EP0969255B1 - Anlage mit einer Wärmepumpe und einem Speicher - Google Patents

Anlage mit einer Wärmepumpe und einem Speicher Download PDF

Info

Publication number
EP0969255B1
EP0969255B1 EP99111775A EP99111775A EP0969255B1 EP 0969255 B1 EP0969255 B1 EP 0969255B1 EP 99111775 A EP99111775 A EP 99111775A EP 99111775 A EP99111775 A EP 99111775A EP 0969255 B1 EP0969255 B1 EP 0969255B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
temperature heat
temperature
accumulator
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99111775A
Other languages
English (en)
French (fr)
Other versions
EP0969255A3 (de
EP0969255A2 (de
Inventor
Jürgen Köhler
Nicholas Lembke
Wilhelm Tegethoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konvecta AG
Konvekta AG
Original Assignee
Konvecta AG
Konvekta AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1998129334 external-priority patent/DE19829334C1/de
Application filed by Konvecta AG, Konvekta AG filed Critical Konvecta AG
Publication of EP0969255A2 publication Critical patent/EP0969255A2/de
Publication of EP0969255A3 publication Critical patent/EP0969255A3/de
Application granted granted Critical
Publication of EP0969255B1 publication Critical patent/EP0969255B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0015Guiding means in water channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0015Guiding means in water channels
    • F24H9/0021Sleeves surrounding heating elements or heating pipes, e.g. pipes filled with heat transfer fluid, for guiding heated liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Definitions

