EP0974303A1 - Procédé et appareil de mesure de taux de glucose - Google Patents

Procédé et appareil de mesure de taux de glucose Download PDF

Info

Publication number
EP0974303A1
EP0974303A1 EP99114514A EP99114514A EP0974303A1 EP 0974303 A1 EP0974303 A1 EP 0974303A1 EP 99114514 A EP99114514 A EP 99114514A EP 99114514 A EP99114514 A EP 99114514A EP 0974303 A1 EP0974303 A1 EP 0974303A1
Authority
EP
European Patent Office
Prior art keywords
blood
blood sugar
reflected light
change
sugar level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99114514A
Other languages
German (de)
English (en)
Other versions
EP0974303B1 (fr
EP0974303B2 (fr
Inventor
Masaru c/o Terumo Kabushiki Kaisha Nagashimada
Syozo c/o Terumo Kabushiki Kaisha Ohyu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16582155&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0974303(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Terumo Corp filed Critical Terumo Corp
Publication of EP0974303A1 publication Critical patent/EP0974303A1/fr
Publication of EP0974303B1 publication Critical patent/EP0974303B1/fr
Application granted granted Critical
Publication of EP0974303B2 publication Critical patent/EP0974303B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8483Investigating reagent band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose

Definitions

  • the present invention relates to a method of measuring blood sugar level for measuring the glucose concentration in blood, and an instrument therefor.
  • a blood sugar measuring instrument for measuring the blood sugar level of the blood of a subject by applying blood collected from a finger of the subject to a reagent pad, and by detecting change in color of the reagent pad.
  • a blood sugar measuring instrument light is radiated to the reagent pad, the intensity of reflected light from the reagent pad is measured, and the blood sugar level of the blood applied to the reagent pad is determined.
  • Change in color of such a reagent pad depends upon the length of time elapsed from the time when the blood was applied to the reagent pad. In the normal practice, therefore, the length of time until the reagent of the reagent pad reacts with glucose in blood is empirically determined, and after the empirically determined time (predetermined time) has elapsed after a subject or a user had instructed the start of measurement, the above-described intensity of reflected light is detected, and the blood sugar level is determined.
  • An object of the present invention is to provide a method and an instrument for measuring blood sugar level which can measure blood sugar level accurately by automatically determining appropriate timing for measurement, taking the above-described conventional methods and instruments into consideration.
  • Another object of the present invention is to provide a method and an instrument for measuring blood sugar level which can determine timing for starting measurement automatically corresponding to change in the color of the reagent pad.
  • Still another object of the present invention is to provide a method and an instrument for measuring blood sugar level which can plainly inform the subject or the user of the process state of blood sugar level measurement.
  • the instrument for measuring blood sugar level of the present invention has the following processes:
  • a blood sugar level measuring instrument for measuring the blood sugar level of blood on the basis of change in the color of the reagent having reacted with the blood, characterized in that said instrument comprises,
  • the method for measuring blood sugar of the present invention has the following steps:
  • a blood sugar level measuring method for measuring the blood sugar level of blood on the basis of change in the color of the reagent having reacted with the blood characterized in that said method comprises,
  • Fig. 1 is a block diagram schematically showing the constitution of a blood sugar measuring instrument of an embodiment of the present invention
  • Fig. 2 is a schematic diagram of this blood sugar measuring instrument.
  • 101 designates a specimen (chip) which is detachably mounted on the front end of the blood sugar measuring instrument as Fig. 2 shows
  • 102 designates an opening for collecting blood, which is linked to a reagent layer portion through a blood traveling portion formed of capillaries.
  • This reagent layer portion comprises a reagent layer 103 containing a reagent, and a blood cell filtering layer 104 for filtering blood cells.
  • This reagent layer 103 is impregnated with a reagent required for reacting with sugar in blood and producing color, such as for example, glucose oxidase (GOD), peroxidase (POD), 4-aminoantipyrine, and N-ethyl-N-(2-hydroxy-3-sulfopropyl)-m-toluidine-sodium (TOOS).
