EP0968521B1 - Flachstrahler mit dielektrisch behinderter entladung und anordnung zur durchführung der elektroden in den entladungsraum - Google Patents

Flachstrahler mit dielektrisch behinderter entladung und anordnung zur durchführung der elektroden in den entladungsraum Download PDF

Info

Publication number
EP0968521B1
EP0968521B1 EP98925419A EP98925419A EP0968521B1 EP 0968521 B1 EP0968521 B1 EP 0968521B1 EP 98925419 A EP98925419 A EP 98925419A EP 98925419 A EP98925419 A EP 98925419A EP 0968521 B1 EP0968521 B1 EP 0968521B1
Authority
EP
European Patent Office
Prior art keywords
flat lamp
lamp according
range
wall
discharge vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98925419A
Other languages
English (en)
French (fr)
Other versions
EP0968521A1 (de
Inventor
Frank Vollkommer
Lothar Hitzschke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1997111891 external-priority patent/DE19711891A1/de
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0968521A1 publication Critical patent/EP0968521A1/de
Application granted granted Critical
Publication of EP0968521B1 publication Critical patent/EP0968521B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/305Flat vessels or containers
    • H01J61/307Flat vessels or containers with folded elongated discharge path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel

Definitions

  • the invention relates to a flat radiator according to the preamble of claim 1.
  • radiators having a planar geometry that emit light, i. visible electromagnetic radiation, or also ultraviolet (UV) and vacuum ultraviolet (VUV) radiation.
  • UV ultraviolet
  • VUV vacuum ultraviolet
  • Such radiation sources are suitable, depending on the spectrum of the emitted radiation, for general and auxiliary lighting, such as home and office illumination or backlighting of displays, such as LCDs (L iquid C rystal D isplays), for the transport and signal lighting, for the UV radiation, eg sterilization or photolytic.
  • general and auxiliary lighting such as home and office illumination or backlighting of displays, such as LCDs (L iquid C rystal D isplays), for the transport and signal lighting, for the UV radiation, eg sterilization or photolytic.
  • either the electrodes of one polarity or all the electrodes, ie both polarities, are separated from the discharge by means of a dielectric layer (unilaterally or two-sided dielectrically impeded discharge, see, for example, US Pat WO 94/23442 respectively. EP 0 363 832 ). Such electrodes are also referred to below as “dielectric electrodes”.
  • the dielectric layer may be formed by the wall of the discharge vessel itself by the electrodes being arranged outside the discharge vessel, for instance on the outer wall.
  • An advantage of this embodiment with external electrodes is that no gas-tight Strom be exchangegen must be passed through the wall of the discharge vessel.
  • the thickness of the dielectric layer an important parameter that influences, inter alia, the ignition voltage and the burning voltage of the discharge - determined essentially by the requirements of the discharge vessel, in particular its mechanical strength. Since the height of the required supply voltage increases with the thickness of the dielectric layer, the following disadvantages arise among others. In the first place, the voltage supply provided for the operation of the flat radiator must be designed for the higher voltage requirement. This is usually associated with additional costs and larger external dimensions. In addition, higher safety precautions for contact protection are required.
  • the dielectric layer may also be realized in the form of an at least partial cladding or layer of at least one electrode arranged inside the discharge vessel.
  • This has the advantage that the thickness of the dielectric layer can be optimized for the discharge properties.
  • internal electrodes require gas-tight current feedthroughs. As a result, additional manufacturing steps are required, which usually makes the production more expensive.
  • elongate electrodes of different polarity are arranged alternately next to one another, as a result of which surface-like discharge configurations with relatively shallow discharge vessels can be realized.
  • the anodes and cathodes may be disposed on different sides of the inner wall of the discharge vessel, for example, such that each face an anode and cathode.
  • the electrodes are connected in pairs to the two poles of a voltage source.
  • strip-shaped electrodes are arranged, inter alia, on the outer wall of the discharge vessel.
  • a UV high-power radiator with strip-shaped electrodes is disclosed, which are arranged inter alia on the inner wall of the discharge vessel.
  • the inner electrodes of discharge lamps and radiators are connected to a wire-shaped or foil-like current supply.
  • a bushing connects the power supply in the interior of the discharge vessel with external power supply lines, which in turn serve to connect to an electrical supply source.
  • the implementation must be closely surrounded on the one hand by the material of the discharge vessel.
  • the materials of implementation usually a metal or a metal alloy, and discharge vessel, such as glass or ceramic, sometimes very different thermal expansion coefficients.
  • the bushings become thinner, among other things Wires realized.
  • this technique is limited to low amperages or lamp powers because the thin wires would otherwise burn through like a fuse.
  • This disadvantage is known to be remedied by using a thin film, such as a 10-20 microns thick molybdenum foil in the sealing area of the implementation.
  • strip-like electrode or shortening “electrode strip” is here and below an elongated, compared to its length very thin structure to be understood, which is able to act as an electrode can.
  • the edges of this structure need not necessarily be parallel to each other.
  • substructures should also be included along the longitudinal sides of the strips.
  • the invention proposes to further form the inner strip-like electrodes themselves as feedthroughs including external power supply lines.
  • the discharge vessel is composed of a bottom plate and a ceiling plate, which are soldered, e.g. Glass solder, - possibly, but not necessarily, via an additional frame - are interconnected.
