EP0979206B1 - Verfahren und vorrichtung zum füllen von gebinden - Google Patents

Verfahren und vorrichtung zum füllen von gebinden Download PDF

Info

Publication number
EP0979206B1
EP0979206B1 EP98916983A EP98916983A EP0979206B1 EP 0979206 B1 EP0979206 B1 EP 0979206B1 EP 98916983 A EP98916983 A EP 98916983A EP 98916983 A EP98916983 A EP 98916983A EP 0979206 B1 EP0979206 B1 EP 0979206B1
Authority
EP
European Patent Office
Prior art keywords
pressure
filling
barrel
gas
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98916983A
Other languages
English (en)
French (fr)
Other versions
EP0979206A1 (de
Inventor
Volker Till
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KHS Till GmbH
Original Assignee
KHS Till GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19720170A external-priority patent/DE19720170C2/de
Application filed by KHS Till GmbH filed Critical KHS Till GmbH
Publication of EP0979206A1 publication Critical patent/EP0979206A1/de
Application granted granted Critical
Publication of EP0979206B1 publication Critical patent/EP0979206B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/30Filling of barrels or casks
    • B67C3/32Filling of barrels or casks using counterpressure, i.e. filling while the container is under pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2931Diverse fluid containing pressure systems
    • Y10T137/2984Foam control in gas charged liquids
    • Y10T137/299Separate handling of foam