  • the pore diameter of the film forming the reagent layer 103 is preferably a diameter allowing blood cells to pass through, for example, 5-15 ⁇ m.
  • the film By forming such a diameter, the development of blood into the reagent layer 103 is expedited, thereby speed of reaction of blood with the reagent can be increased.
  • conventionally known materials such as nitrocellulose, can be used.
  • the blood cell filtering layer 104 is constituted by a film having a pore diameter for filtering blood cells, for example, 0.45 ⁇ m.
  • conventionally known materials such as polyethersulfone, can be used.
  • the reagent layer portion may be constituted by one layer of film having fine pores allowed blood cell filtering and impregnated with the reagent, or may have a conventionally known multilayer structure.
  • a light source 105 generates light having a predetermined wavelength, for example, 610 nm.
  • a photo detector 106 detects the intensity of light irradiated by the light source 105 reflected by the blood cell filtering layer 104. By this intensity of reflected light, change in color in the blood cell filtering layer 104 can be detected.
  • An A/D converter 107 converts detection signals (analog signals) outputted from the photo detector 106 corresponding to the intensity of reflected light into digital signals.
  • a controller 108 controls the operation of the entire instrument, and comprises, for example, a CPU 121 such as a microprocessor, a program memory 123 for storing the control program of the CPU 121 and the like, a data memory 124 which is the RAM area for storing measured data and the like, and a temperature table 122 for storing correction data corresponding to ambient temperature (environmental temperature) sensed by a temperature sensor 127 and the like.
  • a timer 126 measures the lapse of time as described later, and informs it to the CPU 121 by interruption or the like.
  • An input portion 109 comprises a key (201 in Fig. 2) for instructing the power source to be turned on or off, a key (202 in Fig. 2) for instructing the reading of measured data or the like.
  • Numeral 110 is a display such as a liquid crystal display, and 111 is a battery for supplying electric power to the entire instrument.
  • Fig. 3A is a graph showing an example of the quantity of detected reflected light
  • Fig. 3B is a graph showing absorbency corresponding to the intensity of the reflected light (Fig. 3A).
  • timing T1 shows the time when the chip 101 is mounted on the instrument. That is, since the reflecting surface of the blood cell filtering layer 104 of the chip 101 has a nearly white color initially (before coloration), when the chip 101 is mounted on the instrument at timing T1, the quantity of reflected light increases rapidly.
  • blood applied to the opening 102 travels through the traveling portion, reaches the reagent layer 103, and reacts with the reagent to produce color. Thereafter, the colored blood travels to the blood cell filtering layer 104 to color the reflecting surface, thereby the quantity of reflected light gradually begins lowering after the timing T2.
  • timing T3 shows the reaction of the reagent with blood has almost completed. The method of determining this timing T3 will be described later.
  • the above-described measuring timing T3 is given as the time when this absorbency has reached almost equilibruim.
  • Fig. 4 is a diagram illustrating how to determine the measuring timing T3 in this embodiment. Although the measuring timing T3 is shown about 12 seconds after starting the coloration of the reagent layer 104 in this example, this is of course only an example.
  • Absorbency one second before starting coloration at timing T2 is represented by C, and thereafter, the intensity of reflected light is measured at the time interval of Ta seconds (e.g. 1 second) to calculate absorbency.
  • absorbency X seconds after starting measurement is represented by Ax
  • the reaction of the reagent with the blood is considered to have almost completed when change in absorbency per second, ⁇ D, has become d (2%) or less, and the blood sugar level is determined on the basis of absorbency at that time.
  • Fig. 5 is a flowchart showing the process of measurement in the blood sugar measuring instrument of this embodiment.
  • the control program for implementing this process is stored in the program memory 123 of the above-described controller 108.
