EP0969255B1 - Installation avec pompe à chaleur et accumulateur - Google Patents

Installation avec pompe à chaleur et accumulateur Download PDF

Info

Publication number
EP0969255B1
EP0969255B1 EP99111775A EP99111775A EP0969255B1 EP 0969255 B1 EP0969255 B1 EP 0969255B1 EP 99111775 A EP99111775 A EP 99111775A EP 99111775 A EP99111775 A EP 99111775A EP 0969255 B1 EP0969255 B1 EP 0969255B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
temperature heat
temperature
accumulator
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99111775A
Other languages
German (de)
English (en)
Other versions
EP0969255A3 (fr
EP0969255A2 (fr
Inventor
Jürgen Köhler
Nicholas Lembke
Wilhelm Tegethoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konvecta AG
Konvekta AG
Original Assignee
Konvecta AG
Konvekta AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1998129334 external-priority patent/DE19829334C1/de
Application filed by Konvecta AG, Konvekta AG filed Critical Konvecta AG
Publication of EP0969255A2 publication Critical patent/EP0969255A2/fr
Publication of EP0969255A3 publication Critical patent/EP0969255A3/fr
Application granted granted Critical
Publication of EP0969255B1 publication Critical patent/EP0969255B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0015Guiding means in water channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0015Guiding means in water channels
    • F24H9/0021Sleeves surrounding heating elements or heating pipes, e.g. pipes filled with heat transfer fluid, for guiding heated liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Definitions

