TP) mit einer die Abweichung der tatsächlichen Mündungsgeschwindigkeit (V0) von der theoretischen Mündungsgeschwindigkeit (V0N) berücksichtigenden Korrektur berechnet und gespeichert wird, unddass die Auslösung stattfindet, sobald der Wert eines laufenden Zählers den Wert der Zeit der tatsächlichen Auslösung (TP) erreicht. - Verfahren nach mindestens einem der obigen Patentansprüche,
dadurch gekennzeichnet,dass während der Eichphase eine sich in Abhängigkeit von der ändernden Lage des Geschosses verändernde Auswirkung des Magnetfeldes (H) auf das Geschoss mittels einer am Geschoss in geeigneter Weise angeordneten Einrichtung, beispielsweise mittels einer Spuleneinrichtung (108, 208), mittels Hall-Elementen oder Feldplatten ermittelt wird, unddass aus der sich verändernden Auswirkung des Magnetfeldes (H) die Zahl der während einer bestimmten Anzahl Rotationen (R) des Geschosses erfolgten Impulse (M) eines Oszillators mit fester Oszillatorfrequenz (FZ) gezählt werden, unddass aus der Anzahl der Geschossrotationen (R), der Anzahl der gezählten Impulse (M) und der Frequenz (FZ) des Oszillators die tatsächliche Umdrehungsfrequenz (fG) des Geschosses berechnet wird. - Verfahren nach mindestens einem der obigen Patentansprüche,
dadurch gekennzeichnet,dass während der Eichphase mehr als eine Messung zur Feststellung der tatsächlichen Rotationsfrequenz (fG) des Geschosses durchgeführt wird,dass das Ergebnis jeder Messung einem Plausibilitätstest unterzogen wird und/oderdass Ergebnis einer Messung nur weiterverwertet wird, wenn es durch eine weitere Messung bestätigt ist. - Verfahren nach mindestens einem der obigen Patentansprüche,
dadurch gekennzeichnet,
dass die Abweichung des tatsächlichen Enddrallwinkels (e) vom theoretischen Enddrallwinkel (e N)) berücksichtigt wird. - Vorrichtung zur Durchführung des Verfahrens nach mindestens einem der Patentansprüche 1 bis 8,
dadurch gekennzeichnet,
dass sieMittel zum Speichern der aufgrund der theoretischen Rotationsfrequenz (fGN ) des Geschosses programmierten Zeit der Auslösung (TP N ),Mittel zur Bestimmung der tatsächlichen Rotationsfrequenz (fG) des Geschosses, undMittel zum Aktualisieren der theoretischen Zeit der Auslösung (TP N ) auf die tatsächliche Zeit der Auslösung (TP) hin aufgrund der tatsächlichen Rotationsfrequenz (fG) bzw. Mündungsgeschwindigkeit (V0) des Geschosses besitzt. - Vorrichtung zur Durchführung des Verfahrens nach Patentanspruch 8,
dadurch gekennzeichnet,
dass das Geschoss umfasst:eine Vorrichtung zum Registrieren der theoretischen Zeit der Auslösung (TPN ),eine Vorrichtung zum Registrieren der theoretischen Mündungsgeschwindigkeit (V0N ),eine Vorrichtung zum Messen der tatsächlichen Rotationsfrequenz (f GN ) während der Eichphase und zum Ermitteln der tatsächlichen Mündungsgeschwindigkeit (V0) aus der tatsächlichen Rotationsfrequenz (fGN ),eine Vorrichtung zur Bildung der Differenz zwischen der theoretischen Mündungsgeschwindigkeit (V0 N ) und der tatsächlichen Mündungsgeschwindigkeit (V0),eine Vorrichtung zur Berechnen und Registrieren der tatsächlichen Zeit der Auslösung (TP) aufgrund der genannten Differenz, undeine Vorrichtung zum Vergleichen der laufenden Zeit mit der tatsächlichen Zeit der Auslösung (TP) sowie zum Initiieren der Auslösung, wenn die laufende Zeit die tatsächliche Zeit der Auslösung (TP) erreicht. - Vorrichtung nach mindestens einem der Patentansprüche 9 bis 10,
dadurch gekennzeichnet,
dass sie zur Bestimmung der effektiven Rotationsfrequenz (fG) bzw. zur Ermittlung der effektiven Mündungsgeschwindigkeit (V0) des Geschosses,eine Spuleneinrichtung (108, 208), in welcher durch das Magnetfeld (H) eine Spannung induzierbar ist, undeinen Oszillator (106, 206) mit einer konstanten Oszillatorfrequenz (fZ) besitzt, wobeidie Ausgänge der Spuleneinrichtung und des Oszillators während der Eichphase miteinander verbunden sind, um einen Eichwert zu bilden. - Verwendung der Vorrichtung nach mindestens einem der Patentansprüche 9 bis 11 zur Erhöhung der Wirksamkeit eines Waffensystems zur Bekämpfung von Zielen mitttels tempierbaren Geschossen,
dadurch gekennzeichnet,