  • the invention relates to a system with a heat pump, the compressor, a high temperature heat exchanger, an expansion device and one Has low temperature heat exchangers, which are in a circle with each other connected and flowed through by a work equipment, and with one Storage-fluid-containing storage fluid, in its bottom area of the high-temperature heat exchanger of the heat pump is arranged, wherein the high-temperature heat exchanger is a countercurrent heat exchanger is provided in a container on the top
  • a riser pipe connects, which emerges with a riser pipe outlet extends to the top area of the memory.
  • From CH-PS 524 115 is a water heater for generation and Storage of hot water with one in the lower part of the one Hot water and a cold water container equipped inside of a riser arranged heating unit known.
  • a water heater of the latter type for generation and Storage of hot water is also known from DE 31 37 146 C2.
  • the heating unit Housing part of the riser pipe closed to the inside of the container, the Cold water supply to the container in a manner known per se with a Connection device for a cleaning hose equipped Cold water supply to the tank in the flow direction of the water behind the Cleaning hose connection equipped with a bypass line, which in the Housing for the heating unit opens, a locking device in the Cold water supply between the tank and the connection of the bypass line arranged on the cold water supply line, and on the discharge side of the riser a connection device for connecting a Cleaning hose provided that the inside of the riser pipe against the Detach the interior of the container with the cleaning hose connected.
  • High temperature heat exchanger of a heat pump with conventional Working or refrigerant has a largely constant condensation temperature, which is clearly related to the condensation pressure via the vapor pressure relationship is linked.
  • one Compression heat pump with carbon dioxide as a working medium is one continuous temperature decrease, i.e. a so-called temperature glide, the Carbon dioxide gas.
  • Heat pumps especially those with carbon dioxide as the working fluid
  • Water heater principle can be used, in which the one to be heated Fluid, especially water, which is warmed up when it is needed.
  • the heated water in a suitable storage temporarily.
  • Layered memories are known from solar energy technology.
  • This Stratified storage has an internal heat exchanger, which is in one Flow tank with riser pipe is installed.
  • Such a stratified storage is from the prospectus of Solvis Energysysteme GmbH & Co. KG. 38122 Braunschweig, issue date March 25, 1997: "Stratos Integral: hot water and Heating support in one device ", pages 6 and 7, known.
  • the internal Heat exchanger is used there, the thermal energy from the solar collector deliver upcoming heat transfer fluid to the memory.
  • a system of the type mentioned is known from DE 29 03 250, in which a riser pipe is arranged in a water reservoir. Items in memory Storage water rises thermosiphonically through the riser pipe and becomes layered in the upper storage area. To the refrigerant are this no state of the art in printed form.
  • DE 195 42 076 A1 discloses a hot water tank, in particular for Process water, with a closed storage tank with a Cold water inlet in its lower area and a hot water outlet in its upper area, with one arranged upright in the container Flow guide or riser pipe and with one in the lower part of the riser pipe arranged heat exchanger.
  • the heat exchanger can be used as a coil be formed, which is held on a base plate.
  • a heating medium flow and a heating medium return are passed through the base plate and with the Heat exchanger connected. Circulates through the heating medium supply and return liquid heating medium, for example water, through a Solar collector system and / or heated by a conventional boiler is.
  • the invention has for its object a system of the type mentioned to create, which has a high coefficient of performance, the one to be heated Storage fluid the high temperature heat exchanger with the highest possible Usable temperature leaves, the high-temperature heat exchanger compact is trained and has a high heat transfer capacity, and Drive the volume flow of the storage fluid to be heated mechanical Driving means, such as a pump, are unnecessary.
  • This task is carried out in a plant of the type mentioned solved according to the invention in that the working fluid of the heat pump Is carbon dioxide, and that the compressor by means of a connecting line with the High temperature heat exchanger is connected, which emerges from the riser pipe axially down through the riser.
  • the connecting line is coaxial through the Riser pipe extends.
  • the expansion device of the heat pump be connected by means of a return line, which pulls in a coil, which in the bottom area of the storage below the high-temperature heat exchanger and is arranged below the container in the memory.
  • the Pipe coil can in this case be arranged in at least one plane leading to Bottom of the memory is provided at least approximately in parallel.
  • the said Pipe coil can also be arranged inside the container.
  • the high-temperature heat exchanger can Cross-countercurrent heat exchanger.
  • the high temperature heat exchanger can be provided in a bell-shaped container which is open on the underside.
  • the said container can also be closed on the underside.
  • the storage fluid to be heated comes from the lower - i.e. bottom Area of the temperature-stratified storage and the heated storage fluid is in the distant top area of the memory again sandwiched.
  • the High-temperature heat exchanger as a finned tube bundle heat exchanger is trained.
  • Such a finned tube bundle heat exchanger can in advantageously small volume, i.e. be compactly dimensioned or designed, to achieve a correspondingly high heat transfer capacity.
  • the Fins of such a finned tube bundle heat exchanger cause in advantageously only one in the flowing through storage fluid to be heated relatively low pressure drop so that the thermosiphonic drive is not disturbed becomes.