Definitions

  • the invention relates to a method for filling containers, especially kegs, with liquids in which at least one Gas is dissolved, the container before filling the Liquid is biased with a biasing gas, then the Container via a connected to a supply line Filling valve fed to a filling station and during liquid of the filling process, the biasing gas contained in the container is dissipated, and a device for performing this Procedure.
  • Carbonated beverages such as beer, only keep their CO 2 in solution if the partial pressure of the gas CO 2 above the liquid is at least as high as the saturation pressure in the liquid. If the gas pressure above the liquid is below the saturation pressure, the liquid loses CO 2 , but if the gas pressure is significantly higher, there is a risk that additional CO 2 will dissolve.
  • the gas absorption is dependent on the differential pressure between the saturation pressure in the liquid and the partial pressure above the liquid, the time available for gas exchange, which is usually equivalent to the filling time of the container, and the size of the gas exchange surface, i.e. the Liquid surface. Due to the turbulence in the liquid during the filling process, the risk of gas absorption during filling is considerably increased.
  • the gas exchange between the liquid and the superimposed gas atmosphere affects not only the CO 2 , but also other gases present in the gas atmosphere, in particular oxygen, which is absorbed by the liquid according to the same laws.
  • oxygen is an important factor for the quality of the product in liquids that can be damaged by microorganisms or whose durability is endangered by the oxidation of liquid components.
  • a differential pressure between the supply line and the interior of the container is necessary.
  • the size of the differential pressure determines the inflow speed of the product.
  • the product is filled with turbulence at an initially low speed to avoid increasing the surface area, which is then slowly increased.
  • the container is pretensioned with a gas pressure that is significantly above the saturation pressure of the gas dissolved in the liquid.
  • the liquid itself is also kept at this pressure level by tanks or pumps and fed to the filling machine. After the container has been pretensioned to the pressure of the liquid supplied, a connection is established between the container and the supply line of the filling material.
  • Controlled draining of the prestressing gas in the container enables the filling material to flow into the container.
  • the differential pressure that builds up determines the flow rate of the liquid.
  • the gas outlet is throttled towards the end of the filling, and as a result the differential pressure between the interior of the container and the supply line decreases. Towards the end of the filling process, this results in a reduction in the filling quantity per unit of time, which enables precise switching off when a target quantity is reached.
  • This known method is referred to as "return gas control”.
  • the advantage of this regulation is that the gas pressure above the liquid is always above the saturation pressure of the CO 2 gas.
  • the preload pressure to be set is determined by experience.
  • the product is said to lose CO 2 due to turbulence that results in local negative pressures. This creates a deliberate artificial foam on the surface of the liquid, the bubbles of which only contain the released CO 2 and thus protect the product from contact with the oxygen-containing gas atmosphere above.
  • the turbulence and with it the local negative pressure disappear.
  • the product absorbs CO 2 again during the remaining filling time. The trick is, depending on the CO 2 content, temperature, container size and calculated filling time, to achieve a balance between CO 2 loss and recovery.
  • the reduction of the filling speed in the last filling section is problematic. If the liquid inlet pressure remains constant, the flow rate can only be reduced if the differential pressure is reduced. In the known methods, the gas outlet is throttled (or in extreme cases prevented) and waited until the rising fill level has reduced the back pressure to the desired value by compressing the remaining gas volume in the container. This period can be significant, especially for beer kegs.
  • a 50 l keg usually has an inlet cross-section DN21 and a maximum filling speed of 3 l / sec at a differential pressure of 0.8 bar.
  • N 2 and CO 2 have completely different solubilities and saturation pressure curves. While CO 2 easily dissolves and is difficult to get out of solution, it is extremely difficult to get N 2 into solution at all and very easy to remove N 2 even with the slightest turbulence. The balance between degassing at the start of filling and resumption of the lost gas during filling is almost impossible to find in 2-gas systems. The quality of the product to be filled is therefore fluctuating. Attempts are made to compensate for this by keeping the ratio of the gas atmosphere CO 2 to N 2 different from the proportion of the dissolved gases. However, this compromise is only valid for one temperature or one container size and only for one product supply pressure. It is impossible to master these many factors and their tolerances in terms of control technology.
  • Another disadvantage of the return gas control is that the container has to be prestressed with gas, usually CO 2 , far beyond the saturation pressure in order to achieve a pressure drop that is still above the saturation pressure even during the maximum lowering of the internal pressure during the filling process of the gas. Since the gas is then released into the atmosphere, this also results in increased consumption of the greenhouse gas CO 2 in addition to energy consumption.
  • gas usually CO 2
  • the filling takes place with a pressure drop via the valve of the Filling head, reducing the pressure to approximately 68.96 KPa (10 psi) before the liquid is biased to about 41.37 KPa (6 psi) Bottle is filled.
  • the valve of the filling head is however no regulation assigned. This means that the Filling pressure in front of the bottle is higher than that Preload pressure and this due to the pressure drop in the valve Pressure is relieved.
  • the pressure reduction is constant, however that the product pressure both before the pressure relief valve as well after the pressure relief valve is constant. This means, that there is no pressure increase during the filling process. A targeted adjustment of the filling speed depending on of the level in the container is therefore not possible.
  • the object of the invention is therefore to a gentle filling enable and reduce the consumption of bias gas.
  • the container is preloaded as far as possible exactly to the product pressure directly at the filling valve, to inject the product when the filling valve is opened to prevent in the container.
  • the differential pressure for the filling process by lowering the gas pressure level in the barrel and the product supply pressure
  • keeping constant is proposed the internal gas pressure to generate the necessary differential pressure to keep constant in the container and the product supply pressure increase at the inlet of the container.
  • the Preload pressure within the container according to the Saturation pressure set after filling is the fact that beer kegs before the filling for sterilization can be steamed and the cold Product is filled into the still hot container.
  • a mixing and equalizing temperature which is the temperature of the product in the container by approx. 4 ° C compared to the supply temperature elevated.
  • this changes the Saturation pressures of the dissolved gases so that according to the invention value to be set to that of the product in the filled Containers must correspond. This question has been asked in the past never posed because the back pressure is always significantly above the saturation pressure.
  • An apparatus for performing the above Procedure with a filling station which is via a feed line product liquid to be filled into the container and from the escaping from the container via a return gas line Bias gas is discharged, according to the invention in the Filling station a pressure control device to determine the Filling pressure at the filling station.
  • a pressure control device to determine the Filling pressure at the filling station.
  • the pressure control device is expediently a Pressure sensor to determine the product pressure on the assigned to individual filling station.
  • Pressure control device a pressure increasing unit, preferably a frequency controlled pump, with which everyone Desired differential pressure to the inside of the container within Can produce fractions of a second.
  • Pressure increasing unit can also be central, for example attached pressure booster unit and an additional one on each Filling station arranged pressure reducing unit, especially in controllable pressure reducing valve may be provided.
  • Problematic here is that at low flow rates because of high differential pressures between product supply pressure before Pressure reducing station and in the container behind the pressure reducing station only small nominal sizes can be released by which the product with due to the high pressure difference Valve seat squeezed through at high flow rates, in the subsequent extended pipeline with on average flow at low speed. With this "squeezing" the easily soluble gas can be released and lather up the liquid and its composition change.
  • Return gas line provided an overflow valve through which the Return gas is discharged.
  • the filling station 1 shown in Fig. 1 consists essentially from a filling valve 2, which via a supply line 3 a liquid, such as beer, in which gases are dissolved becomes.
  • a liquid such as beer
  • a container in particular a Keg 4 put on, filled with the product liquid shall be.
  • One of the individual filling stations 1 is located in the feed line 3 assigned pressure booster pump 5 provided via a Frequency converter 6 depending on the one Pressure sensor 7 determined pressure in the line section 8 to the filling valve 2 and the gas pressure in the keg 4 is controlled.
  • a riser pipe 9 is provided, which with a Return gas line 10 of the filling valve 2 is connected.
  • the Return gas line 10 leads to an overflow valve 11, via the access to a return gas outlet 12 is controlled.
  • a bias gas line 13 is connected, which can be shut off via a valve 14.
  • the biasing gas in particular CO 2 .
  • the biasing gas can also be a composition of several gases, such as CO 2 and N 2 .
  • the preload pressure in the keg 4 is only at a partial pressure corresponding approximately to the saturation pressure of the CO 2 (or N 2 ) in the beer, which is approximately at the product pressure in the line section 8 of the supply line 3 in front of the filling valve 2.
  • the back pressure of the biasing gas in the keg 4 corresponds to the saturation pressure of the dissolved gas after filling the keg 4, ie in the filled container.
  • the filling valve 2 After closing the bias gas valve 14, the filling valve 2 opened, there is initially equal pressure. After switching on the pump 5, which is started via a "ramp", the Filling speed increased slowly, not to oversize Causing turbulence. That from the supply line 8 through the annular gap 15 in the filling valve 2 conveyed into the keg 4 Beer pushes the preload gas contained in the keg 4 through the Riser pipe 9 out of the keg 4. The bias gas escapes via the overflow valve 11 into the return gas outlet 12.
  • the differential pressure desired between the inside of the keg The product supply pressure and the preload pressure can be set via the pump 5 can be produced within fractions of a second, so that the desired filling speed exactly the filling height accordingly, without delay and individually for each individual filling station 1 can be controlled.
  • FIG. 2 corresponds essentially the embodiment of FIG. 1, so that matching elements designated with the same reference numerals and their detailed description again is waived.
  • the main difference from the first embodiment lies 2 in that in the Filling station 20 via a central pressure increasing unit 21 in the supply line 3 is set an increased pressure.
  • everyone individual filling station 20 is a pressure reducing valve 22 assigned that the pressure at the filling valve 2 to that for the Product supply at the filling station 20 desired supply pressure reduced, which is detected via the pressure sensor 7.
  • the pressure sensor 7 At the Opening the filling valve 2 should also first equal pressure here between the feed line section 8 and the inside of the Container 4 prevail and the one required for beer production Differential pressure then via the pressure reducing valve 22 below Taking into account that of the pressure meter 7 in the supply line 8 determined pressure can be set. Should in the Supply line 8, however, still open when the filling valve 2 is opened There is increased pressure because of the incompressibility the liquid in the line section 8 not critical.
  • the pretension in the keg 4 only has to be set to a partial pressure corresponding approximately to the saturation pressure of the CO 2 (or N 2 ) in the beer and is thus far below the conventionally set pretension pressure.