  • the invention relates to a system with a heat pump, the compressor, a high temperature heat exchanger, an expansion device and one Has low temperature heat exchangers, which are in a circle with each other connected and flowed through by a work equipment, and with one Storage-fluid-containing storage fluid, in its bottom area of the high-temperature heat exchanger of the heat pump is arranged, wherein the high-temperature heat exchanger is a countercurrent heat exchanger is provided in a container on the top
  • a riser pipe connects, which emerges with a riser pipe outlet extends to the top area of the memory.
  • From CH-PS 524 115 is a water heater for generation and Storage of hot water with one in the lower part of the one Hot water and a cold water container equipped inside of a riser arranged heating unit known.
  • a water heater of the latter type for generation and Storage of hot water is also known from DE 31 37 146 C2.
  • the heating unit Housing part of the riser pipe closed to the inside of the container, the Cold water supply to the container in a manner known per se with a Connection device for a cleaning hose equipped Cold water supply to the tank in the flow direction of the water behind the Cleaning hose connection equipped with a bypass line, which in the Housing for the heating unit opens, a locking device in the Cold water supply between the tank and the connection of the bypass line arranged on the cold water supply line, and on the discharge side of the riser a connection device for connecting a Cleaning hose provided that the inside of the riser pipe against the Detach the interior of the container with the cleaning hose connected.
  • High temperature heat exchanger of a heat pump with conventional Working or refrigerant has a largely constant condensation temperature, which is clearly related to the condensation pressure via the vapor pressure relationship is linked.
  • one Compression heat pump with carbon dioxide as a working medium is one continuous temperature decrease, i.e. a so-called temperature glide, the Carbon dioxide gas.
  • Heat pumps especially those with carbon dioxide as the working fluid
  • Water heater principle can be used, in which the one to be heated Fluid, especially water, which is warmed up when it is needed.
  • the heated water in a suitable storage temporarily.
  • Layered memories are known from solar energy technology.
  • This Stratified storage has an internal heat exchanger, which is in one Flow tank with riser pipe is installed.
  • Such a stratified storage is from the prospectus of Solvis Energysysteme GmbH & Co. KG. 38122 Braunschweig, issue date March 25, 1997: "Stratos Integral: hot water and Heating support in one device ", pages 6 and 7, known.
  • the internal Heat exchanger is used there, the thermal energy from the solar collector deliver upcoming heat transfer fluid to the memory.
  • a system of the type mentioned is known from DE 29 03 250, in which a riser pipe is arranged in a water reservoir. Items in memory Storage water rises thermosiphonically through the riser pipe and becomes layered in the upper storage area. To the refrigerant are this no state of the art in printed form.
  • DE 195 42 076 A1 discloses a hot water tank, in particular for Process water, with a closed storage tank with a Cold water inlet in its lower area and a hot water outlet in its upper area, with one arranged upright in the container Flow guide or riser pipe and with one in the lower part of the riser pipe arranged heat exchanger.
  • the heat exchanger can be used as a coil be formed, which is held on a base plate.
  • a heating medium flow and a heating medium return are passed through the base plate and with the Heat exchanger connected. Circulates through the heating medium supply and return liquid heating medium, for example water, through a Solar collector system and / or heated by a conventional boiler is.
  • the invention has for its object a system of the type mentioned to create, which has a high coefficient of performance, the one to be heated Storage fluid the high temperature heat exchanger with the highest possible Usable temperature leaves, the high-temperature heat exchanger compact is trained and has a high heat transfer capacity, and Drive the volume flow of the storage fluid to be heated mechanical Driving means, such as a pump, are unnecessary.
  • This task is carried out in a plant of the type mentioned solved according to the invention in that the working fluid of the heat pump Is carbon dioxide, and that the compressor by means of a connecting line with the High temperature heat exchanger is connected, which emerges from the riser pipe axially down through the riser.
  • the connecting line is coaxial through the Riser pipe extends.
  • the expansion device of the heat pump be connected by means of a return line, which pulls in a coil, which in the bottom area of the storage below the high-temperature heat exchanger and is arranged below the container in the memory.
  • the Pipe coil can in this case be arranged in at least one plane leading to Bottom of the memory is provided at least approximately in parallel.
  • the said Pipe coil can also be arranged inside the container.
  • the high-temperature heat exchanger can Cross-countercurrent heat exchanger.
  • the high temperature heat exchanger can be provided in a bell-shaped container which is open on the underside.
  • the said container can also be closed on the underside.
  • the storage fluid to be heated comes from the lower - i.e. bottom Area of the temperature-stratified storage and the heated storage fluid is in the distant top area of the memory again sandwiched.
  • the High-temperature heat exchanger as a finned tube bundle heat exchanger is trained.
  • Such a finned tube bundle heat exchanger can in advantageously small volume, i.e. be compactly dimensioned or designed, to achieve a correspondingly high heat transfer capacity.
  • the Fins of such a finned tube bundle heat exchanger cause in advantageously only one in the flowing through storage fluid to be heated relatively low pressure drop so that the thermosiphonic drive is not disturbed becomes.
  • the thermosiphonic volume flow of the to be heated Storage fluids must be large enough to hold the heat pump's working fluid cooling carbon dioxide to a sufficient depth.
  • the riser pipe preferably has such a clear internal cross section and such an axial length dimension that its thermosiphonic Flow pressure drop a volume flow with low high-temperature heat exchanger outlet temperature of the heat pump drive means and with high outlet temperature of the storage fluid to be heated at the riser outlet of the riser pipe. This is a correspondingly high Storage temperature and a high performance figure achieved.
  • a typical application or operating case of the system according to the invention is drinking water heating, the water in the temperature-stratified Storage of the system in the initial state a homogeneous temperature of e.g. 15 ° C.
  • the heat pump uses the water in the storage tank High temperature heat exchanger heated. Because of this warming it experiences this Water has a thermosiphonic buoyancy and flows through it in the storage tank provided riser pipe in the upper storage area. Here it forms due to the low density compared to the colder storage water warm layer of water. Without any significant mixing of the warm Water with the cold water underneath will gradually become the storage after warmed up until finally the warm water layer also the lower area of the memory reached.
  • a control device In order to reliably prevent the temperature of the storage fluid at the riser outlet from fluctuating within a certain range depending on the state of charge of the accumulator and / or depending on the operating state of the CO 2 heat pump in such a system of the type described above, the riser for regulating the Volume flow of the storage fluid to be heated, a control device can be provided.
  • This control device is, for example, a valve with which it is possible to regulate the volume flow in the riser pipe in such a way that, regardless of the state of charge of the accumulator and / or regardless of the operating state of the heat pump at the riser pipe outlet, an at least approximately constant temperature of the accumulator fluid is established ,
  • Such a design advantageously ensures an optimal volume flow of the storage fluid without mechanical drive means such as a pump or the like, even at extreme operating points of the system or in modified constructions thereof.
  • FIG. 1 shows the functional relationship between the temperature T and the enthalpy H in the high-temperature heat exchanger of a heat pump with a conventional refrigerant or working fluid, which is illustrated by the line 10, compared to carbon dioxide as a working fluid, which is shown by the dashed line 12 is shown.
  • the reference number 14 in FIG. 1 denotes the functional relationship between the temperature T and the enthalpy H of the fluid to be heated. It can be seen from FIG. 1 that - apart from the heating and supercooling section - there is a largely constant condensation temperature T K in the high-temperature heat exchanger of a heat pump with a conventional refrigerant or working medium. This condensation temperature T K is clearly linked to the condensation pressure via the vapor pressure relationship.
  • thermodynamically favorable for conventional refrigerants to heat the fluid to be heated with the low temperature glide since in this case the temperature profile of the fluid to be heated better matches the largely constant temperature profile of the condensed one conventional refrigerant. Because of the high temperature glide of carbon dioxide, a high temperature glide of the fluid to be heated is thermodynamically favorable, as has already been stated.
  • FIG. 2 shows an embodiment of the memory 20 in a schematic Sectional view.
  • the high temperature heat exchanger 24 is as Lamellar tube bundle heat exchanger 42, as is also shown in FIG a perspective view is drawn.
  • Such finned tube bundle heat exchanger are known per se, so they are not dealt with in more detail are needed.
  • the high-temperature heat exchanger designed as a finned tube bundle heat exchanger 42 24 is connected to a compressor by means of a connecting line 44 connected to a heat pump.
  • the connecting line 44 extends from one Riser pipe outlet 38 axially, preferably coaxially, through a riser pipe 36 downwards into a container 34 and is there to a high temperature heat exchanger 24 of the heat pump connected.
  • the high temperature heat exchanger 24 is with an expansion device of the heat pump by means of a return line connected, which has a coil 48.
  • the pipe coil 48 is in FIG. 2 in a side view simply as a line and underneath in a top or Bottom view illustrated as a serpentine line.
  • the coil 48 is in bottom area 30 of the storage 20 below the high-temperature heat exchanger 24 and below the bell-shaped, open on the underside Container 34 arranged.
  • the pipe coil 48 can also be in the container 34, for example be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (7)