  • the thermosiphonic volume flow of the to be heated Storage fluids must be large enough to hold the heat pump's working fluid cooling carbon dioxide to a sufficient depth.
  • the riser pipe preferably has such a clear internal cross section and such an axial length dimension that its thermosiphonic Flow pressure drop a volume flow with low high-temperature heat exchanger outlet temperature of the heat pump drive means and with high outlet temperature of the storage fluid to be heated at the riser outlet of the riser pipe. This is a correspondingly high Storage temperature and a high performance figure achieved.
  • a typical application or operating case of the system according to the invention is drinking water heating, the water in the temperature-stratified Storage of the system in the initial state a homogeneous temperature of e.g. 15 ° C.
  • the heat pump uses the water in the storage tank High temperature heat exchanger heated. Because of this warming it experiences this Water has a thermosiphonic buoyancy and flows through it in the storage tank provided riser pipe in the upper storage area. Here it forms due to the low density compared to the colder storage water warm layer of water. Without any significant mixing of the warm Water with the cold water underneath will gradually become the storage after warmed up until finally the warm water layer also the lower area of the memory reached.
  • a control device In order to reliably prevent the temperature of the storage fluid at the riser outlet from fluctuating within a certain range depending on the state of charge of the accumulator and / or depending on the operating state of the CO 2 heat pump in such a system of the type described above, the riser for regulating the Volume flow of the storage fluid to be heated, a control device can be provided.
  • This control device is, for example, a valve with which it is possible to regulate the volume flow in the riser pipe in such a way that, regardless of the state of charge of the accumulator and / or regardless of the operating state of the heat pump at the riser pipe outlet, an at least approximately constant temperature of the accumulator fluid is established ,
  • Such a design advantageously ensures an optimal volume flow of the storage fluid without mechanical drive means such as a pump or the like, even at extreme operating points of the system or in modified constructions thereof.
  • FIG. 1 shows the functional relationship between the temperature T and the enthalpy H in the high-temperature heat exchanger of a heat pump with a conventional refrigerant or working fluid, which is illustrated by the line 10, compared to carbon dioxide as a working fluid, which is shown by the dashed line 12 is shown.
  • the reference number 14 in FIG. 1 denotes the functional relationship between the temperature T and the enthalpy H of the fluid to be heated. It can be seen from FIG. 1 that - apart from the heating and supercooling section - there is a largely constant condensation temperature T K in the high-temperature heat exchanger of a heat pump with a conventional refrigerant or working medium. This condensation temperature T K is clearly linked to the condensation pressure via the vapor pressure relationship.
  • thermodynamically favorable for conventional refrigerants to heat the fluid to be heated with the low temperature glide since in this case the temperature profile of the fluid to be heated better matches the largely constant temperature profile of the condensed one conventional refrigerant. Because of the high temperature glide of carbon dioxide, a high temperature glide of the fluid to be heated is thermodynamically favorable, as has already been stated.
  • FIG. 2 shows an embodiment of the memory 20 in a schematic Sectional view.
  • the high temperature heat exchanger 24 is as Lamellar tube bundle heat exchanger 42, as is also shown in FIG a perspective view is drawn.
  • Such finned tube bundle heat exchanger are known per se, so they are not dealt with in more detail are needed.
  • the high-temperature heat exchanger designed as a finned tube bundle heat exchanger 42 24 is connected to a compressor by means of a connecting line 44 connected to a heat pump.
  • the connecting line 44 extends from one Riser pipe outlet 38 axially, preferably coaxially, through a riser pipe 36 downwards into a container 34 and is there to a high temperature heat exchanger 24 of the heat pump connected.
  • the high temperature heat exchanger 24 is with an expansion device of the heat pump by means of a return line connected, which has a coil 48.
  • the pipe coil 48 is in FIG. 2 in a side view simply as a line and underneath in a top or Bottom view illustrated as a serpentine line.
  • the coil 48 is in bottom area 30 of the storage 20 below the high-temperature heat exchanger 24 and below the bell-shaped, open on the underside Container 34 arranged.
  • the pipe coil 48 can also be in the container 34, for example be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung betrifft eine Anlage mit einer Wärmepumpe, die einen Verdichter, einen Hochtemperatur-Wärmeübertrager, eine Expansionseinrichtung und einen Niedertemperatur-Wärmeübertrager aufweist, die in einem Kreis miteinander verbunden und von einem Arbeitsmittel durchflossen sind, und mit einem ein Speicherfluid enthaltenden temperaturgeschichteten Speicher, in dessen bodenseitigem Bereich der Hochtemperatur-Wärmeübertrager der Wärmepumpe angeordnet ist, wobei der Hochtemperatur-Wärmeübertrager ein Gegenstrom-Wärmeübertrager ist, der in einem Behälter vorgesehen ist, an den oberseitig strömungstechnisch ein Steigrohr anschließt, das sich mit einem Steigrohraustritt zum oberseitigen Bereich des Speichers erstreckt.
Aus dem Prospekt der Firma Blomberg - Vertriebsgesellschaft GmbH, 59229 Ahlen: "WARMWASSER WÄRMEPUMPEN und WARMWASSER SPEICHER", 3. Auflage, 2/95 ist eine Anlage bekannt, bei der der Hochtemperatur-Wärmeübertrager als Glattrohr-Wärmeübertrager ausgebildet ist. Des weiteren ist es bekannt, solche Glattrohre durch Rippenrohre zu ersetzen, um die Wärmeübertragung vom Hochtemperatur-Wärmeübertrager zum Speicherfluid zu verbessern. Bei dem besagten Speicherfluid handelt es sich üblicherweise um Brauch- bzw. Nutzwasser oder um Heizungswasser.