dass die Ziele terrestrische Ziele oder Luftziele, insbesondere schnell anfliegende, Luftziele sind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH203298 | 1998-10-08 | ||
CH203298 | 1998-10-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0992761A1 true EP0992761A1 (de) | 2000-04-12 |
EP0992761B1 EP0992761B1 (de) | 2002-11-13 |
Family
ID=4224338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99117580A Expired - Lifetime EP0992761B1 (de) | 1998-10-08 | 1999-09-06 | Verfahren zum Korrigieren einer vorprogrammierten Auslösung eines Vorganges in einem drallstabilisierten Geschoss, Vorrichtung zur Durchführung des Verfahrens und Verwendung der Vorrichtung |
Country Status (5)
Country | Link |
---|---|
US (1) | US6484115B1 (de) |
EP (1) | EP0992761B1 (de) |
AT (1) | ATE227839T1 (de) |
DE (1) | DE59903384D1 (de) |
ES (1) | ES2185285T3 (de) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005024179A1 (de) | 2005-05-23 | 2006-11-30 | Oerlikon Contraves Ag | Verfahren und Vorrichtung zur Tempierung und/oder Korrektur des Zündzeitpunktes eines Geschosses |
US7926402B2 (en) * | 2006-11-29 | 2011-04-19 | Alliant Techsystems Inc. | Method and apparatus for munition timing and munitions incorporating same |
US8275571B2 (en) * | 2009-06-18 | 2012-09-25 | Aai Corporation | Method and system for correlating weapon firing events with scoring events |
US8706440B2 (en) * | 2009-06-18 | 2014-04-22 | Aai Corporation | Apparatus, system, method, and computer program product for registering the time and location of weapon firings |
US11047663B1 (en) * | 2010-11-10 | 2021-06-29 | True Velocity Ip Holdings, Llc | Method of coding polymer ammunition cartridges |
FR2967770B1 (fr) * | 2010-11-18 | 2012-12-07 | Continental Automotive France | Capteur de mesure de position angulaire et procede de compensation de mesure |
US20180335288A1 (en) * | 2017-05-18 | 2018-11-22 | Jacob Gitman | Method and system of launching a projectile for destroying a target |
US10883809B1 (en) * | 2019-05-07 | 2021-01-05 | U.S. Government As Represented By The Secretary Of The Army | Muzzle velocity correction |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1129448A (en) * | 1966-05-11 | 1968-10-02 | Bendix Corp | Equipment for measuring the distance travelled by a moving body such as a missile |
US4022102A (en) * | 1975-03-10 | 1977-05-10 | Werkzeugmaschinenfabrik Oerlikon-Buhrle Ag | Method and apparatus for adjusting a fuze after firing a projectile from a weapon |
US4664013A (en) * | 1983-03-04 | 1987-05-12 | Deutsch-Franzosisches Forschungsinstitut Saint-Louis | Method and apparatus for setting the operating time of a projectile time fuze |
US4686885A (en) * | 1986-04-17 | 1987-08-18 | Motorola, Inc. | Apparatus and method of safe and arming munitions |
EP0661516A1 (de) | 1993-12-30 | 1995-07-05 | Alliant Techsystems Inc. | Multifunktioneller magnetischer Zünder |
EP0802390A1 (de) * | 1996-04-19 | 1997-10-22 | Oerlikon Contraves AG | Verfahren zur Ermittlung der Zerlegungszeit insbesondere eines Programmierbaren Geschosses |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE331245B (de) * | 1969-01-03 | 1970-12-14 | Bofors Ab | |
US3955069A (en) * | 1972-09-28 | 1976-05-04 | General Electric Company | Presettable counter |
US3844217A (en) * | 1972-09-28 | 1974-10-29 | Gen Electric | Controlled range fuze |
US3919642A (en) * | 1973-05-09 | 1975-11-11 | Us Army | Low cost telemeter for monitoring a battery and DC voltage converter power supply |
US4229741A (en) * | 1979-03-12 | 1980-10-21 | Motorola, Inc. | Two-way communications system and method of synchronizing |
US4283989A (en) * | 1979-07-31 | 1981-08-18 | Ares, Inc. | Doppler-type projectile velocity measurement and communication apparatus, and method |
US4777352A (en) * | 1982-09-24 | 1988-10-11 | Moore Sidney D | Microcontroller operated optical apparatus for surveying rangefinding and trajectory compensating functions |
US4686882A (en) | 1986-02-20 | 1987-08-18 | Shaw Eric D | Expandible and collapsible acoustic guitar |
DE3830518A1 (de) * | 1988-09-08 | 1990-03-22 | Rheinmetall Gmbh | Vorrichtung zur einstellung eines geschosszeitzuenders |