  1. Installation avec une pompe à chaleur (18) qui comprend un compresseur (22), un échangeur de chaleur à haute température (24), un équipement à expansion (26) et un transmetteur de chaleur à basse température (28) qui sont reliés entre eux dans un circuit et traversés par une substance active, et avec un accumulateur à stratification thermique (20) contenant un fluide accumulateur (32) dans la zone du fond (30) duquel est disposé l'échangeur de chaleur à haute température (24) de la pompe à chaleur (18), l'échangeur de chaleur à haute température (24) étant un échangeur de chaleur à contre-courant qui est prévu dans un réservoir (34) sur la partie supérieure duquel un tube montant (26) qui s'étend vers la zone supérieure (40) de l'accumulateur (20) avec une sortie de tube montant (38) est raccordé conformément à la technique des fluides
       caractérisée en ce que
       la substance active de la pompe à chaleur (18) est du dioxyde de carbone et en ce que le compresseur (22) est relié à l'échangeur de chaleur à haute température (24) au moyen d'une conduite de raccordement (44) qui s'étend axialement vers le bas à partir de la sortie du tube montant (38) en traversant le tube montant (36).
  2. Installation selon la revendication 1,
       caractérisée en ce que
       la conduite de raccordement (44) s'étend de manière coaxiale à travers le tube montant (36).
  3. Installation selon la revendication 1,
       caractérisée en ce que
       l'échangeur de chaleur à haute température (24) est relié à l'équipement à expansion (26) par une conduite de retour (46) qui comporte un serpentin (48) qui est disposé dans la zone du fond (30) de l'accumulateur (20) en dessous de l'échangeur de chaleur à haute température (24) et en dessous du réservoir (34).
  4. Installation selon la revendication 3,
       caractérisée en ce que
       le serpentin (48) est disposé au moins à un niveau qui est prévu pour être au moins presque parallèle au fond du réservoir (20).
  5. Installation selon la revendication 1,
       caractérisée en ce que
       l'échangeur de chaleur à haute température (24) est un échangeur de chaleur à contre-courant croisé.
  6. Installation selon la revendication 1,
       caractérisée en ce que
       l'échangeur de chaleur à haute température (24) est prévu dans un réservoir (34) en forme de cloche ouvert du côté inférieur.
  7. Installation selon la revendication 1,
       caractérisée en ce que
       l'échangeur de chaleur à haute température (24) est conçu comme échangeur de chaleur à faisceau tubulaire à lamelles (42).
EP99111775A 1998-07-01 1999-06-18 Installation avec pompe à chaleur et accumulateur Expired - Lifetime EP0969255B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE1998129334 DE19829334C1 (de) 1998-07-01 1998-07-01 Anlage mit einer Wärmepumpe und einem Speicher
DE19829334 1998-07-01
DE19925827 1999-06-07
DE19925827A DE19925827C1 (de) 1998-07-01 1999-06-07 Anlage mit einer Wärmepumpe und einem Speicher