Landscapes

  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
  • Devices For Dispensing Beverages (AREA)
  • Basic Packing Technique (AREA)
  • Vacuum Packaging (AREA)
  • Special Conveying (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Füllen von Gebinden, insbesondere Kegs, mit Flüssigkeiten, in denen wenigstens ein Gas gelöst ist, wobei das Gebinde vor dem Einfüllen der Flüssigkeit mit einem Vorspanngas vorgespannt wird, dann dem Gebinde über ein an eine Zufuhrleitung angeschlossenes Füllventil einer Füllstation Flüssigkeit zugeführt und während des Füllvorgangs das im Gebinde enthaltene Vorspanngas abgeführt wird, sowie eine Vorrichtung zur Durchführung dieses Verfahrens.
Kohlensäurehaltige Getränke, wie Bier, halten ihr CO2 nur dann in Lösung, wenn der über der Flüssigkeit liegende Partialdruck des Gases CO2 mindestens so hoch ist wie der Sättigungsdruck in der Flüssigkeit. Liegt der Gasdruck über der Flüssigkeit unterhalb des Sättigungsdruckes, so verliert die Flüssigkeit CO2, liegt der Gasdruck aber wesentlich darüber, besteht die Gefahr, daß zusätzliches CO2 in Lösung geht. Die Gasaufnahme ist hierbei abhängig von dem Differenzdruck zwischen dem Sättigungsdruck in der Flüssigkeit und dem Partialdruck über der Flüssigkeit, der für den Gasaustausch zur Verfügung stehenden Zeit, die in der Regel mit der Füllzeit des Gebindes gleichzusetzen ist, und der Größe der Gasaustauschfläche, also der Flüssigkeitsoberfläche. Aufgrund der während des Füllvorganges auftretenden Turbulenzen in der Flüssigkeit ist die Gefahr einer Gasaufnahme während des Füllens erheblich vergrößert. Der Gasaustausch zwischen Flüssigkeit und der überlagerten Gasatmosphäre betrifft jedoch nicht nur das CO2, sondern auch andere in der Gasatmosphäre vorhandene Gase, insbesondere Sauerstoff, der nach den gleichen Gesetzen von der Flüssigkeit aufgenommen wird. Sauerstoff ist aber bei Flüssigkeiten, die durch Mikroorganismen geschädigt werden können oder deren Haltbarkeit durch Oxidation von Flüssigkeitsbestandteilen gefährdet ist, ein wesentlicher Faktor für die Qualität des Produktes.
Um das Produkt durch ein Ventil in das Gebinde, sei es eine Flasche oder ein Faß, zu bekommen, ist ein Differenzdruck zwischen Zuleitung und Gebindeinnerem notwendig. Die Größe des Differenzdrucks bestimmt die Einströmgeschwindigkeit des Produktes. Üblicherweise wird das Produkt zur Vermeidung von Oberflächenvergrößerungen durch Turbulenzen mit anfänglich niedriger Geschwindigkeit gefüllt, die dann langsam gesteigert wird. Hierzu wird das Gebinde mit einem Gasdruck vorgespannt, der erheblich über dem Sättigungsdruck des in der Flüssigkeit gelösten Gases liegt. Die abzufüllende Flüssigkeit selbst wird durch Tanks oder Pumpen ebenfalls auf diesem Druckniveau gehalten und der Füllmaschine zugeführt. Nach dem Vorspannen des Gebindes auf den Druck der zugeführten Flüssigkeit wird eine Verbindung zwischen Gebinde und Zuleitung des Füllgutes hergestellt. Durch kontrolliertes Ablassen des im Gebinde vorhandenen Vorspanngases wird das Einfließen des Füllgutes in das Gebinde ermöglicht. Hierbei bestimmt der sich aufbauende Differenzdruck die Fließgeschwindigkeit der Flüssigkeit. Es ist ferner bekannt, daß gegen Ende der Befüllung der Gasaustritt gedrosselt wird und dadurch der Differenzdruck zwischen Gebindeinnerem und Zuleitung abnimmt. Dies bewirkt gegen Ende des Füllvorgangs eine Reduzierung der Einfüllmenge pro Zeiteinheit, wodurch ein genaues Abschalten bei Erreichen einer Sollmenge ermöglicht wird. Dieses bekannte Verfahren wird als "Rückgasregelung" bezeichnet. Der Vorteil dieser Regelung liegt darin, daß der Gasdruck über der Flüssigkeit zu jeder Zeit über dem Sättigungsdruck des CO2-Gases liegt.
Der einzustellende Vorspanndruck wird durch Erfahrung ermittelt. Am Anfang der Befüllung soll das Produkt durch Turbulenzen, die lokale Unterdrücke zur Folge haben, CO2 verlieren. Dadurch entsteht ein gewollter künstlicher Schaum auf der Flüssigkeitsoberfläche, dessen Blasen ausschließlich das freigewordene CO2 enthalten und somit das Produkt vor Kontakt mit der darüberliegenden sauerstoffhaltigen Gasatmosphäre schützen. Während des weiteren Füllvorgangs verschwinden die Turbulenzen und damit die lokalen Unterdrücke. Das Produkt nimmt während der restlichen Füllzeit wieder CO2 auf. Die Kunst besteht also darin, abhängig von CO2-Gehalt, Temperatur, Gebindegröße und kalkulierter Füllzeit ein Gleichgewicht zwischen CO2-Verlust und -Wiederaufnahme zu erreichen.
Abgesehen davon, daß das Gebinde bei der Rückgasregelung weit über den Sättigungsdruck vorgespannt werden muß und das Ablassen zum Erreichen einer kontrollierten Füllgeschwindigkeit gesteuert vorgenommen werden muß, ist die Reduzierung der Füllgeschwindigkeit im letzten Füllabschnitt problematisch. Bei konstantem Zulaufdruck der Flüssigkeit kann die Fließgeschwindigkeit nur reduziert werden, wenn der Differenzdruck verringert wird. Bei den bekannten Verfahren wird hierzu der Gasaustritt gedrosselt (bzw. im Extremfall unterbunden) und abgewartet, bis der steigende Füllstand durch Kompression des im Gebinde vorhandenen restlichen Gasvolumens eine Reduzierung des Gegendrucks auf den gewünschten Wert erreicht hat. Dieser Zeitraum kann insbesondere bei Bierfässern erheblich sein. So hat ein 50 l-Keg üblicherweise einen Zulaufquerschnitt DN21 und eine maximale Einfüllgeschwindigkeit von 3 l/sec bei einem Differenzdruck von 0,8 bar. Ist das Keg mit 35 l gefüllt, so müssen zur Reduktion der Geschwindigkeit 15 l Gasraum um 0,7 bar komprimiert werden. Hierfür werden 15 x 0,7 = 10,5 l Flüssigkeit und aufgrund der sich reduzierenden Füllgeschwindigkeit ca. 8 Sekunden Füllzeit benötigt. Eine schnelle, genaue Regelung ist, insbesondere bei möglicherweise schwankenden Zulaufdrücken, also nicht möglich. Noch kritischer ist die Situation, wenn in dem Produkt nicht nur ein Gas (beispielsweise CO2), sondern zwei Gase (beispielsweise CO2 und N2) bewußt gelöst sind. N2 wird heutzutage deshalb dem Bier zugesetzt, weil es schaumstabilisierend wirkt. Bestes Beispiel dafür ist Stout-Bier, dessen cremiger, lang anhaltender Schaum durch das gelöste, beim Zapfen freiwerdende N2 verursacht wird. N2 und CO2 haben jedoch völlig verschiedene Löslichkeiten und Sättigungsdruckkurven. Während CO2 leicht in Lösung geht und nur schwer aus der Lösung zu bringen ist, ist es äußerst schwierig, N2 überhaupt in Lösung zu bringen und schon bei geringsten Turbulenzen sehr einfach, N2 wieder zu entfernen. Die Balance zwischen Entgasen bei Füllbeginn und Wiederaufnahme des verlorenen Gases während der Füllung ist bei 2-Gas-Systemen nahezu nicht zu finden. Die Qualität des abzufüllenden Produktes ist daher schwankend. Es wird versucht, dies dadurch zu kompensieren, daß das Verhältnis der Gasatmosphäre CO2 zu N2 anders gehalten wird als der Anteil der gelösten Gase. Dieser Kompromiß ist jedoch immer nur für eine Temperatur oder eine Gebindegröße und jeweils nur für einen Produktzufuhrdruck gültig. Eine regelungstechnische Beherrschung dieser vielen Faktoren und ihrer Toleranzen ist unmöglich.