  • a frame may be dispensed with if at least one of the two plates is e.g. Trough-shaped is such that a discharge space is enclosed by the bottom and top plate.
  • the electrode strips are each guided at one end through the solder through gas-tight to the outside.
  • the strips themselves are gas-tightly applied directly to the bottom plate and / or ceiling plate - similar to tracks on an electrical circuit board -, e.g. by vapor deposition, screen printing followed by baking or similar techniques.
  • the seal of the implementation and the other components takes over the solder.
  • the inner electrodes, the bushings and outer power supply lines are produced quasi simultaneously in a common manufacturing step as functionally different subregions of a respective single cathode-side or anode-side layer-like interconnect structure.
  • the number of handling and manufacturing steps is significantly reduced.
  • Another advantage of the invention is that it allows the cost-effective production almost arbitrarily large flat radiator, since said manufacturing section can be practically always realized independently of the size of the radiator.
  • the electrode strips may terminate after the feed-through region in a number of external power supply lines corresponding to the number of electrode strips.
  • Each electrode strip is thus considered to be a conductor track-like structure, which in each case comprises the three following, functionally different partial regions: inner electrode region, leadthrough region and outer current supply region.
  • This embodiment takes into account the fact that the mutual connection of the power supply lines of the same polarity for connection to the two poles of a voltage source and within a suitable connected between flat radiator and power supply terminal device, such as a specially adapted plug-cable combination, can be done.
  • the electrode strips of the same polarity pass into a common bus-like external power supply.
  • these two external power supply lines are each connected to one pole of a voltage source.
  • the materials for glass solder and frame as well as floor and ceiling tile are coordinated.
  • the thicknesses of the tracks are chosen so thin that on the one hand, the thermal stresses remain low and on the other hand, the current strengths required during operation can be realized.
  • a sufficiently high current carrying capacity of the conductor tracks is of particular importance insofar as the high luminous intensities desired for such flat radiators ultimately result in high current intensities.
  • flat fluorescent lamps for the backlighting of liquid crystal displays is due to the low transmission of such displays of typically 6%, a particularly high light intensity indispensable.
  • This problem is further exacerbated in the preferred pulsed mode of operation of the discharge, since during the relatively short duration of repetitive active power injection, particularly high currents flow in the conductor tracks. Only in this way is it possible to couple sufficiently high mean effective powers and thereby achieve the desired high intensity of light over the course of time.
  • Typical thicknesses for conductive silver strips are in the range of about 5 microns to about 50 microns, preferably in the range of about 5.5 microns to about 30 microns, more preferably in the range of about 6 microns to about 15 microns.
  • Typical values for P 1 are in the range from 50 mm .mu.m to 680 mm .mu.m, preferably in the range from 100 mm .mu.m to 500 mm .mu.m, particularly preferably from 200 mm .mu.m to 400 mm .mu.m.
  • typical Values for P 2 are in the range of 8 to 20, preferably in the range of 9 to 18, particularly preferably in the range of 10 to 15.
  • FIGS. 1a and 1b schematically show a flat radiator 1 in plan view and a sectional view along the line AA.
  • the flat radiator 1 consists of a discharge vessel 2, strip-shaped cathodes 3 and dielectrically impeded, strip-shaped anodes 4.
  • the discharge vessel 2 consists of a bottom plate 5, a ceiling plate 6 and a frame 7, all of which have a rectangular base.
  • Base plate 5 and ceiling plate 6 are gas-tightly connected by means of glass solder 8 with the frame such that the interior 9 of the discharge vessel 2 is formed cuboid.
  • the wall thickness of the floor and ceiling slab consisting of glass is approx. 2.5 mm in each case.
  • the frame is made of a glass tube with a diameter of about 5 mm. Between floor and ceiling slab precision glass spheres with a diameter of 5 mm are fitted equidistantly as supporting points at a mutual distance of about 34 mm by means of glass solder (not shown for the sake of clarity).
  • the bottom plate 5 is larger than the ceiling plate 6 such that the discharge vessel 2 has a circumferential freestanding edge.
  • the cathodes 3 and anodes 4 are arranged alternately and parallel to each other at a mutual distance of about 6 mm on the inner wall of the bottom plate 5.
  • the cathodes 3 and anodes 4 are extended at opposite ends and guided on both sides to the outside as cathode-side 10 or anode-side 11 feedthroughs from the interior 9 of the discharge vessel 2 on the bottom plate 5.
  • On the edge of the base plate 5 go through the bushings 10, 11 in each case in the cathode side 12 and the anode side 13 external power supply lines.
  • the external power supply lines serve as external contacts for the connection to preferably an electrical pulse voltage source (not shown), optionally by means of suitable plug connections (not shown).
  • a layer 16 of a phosphor mixture is applied, which converts the predominantly short-wave radiation of the discharge into visible white light. It is a three-band phosphor with the blue component BAM (BaMgA1 10 O 17 : Eu 2+ ), the green component LAP (LaPO 4 : [Tb 3+ , Ce 3+ ]) and the red component YOB ([Y, Gd] BO 3 : Eu 3+ ).
  • the layer thickness is about 27 microns.
  • the inner wall of the floor slab, including the electrodes and of the frame is additionally coated with a phosphor mixture.
  • a light-reflecting layer of TiO 2 and Al 2 O 3 is applied directly on the inner wall of the bottom plate.