DE3934363A1 (de) * | 1989-10-14 | 1991-04-25 | Rheinmetall Gmbh | Vorrichtung zur erzeugung von referenzimpulsen |
DE4111002A1 (de) * | 1991-04-05 | 1992-10-08 | Wegmann & Co | Vorrichtung zum tempieren von zuendern an grosskalibrigen geschossen |
CA2082448C (en) * | 1991-05-08 | 2002-04-30 | Christopher Robert Gent | Weapons systems |
US5343795A (en) * | 1991-11-07 | 1994-09-06 | General Electric Co. | Settable electronic fuzing system for cannon ammunition |
DE4416210C2 (de) * | 1994-05-07 | 1997-05-22 | Rheinmetall Ind Ag | Verfahren und Vorrichtung zur Ermittlung der Rollwinkellage eines rotierenden Flugkörpers |
DE59608912D1 (de) * | 1995-09-28 | 2002-04-25 | Contraves Pyrotec Ag | Verfahren und Vorrichtung zum Programmieren von Zeitzündern von Geschossen |
NO311954B1 (no) * | 1996-04-19 | 2002-02-18 | Contraves Ag | Fremgangsmåte for å bestemme et programmerbart prosjektils oppdelingstidspunkt |
NO311953B1 (no) * | 1996-04-19 | 2002-02-18 | Contraves Ag | Fremgangsmåte og innretning for å bestemme et programmerbart prosjektils oppdelingstidspunkt |
FR2761767B1 (fr) * | 1997-04-03 | 1999-05-14 | Giat Ind Sa | Procede de programmation en vol d'un instant de declenchement d'un element de projectile, conduite de tir et fusee mettant en oeuvre un tel procede |
-
1999
- 1999-09-06 AT AT99117580T patent/ATE227839T1/de not_active IP Right Cessation
- 1999-09-06 ES ES99117580T patent/ES2185285T3/es not_active Expired - Lifetime
- 1999-09-06 DE DE59903384T patent/DE59903384D1/de not_active Expired - Fee Related
- 1999-09-06 EP EP99117580A patent/EP0992761B1/de not_active Expired - Lifetime
- 1999-10-07 US US09/413,793 patent/US6484115B1/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1129448A (en) * | 1966-05-11 | 1968-10-02 | Bendix Corp | Equipment for measuring the distance travelled by a moving body such as a missile |
US4022102A (en) * | 1975-03-10 | 1977-05-10 | Werkzeugmaschinenfabrik Oerlikon-Buhrle Ag | Method and apparatus for adjusting a fuze after firing a projectile from a weapon |
US4664013A (en) * | 1983-03-04 | 1987-05-12 | Deutsch-Franzosisches Forschungsinstitut Saint-Louis | Method and apparatus for setting the operating time of a projectile time fuze |
US4686885A (en) * | 1986-04-17 | 1987-08-18 | Motorola, Inc. | Apparatus and method of safe and arming munitions |
EP0661516A1 (de) | 1993-12-30 | 1995-07-05 | Alliant Techsystems Inc. | Multifunktioneller magnetischer Zünder |
EP0802390A1 (de) * | 1996-04-19 | 1997-10-22 | Oerlikon Contraves AG | Verfahren zur Ermittlung der Zerlegungszeit insbesondere eines Programmierbaren Geschosses |
Also Published As
Publication number | Publication date |
---|---|
ATE227839T1 (de) | 2002-11-15 |
EP0992761B1 (de) | 2002-11-13 |
US6484115B1 (en) | 2002-11-19 |
DE59903384D1 (de) | 2002-12-19 |
ES2185285T3 (es) | 2003-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1726911B1 (de) | Verfahren und Vorrichtung zur Tempierung und/oder Korrektur des Zündzeitpunktes eines Geschosses | |
EP0118122B1 (de) | Verfahren und Vorrichtung zur Einstellung der Laufzeit eines Geschoss-Zeitzünders | |
DE2347374C2 (de) | Abstandszünder für einen Gefechtskopf | |
EP0992761B1 (de) | Verfahren zum Korrigieren einer vorprogrammierten Auslösung eines Vorganges in einem drallstabilisierten Geschoss, Vorrichtung zur Durchführung des Verfahrens und Verwendung der Vorrichtung | |
EP0802392B1 (de) | Verfahren und Vorrichtung zur Bestimmung einer korrigierten Zerlegungszeit eines programmierbar zerlegbaren Geschosses | |
DE4410326C2 (de) | Geschoß mit einer Vorrichtung zur Flugbahnkorrektur | |
DE3309147A1 (de) | Verfahren und anordnung zur korrektur eines zuendzeitpunktes | |
WO1990008936A1 (de) | Verfahren und vorrichtung zur verbesserung der treffgenauigkeit | |
EP0802390B1 (de) | Verfahren zur Bestimmung einer korrigierten Zerlegungszeit eines programmierbar zerlegbaren Geschosses | |
DE2452586C3 (de) | Verfahren und Vorrichtung zur Festlegung der Dauer des Flugweges eines Geschosses | |
DE1623362C3 (de) | Einrichtung zum Zünden einer Sprengladung bzw. zum Auslosen einer Funktion | |