Aus der CH-PS 524 115 ist ein Warmwasserbereiter zur Erzeugung und Speicherung von heißem Wasser mit einem im unteren Teil des mit einem Warmwasser- und einem Kaltwasserabschluss ausgerüsteten Behälter innerhalb eines Steigrohres angeordneten Heizaggregat bekannt. Durch Anordnung des Wärmetauschers im unteren Bereich des Warmwasserbereiters, und dadurch, dass das Steigrohr im oberen Bereich des Behälters ausmündet, wird dort sichergestellt, dass bereits bei geringer Wärmeleistung des Wärmetauschers möglichst frühzeitig Warmwasser zur Verfügung steht. Der Wärmetauscher wird dabei in seinem unteren Bereich allseitig durch das zu erwärmende Wasser angeströmt.
Ein Warmwasserbereiter der zuletzt genannten Art zur Erzeugung und Speicherung von heißem Wasser ist auch aus der DE 31 37 146 C2 bekannt. Bei diesem bekannten Warmwasserbereiter ist der das Heizaggregat aufnehmende Gehäuseteil des Steigrohres zum Inneren des Behälters hin geschlossen, die Kaltwasserzuleitung zum Behälter in an sich bekannter Weise mit einer Anschlussvorrichtung für einen Reinigungsschlauch ausgerüstet, die Kaltwasserzuleitung zum Behälter in Fließrichtung des Wassers hinter dem Reinigungsschlauchanschluss mit einer Bypassleitung ausgerüstet, die in das Gehäuse für das Heizaggregat mündet, eine Verschlussvorrichtung in der Kaltwasserzuleitung zwischen dem Behälter und dem Anschluss der Bypassleitung an die Kaltwasserzuleitung angeordnet, und an der Abgabeseite des Steigrohres innerhalb des Behälters eine Anschlussvorrichtung für den Anschluss eines Reinigungsschlauches vorgesehen, die das Steigrohrinnere gegenüber dem Behälterinnenraum bei angeschlossenem Reinigungsschlauch abtrennt. Durch eine solche Ausbildung wird eine leichte und schnelle Entkalkung und Reinigung des Wärmetauschers, der bspw. eine Heizwendel aufweist, und des Steigrohres ohne großen Materialaufwand ermöglicht.
Bei Wärmepumpen, d.h. bei Kompressionswärmepumpen kommen bislang als Arbeitsmittel z.B. R134a, R22 oder Propan zur Anwendung. Neuerdings werden auch Versuche mit Kohlendioxid als Arbeitsmittel durchgeführt bzw. Kompressionswärmepumpen mit Kohlendioxid als Arbeitsmittel zum Einsatz gebracht. Bei solchen Kohlendioxid-Kompressionswärmepumpen liegt der Hochdruck über dem kritischen Druck von 7,4 Mpa. Bei solchen Kohlendioxid-Kompressionswärmepumpen gibt es keinen Kondensationsprozess mehr. Das Kohlendioxid, das den Verdichter mit hohem Druck und mit hoher Temperatur, z.B. mit 9 Mpa und 100°C, verlässt, wird ohne zu kondensieren im Hochtemperatur-Wärmeübertrager auf eine Temperatur von bspw. 20°C abgekühlt.
Abgesehen von der Enthitzungs- und Unterkühlungsstrecke liegt im Hochtemperatur-Wärmeübertrager einer Wärmepumpe mit konventionellem Arbeits- bzw. Kältemittel eine weitgehend konstante Kondensationstemperatur vor, die über die Dampfdruckbeziehung eindeutig mit dem Kondensationsdruck verknüpft ist. Im Hochtemperatur-Wärmeübertrager einer Kompressionswärmepumpe mit Kohlendioxid als Arbeitsmittel liegt hingegen eine kontinuierliche Temperaturabnahme, d.h. ein sog. Temperaturgleit, des Kohlendioxidgases vor.
Wärmepumpen, insbesondere mit Kohlendioxid als Arbeitsmittel können nach dem Durchlauferhitzer-Prinzip eingesetzt werden, bei welchem das zu erwärmende Fluid, insbes. Wasser, in dem Augenblick erwärmt wird, in dem es benötigt wird. Es ist jedoch auch möglich, das erwärmte Wasser in einem geeigneten Speicher zwischenzuspeichern.
Aus der Solarenergietechnik sind Schichtenspeicher bekannt. Diese Schichtenspeicher weisen einen internen Wärmeübertrager auf, der in einem Strömungsbehälter mit Steigrohr eingebaut ist. Ein solcher Schichtenspeicher ist aus dem Prospekt der Fa. Solvis Energiesysteme GmbH & Co. KG. 38122 Braunschweig, Ausgabedatum 25.3.1997: "Stratos Integral: Warmwasser und Heizungsunterstützung in einem Gerät", Seiten 6 und 7, bekannt. Der interne Wärmeübertrager dient dort dazu, die Wärmeenergie der von dem Solarkollektor kommenden Wärmeträgerflüssigkeit an den Speicher abzugeben.
Eine Anlage der eingangs genannten Art ist aus der DE 29 03 250 bekannt, bei der in einem Wasserspeicher ein Steigrohr angeordnet ist. Im Speicher befindliches Speicherwasser steigt durch das Steigrohr thermosiphonisch nach oben und wird im oberen Speicherbereich eingeschichtet. Zum Kältemittel sind diesem druckschriftlichen Stand der Technik keine Ausführungen zu entnehmen.
Die DE 195 42 076 A1 offenbart einen Warmwasserspeicher, insbesondere für Brauchwasser, mit einem geschlossenen Speicherbehälter mit einem Kaltwasserzulauf in seinem unteren Bereich und einem Warmwasserablauf in seinem oberen Bereich, mit einem im Behälter aufrecht angeordneten Strömungsleit- bzw. Steigrohr und mit einem im unteren Teil des Steigrohres angeordneten Wärmetauscher. Der Wärmetauscher kann als Rohrschlange ausgebildet sein, die an einer Bodenplatte gehaltert ist. Ein Heizmediumvorlauf und ein Heizmediumrücklauf sind durch die Bodenplatte geführt und mit dem Wärmetauscher verbunden. Durch den Heizmediumvor- und -rücklauf zirkuliert ein flüssiges Heizmedium, beispielsweise Wasser, das durch eine Solarkollektoranlage und/oder durch einen konventionellen Heizkessel beheizbar ist.
Aus der US 4 205 532 ist eine Kältemaschine oder Wärmepumpe bekannt, wobei als Arbeitsmittel, d.h. als Kälteträger, Kohlendioxid oder Äthan verwendet wird. Kohlendioxid als Kälteträger für Kältemaschinen oder Wärmepumpen zu verwenden, ist auch aus der DE 43 15 024 A1 bekannt.
Der Erfindung liegt die Aufgabe zugrunde, eine Anlage der eingangs genannten Art zu schaffen, die eine hohe Leistungsziffer besitzt, wobei das zu erwärmende Speicherfluid den Hochtemperatur-Wärmeübertrager mit einer möglichst hohen Nutztemperatur verlässt, der Hochtemperatur-Wärmeübertrager kompakt ausgebildet ist und über ein hohes Wärmeübertragungsvermögen verfügt, und zum Antrieb des Volumenstromes des zu erwärmenden Speicherfluids mechanische Antriebsmittel, wie eine Pumpe, entbehrlich sind.