  • the layer thicknesses are about 15 microns and 7 microns. This variant is therefore not shown because the view of the electrode strips would be obscured by the phosphor layer.
  • the breakthrough in the ceiling plate 6 is for illustrative purposes only and gives a view of a portion of the anodes 4 and 3 cathodes free.
  • the anodes 4 are completely covered with a glass layer 17 (see also FIG. 1b , which shows a section of the flat radiator 1 along an anode 4), whose thickness is about 250 microns.
  • the electrodes 3, 4, feedthroughs 10, 11 and external power supply lines 12, 13 are realized as functionally different sections of a cathode-side and an anode-side continuous layer structure made of silver, which are jointly applied by means of screen printing technology and subsequent baking.
  • the layer thickness is about 10 microns.
  • FIGS. 1a and 1b The in the Figures 2a-2c Flat radiator 1 'shown schematically in plan view and as a section along the lines AA and BB differs from the flat radiator 1 (FIG. FIGS. 1a and 1b ) only in the design of the external power supply 12; 13.
  • the feedthroughs 10, 11 of each electrode strip 3, 4 are initially continued on the edge of the bottom plate 5 and open into a cathode-side 12 or anode-side 13 bus-like conductor track.
  • These interconnects 12, 13 finally terminate in two adjacent sections 14, 15.
  • the two sections 14, 15 serve as external contacts for connection to an electrical voltage source (not shown).
  • Figure 2c is just one opposite FIG. 2b enlarged section along the line BB shown so that the conditions are better visible.
  • the cathode strips are applied to the inner wall of the ceiling plate.
  • Each cathode strip is associated with an anode strip pair such that viewed in cross-section each of the imaginary connection of cathodes and corresponding anodes results in the form of an inverted "V".
  • Cathode and anode strips are guided on the same side of the fluorescent lamp by means of feedthroughs to the outside and go on the corresponding edge of the ceiling or floor plate in the cathode-side or anode-side power supply over.
  • Both the anode strips and the cathode strips are completely covered with a dielectric layer which extends over the entire inner wall of the bottom and the top plate such that the dielectric layer additionally serves as a glass solder for the gas-tight connection.
  • a respective light-reflecting layer of TiO 2 and Al 2 O 3 is applied.
  • a phosphor layer of a BAM, LAP, YOB mixture is applied.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Discharge Lamp (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

    Technisches Gebiet
  • Die Erfindung geht aus von einem Flachstrahler gemäß dem Oberbegriff des Anspruchs 1.
  • Unter der Bezeichnung "Flachstrahler" sind hier Strahler mit einer flächigen Geometrie gemeint, die Licht emittieren, d.h. sichtbare elektromagnetische Strahlung, oder auch Ultraviolett(UV)- sowie Vakuumultraviolett(VUV)-Strahlung.
  • Derartige Strahlungsquellen eignen sich, je nach dem Spektrum der emittierten Strahlung, für die Allgemein- und Hilfsbeleuchtung, z.B. Wohn- und Bürobeleuchtung bzw. Hintergrundbeleuchtung von Anzeigen, beispielsweise LCD's (Liquid Crystal Displays), für die Verkehrs- und Signalbeleuchtung, für die UV-Bestrahlung, z.B. Entkeimung oder Photolytik.
  • Es handelt sich dabei um Flachstrahler, die mittels dielektrisch behinderter Entladung betrieben werden.
  • Bei dieser Art von Strahler sind entweder die Elektroden einer Polarität oder alle Elektroden, d.h. beiderlei Polarität, mittels einer dielektrischen Schicht von der Entladung getrennt (einseitig bzw. zweiseitig dielektrisch behinderte Entladung, siehe z.B. WO 94/23442 bzw. EP 0 363 832 ). Derartige Elektroden werden im folgenden auch verkürzend als "dielektrische Elektroden" bezeichnet.
  • Die dielektrische Schicht kann durch die Wandung des Entladungsgefäßes selbst gebildet sein, indem die Elektroden außerhalb des Entladungsgefäßes, etwa auf der Außenwandung, angeordnet sind. Ein Vorteil dieser Ausführung mit äußeren Elektroden ist, daß keine gasdichten Stromdurchführunggen durch die Wandung des Entladungsgefäßes geführt werden müssen. Allerdings ist die Dicke der dielektrischen Schicht - ein wichtiger Parameter, der unter anderem die Zündspannung und die Brennspannung der Entladung beeinflußt - im wesentlichen durch die Anforderungen an das Entladungsgefäß, insbesondere dessen mechanische Festigkeit, festgelegt. Da die Höhe der erforderlichen Versorgungsspannung mit der Dicke der dielektrischen Schicht zunimmt, ergeben sich unter anderem folgende Nachteile. In erster Linie muß die für den Betrieb des Flachstrahlers vorgesehene Spannungsversorgung auf den höheren Spannungsbedarf ausgelegt werden. Dies ist in der Regel mit Mehrkosten und größeren Außenabmessungen verbunden. Außerdem sind höhere Sicherheitsvorkehrungen zum Berührungsschutz erforderlich.