Ein weiterer Nachteil der Rückgasregelung liegt darin, daß das Gebinde weit über den Sättigungsdruck hinaus mit Gas, in der Regel CO2, vorgespannt werden muß, um eine Druckabsenkung zu erreichen, die auch während des maximalen Absenkens des Innendrucks beim Füllprozeß immer noch über dem Sättigungsdruck des Gases liegt. Da das Gas anschließend in die Atmosphäre entlassen wird, ist neben dem Energiekonsum auch ein erhöhter Verbrauch des Treibhausgases CO2 die Folge.
Aus US-A-3 395 739 ist eine Flaschenfüllanlage bekannt, die mit einer Karbonisieranlage zusammenarbeitet. Hinter der Karbonisieranlage ist eine Pumpe installiert, die den Getränkedruck erheblich über den Sättigungsdruck der Flüssigkeit anhebt, um die Löslichkeit der Kohlensäure zu verbessern. An die Pumpe schließt sich ein Kühler (oder eine Hochkurzzeiterhitzunganlage mit anschließendem Kühler) an, der den Sättigungsdruck der Lösung herabsetzen soll. Durch eine Druckhalteeinrichtung soll dennoch ein höherer Druck als Sättigungsdruck aufrechterhalten werden, wobei die Flüssigkeit dem Füllkopf mit einem Druck von 241,36 bis 275,84 KPa (35 bis 40 psi) zugeführt wird. Die Füllung erfolgt mit einem Druckabfall über das Ventil des Füllkopfes, wobei der Druck etwa auf 68,96 KPa (10 psi) reduziert wird bevor die Flüssigkeit in die auf etwa 41,37 KPa (6 psi) vorgespannte Flasche eingefüllt wird. Dem Ventil des Füllkopfes ist jedoch keinerlei Regelung zugeordnet. Dies bedeutet, dass der Fülldruck vor der Flasche mit höherem Druck anliegt als der Vorspanndruck und das durch den Druckabfall im Ventil dieser Druck abgebaut wird. Der Druckabbau ist jedoch konstant, so dass der Produktdruck sowohl vor dem Druckabbauventil als auch nach dem Druckabbauventil jeweils konstant ist. Dies bedeutet, dass während des Füllvorgangs keine Druckerhöhung stattfindet. Eine gezielte Anpassung der Füllgeschwindigkeit in Abhängigkeit von der Füllstandshöhe im Gebinde ist somit nicht möglich.
Aufgabe der Erfindung ist es daher, eine schonende Füllung zu ermöglichen und den Verbrauch an Vorspanngas zu reduzieren.
Diese Aufgabe wird mit der Erfindung im wesentlichen dadurch gelöst, daß das Vorspanngas im Gebinde lediglich auf einen etwa dem Sättigungsdruck eines der in der abgefüllten Flüssigkeit gelösten Gase entsprechenden Partialdruck vorgespannt wird, der unterhalb des in der Zufuhrleitung vor dem Füllventil anliegenden Produktdrucks liegt.
Die Vorspannung des Gebindes erfolgt dabei zunächst möglichst genau auf den direkt am Füllventil anliegenden Produktdruck, um beim Öffnen des Füllventils ein Einspritzen des Produkts in das Gebinde zu verhindern. Statt wie bei der Rückgasregelung den Differenzdruck für den Füllvorgang durch Absenken des Gasdruckniveaus im Faß herzustellen und den Produktzufuhrdruck konstant zu halten, wird erfindungsgemäß vorgeschlagen, zur Erzeugung des notwendigen Differenzdrucks den Gasinnendruck im Gebinde konstant zu halten und den Produktzufuhrdruck am Einlauf des Gebindes zu erhöhen.
Es gibt hierbei grundsätzlich zwei Möglichkeiten der Produktzufuhr in der Zuleitung. Diese kann entweder, wie bei einer ersten Ausführungsform der Erfindung vorgesehen, mit einem bei oder sogar leicht unter dem Vorspanndruck in dem Gebinde liegenden Druck oder mit einem höheren Druck erfolgen, wie es gemäß einer zweiten Ausführungsform der Erfindung vorgesehen ist.
Beiden Ausführungsformen gemeinsam ist, daß der zur Befüllung aufzubringende Differenzdruck zwischen Produktzufuhr und Gebindeinnerem über eine Druckregelungseinrichtung (in der Zufuhrleitung statt in der Rückgasleitung) für jede Füllstation regelbar aufgebracht wird. Dies kann entweder durch eine Druckerhöhungs- oder eine Druckreduziereinheit erfolgen. Damit läßt sich jeder gewünschte Differenzdruck zum Gebindeinneren in kürzester Zeit individuell einstellen, so daß im Gegensatz zur Rückgasregelung eine verzögerungsfreie Regelung erreicht wird.
Das Gas im Gebindeinneren kann dann über ein einfaches Überströmventil durch das einströmende Produkt herausgedrückt werden. Die bisher üblichen teuren regelungstechnischen Apparate sind hierfür nicht mehr notwendig. Bei Flüssigkeiten mit mehreren gelösten Gasen kann die optimale Gaszusammensetzung innerhalb des Gebindes eingestellt werden, da während des Füllvorgangs über die gesamte Zeit ein gleicher Druck im Gebindeinneren herrscht. Bei der herkömmlichen Rückgasregelung hatten die wechselnden Drücke im Gebindeinneren während des Füllvorgangs in den unterschiedlichen Füllphasen unterschiedliche Gasaustauschverhalten und damit eine Beeinflussung der Produktqualität zur Folge. Dies ist durch die Erfindung vollständig behoben.
Gemäß einer bevorzugten Weiterbildung der Erfindung wird der Vorspanndruck innerhalb des Gebindes entsprechend dem Sättigungsdruck nach der Befüllung eingestellt. Hintergrund dieses Erfindungsgedankens ist die Tatsache, daß Bierkegs vor der Befüllung zur Sterilisation gedämpft werden und das kalte Produkt in das noch heiße Gebinde eingefüllt wird. Hierbei werden in ca. 12 kg Metall einer Temperatur von 100°C 50 l Bier einer Temperatur von ca. 3°C eingefüllt. Es stellt sich eine Misch- und Ausgleichstemperatur ein, die die Temperatur des Produktes im Gebinde um ca. 4°C gegenüber der Zufuhrtemperatur erhöht. Dies verändert selbstverständlich die Sättigungsdrücke der gelösten Gase, so daß erfindungsgemäß der einzustellende Wert demjenigen des Produktes im abgefüllten Gebinde entsprechen muß. Diese Frage hat sich in der Vergangenheit nie gestellt, weil der Gegendruck stets erheblich über dem Sättigungsdruck gelegen hat.
Eine Vorrichtung zur Durchführung des oben beschriebenen Verfahrens mit einer Füllstation, der über eine Zufuhrleitung in das Gebinde einzufüllende Produktflüssigkeit zugeführt und aus der über eine Rückgasleitung aus dem Gebinde entweichendes Vorspanngas abgeführt wird, weist erfindungsgemäß in der Füllstation eine Druckregelungseinrichtung zur Festlegung des Fülldrucks an der Füllstation auf. Hierdurch kann der Produktdruck an jeder Füllstation individuell in Abhängigkeit von der Füllmenge oder Füllhöhe völlig unabhängig vom Zufuhrdruck des einzufüllenden Produktes und unabhängig von den an der Füllmaschine ggf. vorgesehenen anderen Füllstationen eingestellt werden. In vielen Fällen ergibt sich außerdem eine Vereinfachung der den Füllmaschinen üblicherweise vorgeschalteten Drucktanks und deren Regelung, da diese ebenfalls ohne Produktbeeinflussung auf das optimale Gasgemisch entsprechend der Verhältnisse bei Sättigungsdruck eingestellt werden können.
Zweckmäßigerweise ist der Druckregelungseinrichtung ein Druckaufnehmer zur Feststellung des Produktdruckes an der einzelnen Füllstation zugeordnet.
Bei einer bevorzugten Ausgestaltung der Erfindung ist die Druckregelungseinrichtung eine Druckerhöhungseinheit, vorzugsweise eine frequenzgeregelte Pumpe, mit der sich jeder gewünschte Differenzdruck zum Gebindeinneren innerhalb von Sekundenbruchteilen herstellen läßt.