  • step S1 the light source 105 is made to emit light intermittently, and in step S2, the intensity of reflected light detected by the photo detector 106 is read. Whether the chip 101 is mounted or not is detected on the basis of the intensity of the reflected light (step S3), and when the intensity of the reflected light increases as shown in the timing T1 of Fig. 3A, it is judged that the chip 101 has been mounted.
  • step S5 when the quantity of reflected light A is obtained and stored in the data memory 124.
  • step S5 whether the reagent layer 104 has started coloration or not is checked.
  • the process proceeds to step S6, and the time is judged to be the timing T2 for starting measurement.
  • Absorbency one second before T2, C is obtained and stored in the data memory 124 with the intensity of the reflected light at that time, and absorbency Ax is determined on the basis of the intensity of reflected light at the start of the measurement.
  • the process is proceeded to the measurement of blood sugar shown by timings T2 to T3 in Figs. 3A and 3B.
  • step S7 elapsing one second is waited on the basis of time measurement with the timer 126, and when one second is elapsed, the process is proceeded to step S8 to obtain absorbency Ax on the basis of the intensity of the reflected light at that time.
  • step S9 the process is then proceeded to step S9, where whether absorbency t seconds before, Ax-t, is stored or not is checked, if stored, then the difference (Ax - Ax-t) is obtained, and change in absorbency per second ( ⁇ D) is determined from the averaged value.
  • step S10 the process is proceeded to step S10, where whether the value of the change ( ⁇ D) is 2% or less is checked, and if not, the process is returned to step S7 and the above-described process is repeated. In first 4 seconds from the start of measurement, since no data on previous absorbency are present, the process of step S9 is practically skipped.
  • step S10 the process is proceeded to step S11 when change in absorbency per second becomes 2% or less, and on the basis of absorbency at that time, the concentration of glucose contained in the blood applied to the chip 101 is calculated to determine the blood sugar level of the subject.
  • the result is indicated on the display 110.
  • the value d for determining time intervals for measurement Ta and t, and timing for measurement T3 in the above-described embodiment is not limited to the above values, but it is of course possible to store the relationship between absorbency experimentally obtained and the concentration of glucose as a table, and to determine the corresponding blood sugar level from finally obtained absorbency.
  • the measured absorbency or the finally determined blood sugar level is corrected referring to the temperature table 122 on the basis of the temperature value measured by the temperature sensor 127.
  • Fig. 6 is a graph showing the relationship between the concentration of glucose in blood and absorbency and Fig. 7 is a graph showing the relationship between the concentration of glucose in blood and the length of time required for measurement.
  • Embodiment 2 of the present invention will be described.
  • an instrument and method for displaying the state of measurement, especially effective when the length of time until measurement is completed is not constant as above-described Embodiment 1.
  • rotating and moving marks for example, as shown in Fig. 8 are displayed on the display 110 (roulette display), and the speed of rotating and moving is changed corresponding to the remaining time until the completion of measurement.
  • the modes of displaying change in the direction shown by arrows.
  • Fig. 9 is a diagram illustrating such a method of displaying, and corresponds to the above-described Fig. 4.
  • absorbency when coloration begins at timing T2 is represented by C, and thereafter, the intensity of reflected light is measured at the time interval of Ta seconds (e.g. 1 second) to calculate absorbency.
  • the time interval of Ta seconds e.g. 1 second
  • the modes of displaying are shifted in the direction of arrows in Fig. 8, for example, each time one second is elapsed (the first display mode).
  • absorbency X seconds after starting measurement is represented by Ax
  • absorbency (X + t) seconds after starting measurement is represented by Ax+t
  • ⁇ Ax Ax - C
  • ⁇ Ax+t Ax+t - C
  • the moving speed of the marks displayed on the display 110 is changed when change in absorbency per second, ⁇ D, has become d (5%) or less (the second display mode: e.g. about every one second) to inform the user or the subject that the completion of measurement is approached.
  • change in absorbency per second has become 2% or less, it is judged that the reaction of the reagent with the blood has almost completed, and the blood sugar level is determined on the basis of absorbency at that time.