DE2543606C2 (de) | Anordnung zur Flugbahnkorrektur eines rotierenden Geschosses | |
EP1452825B1 (de) | Verfahren zur Programmierung der Zerlegung von Projektilen und Rohrwaffen mit Programmiersystem | |
EP2226607B1 (de) | Verfahren zum Zünden eines Gefechtskopfs einer Granate und Fahrzeug | |
DE3821309C2 (de) | ||
DE60219564T2 (de) | Verfahren zum Einstellen eines Geschosszünders, Programmiereinrichtung und Zeitzünder die in einen solchem Verfahren verwendet werden | |
EP0992758B1 (de) | Verfahren und Vorrichtung zur Korrektur der Zerlegungszeit bzw. der Zerlegungsumdrehungszahl eines drallstabilisierten programmierbaren Geschosses | |
EP0348985A2 (de) | Zündeinrichtung für Sprenggeschosse | |
DE2140633B2 (de) | Verfahren zur bestimmung der relativgeschwindigkeit zweier koerper zueinander und geraet zur durchfuehrung dieses verfahrens | |
DE3348136C2 (en) | Method for determining the ballistic trajectory (flight path) of a projectile, and a device for carrying out the method | |
DE2348268C2 (de) | Dopplerradareinrichtung zur Messung der Geschwindigkeit eines sich in einer Bahn bewegenden Objekts | |
DE3407691C1 (en) | Device for correction of the setting of an electronic projectile time detonator | |
DE3301040A1 (de) | Verfahren und einrichtung zur einstellung eines elektronischen zeitzuenders fuer geschosse | |
DE10028746A1 (de) | Verfahren und Vorrichtung zur Bestimmung der Zündverzugszeit bei zielverfolgenden Lenkflugkörpern | |
DE19805850C1 (de) | Lenkflugkörper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20000531 |
|
AKX | Designation fees paid |
Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20010202 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021113 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021113 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021113 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021113 |
|
REF | Corresponds to: |
Ref document number: 227839 Country of ref document: AT Date of ref document: 20021115 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: OK PAT AG PATENTE MARKEN LIZENZEN |
|
REF | Corresponds to: |
Ref document number: 59903384 Country of ref document: DE Date of ref document: 20021219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030213 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030213 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030317 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2185285 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D Ref document number: 0992761E Country of ref document: IE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030906 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030906 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030906 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030930 |
|
26N | No opposition filed |
Effective date: 20030814 |
|
BERE | Be: lapsed |
Owner name: *OERLIKON CONTRAVES PYROTEC A.G. Effective date: 20030930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: RWM SCHWEIZ AG Free format text: OERLIKON CONTRAVES PYROTEC AG#BIRCHSTRASSE 155#8050 ZUERICH (CH) -TRANSFER TO- RWM SCHWEIZ AG#BIRCHSTRASSE 155#8050 ZUERICH (CH) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20060914 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20060921 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060922 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060926 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20060928 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060930 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20060914 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070907 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20070906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070930 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080401 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20080531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070906 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20070907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070906 |