Alternativ zu der an der einzelnen Füllstation vorgesehenen Druckerhöhungseinheit kann auch eine beispielsweise zentral angebrachte Druckerhöhungseinheit und zusätzlich eine an jeder Füllstation angeordnete Druckreduziereinheit, insbesondere in regelbares Druckreduzierventil vorgesehen sein. Problematisch hierbei ist, daß bei kleinen Fließgeschwindigkeiten wegen der hohen Differenzdrücke zwischen Produktzufuhrdruck vor der Druckreduzierstation und im Gebinde hinter der Druckreduzierstation nur kleine Nennweiten freigegeben werden können, durch die sich das Produkt wegen der hohen Druckdifferenz mit im Ventilsitz hohen Strömungsgeschwindigkeiten hindurchquetscht, um in der anschließenden erweiterten Rohrleitung mit im Mittel niedriger Geschwindigkeit zu fließen. Bei diesem "Durchquetschen" kann nämlich das leicht lösliche Gas freigesetzt werden und die Flüssigkeit aufschäumen und ihre Zusammensetzung verändern.
In Weiterbildung dieses Erfindungsgedankens sind daher unter Umständen parallel geschaltete Kompensatoren vorgesehen, über die eine übergroße Gasfreisetzung verhindert wird.
Gemäß einer bevorzugten Ausgestaltung der Erfindung ist in der Rückgasleitung ein Überströmventil vorgesehen, über das das Rückgas abgeführt wird.
Weiterbildungen, Vorteile und Anwendungsmöglichkeiten der Erfindung ergeben sich auch aus der nachfolgenden Beschreibung von Ausführungsbeispielen und der Zeichnung. Dabei bilden alle beschriebenen und/oder bildlich dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Ansprüchen oder deren Rückbeziehung.
Es zeigen:
Fig. 1
eine schematische Darstellung einer Füllstation gemäß einer ersten Ausführungsform der Erfindung und
Fig. 2
eine schematische Darstellung einer Füllstation gemäß einer zweiten Ausführungsform der Erfindung.
Die in Fig. 1 dargestellt Füllstation 1 besteht im wesentlichen aus einem Füllventil 2, dem über eine Zufuhrleitung 3 eine Flüssigkeit, wie Bier, in der Gase gelöst sind, zugeführt wird. Auf das Füllventil 2 ist ein Gebinde, insbesondere ein Keg 4 aufgesetzt, das mit der Produktflüssigkeit gefüllt werden soll.
In der Zufuhrleitung 3 ist eine der einzelnen Füllstation 1 zugeordnete Druckerhöhungspumpe 5 vorgesehen, die über einen Frequenzumrichter 6 in Abhängigkeit von dem über einen Druckaufnehmer 7 ermittelten Druck in dem Leitungsabschnitt 8 zum Füllventil 2 und dem Gasdruck im Keg 4 gesteuert wird.
In dem Keg 4 ist ein Steigrohr 9 vorgesehen, das mit einer Rückgasleitung 10 des Füllventils 2 verbunden ist. Die Rückgasleitung 10 führt zu einem Überströmventil 11, über das der Zugang zu einem Rückgasauslaß 12 gesteuert wird. An die Rückgasleitung 10 ist außerdem eine Vorspanngasleitung 13 angeschlossen, die über ein Ventil 14 absperrbar ist.
Zum Füllen des Gebindes 4 wird dieses zunächst über die Vorspanngasleitung 13 und die Rückgasleitung 10 mit einem Vorspanngas, insbesondere CO2, vorgespannt. Bei bestimmten Flüssigkeiten, beispielsweise Stout-Bier kann das Vorspanngas auch eine Zusammensetzung mehrerer Gase, wie CO2 und N2 sein. Der Vorspanndruck im Keg 4 liegt hierbei lediglich auf einem etwa dem Sättigungsdruck des CO2 (oder N2) im Bier entsprechenden Partialdruck, der etwa bei dem vor dem Füllventil 2 anliegenden Produktdruck in dem Leitungsabschnitt 8 der Zufuhrleitung 3 liegt. Der Gegendruck des Vorspanngases im Keg 4 entspricht hierbei dem Sättigungsdruck des gelösten Gases nach Füllen des Kegs 4, d.h. im abgefüllten Gebinde. Hierbei wird berücksichtigt, daß sich das mit einer Temperatur von etwa 3°C eingefüllte Bier in dem üblicherweise vor dem Füllen gedämpften und daher etwa 100°C heißen Keg 4 um ca. 4°C erwärmt. Die hierdurch bewirkte Änderung des Sättigungsdruckes wird bei der Einstellung des ursprünglichen Vorspanndruckes bereits berücksichtigt.
Wird nach Schließen des Vorspanngasventils 14 das Füllventil 2 geöffnet, so herrscht zunächst Gleichdruck. Nach Einschalten der Pumpe 5, die über eine "Rampe" angefahren wird, wird die Füllgeschwindikgeit langsam gesteigert, um keine übergroßen Turbulenzen zu verursachen. Das aus der Zufuhrleitung 8 durch den Ringspalt 15 im Füllventil 2 in das Keg 4 hineingeförderte Bier drückt das im Keg 4 enthaltene Vorspanngas durch das Steigrohr 9 aus dem Keg 4 heraus. Das Vorspanngas entweicht über das Überströmventil 11 in den Rückgasauslaß 12.
Der im Inneren des Kegs gewünschte Differenzdruck zwischen dem Produktzufuhrdruck und dem Vorspanndruck kann über die Pumpe 5 innerhalb von Sekundenbruchteilen hergestellt werden, so daß die gewünschte Füllgeschwindigkeit exakt der Füllhöhe entsprechend verzögerungsfrei und individuell für jede einzelne Füllstation 1 gesteuert werden kann.
Die in Fig. 2 dargestellte zweite Ausführungsform entspricht im wesentlichen der Ausführungsform gemäß Fig. 1, so daß übereinstimmende Elemente mit gleichen Bezugszeichen bezeichnet sind und auf ihre erneute detaillierte Beschreibung verzichtet wird.
Der wesentliche Unterschied zur ersten Ausführungsform liegt bei der Ausführungsform gemäß Fig. 2 darin, daß bei der Füllstation 20 über eine zentrale Druckerhöhungseinheit 21 in der Zufuhrleitung 3 ein erhöhter Druck eingestellt wird. Jeder einzelnen Füllstation 20 ist ein Druckreduzierventil 22 zugeordnet, das den Druck am Füllventil 2 auf den für die Produktzufuhr an der Füllstation 20 gewünschten Zufuhrdruck reduziert, der über den Druckaufnehmer 7 erfaßt wird. Beim Öffnen des Füllventils 2 sollte auch hier zunächst Gleichdruck zwischen dem Zufuhrleitungsabschnitt 8 und dem Inneren des Gebindes 4 herrschen und der zur Bierförderung erforderliche Differenzdruck dann über das Druckreduzierventil 22 unter Berücksichtigung des von dem Druckmesser 7 in der Zufuhrleitung 8 ermittelten Druckes eingestellt werden. Sollte in der Zufuhrleitung 8 beim Öffnen des Füllventils 2 jedoch noch ein erhöhter Druck herrschen, so ist das aufgrund der Inkompressibilität der Flüssigkeit in dem Leitungsabschnitt 8 unkritisch.
Um zu vermeiden, daß beim "Durchquetschen" der unter hohem Druck stehenden Produktflüssigkeit in der Zufuhrleitung 3 durch den Ventilsitz des Druckreduzierventils 22 Gas freigesetzt wird, sind parallel zu dem Druckreduzierventil 22 nicht näher dargestellte Kompensatoren vorgesehen. Die übrige Funktionsweise entspricht der der Ausführungsform 1. Auch hier kann der Differenzdruck zwischen Produktzuleitung 8 und dem Vorspanndruck im Keg 4 durch das Druckreduzierventil 22 sehr schnell eingestellt werden.
Wesentlicher Gesichtspunkt beider Ausführungsformen der Erfindung ist der, daß die Vorspannung im Keg 4 lediglich auf eine etwa dem Sättigungsdruck des CO2 (oder N2) im Bier entsprechenden Partialdruck eingestellt werden muß und somit weit unter dem herkömmlicherweise eingestellten Vorspanndruck liegt. Über die jeder einzelnen Füllstation 1, 20 zugeordnete Druckregelungseinheit 5 bzw. 22 ist es möglich, die Füllgeschwindigkeit im Keg 4 verzögerungsfrei zu steuern, so daß eine Befüllung mit bisher unerreichbarer Produktschonung ermöglicht wird. Eine Schädigung durch ungewollten Verlust oder Aufnahme von CO2 oder die Aufnahme von Sauerstoff aus dem Vorspanngas wird vermieden und die Produktqualität bei geringerem Energieverbrauch und CO2-Ausstoß wesentlich verbessert.
Bezugszeichenliste:
1
Füllstation
2
Füllventil
3
Zufuhrleitung
4
Keg
5
Druckerhöhungspumpe
6
Frequenzumrichter
7
Druckaufnehmer
8
Leitungsabschnitt
9
Steigrohr
10
Rückgasleitung
11
Überströmventil
12
Rückgasauslaß
13
Vorspannleitung
14
Ventil
15
Ringspalt
20
Füllstation
21
Druckerhöhungseinheit
22
Druckreduzierventil