Publications (3)

Publication Number Publication Date
EP0969255A2 EP0969255A2 (fr) 2000-01-05
EP0969255A3 EP0969255A3 (fr) 2002-07-10
EP0969255B1 true EP0969255B1 (fr) 2004-09-15

Family

ID=26047145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99111775A Expired - Lifetime EP0969255B1 (fr) 1998-07-01 1999-06-18 Installation avec pompe à chaleur et accumulateur

Country Status (3)

Country Link
EP (1) EP0969255B1 (fr)
AT (1) ATE276496T1 (fr)
DE (1) DE19925827C1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10161254A1 (de) * 2001-12-13 2003-07-03 Konvekta Ag Klimatisierungseinrichtung für ein Fahrzeug
JP2004190924A (ja) * 2002-12-10 2004-07-08 Matsushita Electric Ind Co Ltd 給湯機
DE202006009009U1 (de) * 2006-06-08 2007-10-18 Dietz, Erwin Wärmeübertrager
DE102009052559A1 (de) * 2009-11-10 2011-05-12 Markus Kroll Vorrichtung und Verfahren zur Wärmespeicherung und Wärmebereitstellung
AU2011288113B2 (en) * 2010-08-09 2014-05-08 Zvi Shtilerman Apparatus and method for heating water
CN105546819B (zh) * 2016-01-31 2018-05-25 佛山光腾新能源股份有限公司 一种使用二级换热器的热泵机组

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH289319A (de) * 1953-02-20 1953-03-15 Uhlmann Geb Heisswasserspeicher.
FR1086317A (fr) * 1953-07-06 1955-02-11 Perfectionnement aux chauffe-eau électriques par accumulation
CH524115A (fr) * 1971-05-24 1972-06-15 Cipag S A Appareil chauffe-eau à accumulation
GB1544804A (en) * 1977-05-02 1979-04-25 Commercial Refrigeration Ltd Apparatus for and methods of transferring heat between bodies of fluid or other substance
DE2903250C2 (de) * 1979-01-29 1983-10-20 Manfred 4407 Emsdetten Drieling Kessel zum Erhitzen und Speichern von Wasser
DE3137146C2 (de) 1981-09-18 1984-04-12 Eureka, 4407 Emsdetten Warmwasserbereiter zur Erzeugung und Speicherung von heißem Wasser
FI915035A (fi) * 1991-10-25 1993-04-26 Hannu Koskela Foerfarande och anordning foer uppvaermning av vatten eller naogon annan vaetska
DE4301723C2 (de) * 1992-01-24 1995-03-16 Solar Diamant Syst Warmwasserspeicher
DE4315924A1 (de) * 1993-05-12 1994-11-17 Forschungszentrum Fuer Kaeltet Kälteträger für Kältemaschinen oder Wärmepumpen
DE19542076A1 (de) * 1995-11-11 1997-05-15 Solar Diamant Systemtechnik Un Warmwasserspeicher, insbesondere für Brauchwasser