Diese Aufgabe wird bei einer Anlage der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass das Arbeitsmittel der Wärmepumpe Kohlendioxid ist, und dass der Verdichter mittels einer Anschlussleitung mit dem Hochtemperatur-Wärmeübertrager verbunden ist, die sich vom Steigrohraustritt axial durch das Steigrohr nach unten erstreckt.
Dadurch, dass der Hochtemperatur-Wärmeübertrager das Speicherfluid, vorzugsweise Brauch- bzw. Nutzwasser oder Heizungswasser, im Gegenstrom erwärmt, ergibt sich der Vorteil, dass - für den Fall, dass der zu erwärmende Fluidstrom optimal ausgebildet ist - der Arbeitspunkt des Hochtemperatur-Wärmeübertragers zwei wichtige Anforderungen erfüllt, nämlich
  • 1) das Kohlendioxid-Gas verlässt den Hochtemperatur-Wärmeübertrager mit einer relativ niedrigen Temperatur, wobei mit abnehmender Temperatur die Leistungsziffer steigt, und
  • 2) das zu erwärmende Speicherfluid verlässt den Hochtemperatur-Wärmeübertrager mit einer relativ hohen Nutztemperatur.
  • Die speziellen Vorteile von Kohlendioxid gegenüber konventionellen Kältemitteln liegen in der hohen Umweltverträglichkeit. Außerdem können bei der Erwärmung eines Fluids auf über 50°C höhere Leistungsziffern erreicht werden als bei konventionellen Kompressionswärmepumpen. Bei zu erzielenden Fluidtemperaturen von über 65°C können - im Gegensatz zu Kohlendioxid - konventionelle Kältemittel nicht mehr sinnvoll eingesetzt werden. Wie an den spezifischen Temperaturverläufen im Hochtemperatur-Wärmeübertrager deutlich wird, ist es für konventionelle Kältemittel thermodynamisch günstig, das zu erwärmende Fluid mit einem geringen Temperaturgleit zu erwärmen, da sich in diesem Fall der Temperaturverlauf des zu erwärmenden Fluids besser an den weitgehend konstanten Temperaturverlauf des kondensierten konventionellen Kältemittel anpasst. Wegen des hohen Temperaturgleits von Kohlendioxid ist entsprechend ein hoher Temperaturgleit des zu erwärmenden Fluids thermodynamisch günstig.
    Dadurch, dass bei der erfindungsgemäßen Anlage der Verdichter der Wärmepumpe mittels einer Anschlussleitung mit dem Hochtemperatur-Wärmeübertrager verbunden ist, die sich vom Steigrohraustritt axial durch das im Speicher vorgesehene Steigrohr nach unten erstreckt, ergibt sich eine Verbesserung bzw. Optimierung des thermosiphonischen Antriebs und eine materialsparende Vergrößerung der Gegenstrom bzw. Kreuzgegenstromwärmeübertragungsfläche zwischen dem Kohlendioxid der Wärmepumpe und dem zu erwärmenden Speicherfluid im mit der Wärmepumpen verbundenen Speicher.
    Hierbei ist es bevorzugt, wenn die Anschlussleitung sich koaxial durch das Steigrohr erstreckt.
    Zur verbesserten Abkühlung des Kohlendioxids und zur materialsparenden Vergrößerung der Wärmeübertragungsfläche des Hochtemperatur-Wärmeübertrager kann dieser mit der Expansionseinrichtung der Wärmepumpe mittels einer Rückleitung verbunden sein, die eine Rohrschlange aufinreist, die im bodenseitigen Bereich des Speichers unterhalb des Hochtemperatur-Wärmeübertragers und unterhalb des Behälters im Speicher angeordnet ist. Die Rohrschlange kann hierbei in mindestens einer Ebene angeordnet sein, die zum Boden des Speichers mindestens annähernd parallel vorgesehen ist. Die besagte Rohrschlange kann auch innerhalb des Behälters angeordnet sein.
    Erfindungsgemäß kann der Hochtemperatur-Wärmeübertrager ein Kreuzgegenstrom-Wärmeübertrager sein. Der Hochtemperatur-Wärmeübertrager kann in einem unterseitig offenen, glockenförmigen Behälter vorgesehen sein. Der besagte Behälter kann unterseitig auch geschlossen sein.
    Das zu erwärmende Speicherfluid kommt aus dem unter- d.h. bodenseitigen Bereich des temperaturgeschichteten Speichers und das erwärmte Speicherfluid wird im davon entfernten oberseitigen Bereich des Speichers wieder eingeschichtet.
    Durch die Ausbildung des Speichers mit dem zugehörigen Behälter im bodenseitigen Bereich des Speichers und durch das an den Behälter oberseitig strömungstechnisch anschließende Steigrohr wird erreicht, dass der Antrieb des Volumenstromes des zu erwärmenden Speicherfluides thermosiphonisch erfolgt, so dass zum besagten Antrieb des Volumenstromes des zu erwärmenden Speicherfluides kein mechanisches Antriebsmittel wie eine Pumpe o. dgl. erforderlich ist.
    Als vorteilhaft hat es sich erwiesen, wenn bei der erfindungsgemäßen Anlage der Hochtemperatur-Wärmeübertrager als Lamellenrohrbündel-Wärmeübertrager ausgebildet ist. Ein solcher Lamellenrohrbündel-Wärmeübertrager kann in vorteilhafter Weise kleinvolumig, d.h. kompakt dimensioniert bzw. ausgebildet sein, um ein entsprechend hohes Wärmeübertragungsvermögen zu realisieren. Die Lamellen eines solchen Lamellenrohrbündel-Wärmeübertragers verursachen in vorteilhafter Weise im durchströmenden, zu erwärmenden Speicherfluid nur einen relativ geringen Druckabfall, so dass der thermosiphonische Antrieb nicht gestört wird. Andererseits ist es wichtig, dass der Volumenstrom des zu erwärmenden Speicherfluides nicht zu stark ansteigt, da sich sonst das zu erwärmende Speicherfluid nicht auf die notwendige Nutz- bzw. Speicherendtemperatur erwärmt. Andererseits muss der thermosiphonische Volumenstrom des zu erwärmenden Speicherfluides groß genug sein, um das das Arbeitsmittel der Wärmepumpe bildende Kohlendioxid hinreichend tief abzukühlen.
    Das Steigrohr besitzt vorzugsweise einen derartigen lichten Innenquerschnitt und eine derartige axiale Längenabmessung, dass sein thermosiphonischer Strömungs-Druckabfall einen Volumenstrom mit niedriger Hochtemperatur-Wärmeübertrager-Austrittstemperatur des Wärmepumpen-Antriebsmittels und mit hoher Austrittstemperatur des zu erwärmenden Speicherfluids am Steigrohraustritt des Steigrohres aufweist. Hierdurch wird eine entsprechend hohe Speichertemperatur und eine hohe Leistungsziffer erzielt.