Claims (12)

  1. Verfahren zum Füllen von Gebinden (4), insbesondere Kegs, mit Flüssigkeiten, in denen wenigstens ein Gas gelöst ist, wobei das Gebinde (4) vor dem Einfüllen der Flüssigkeit mit einem Vorspanngas vorgespannt wird, dann dem Gebinde (4) über ein an eine Zufuhrleitung (3, 8) angeschlossenes Füllventil (2) einer Füllstation (1, 20) Flüssigkeit zugeführt und während des Füllvorgangs das im Gebinde (4) enthaltene Vorspanngas abgeführt wird, dadurch gekennzeichnet, daß das Vorspanngas im Gebinde (4) lediglich auf einen etwa dem Sättigungsdruck eines der in der abgefüllten Flüssigkeit gelösten Gase, insbesondere CO2 oder N2, entsprechenden Partialdruck vorgespannt wird, der unterhalb des maximalen in dem Zufuhrleitungsabschnitt (8) vor dem Füllventil (2) anliegenden Produktdruckes liegt, und daß der zur Befüllung aufzubringende Differenzdruck zwischen Produktzufuhr und Gebindeinnerem über eine Druckregelungseinrichtung (5, 22) für jede Füllstation (1, 20) regelbar aufgebracht wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Produktzufuhr zu der Füllstation (1) durch die Zufuhrleitung (3) vor der Druckregelungseinrichtung (5, 22) mit einem Druck erfolgt, der etwa bei oder leicht unter dem Vorspanndruck in dem Gebinde (4) liegt.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Produktzufuhr zu der Füllstation (20) durch die Zufuhrleitung (3) vor der Druckregelungseinrichtung (5, 22) mit einem Druck erfolgt, der höher ist als der Vorspanndruck im Gebinde (4).
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das in dem Gebinde (4) vorgesehene Vorspanngas durch das einströmende Produkt aus dem Gebinde (4) herausgedrückt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Vorspanndruck in dem Gebinde (4) so eingestellt wird, daß er etwa dem Sättigungsdruck des gelösten Gases in dem gefüllten Gebinde (4) entspricht.
  6. Vorrichtung zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 5 mit einer Füllstation (1, 20) mit einer Zufuhrleitung (3, 8), über die in ein auf der Füllstation (1, 20) vorgesehenes Gebinde (4) einzufüllende Produktflüssigkeit zugeführt wird, und mit einer Rückgasleitung (10), über die aus dem Gebinde (4) entweichendes Vorspanngas abgeführt wird, dadurch gekennzeichnet, daß an der Füllstation (1, 20) eine Druckregelungseinrichtung (5, 22) zur Festlegung des Fülldruckes in dem Zufuhrleitungsabschnitt (8) der Füllstation (1, 20) vorgesehen ist und daß der Druckregelungseinrichtung (5, 22) ein Druckaufnehmer (7) zur Feststellung des Produktdruckes in dem Zufuhrleitungsabschnitt (8) der Füllstation (1, 20) zugeordnet ist.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Druckregelungseinrichtung eine Druckerhöhungseinheit (5) ist.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Druckerhöhungseinheit eine vorzugsweise frequenzgeregelte Pumpe (5) ist.
  9. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß in der Zufuhrleitung (3) eine zentrale Druckerhöhungseinheit (21) vorgesehen und jeder Füllstation (20) eine Druckreduziereinheit (22) zugeordnet ist.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die Druckreduziereinheit ein vorzugsweise regelbares Druckreduzierventil (22) ist.
  11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß parallel zu der Druckreduziereinheit (22) Kompensatoren vorgesehen sind.
  12. , Vorrichtung nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, daß in der Rückgasleitung (10) ein Überströmventil (11) vorgesehen ist, über das das Rückgas abgeführt wird.
EP98916983A 1997-04-29 1998-03-18 Verfahren und vorrichtung zum füllen von gebinden Expired - Lifetime EP0979206B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19718130 1997-04-29
DE19718130 1997-04-29
DE19720170A DE19720170C2 (de) 1997-04-29 1997-05-14 Verfahren und Vorrichtung zum Füllen von Gebinden
DE19720170 1997-05-14
PCT/EP1998/001549 WO1998049088A1 (de) 1997-04-29 1998-03-18 Verfahren und vorrichtung zum füllen von gebinden