  • Andererseits kann die dielektrische Schicht auch in Gestalt einer zumindest teilweisen Umhüllung oder Schicht mindestens einer innerhalb des Entladungsgefäßes angeordneten Elektrode realisiert sein. Das hat den Vorteil, daß die Dicke der dielektrischen Schicht auf die Entladungseigenschaften hin optimiert werden können. Allerdings erfordern innere Elektroden gasdichte Stromdurchführungen. Dadurch sind zusätzliche Fertigungsschritte erforderlich, was die Herstellung in der Regel verteuert.
  • Üblicherweise sind längliche Elektroden mit verschiedener Polarität (Anoden und Kathoden) abwechselnd nebeneinander angeordnet, wodurch sich flächenartige Entladungskonfigurationen mit relativ flachen Entladungsgefäßen realisieren lassen. Ebenso können die Anoden und Kathoden auf unterschiedlichen Seiten der Innenwandung des Entladungsgefäßes angeordnet sein, z.B. derart, daß sich jeweils eine Anode und Kathode gegenüberstehen. Außerdem sind die Elektroden paarweise an die beiden Pole einer Spannungsquelle angeschlossenen. Ein besonders effizientes Verfahren zum Betreiben von Strahlern mit dielektrischen Elektroden ist in der WO 94/23442 beschrieben.
  • Stand der Technik
  • Aus der DE-OS 195 26 211 ist ein Flachstrahler bekannt, der mit Hilfe einer Folge von durch Pausenzeiten voneinander getrennten Wirkleistungspulsen - d.h. entsprechend dem Betriebsverfahren der WO 94/23442 - betrieben wird. In den Ausführungsbeispielen sind unter anderem streifenförmige Elektroden auf der Außenwandung des Entladungsgefäßes angeordnet.
  • In der EP 0 363 832 ist unter anderem ein UV-Hochleistungsstrahler mit streifenförmigen Elektroden offenbart, die unter anderem auf der Innenwandung des Entladungsgefäßes angeordnet sind. Über Stromdurchführungen zum Verbinden der inneren Elektroden mit einer Spannungsquelle sind allerdings keine Angaben enthalten.
  • Üblicherweise sind die inneren Elektroden von Entladungslampen und - strahlern mit einer drahtförmigen oder folienartigen Stromzuführung verbunden. Eine Durchführung verbindet die Stromzuführung im Innern des Entladungsgefäßes mit äußeren Stromzuführungen, die ihrerseits der Verbindung mit einer elektrischen Versorgungsquelle dienen. Um die Gasdichtheit sicherzustellen, muß die Durchführung einerseits eng vom Material des Entladungsgefäßes umgeben sein. Andererseits weisen die Materialien von Durchführung, üblicherweise ein Metall oder eine Metallegierung, und Entladungsgefäß, z.B. Glas oder Keramik, zum Teil sehr unterschiedliche Wärmeausdehnungskoeffizienten auf. Um zu hohe mechanische Spannungen und folglich Spannungsbrüche- und Risse im Durchführungsbereich zu vermeiden, werden die Durchführungen unter anderem mittels sehr dünner Drähte realisiert. Diese Technik ist allerdings auf geringe Stromstärken bzw. Lampenleistungen beschränkt, da die dünnen Drähte ansonsten ähnlich wie eine Schmelzsicherung durchbrennen würden. Diesem Nachteil wird bekanntermaßen durch Verwendung einer dünnen Folie, z.B. einer ca. 10-20 µm dicken Molybdänfolie, im Dichtungsbereich der Durchführung abgeholfen.
  • Die genannten Techniken sind aufgrund der vielen Einzelteile sowie Handhabungs- und Fertigungsschritte für eine automatisierte Fertigung von Flachstrahlern mit sehr vielen Elektrodenstreifen wenig geeignet.
  • Darstellung der Erfindung
  • Es ist Aufgabe der vorliegenden Erfindung, einen Flachstrahler mit streifenartigen inneren Elektroden gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, der Stromdurchführungen aufweist derart, daß der Flachstrahler - weitgehend unabhängig von der Größe und damit der Anzahl der Elektroden - in relativ wenigen Fertigungsschritten und folglich kostengünstig herstellbar ist.
  • Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.
  • Unter dem Begriff "streifenartige Elektrode" oder auch verkürzend "Elektrodenstreifen" soll hier und im folgenden ein längliches, im Vergleich zu seiner Länge sehr dünnes Gebilde verstanden werden, das in der Lage ist, als Elektrode wirken zu können. Dabei müssen die Kanten dieses Gebildes nicht notwendigerweise parallel zueinander sein. Insbesondere sollen auch Unterstrukturen entlang der Längsseiten der Streifen umfaßt sein.
  • Die Erfindung schlägt vor, die inneren streifenartigen Elektroden selbst zusätzlich auch als Durchführungen inklusive äußere Stromzuführungen weiter zu bilden.
  • Zu diesem Zweck ist das Entladungsgefäß aus einer Bodenplatte und einer Deckenplatte aufgebaut, die mittels Lot, z.B. Glaslot, - eventuell, aber nicht notwendigerweise, über einen zusätzlichen Rahmen - miteinander verbunden sind.
  • Auf einen Rahmen kann verzichtet werden, wenn zumindest eine der beiden Platten z.B. wannenartig geformt ist derart, daß von der Boden- und Dekkenplatte ein Entladungsraum umschlossen ist.