    Ein typischer Anwendungs- bzw. Betriebsfall der erfindungsgemäßen Anlage ist die Trinkwassererwärmung, wobei das Wasser im temperaturgeschichteten Speicher der Anlage im Anfangszustand eine homogene Temperatur von z.B. 15°C besitzt. Nach Einschalten der als Arbeitsmittel Kohlendioxid beinhaltenden Wärmepumpe wird das im Speicher befindliche Wasser mit Hilfe des Hochtemperatur-Wärmeübertragers erwärmt. Durch diese Erwärmung erfährt das Wasser einen thermosiphonischen Auftrieb und fließt durch das im Speicher vorgesehene Steigrohr in den oberseitigen Speicherbereich. Hier bildet es aufgrund der geringen Dichte gegenüber dem kälteren Speicherwasser eine warme Wasserschicht aus. Ohne nennenswerte Durchmischung des warmen Wassers mit dem darunter befindlichen kalten Wasser wird der Speicher nach und nach erwärmt, bis schließlich die warme Wasserschicht auch den unteren Bereich des Speichers erreicht.
    Um bei einer solchen Anlage der oben beschriebenen Art zuverlässig zu verhindern, dass die Temperatur des Speicherfluides am Steigrohraustritt in Abhängigkeit vom Ladezustand des Speichers und/oder in Abhängigkeit vom Betriebszustand der CO2-Wärmepumpe innerhalb eines bestimmten Bereiches schwankt, kann im Steigrohr zur Regelung des Volumenstromes des zu erwärmenden Speicherfluides eine Reglungseinrichtung vorgesehen sein. Bei dieser Regelungseinrichtung handelt es sich beispielsweise um ein Ventil, mit dem es möglich ist, den Volumenstrom im Steigrohr derartig zu regeln, dass sich unabhängig vom Ladezustand des Speichers und/oder unabhängig vom Betriebszustand der Wärmepumpe am Steigrohraustritt eine mindestens annähernd konstante Temperatur des Speicherfluides einstellt. Durch eine derartige Ausbildung wird in vorteilhafter Weise auch bei extremen Betriebspunkten der Anlage oder bei abgewandelten Konstruktionen derselben ein optimaler Volumenstrom des Speicherfluides ohne mechanische Antriebsmittel wie eine Pumpe o. dgl. gewährleistet.
    Weitere Einzelheiten ergeben sich aus der nachfolgenden Beschreibung eines in der Zeichnung verdeutlichten Ausführungsbeispieles der erfindungsgemäßen Anlage bzw. wesentlicher Einzelheiten derselben. Es zeigen:
    Fig. 1
    eine grafische Darstellung des Funktionszusammenhangs im Hochtemperatur-Wärmeübertrager zwischen der Temperatur und der Enthalpie eines konventionellen Wärmepumpen-Arbeitsmittels, von Kohlendioxid als Arbeitsmittel und des zu erwärmenden Fluides im Speicher der Anlage,
    Fig. 2
    eine Ausbildung des Speichers der Anlage, und
    Fig. 3
    in einer perspektivischen Ansicht eine Ausbildung des Hochtemperatur-Wärmeübertragers der Anlage gemäß Fig. 2 als Lamellenrohrbündel-Wärmeübertrager.
    Figur 1 zeigt den Funktionszusammenhang zwischen der Temperatur T und der Enthalpie H im Hochtemperatur-Wärmeübertrager einer Wärmepumpe mit einem konventionellen Kälte- bzw. Arbeitsmittel, der durch die Linie 10 verdeutlicht ist, im Vergleich zu Kohlendioxid als Arbeitsmittel, das durch die strichlierte Linie 12 zeichnerisch dargestellt ist. Mit der Bezugsziffer 14 ist in Figur 1 der Funktionszusammenhang zwischen der Temperatur T und der Enthalpie H des zu erwärmenden Fluides bezeichnet. Aus Figur 1 ist ersichtlich, dass - abgesehen von der Erhitzungs- und Unterkühlungsstrecke - im Hochtemperatur-Wärmeübertrager einer Wärmepumpe mit einem konventionellen Kälte- bzw. Arbeitsmittel eine weitgehende konstante Kondensationstemperatur TK vorliegt. Diese Kondensationstemperatur TK ist über die Dampfdruckbeziehung eindeutig mit dem Kondensationsdruck verknüpft. In einem Hochtemperatur-Wärmeübertrager mit dem Arbeitsmittel Kohlendioxid liegt hingegen - wie die strichlierte Linie 12 verdeutlicht - eine kontinuierliche Temperaturabnahme, d.h. ein sog. Temperaturgleit, des Kohlendioxidgases vor. Die Temperatur des zu erwärmenden Arbeits- bzw. Nutz-Fluides nimmt mit der Enthalpie H linear proportional zu, was in Figur 1 durch die Linie 14 verdeutlicht ist. Die speziellen Vorteile von Kohlendioxid gegenüber konventionellen Kältemitteln liegen in der hohen Umweltverträglichkeit. Außerdem können bei der Erwärmung eines Fluids auf über 50°C höhere Leistungsziffern erreicht werden als bei konventionellen Kompressionswärmepumpen. Bei zu erzielenden Fluidtemperaturen von über 65°C können - im Gegensatz zu Kohlendioxid - konventionelle Kältemittel nicht mehr sinnvoll eingesetzt werden. Wie an den speziellen Temperaturverläufen im Hochtemperatur-Wärmeübertrager deutlich wird, ist es für konventionelle Kältemittel thermodynamisch günstig, das zu erwärmende Fluid mit dem geringen Temperaturgleit zu erwärmen, da sich in diesem Fall der Temperaturverlauf des zu erwärmenden Fluids besser an den weitgehend konstanten Temperaturverlauf des kondensierten konventionellen Kältemittels anpasst. Wegen des hohen Temperaturgleits von Kohlendioxid ist entsprechend ein hoher Temperaturgleit des zu erwärmenden Fluids thermodynamisch günstig, wie bereits ausgeführt worden ist.
    Figur 2 zeigt eine Ausbildung des Speichers 20 in einer schematischen Schnittdarstellung. Der Hochtemperatur-Wärmeübertrager 24 ist als Lamellenrohrbündel-Wärmeübertrager 42 ausgebildet, wie er auch in Figur 3 in einer perspektivischen Darstellung gezeichnet ist. Derartige Lamellenrohrbündel-Wärmetauscher sind an sich bekannt, so dass hierauf nicht näher eingegangen zu werden braucht.
    Der als Lamellenrohrbündel-Wärmetauscher 42 ausgebildete Hochtemperatur-Wärmeübertrager 24 ist mittels einer Anschlussleitung 44 mit einem Verdichter einer Wärmepumpe verbunden. Die Anschlussleitung 44 erstreckt sich von einem Steigrohraustritt 38 axial, vorzugsweise koaxial, durch ein Steigrohr 36 nach unten in einen Behälter 34 hinein und ist dort an einen Hochtemperatur-Wärmeübertrager 24 der Wärmepumpe angeschlossen. Der Hochtemperatur-Wärmeübertrager 24 ist mit einer Expansionseinrichtung der Wärmepumpe mittels einer Rückleitung verbunden, die eine Rohrschlange 48 aufweist. Die Rohrschlange 48 ist in Figur 2 in einer Seitenansicht einfach als Linie und darunter in einer Drauf- bzw. Unteransicht als Schlangenlinie verdeutlicht. Die Rohrschlange 48 ist im bodenseitigen Bereich 30 des Speichers 20 unterhalb des Hochtemperatur-Wärmeübertragers 24 und unterhalb des glockenförmigen, unterseitig offenen Behälters 34 angeordnet. Die Rohrschlange 48 kann bspw. auch im Behälter 34 vorgesehen sein.