Publications (2)

Publication Number Publication Date
EP0979206A1 EP0979206A1 (de) 2000-02-16
EP0979206B1 true EP0979206B1 (de) 2001-06-20

Family

ID=26036180

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98916983A Expired - Lifetime EP0979206B1 (de) 1997-04-29 1998-03-18 Verfahren und vorrichtung zum füllen von gebinden

Country Status (8)

Country Link
US (1) US6230763B1 (de)
EP (1) EP0979206B1 (de)
JP (1) JP3335181B2 (de)
AT (1) ATE202325T1 (de)
DE (1) DE29712148U1 (de)
DK (1) DK0979206T3 (de)
ES (1) ES2161047T3 (de)
WO (1) WO1998049088A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19927823B4 (de) 1999-06-18 2004-08-12 Daimlerchrysler Ag Elektromagnetischer Aktuator und Verfahren zur Justierung des elektromagnetischen Aktuators
CA2373912A1 (en) 2001-03-01 2002-09-01 Takeshi Hirasawa Optical transmission system
SE525975C2 (sv) * 2002-08-21 2005-06-07 Eco Lean Res & Dev As Anordning för kompensering av tryckfall och system för fyllning av förpackningar
DE10343281A1 (de) * 2003-09-18 2005-04-21 Adelholzener Alpenquellen Gmbh Verfahren und Vorrichtung zur Herstellung und Abfüllung von mit Sauerstoff angereicherten Flüssigkeiten
JP2006206101A (ja) * 2005-01-28 2006-08-10 Shiga Yamashita:Kk 液体輸送装置
DE102006022464B4 (de) * 2006-05-13 2008-09-25 Khs Ag Verfahren sowie Vorrichtung zum gesteuerten Aufschäumen eines in Flaschen oder dergleichen Behälter eingebrachten Füllgutes
KR101522928B1 (ko) * 2013-10-04 2015-05-28 디에스플랜트(주) 압력센서를 구비한 고속 유체 회전 충진시스템
WO2016148326A1 (ko) * 2015-03-19 2016-09-22 디에스플랜트(주) 압력센서를 구비한 고속 유체 회전 충진시스템
HK1218485A2 (zh) * 2015-12-29 2017-02-17 劉育衡 號 底部往上液體灌注系統
CN108689363A (zh) * 2018-04-28 2018-10-23 大连普瑞康生物技术有限公司 一种培养基灌装设备
EP3578504A1 (de) * 2018-06-06 2019-12-11 NicheSolutions (GB) Limited Fassbefüllungsvorrichtung
NO346885B1 (en) * 2020-01-20 2023-02-13 Angeltvedt As System and method for filling pressurized beverage keg