  • Fig. 10 is a diagram showing time T from the time when the display is shifted to the above-described second mode to the time when the measurement is completed corresponding to blood sugar levels (glucose concentrations).
  • the length of time required for measurement increases with increase in blood sugar levels.
  • the above-described time T is about 3 seconds; when the concentration is medium, T is about 3 to 6 seconds; and when the concentration is high, T is about 6 to 9 seconds.
  • Fig. 11 is a flowchart showing the process of measurement in this Embodiment 2, from which description of the portions same as those of the above-described Fig. 5 are omitted.
  • the process is proceeded to step S21, and display in the first display mode is started. Then, the process is proceeded to step S22, the time is judged as the timing for starting measurement, T2, and absorbency one second before T2, C, is determined and stored in the data memory 124 with the intensity of the reflected light at that time, and absorbency Ax is determined on the basis of the intensity of reflected light at that time. Then, the process is proceeded to blood sugar measuring process shown by timings T2 and T3 in Fig. 9.
  • step S23 elapsing one second is waited on the basis of time measurement with the timer 126, and when one second is elapsed, the process is proceeded to step S24 to obtain absorbency Ax on the basis of the intensity of the reflected light at that time.
  • step S25 If absorbency t seconds before, Ax-t, is stored or not is checked, if stored, then the difference (Ax - Ax-t) is obtained, and change in absorbency per second ( ⁇ D) is determined from the averaged value.
  • step S26 where whether the value of the change ( ⁇ D) is 5% or less is checked, and if not, the process is returned to step S23 and the above-described process is repeated.
  • the process of the step S25 is practically skipped.
  • step S27 When change per second has become 5% or less, the process is proceeded to step S27, and the display mode is shifted to the second display mode in which the moving speed of the above-described marks is changed (e.g. lowered).
  • step S27 whether the value of change ⁇ D is 2% or less is checked, and if not, the process is returned to step S23, but when change per second has become 2% or less, the process is proceeded to step S11 in Fig. 5 described above, and on the basis of absorbency at that time, the concentration of glucose contained in the blood applied to the chip 101 is calculated to determine the blood sugar level of the subject. The result is indicated on the display 110.
  • first and second display modes are not limited to the display of this embodiment, but may be displays such as digital displays or clocks.
  • the length of time from shifting to the second display mode to the completion of measurement is substantially constant, because the user can estimate the length of time until the completion of measurement.
  • timing for shifting from the first display mode to the second display mode is changed depending on absorbency.
  • the temperature table 122 stores correction information at, for example, 10°C, 15°C, 20°C, and 30°C, and on the basis of this correction information, the obtained blood sugar levels are corrected.
  • Fig. 12 is a diagram showing change in absorbency of the same blood depending on ambient temperatures
  • Fig. 13 is a graph showing difference in absorbency due to temperatures.
  • numeral 601 denotes change in absorbency when ambient temperature is high
  • 602 denotes change in absorbency when ambient temperature is low.
  • a temperature sensor 127 is provided for sensing ambient temperature, and conversion from the absorbency to the blood sugar level for obtaining the blood sugar level from the absorbency is corrected.
  • display can be performed at most adequate timing.
  • a blood sugar measuring instrument for measuring the blood sugar level of blood on the basis of change in the color of the reagent having reacted with the blood.
  • the instrument irradiates light onto a specimen to which blood is applied, detects the intensity of the reflected light with a photo detector, determines absorbency from the specimen every one second after the specimen has started coloring by the applied blood, and calculates the blood sugar level of the blood applied to the specimen on the basis of the absorbency when change in the absorbency has become 2% or less.
EP99114514A 1998-07-24 1999-07-23 Procédé et appareil de mesure de taux de glucose Expired - Lifetime EP0974303B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20999798 1998-07-24
JP20999798A JP4070050B2 (ja) 1998-07-24 1998-07-24 血糖値測定方法及び装置