Also Published As

Publication number Publication date
EP0969255A3 (fr) 2002-07-10
EP0969255A2 (fr) 2000-01-05
DE19925827C1 (de) 2001-01-18
ATE276496T1 (de) 2004-10-15

Similar Documents

Publication Publication Date Title
DE2925793C2 (fr)
DE102008021880B4 (de) Abgaswärme-Wiedergewinnungseinrichtung
DE2602530B1 (de) Latentwaermespeicher
DE19500866A1 (de) Verfahren und Vorrichtung zum Betreiben eines Kälteerzeugssystems, gekennzeichnet durch die Steuerung von Motorkühlmittel
DE2609489A1 (de) Waermepumpanlage
DE69129212T2 (de) Absorptionskühl- und wärmepumpenanlage mit enteisung
EP0969255B1 (fr) Installation avec pompe à chaleur et accumulateur
EP2295889B1 (fr) Cycle de pompe à chaleur avec un réservoir de condensation
DE60115949T2 (de) Wärmeübertragungskopplung mit phasenwechsel für ammoniak/wasser-absorptionsanlagen
DE102018109577B3 (de) Hybrid-Wärmepumpe mit Kompressions- und Adsorptionskreislauf, sowie Verfahren zumBetrieb und Verwendung
DE19829334C1 (de) Anlage mit einer Wärmepumpe und einem Speicher
DE102019000638B3 (de) Hocheffiziente Hochtemperatur-Wärmepumpe zum Heizen und Kühlen von Gebäuden, mit einer Kombination von zylindrisch angeordneten Wärmetauschern, welche sich in einem Wärmespeicher befinden und durch ein flüssiges Speichermedium so angeströmt werden, dass eine zylindrische Kreisbewegung entsteht.
DE202008008351U1 (de) Wärmepumpensystem
DE10243170A1 (de) Heizungsanlage mit einer Wärmepumpe mit Kältemittelverflüssiger
DE102009036123B4 (de) Kälte-Wärme-Kopplungsanlage
DE102006032669A1 (de) Kombispeicher
DE10000352A1 (de) Schichtpufferspeicher mit selbstregelndem Wärmetauscher und Schichtbeladeeinrichtung
EP0699878B1 (fr) Chauffe-eau à haute rendement pour chauffer et accumuler de l'eau sanitaire et de l'eau de chauffage
DE10012197A1 (de) Thermomanagement für ein Kraftfahrzeug mit einem Kühlmittelkreislauf und einer Klimaanlage
DE19829335C2 (de) Kälteanlage
WO2010139580A2 (fr) Chauffage par pompe à chaleur, à mélangeur de prélèvement
CH698265B1 (de) Einrichtung zum Erwärmen eines flüssigen Wärmeträgermediums.
DE202010009468U1 (de) Speicher mit Direktkondensation
DE102005048656A1 (de) Wärmespeicher-Entladewärmetauscher mit minimierter Temperaturbeaufschlagung
DE202005007941U1 (de) Geregelter Zwei-Zonen-Pufferspeicher für frische Trinkwassererwärmung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021212

AKX Designation fees paid

Designated state(s): AT CH FR GB IT LI

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17Q First examination report despatched

Effective date: 20030521

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FIAMMENGHI-FIAMMENGHI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050110

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050618

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050616

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050618

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090618

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090627

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630