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2357245A (en) * 1942-04-22 1944-08-29 Wetherby-Williams Arthu Vivian Apparatus for filling and closing containers
GB1084120A (de) * 1965-09-30
DE2123949C3 (de) * 1971-05-14 1975-04-03 Enzinger-Union-Werke Ag, 6800 Mannheim Kesselloser Gegendruck-Faßfüller
DE3216087A1 (de) * 1982-04-30 1983-11-03 Volker Dipl.-Ing. 6238 Hofheim Till Verfahren zum fuellen von behaeltern sowie vorrichtung und anlage zur durchfuehrung eines solchen verfahrens

Also Published As

Publication number Publication date
JP3335181B2 (ja) 2002-10-15
DK0979206T3 (da) 2001-09-24
JP2000511139A (ja) 2000-08-29
WO1998049088A1 (de) 1998-11-05
ES2161047T3 (es) 2001-11-16
US6230763B1 (en) 2001-05-15
ATE202325T1 (de) 2001-07-15
EP0979206A1 (de) 2000-02-16
DE29712148U1 (de) 1997-09-11

Similar Documents

Publication Publication Date Title
EP0331137B1 (de) Verfahren und Vorrichtung zum Abfüllen von kohlensäurehaltigen Flüssigkeiten, insbesondere Getränken, unter Gegendruck in Gefässe oder dgl.
EP0979206B1 (de) Verfahren und vorrichtung zum füllen von gebinden
EP0098389B1 (de) Verfahren zur Herstellung alkoholfreier, insbesondere kohlensäurehaltiger Erfrischungsgetränke, sowie Einrichtung zur Durchführung des Verfahrens
EP0291971A2 (de) Verfahren und Vorrichtung zum Füllen von kohlensäurehaltigen Flüssigkeiten, insbesondere Getränken, unter Gegendruck in Gefässe oder dgl.
WO2005077507A1 (de) Verfahren und vorrichtung zur begasung von wasser
EP0953541A1 (de) Füllsystem sowie Füllelement
EP0979207B1 (de) Verfahren und vorrichtung zum füllen von gebinden
EP3360844A1 (de) Zapfhahntülle zur zerkleinerung von gasblasen nitrogenisierten kaffees oder biers und schankanlage
DE2011869A1 (de) &.t 13,03*70
DE19825559C2 (de) Verfahren zur Anreicherung einer Flüssigkeit mit zwei Gasen und Vorrichtung zum Abfüllen von mit Gasen behandelten Flüssigkeiten
DE19720170C2 (de) Verfahren und Vorrichtung zum Füllen von Gebinden
WO2019043240A1 (de) Vorrichtung zum befüllen eines behälters mit einem füllprodukt
EP3877317B1 (de) Verfahren sowie füllsystem zum befüllen von behältern
AT507860B1 (de) Verfahren zur dealkoholisierung von getränken und zugehörige vorrichtung
DE102016224562A1 (de) Vorrichtung und Verfahren zur Herstellung sauerstoffempfindlicher Getränke
DE1757283B1 (de) Verfahren und Vorrichtung zur Abgabe eines Getraenkes
DE60121409T2 (de) Verfahren und Vorrichtung zum kontinuierlichen Herstellen von Schaumstoff zur Formung von Paneelen
DE202016106864U1 (de) Vorrichtung zur Herstellung sauerstoffempfindlicher Getränke
WO2011000449A1 (de) Verfahren und vorrichtung zum anreichern und insbesondere sättigen einer flüssigkeit mit einem gas
DE1532558A1 (de) Verfahren zur Stabilisierung kohlensaeurehaltiger Getraenke und zum Abfuellen derartiger Getraenke auf Flaschen
DE3904018A1 (de) Verfahren und vorrichtung zur kohlensaeureanreicherung
DE1217814B (de) Verfahren und Vorrichtung zum Abfuellen von gashaltigen Fluessigkeiten
AT231299B (de) Verfahren und Vorrichtung zur Füllung von Druckbehältern mit einer kohlensäurehältigen, unter Druck stehenden Flüssigkeit
AT269671B (de) Verfahren und Vorrichtung zum Entfernen von Spanngas und/oder Flüssigkeit aus insbesondere in Gegendruck-Füllmaschinen abgefüllten Flaschen
DE102020129077A1 (de) Verfahren und Vorrichtung zur Vakuumentgasung eines wässrigen Produkts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE DK ES FR GB IE NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000427

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KHS TILL GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE DK ES FR GB IE NL

REF Corresponds to:

Ref document number: 202325

Country of ref document: AT

Date of ref document: 20010715

Kind code of ref document: T

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59800894

Country of ref document: DE

Date of ref document: 20010726

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010912

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2161047

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170321

Year of fee payment: 20

Ref country code: FR

Payment date: 20170322

Year of fee payment: 20

Ref country code: DE

Payment date: 20170322

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20170321

Year of fee payment: 20

Ref country code: AT

Payment date: 20170322

Year of fee payment: 20

Ref country code: GB

Payment date: 20170322

Year of fee payment: 20

Ref country code: BE

Payment date: 20170321

Year of fee payment: 20

Ref country code: IE

Payment date: 20170321

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170315

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59800894

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20180318

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20180317

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20180318

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180317

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 202325

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180318

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180319