Publications (3)

Publication Number Publication Date
EP0974303A1 true EP0974303A1 (fr) 2000-01-26
EP0974303B1 EP0974303B1 (fr) 2002-11-27
EP0974303B2 EP0974303B2 (fr) 2006-07-19

Family

ID=16582155

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99114514A Expired - Lifetime EP0974303B2 (fr) 1998-07-24 1999-07-23 Procédé et appareil de mesure de taux de glucose

Country Status (4)

Country Link
EP (1) EP0974303B2 (fr)
JP (1) JP4070050B2 (fr)
AT (1) ATE228330T1 (fr)
DE (1) DE69904122T3 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1364042A1 (fr) * 2001-02-28 2003-11-26 Home Diagnostics, Inc. Procede permettant de determiner la concentration d'un analyte dans une bandelette
EP1531331A2 (fr) 2003-10-31 2005-05-18 Roche Diagnostics GmbH Procédé de détermination d'un analyte à l'aide d'une couche d'extraction
EP1909103A1 (fr) * 2005-07-14 2008-04-09 Matsushita Electric Industrial Co., Ltd. Analyseur et procédé d'analyse
EP1985996A1 (fr) * 2007-04-27 2008-10-29 Roche Diagnostics GmbH Système d'analyse destiné à la détermination photométrique d'un analyte dans un liquide corporel doté d'un appareil d'analyse et d'un support de test destiné à l'enregistrement dans l'appareil d'analyse
DE10156809B4 (de) * 2001-11-20 2011-06-16 Lre Technology Partner Gmbh Verfahren und Vorrichtung zur Blutzuckermessung
EP2438858A2 (fr) * 2009-06-04 2012-04-11 Infopia Co., Ltd Appareil de mesure de données biologiques et procédé de mesure de données biologiques faisant appel à un algorithme pour améliorer la reproductibilité
WO2013189880A1 (fr) 2012-06-22 2013-12-27 Roche Diagnostics Gmbh Procédé et dispositif de détection d'une substance à analyser dans un fluide corporel
EP2781919A1 (fr) 2013-03-19 2014-09-24 Roche Diagniostics GmbH Procédé/dispositif permettant de générer une valeur corrigée de concentration d'un analyte dans un échantillon d'un fluide corporel
WO2014180939A1 (fr) 2013-05-08 2014-11-13 Roche Diagnostics Gmbh Stabilisation d'enzymes à l'aide d'acide nicotinique
EP2927319A1 (fr) 2014-03-31 2015-10-07 Roche Diagnostics GmbH Immobilisation d'enzyme à charge élevée par réticulation
WO2016026959A1 (fr) 2014-08-22 2016-02-25 Roche Diagnostics Gmbh Indicateurs redox
US10168321B2 (en) 2013-11-27 2019-01-01 Roche Diabetes Care, Inc. Composition comprising up-converting phosphors for detecting an analyte
WO2019166394A1 (fr) 2018-02-28 2019-09-06 F. Hoffmann-La Roche Ag Revêtement de biocompatibilité pour la mesure continue d'analytes
EP3597765A1 (fr) 2014-08-25 2020-01-22 Roche Diagnostics GmbH Bande de test de compensation d'interférences à deux électrodes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5320038B2 (ja) * 2008-11-21 2013-10-23 テルモ株式会社 血液成分測定装置
BRPI0921997B8 (pt) 2008-11-21 2021-07-27 Terumo Corp dispositivo para medição do componente de sangue
JP5270501B2 (ja) * 2009-09-17 2013-08-21 テルモ株式会社 血糖計及び血糖値測定方法
KR101896820B1 (ko) 2014-04-14 2018-09-07 에프. 호프만-라 로슈 아게 페나지늄 매개체

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0199484A2 (fr) * 1985-04-08 1986-10-29 Audio Bionics Inc Système médical
WO1988000812A1 (fr) * 1986-07-25 1988-02-11 Garid, Inc. Systeme de control medical du glucose
US5304468A (en) * 1986-08-13 1994-04-19 Lifescan, Inc. Reagent test strip and apparatus for determination of blood glucose
US5885839A (en) * 1997-04-15 1999-03-23 Lxn Corporation Methods of determining initiation and variable end points for measuring a chemical reaction

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114350A (en) * 1989-03-08 1992-05-19 Cholestech Corporation Controlled-volume assay apparatus
DE19629656A1 (de) * 1996-07-23 1998-01-29 Boehringer Mannheim Gmbh Diagnostischer Testträger mit mehrschichtigem Testfeld und Verfahren zur Bestimmung von Analyt mit dessen Hilfe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0199484A2 (fr) * 1985-04-08 1986-10-29 Audio Bionics Inc Système médical
WO1988000812A1 (fr) * 1986-07-25 1988-02-11 Garid, Inc. Systeme de control medical du glucose
US5304468A (en) * 1986-08-13 1994-04-19 Lifescan, Inc. Reagent test strip and apparatus for determination of blood glucose
US5885839A (en) * 1997-04-15 1999-03-23 Lxn Corporation Methods of determining initiation and variable end points for measuring a chemical reaction