  • Die Elektrodenstreifen sind jeweils mit einem Ende durch das Lot hindurch gasdicht nach außen geführt. Die Streifen selbst sind gasdicht direkt auf der Bodenplatte und/oder Deckenplatte aufgebracht - ähnlich wie Leiterbahnen auf einer elektrischen Leiterplatte -, z.B. durch Aufdampfen, Siebdruck mit anschließendem Einbrennen oder ähnlichen Techniken. Die Dichtung der Durchführung sowie der anderen Bauelemente übernimmt das Lot.
  • Auf diese Weise werden die inneren Elektroden, die Durchführungen und äußeren Stromzuführungen quasi gleichzeitig in einem gemeinsamen Fertigungsschritt als funktionell unterschiedliche Teilbereiche einer jeweils einzigen kathodenseitigen bzw. anodenseitigen schichtartigen Leiterbahnstruktur hergestellt. Gegenüber dem Stand der Technik ist die Anzahl der Handhabungs- und Fertigungsschritte dadurch deutlich reduziert. Ein weiterer Vorteil der Erfindung ist, daß sie die kostengünstige Fertigung nahezu beliebig großer Flachstrahler ermöglicht, da der genannte Fertigungsabschnitt praktisch unabhängig von der Größe des Strahlers immer gleichartig realisiert werden kann.
  • Außerhalb des Entladungsgefäßes können die Elektrodenstreifen in einer ersten einfachen Ausführung nach dem Durchführungsbereich in einer der Anzahl der Elektrodenstreifen entsprechenden Anzahl von äußeren Stromzuführungen enden. Jeder Elektrodenstreifen ist also für sich betrachtet als eine leiterbahnähnliche Struktur ausgebildet, welche jeweils die drei folgenden, funktionell unterschiedlichen Teilbereiche umfaßt: innerer Elektrodenbereich, Durchführungsbereich und äußerer Stromzuführungsbreich.
  • Diese Ausführungsform trägt dem Umstand Rechnung, daß die gegenseitige Verbindung der Stromzuführungen gleicher Polarität zum Anschluß an die beiden Pole einer Spannungsquelle auch innerhalb einer geeigneten, zwischen Flachstrahler und Spannungsquelle geschalteten Anschlußvorrichtung, beispielsweise einer speziell angepaßten Stecker-Kabelkombination, erfolgen kann.
  • In einer zweiten Ausführung gehen die Elektrodenstreifen gleicher Polarität in je eine gemeinsame, busartige äußere Stromzuführung über. Im Betrieb werden diese beiden äußeren Stromzuführungen mit je einem Pol einer Spannungsquelle verbunden. Der Vorteil gegenüber der ersten Ausführung ist, daß auf eine eigens angepaßte Stecker-Kabelkombination verzichtet werden kann.
  • Um mechanische Spannungen durch unterschiedliche Wärmeausdehnungen gering zu halten und um die Gasdichtheit auch im Dauerbetrieb zu gewährleisten, sind die Materialien für Glaslot und Rahmen sowie Boden- und Dekkenplatte aufeinander abgestimmt. Außerdem sind die Dicken der Leiterbahnen (Elektrode, Durchführung, Stromzuführung) so dünn gewählt, daß einerseits die Wärmespannungen gering bleiben und daß andererseits die im Betrieb erforderlichen Stromstärken realisiert werden können.
  • Dabei kommt einer ausreichend hohen Stromtragfähigkeit der Leiterbahnen insofern eine besondere Bedeutung zu, als die für derartige Flachstrahler angestrebten hohen Lichtstärken letztendlich hohe Stromstärken bedingen. Insbesondere bei Flachleuchtstofflampen für die Hinterleuchtung von Flüssigkristallanzeigen (LCD) ist aufgrund der geringen Transmission derartiger Anzeigen von typisch 6% eine besonders hohe Lichtstärke unabdingbar. Nochmals verschärft wird diese Problematik bei der bevorzugten gepulsten Betriebsweise der Entladung, da während der relativ kurzen Dauer der repetitiven Wirkleistungseinkopplung besonders hohe Ströme in den Leiterbahnen fließen. Nur so ist es möglich, auch ausreichend hohe mittlere Wirkleistungen einzukoppeln und dadurch im zeitlichen Mittel die gewünschte hohe Lichtstärke zu erzielen.
  • Um die vorgenannte hohe Stromtragfähigkeit zu gewährleisten, werden relativ dicke Leiterbahnen verwendet. Zu geringe Leiterbahndicken bergen nämlich die Gefahr der Rißbildung aufgrund lokaler Überhitzung der Leiterbahnen. Die Erwärmung der Leiterbahnen durch den ohmschen Anteil des Leiterbahnstromes ist umso höher, je geringer der Querschnitt der Leiterbahnen ist. Der Breite der Leiterbahnen sind aber Grenzen gesetzt, unter anderem weil mit zunehmender Breite die Abschattung der leuchtenden Fläche des Flachstrahlers durch die Leiterbahnen ebenfalls zunimmt. Deshalb werden eher schmale, dafür aber möglichst dicke Leiterbahnen angestrebt, um das Problem der Rißbildung aufgrund von Wärmeentwicklung durch hohe Stromdichten in den Leiterbahnen zu lösen. Typische Dicken für Leitsilberstreifen liegen im Bereich von ca. 5 µm bis ca. 50 µm, bevorzugt im Bereich von ca. 5,5 µm bis ca. 30 µm, besonders bevorzugt im Bereich von ca. 6 µm bis ca. 15 µm.