    Claims (7)

    1. Anlage mit einer Wärmepumpe (18), die einen Verdichter (22), einen Hochtemperatur-Wärmeübertrager (24), eine Expansionseinrichtung (26) und einen Niedertemperatur-Wärmeübertrager (28) aufweist, die in einem Kreis miteinander verbunden und von einem Arbeitsmittel durchflossen sind, und mit einem ein Speicherfluid (32) enthaltenden temperaturgeschichteten Speicher (20), in dessen bodenseitigem Bereich (30) der Hochtemperatur-Wärmeübertrager (24) der Wärmepumpe (18) angeordnet ist, wobei der Hochtemperatur-Wärmeübertrager (24) ein Gegenstrom-Wärmeübertrager ist, der in einem Behälter (34) vorgesehen ist, an den oberseitig strömungstechnisch ein Steigrohr (26) anschließt, das sich mit einem Steigrohraustritt (38) zum oberseitigen Bereich (40) des Speichers (20) erstreckt,
      dadurch gekennzeichnet, dass das Arbeitsmittel der Wärmepumpe (18) Kohlendioxid ist, und dass der Verdichter (22) mittels einer Anschlussleitung (44) mit dem Hochtemperatur-Wärmeübertrager (24) verbunden ist, die sich vom Steigrohraustritt (38) axial durch das Steigrohr (36) nach unten erstreckt.
    2. Anlage nach Anspruch 1,
      dadurch gekennzeichnet, daß die Anschlussleitung (44) sich koaxial durch das Steigrohr (36) erstreckt.
    3. Anlage nach Anspruch 1,
      dadurch gekennzeichnet, daß der Hochtemperatur-Wärmeübertrager (24) mit der Expansionseinrichtung (26) mittels einer Rückleitung (46) verbunden ist, die eine Rohrschlange (48) aufweist, die im bodenseitigen Bereich (30) des Speichers (20) unterhalb des Hochtemperatur-Wärmeübertragers (24) und unterhalb des Behälters (34) angeordnet ist.
    4. Anlage nach Anspruch 3,
      dadurch gekennzeichnet, daß die Rohrschlange (48) in mindestens einer Ebene angeordnet ist, die zum Boden des Speichers (20) mindestens annähernd parallel vorgesehen ist.
    5. Anlage nach Anspruch 1,
      dadurch gekennzeichnet, daß der Hochtemperatur-Wärmeübertrager (24) ein Kreuzgegenstrom-Wärmeübertrager ist.
    6. Anlage nach Anspruch 1,
      dadurch gekennzeichnet, daß der Hochtemperatur-Wärmeübertrager (24) in einem unterseitig offenen, glockenförmigen Behälter (34) vorgesehen ist.
    7. Anlage nach Anspruch 1,
      dadurch gekennzeichnet, daß der Hochtemperatur-Wärmeübertrager (24) als Lamellenrohrbündel-Wärmeübertrager (42) ausgebildet ist.
    EP99111775A 1998-07-01 1999-06-18 Anlage mit einer Wärmepumpe und einem Speicher Expired - Lifetime EP0969255B1 (de)