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1364042A4 (fr) * 2001-02-28 2005-03-30 Home Diagnostics Inc Procede permettant de determiner la concentration d'un analyte dans une bandelette
EP1364042A1 (fr) * 2001-02-28 2003-11-26 Home Diagnostics, Inc. Procede permettant de determiner la concentration d'un analyte dans une bandelette
DE10156809B4 (de) * 2001-11-20 2011-06-16 Lre Technology Partner Gmbh Verfahren und Vorrichtung zur Blutzuckermessung
EP1531331A2 (fr) 2003-10-31 2005-05-18 Roche Diagnostics GmbH Procédé de détermination d'un analyte à l'aide d'une couche d'extraction
EP1909103A1 (fr) * 2005-07-14 2008-04-09 Matsushita Electric Industrial Co., Ltd. Analyseur et procédé d'analyse
EP1909103A4 (fr) * 2005-07-14 2011-05-04 Panasonic Corp Analyseur et procédé d'analyse
EP1985996A1 (fr) * 2007-04-27 2008-10-29 Roche Diagnostics GmbH Système d'analyse destiné à la détermination photométrique d'un analyte dans un liquide corporel doté d'un appareil d'analyse et d'un support de test destiné à l'enregistrement dans l'appareil d'analyse
WO2008135128A1 (fr) * 2007-04-27 2008-11-13 Roche Diagnostics Gmbh Appareil d'analyse comprenant un support d'essai destiné à la détection photométrique d'un analyte dans un fluide corporel
US8481329B2 (en) 2007-04-27 2013-07-09 Roche Diagnostics Operations, Inc. Analysis system for the photometric determination of an analyte in a body fluid
US9307937B2 (en) 2009-06-04 2016-04-12 Infopia Co., Ltd. Apparatus and method for measuring biomedical data using algorithm for improving reproducibility
EP2438858A2 (fr) * 2009-06-04 2012-04-11 Infopia Co., Ltd Appareil de mesure de données biologiques et procédé de mesure de données biologiques faisant appel à un algorithme pour améliorer la reproductibilité
EP2438858A4 (fr) * 2009-06-04 2014-03-05 Infopia Co Ltd Appareil de mesure de données biologiques et procédé de mesure de données biologiques faisant appel à un algorithme pour améliorer la reproductibilité
US10309905B2 (en) 2012-06-22 2019-06-04 Roche Diabetes Care, Inc. Method and device for detecting an analyte in a body fluid
CN107024474A (zh) * 2012-06-22 2017-08-08 霍夫曼-拉罗奇有限公司 用于检测体液中的分析物的方法和器件
CN107024474B (zh) * 2012-06-22 2020-11-06 霍夫曼-拉罗奇有限公司 用于检测体液中的分析物的方法和器件
CN104364636A (zh) * 2012-06-22 2015-02-18 霍夫曼-拉罗奇有限公司 用于检测体液中的分析物的方法和器件
WO2013189880A1 (fr) 2012-06-22 2013-12-27 Roche Diagnostics Gmbh Procédé et dispositif de détection d'une substance à analyser dans un fluide corporel
US9255885B2 (en) 2012-06-22 2016-02-09 Roche Diabetes Care, Inc. Method and device for detecting an analyte in a body fluid
US9983140B2 (en) 2012-06-22 2018-05-29 Roche Diabetes Care, Inc. Method and device for detecting an analyte in a body fluid
RU2604166C2 (ru) * 2012-06-22 2016-12-10 Ф.Хоффманн-Ля Рош Аг Способ и устройство для определения аналита в физиологической жидкости
EP2781919A1 (fr) 2013-03-19 2014-09-24 Roche Diagniostics GmbH Procédé/dispositif permettant de générer une valeur corrigée de concentration d'un analyte dans un échantillon d'un fluide corporel
WO2014147074A1 (fr) 2013-03-19 2014-09-25 Roche Diagnostics Gmbh Procédé/dispositif pour la production d'une valeur corrigée d'une concentration en analyte dans un échantillon d'un liquide organique
US10900957B2 (en) 2013-03-19 2021-01-26 Roche Diabetes Care, Inc. Method and device for generating a corrected value of an analyte concentration in a sample of a body fluid
WO2014180939A1 (fr) 2013-05-08 2014-11-13 Roche Diagnostics Gmbh Stabilisation d'enzymes à l'aide d'acide nicotinique
US10168321B2 (en) 2013-11-27 2019-01-01 Roche Diabetes Care, Inc. Composition comprising up-converting phosphors for detecting an analyte
US11029309B2 (en) 2013-11-27 2021-06-08 Roche Diabetes Care, Inc. Composition comprising up-converting phosphors for detecting an analyte
EP2927319A1 (fr) 2014-03-31 2015-10-07 Roche Diagnostics GmbH Immobilisation d'enzyme à charge élevée par réticulation
WO2016026959A1 (fr) 2014-08-22 2016-02-25 Roche Diagnostics Gmbh Indicateurs redox
EP3757096A1 (fr) 2014-08-22 2020-12-30 Roche Diagnostics GmbH Indicateurs d'oxydoréduction
EP3597765A1 (fr) 2014-08-25 2020-01-22 Roche Diagnostics GmbH Bande de test de compensation d'interférences à deux électrodes
WO2019166394A1 (fr) 2018-02-28 2019-09-06 F. Hoffmann-La Roche Ag Revêtement de biocompatibilité pour la mesure continue d'analytes
US11925460B2 (en) 2018-02-28 2024-03-12 Roche Diabetes Care, Inc. Biocompatibility coating for continuous analyte measurement