  • Allerdings lassen derart dicke Leiterbahnen auf relativ ausgedehnten flachen Trägermaterialien, wie sie bei Flachstrahlern verwendet werden, Rißbildungen durch Materialspannungen erwarten, die beispielsweise aus den Biegebelastungen beim Evakuieren während des Herstellungsprozesses resultieren. Der Grund für die wachsende Gefahr von Rißbildungen ist die Abhängigkeit der Dehnungsgrenze ε einer Schicht von deren Dicke d gemäß ε 1 / d .
    Figure imgb0001
    Demnach ist die Dehnungsgrenze umso geringer, je größer die Schichtdicke ist. Außerdem wächst mit zunehmender Schichtdicke die Wahrscheinlichkeit von Diskontinuitäten innerhalb der Schicht dramatisch. Diese Diskontinuitäten führen zu lokal erhöhten Zugspannungen innerhalb der Schicht. Daraus folgt schließlich die Gefahr der Ablösung der Schicht vom Trägermaterial.
  • Überraschenderweise hat es sich gezeigt, daß dennoch Flachstrahler mit derart dicken Leiterbahnen gasdicht hergestellt werden können und daß darüber hinaus die Lebensdauer durchaus einige Tausend Stunden betragen kann.
  • Möglicherweise tragen dazu auch gezielt in geeignetem Abstand voneinander zwischen Boden- und Deckenplatte angeordnete Stützstellen, beispielsweise in Form von Glaskugeln, bei, die dem Flachstrahler eine ausreichende Biegestabilität verleihen, ohne eine unakzeptabel starke Abschattung zu bewirken.
  • Nach dem gegenwärtigen Stand der Erkenntnis werden unter anderem die beiden Parameter P1= dSt · dE1 und P2= dSt/dP1 als relevant für die Lebensdauer des Flachstrahlers angesehen, wobei dSt den Abstand der Stützstellen zueinander bzw. zur begrenzenden Seitenwand, dE1 die Dicke der Elektrodenbahnen und dP1 die kleinere der beiden Dicken von Boden- bzw. Dekkenplatte bezeichnen. Typische Werte für P1 liegen im Bereich von 50 mm µm bis 680 mm µm, bevorzugt im Bereich von 100 mm µm bis 500 mm µm, besonders bevorzugt von 200 mm µm bis 400 mm µm. Typische Werte für P2 liegen im Bereich von 8 bis 20, bevorzugt im Bereich von 9 bis 18, besonders bevorzugt im Bereich von 10 bis 15.
  • Gute Erfahrungen wurden beispielsweise mit 10 µm dicken aufgedruckten Silberschichten und zwischen jeweils 2,5 mm dicken Boden- und Deckenplatte im gegenseitigen Abstand von ca. 34 mm mittels Glaslot eingepaßten Glaskugeln gemacht. Aus diesen Werten resultieren P1 = 340 mm µm und P2=13,6.
  • Außerdem wird Schutz für ein Bestrahlungssystem beansprucht, welches aus dem vorgenannten neuen Flachstrahler und einer Impulsspannungsquelle besteht.
  • Beschreibung der Zeichnungen
  • Im folgenden wird die Erfindung anhand zweier Ausführungsbeispiele näher erläutert. Es zeigen:
  • Fig. 1a
    ein erstes Ausführungsbeispiel eines Flachstrahlers in teilweise durchbrochener Draufsicht,
    Fig. 1b
    einen Querschnitt durch den Flachstrahler aus Figur 1a entlang der Linie AA.
    Fig. 2a
    ein zweites Ausführungsbeispiel eines Flachstrahlers in teilweise durchbrochener Draufsicht,
    Fig. 2b
    einen Querschnitt durch den Flachstrahler aus Figur 2a entlang der Linie AA,
    Fig. 2c
    eine ausschnittsweise Darstellung eines Querschnitts durch den Flachstrahler aus Figur 2b entlang der Linie BB.
  • Die Figuren 1a und 1b zeigen schematisch einen Flachstrahler 1 in Draufsicht sowie eine Schnittdarstellung entlang der Linie AA. Der Flachstrahler 1 besteht aus einem Entladungsgefäß 2, streifenförmigen Kathoden 3 und dielektrisch behinderten, streifenförmigen Anoden 4.
  • Das Entladungsgefäß 2 besteht aus einer Bodenplatte 5, einer Deckenplatte 6 und einem Rahmen 7, die allesamt eine rechteckige Grundfläche aufweisen. Bodenplatte 5 und Deckenplatte 6 sind mittels Glaslot 8 mit dem Rahmen gasdicht verbunden derart, daß das Innere 9 des Entladungsgefäßes 2 quaderförmig ausgebildet ist. Die Wandstärke der aus Glas bestehenden Bodensowie Deckenplatte beträgt jeweils ca. 2,5 mm. Der Rahmen ist aus einem Glasrohr mit einem Durchmesser von ca. 5 mm gefertigt. Zwischen Boden- und Deckenplatte sind Präzisionsglaskugeln mit einem Durchmesser von 5 mm als Stützstellen äquidistant in einem gegenseitigen Abstand von ca. 34 mm mittels Glaslot eingepaßt (der Übersicht wegen nicht dargestellt). Die Bodenplatte 5 ist größer als die Deckenplatte 6 derart, daß das Entladungsgefäß 2 einen umlaufenden freistehenden Rand aufweist.