    Applications Claiming Priority (4)

    Application Number Priority Date Filing Date Title
    DE1998129334 DE19829334C1 (de) 1998-07-01 1998-07-01 Anlage mit einer Wärmepumpe und einem Speicher
    DE19829334 1998-07-01
    DE19925827 1999-06-07
    DE19925827A DE19925827C1 (de) 1998-07-01 1999-06-07 Anlage mit einer Wärmepumpe und einem Speicher

    Publications (3)

    Publication Number Publication Date
    EP0969255A2 EP0969255A2 (de) 2000-01-05
    EP0969255A3 EP0969255A3 (de) 2002-07-10
    EP0969255B1 true EP0969255B1 (de) 2004-09-15

    Family

    ID=26047145

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99111775A Expired - Lifetime EP0969255B1 (de) 1998-07-01 1999-06-18 Anlage mit einer Wärmepumpe und einem Speicher

    Country Status (3)

    Country Link
    EP (1) EP0969255B1 (de)
    AT (1) ATE276496T1 (de)
    DE (1) DE19925827C1 (de)

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10161254A1 (de) 2001-12-13 2003-07-03 Konvekta Ag Klimatisierungseinrichtung für ein Fahrzeug
    JP2004190924A (ja) * 2002-12-10 2004-07-08 Matsushita Electric Ind Co Ltd 給湯機
    DE202006009009U1 (de) * 2006-06-08 2007-10-18 Dietz, Erwin Wärmeübertrager
    DE102009052559A1 (de) * 2009-11-10 2011-05-12 Markus Kroll Vorrichtung und Verfahren zur Wärmespeicherung und Wärmebereitstellung
    WO2012020404A2 (en) * 2010-08-09 2012-02-16 Zvi Shtilerman Apparatus and method for heating water
    CN105546819B (zh) * 2016-01-31 2018-05-25 佛山光腾新能源股份有限公司 一种使用二级换热器的热泵机组

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CH289319A (de) * 1953-02-20 1953-03-15 Uhlmann Geb Heisswasserspeicher.
    FR1086317A (fr) * 1953-07-06 1955-02-11 Perfectionnement aux chauffe-eau électriques par accumulation
    CH524115A (fr) 1971-05-24 1972-06-15 Cipag S A Appareil chauffe-eau à accumulation
    GB1544804A (en) * 1977-05-02 1979-04-25 Commercial Refrigeration Ltd Apparatus for and methods of transferring heat between bodies of fluid or other substance
    DE2903250C2 (de) * 1979-01-29 1983-10-20 Manfred 4407 Emsdetten Drieling Kessel zum Erhitzen und Speichern von Wasser
    DE3137146C2 (de) 1981-09-18 1984-04-12 Eureka, 4407 Emsdetten Warmwasserbereiter zur Erzeugung und Speicherung von heißem Wasser
    FI915035A (fi) * 1991-10-25 1993-04-26 Hannu Koskela Foerfarande och anordning foer uppvaermning av vatten eller naogon annan vaetska
    DE4301723C2 (de) * 1992-01-24 1995-03-16 Solar Diamant Syst Warmwasserspeicher
    DE4315924A1 (de) * 1993-05-12 1994-11-17 Forschungszentrum Fuer Kaeltet Kälteträger für Kältemaschinen oder Wärmepumpen
    DE19542076A1 (de) * 1995-11-11 1997-05-15 Solar Diamant Systemtechnik Un Warmwasserspeicher, insbesondere für Brauchwasser

    Also Published As

    Publication number Publication date
    EP0969255A3 (de) 2002-07-10
    ATE276496T1 (de) 2004-10-15
    DE19925827C1 (de) 2001-01-18
    EP0969255A2 (de) 2000-01-05

    Similar Documents

    Publication Publication Date Title
    DE2925793C2 (de)
    DE102008021880B4 (de) Abgaswärme-Wiedergewinnungseinrichtung
    DE2602530B1 (de) Latentwaermespeicher
    DE2609489A1 (de) Waermepumpanlage
    DE69129212T2 (de) Absorptionskühl- und wärmepumpenanlage mit enteisung
    EP0969255B1 (de) Anlage mit einer Wärmepumpe und einem Speicher
    EP2295889B1 (de) Wärmepumpenkreislauf mit einem Kondensationsspeicherkessel
    DE60115949T2 (de) Wärmeübertragungskopplung mit phasenwechsel für ammoniak/wasser-absorptionsanlagen
    DE102018109577B3 (de) Hybrid-Wärmepumpe mit Kompressions- und Adsorptionskreislauf, sowie Verfahren zumBetrieb und Verwendung
    DE19829334C1 (de) Anlage mit einer Wärmepumpe und einem Speicher
    DE102019000638B3 (de) Hocheffiziente Hochtemperatur-Wärmepumpe zum Heizen und Kühlen von Gebäuden, mit einer Kombination von zylindrisch angeordneten Wärmetauschern, welche sich in einem Wärmespeicher befinden und durch ein flüssiges Speichermedium so angeströmt werden, dass eine zylindrische Kreisbewegung entsteht.
    DE202008008351U1 (de) Wärmepumpensystem
    DE10243170A1 (de) Heizungsanlage mit einer Wärmepumpe mit Kältemittelverflüssiger
    DE102009036123B4 (de) Kälte-Wärme-Kopplungsanlage
    DE102006032669A1 (de) Kombispeicher
    DE10000352A1 (de) Schichtpufferspeicher mit selbstregelndem Wärmetauscher und Schichtbeladeeinrichtung
    EP0699878B1 (de) Brennwertkessel zum Erwärmen und Speichern von Trinkwasser und Heizungswasser
    DE10012197A1 (de) Thermomanagement für ein Kraftfahrzeug mit einem Kühlmittelkreislauf und einer Klimaanlage
    DE19829335C2 (de) Kälteanlage
    WO2010139580A2 (de) Wärmepumenheizung mit entnahmemischer
    CH698265B1 (de) Einrichtung zum Erwärmen eines flüssigen Wärmeträgermediums.
    DE202010009468U1 (de) Speicher mit Direktkondensation
    DE102005048656A1 (de) Wärmespeicher-Entladewärmetauscher mit minimierter Temperaturbeaufschlagung
    DE202005007941U1 (de) Geregelter Zwei-Zonen-Pufferspeicher für frische Trinkwassererwärmung
    DE10019302A1 (de) Wärmepumpe zur Heizungs- und Brauchwassererwärmung

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20021212

    AKX Designation fees paid

    Designated state(s): AT CH FR GB IT LI

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: 8566

    17Q First examination report despatched

    Effective date: 20030521

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT CH FR GB IT LI

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: FIAMMENGHI-FIAMMENGHI

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050110

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050618

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050618

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050630

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050630

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    ET Fr: translation filed
    26N No opposition filed

    Effective date: 20050616

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20050618

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20090618

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20090627

    Year of fee payment: 11

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20110228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100618

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100630