Also Published As

Publication number Publication date
DE69904122T2 (de) 2003-09-11
DE69904122D1 (de) 2003-01-09
DE69904122T3 (de) 2007-01-25
EP0974303B1 (fr) 2002-11-27
JP2000046834A (ja) 2000-02-18
JP4070050B2 (ja) 2008-04-02
ATE228330T1 (de) 2002-12-15
EP0974303B2 (fr) 2006-07-19

Similar Documents

Publication Publication Date Title
US6493069B1 (en) Method and instrument for measuring blood sugar level
EP0974303B1 (fr) Procédé et appareil de mesure de taux de glucose
US20210239587A1 (en) Monitoring an immunoassay
EP1359409B1 (fr) Appareils et méthodes pour la détermination des concentrations des analytes
US5885839A (en) Methods of determining initiation and variable end points for measuring a chemical reaction
AU783326B2 (en) Optical component based temperature measurement in analyte detection devices
EP1532440A1 (fr) Dispositif destine a l'analyse quantitative du materiau d'une creature vivante
JP2004361410A (ja) 分析結果判定の方法及びデバイス
JPH07128338A (ja) 簡易血糖計におけるデータ管理方法及び該データ管理方法を使用する簡易血糖計
JPH0395435A (ja) 測定装置
EP0283285A2 (fr) Procédé et appareil pour contrôler des substances analytiques dans des fluides
US8607612B2 (en) Sensor calibration
US7817255B2 (en) Apparatus with a combination of a point light source and a single lens
EP2893328B1 (fr) Procédé et dispositif de détermination de l'application de l'échantillon
JP5345522B2 (ja) 体液成分測定装置
JPH0395431A (ja) 測定装置
JP2000235028A (ja) 血液成分測定装置および血液成分測定方法
WO2013061681A1 (fr) Dispositif de mesure d'un composant et procédé associé
JP6130356B2 (ja) 成分測定装置
JPH1062349A (ja) 温度センサ付き光学系
JP3455922B2 (ja) 放射体温計
JPH0554616B2 (fr)
JPS6318253A (ja) 生化学測定装置
JPS623648A (ja) 尿糖測定装置
JPH0395434A (ja) 測定装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000216

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20010727

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021127

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021127

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20021127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021127

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021127

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021127

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021127

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021127

REF Corresponds to:

Ref document number: 228330

Country of ref document: AT

Date of ref document: 20021215

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69904122

Country of ref document: DE

Date of ref document: 20030109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030227

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030227

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030529

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030723

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030723

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ROCHE DIAGNOSTICS

Effective date: 20030815

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20060719

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030724

ET3 Fr: translation filed ** decision concerning opposition
REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160613

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160720

Year of fee payment: 18

Ref country code: GB

Payment date: 20160720

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69904122

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170723

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731