  • Die Kathoden 3 und Anoden 4 sind abwechselnd und parallel zueinander im gegenseitigen Abstand von ca. 6 mm auf der Innenwandung der Bodenplatte 5 angeordnet. Die Kathoden 3 und Anoden 4 sind an einander entgegengesetzten Enden verlängert und als kathodenseitige 10 bzw. anodenseitige 11 Durchführungen aus dem Innern 9 des Entladungsgefäßes 2 auf der Bodenplatte 5 beidseitig nach außen geführt. Auf dem Rand der Bodenplatte 5 gehen die Durchführungen 10;11 jeweils in kathodenseitige 12 bzw. anodenseitige 13 äußere Stromzuführungen über. Die äußeren Stromzuführungen dienen als Außenkontakte für die Verbindung mit vorzugsweise einer elektrischen Impulsspannungsquelle (nicht dargestellt), gegebenenfalls mittels geeigneten Steckverbindungen (nicht dargestellt).
  • Auf der Innenwandung der Deckenplatte 6 ist eine Schicht 16 eines Leuchtstoffgemisches aufgebracht, welche die vorwiegend kurzwellige Strahlung der Entladung in sichtbares weißes Licht konvertiert. Es handelt sich dabei um einen Dreibandenleuchtstoff mit der Blaukomponente BAM (BaMgA110O17: Eu2+), der Grünkomponente LAP (LaPO4: [Tb3+, Ce3+]) und der Rotkomponente YOB ([Y, Gd]BO3: Eu3+). Die Schichtdicke beträgt ca. 27 µm. In einer bevorzugten Variante (nicht dargestellt) sind außer der Innenwandung der Deckenplatte zusätzlich noch die Innenwandung der Bodenplatte inklusive der Elektroden sowie des Rahmens mit einem Leuchtstoffgemisch beschichtet. Ferner ist noch direkt auf der Innenwandung der Bodenplatte je eine lichtreflektierende Schicht aus TiO2 und Al2O3 aufgebracht. Die Schichtdicken betragen ca. 15 µm bzw. 7 µm. Diese Variante ist deshalb nicht dargestellt, weil durch die Leuchtstoffschicht der Blick auf die Elektrodenstreifen verdeckt würde.
  • Der Durchbruch in der Deckenplatte 6 dient lediglich darstellerischen Zwecken und gibt den Blick auf einen Teil der Anoden 4 und Kathoden 3 frei. Im Innern 9 des Entladungsgefäßes 2 sind die Anoden 4 vollständig mit einer Glasschicht 17 bedeckt (vgl. auch Figur 1b, welche einen Schnitt des Flachstrahlers 1 längs einer Anode 4 zeigt), deren Dicke ca. 250 µm beträgt. Die Elektroden 3;4, Durchführungen 10;11 und äußere Stromzuführungen 12;13 sind als funktionell verschiedene Abschnitte einer kathodenseitigen und einer anodenseitigen zusammenhängenden Schichtstruktur aus Silber realisiert, die mittels Siebdrucktechnik und anschließendem Einbrennen gemeinsam aufgebracht sind. Die Schichtdicke beträgt ca. 10 µm.
  • Der in den Figuren 2a-2c schematisch in Draufsicht sowie als Schnitt entlang der Linien AA bzw. BB dargestellte Flachstrahler 1' unterscheidet sich von dem Flachstrahler 1 (Figuren 1a und 1b) lediglich in der Gestaltung der äußeren Stromzuführung 12;13. Die Durchführungen 10;11 jedes Elektrodenstreifens 3;4 sind auf dem Rand der Bodenplatte 5 zunächst weitergeführt und münden in einer kathodenseitigen 12 bzw. anodenseitigen 13 busartigen Leiterbahn. Diese Leiterbahnen 12;13 enden schließlich in zwei benachbarten Abschnitten 14;15. Die beiden Abschnitte 14;15 dienen als Außenkontakte für die Verbindung mit einer elektrischen Spannungsquelle (nicht dargestellt).
  • In Figur 2c ist lediglich ein gegenüber Figur 2b vergrößerter Ausschnitt längs der Linie BB dargestellt, damit die Verhältnisse besser erkennbar sind.
  • In einer weiteren Variante (nicht dargestellt) sind die Kathodenstreifen auf der Innenwandung der Deckenplatte aufgebracht. Jedem Kathodenstreifen ist ein Anodenstreifenpaar zugeordnet derart, daß im Querschnitt betrachtet jeweils die gedachte Verbindung von Kathoden und korrespondierenden Anoden die Form eines auf dem Kopf stehenden "V" ergibt. Kathoden- und Anodenstreifen sind auf derselben Seite der Leuchtstofflampe mittels Durchführungen nach außen geführt und gehen auf dem entsprechenden Rand der Decken- bzw. Bodenplatte in die kathodenseitige bzw. anodenseitige Stromzuführung über. Sowohl die Anodenstreifen als auch die Kathodenstreifen sind vollständig mit einer dielektrischen Schicht bedeckt, die sich über die komplette Innenwandung der Boden- und der Deckenplatte erstreckt derart, daß die dielektrischen Schicht zusätzlich als Glaslot zur gasdichten Verbindung dient. Auf der dielektrischen Schicht der Bodenplatte ist je eine lichtreflektierende Schicht aus TiO2 und Al2O3 aufgebracht. Als letzte Schicht folgt darauf und ebenso auf der dielektrischen Schicht der Deckenplatte eine Leuchtstoffschicht aus einem BAM, LAP, YOB-Gemisch.
  • Die Erfindung ist nicht durch die angegebenen Ausführungsbeispiele beschränkt. Außerdem können Merkmale unterschiedlicher Ausführungsbeispiele auch kombiniert werden.

Claims (15)

  1. Flachstrahler (1) mit einem zumindest teilweise transparenten und mit einer Gasfüllung gefüllten geschlossenen Entladungsgefäß (2) aus elektrisch nichtleitendem Material und mit auf der Innenwandung des Entladungsgefäßes (2) angeordneten streifenartigen Elektroden (3,4), wobei zumindest die Anoden (4) jeweils mit einer dielektrischen Schicht (17) bedeckt sind, dadurch gekennzeichnet, daß
    • das Entladungsgefäß (2) zumindest eine Bodenplatte (5) und eine Deckenplatte (6) aufweist, wobei die Bodenplatte (5) und die Dekkenplatte (6) mittels Lot (8), gegebenenfalls auch über einen zwischen Decken- und Bodenplatte angeordneten zusätzlichen Rahmen (7), gasdicht miteinander verbunden sind,
    • die streifenartigen inneren Elektroden (3,4) zusätzlich in Durchführungen (10,11) und diese wiederum in äußere Stromzuführungen (12;13) übergehen derart, daß die Elektroden (3,4), die Durchführungen (10,11) und die äußeren Stromzuführungen (12;13) als jeweils funktionell unterschiedliche Teilbereiche leiterbahnähnlicher Strukturen (3,10,12;4,11,13) ausgebildet sind,
    wobei die Durchführungen (10,11) durch das Lot (8) gasdicht abgedeckt nach außen geführt sind und wobei die sich unmittelbar daran anschließenden äußeren Stromzuführungen (12,13) zum Anschluß einer elektrischen Versorgungsquelle dienen.
  2. Flachstrahler nach Anspruch 1, dadurch gekennzeichnet, daß die dielektrischen Schichten zusätzlich als Lot für die gasdichten Durchführungen dienen.
  3. Flachstrahler nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die äußeren Stromzuführungen (12;13) auf der Außenwandung des Entladungsgefäßes angeordnet sind.
  4. Flachstrahler nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die kathoden- und anodenseitigen Strukturen jeweils aus einer Metallschicht bestehen, wobei die Schichtdicke im Bereich zwischen 5 µm und 50 µm, bevorzugt im Bereich von 5,5 µm bis 30 µm, besonders bevorzugt im Bereich von 6 µm bis 15 µm liegt.
  5. Flachstrahler nach Anspruch 4, dadurch gekennzeichnet, daß die Schichtdicke ca. 10 µm beträgt.
  6. Flachstrahler nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß zwischen der Boden- und der Deckenplatte Abstandshalter angeordnet sind.
  7. Flachstrahler nach Anspruch 6, dadurch gekennzeichnet, daß die Abstandshalter durch Glaskugeln realisiert sind.
  8. Flachstrahler nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß der Parameter P1 = dSt · dE1 im Bereich von 50 mm µm bis 680 mm µm, bevorzugt im Bereich von 100 mm µm bis 500 mm µm, besonders bevorzugt im Bereich von 200 mm µm bis 400 mm µm liegt, wobei dSt den Abstand der Stützstellen zueinander bzw. zur begrenzenden Seitenwand und dE1 die Dicke der Elektrodenbahnen bezeichnen.
  9. Flachstrahler nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß der Parameter P2= dSt/dP1 im Bereich von 8 bis 20, bevorzugt im Bereich von 9 bis 18, besonders bevorzugt im Bereich von 10 bis 15 liegt, wobei dSt den Abstand der Stützstellen zueinander bzw. zur begrenzenden Seitenwand und dP1 die kleinere der beiden Dicken von Boden- bzw. Deckenplatte bezeichnen.
  10. Flachstrahler nach Anspruch 1, dadurch gekennzeichnet, daß der Wärmeausdehnungskoeffizient des Lotes (8) auf die Wärmeausdehnungskoeffizienten der Materialien der Bodenplatte (5) und der Dekkenplatte (6) sowie gegebenenfalls des Rahmens (7) abgestimmt ist.
  11. Flachstrahler nach Anspruch 1, dadurch gekennzeichnet, daß zumindest ein Teil der Innenwandung des Entladungsgefäßes eine Schicht aus einem Leuchtstoff oder Leuchtstoffgemisch aufweist.
  12. Flachstrahler nach Anspruch 11, dadurch gekennzeichnet, daß auf einem Teil der Innenwandung des Entladungsgefäßes, insbesondere auf der Innenwandung der Bodenplatte, zwischen Innenwandung und Leuchtstoffschicht eine lichtreflektierende Schicht aufgebracht ist.
  13. Flachstrahler nach einem oder mehreren der vorstehenden Ansprüche, wobei die äußeren Stromzuführungen derart ausgebildet sind, daß die Durchführungen (10;11) der Kathoden (3) und Anoden (4) in eine kathoden- bzw. anodenseitige busartige Leiterbahn (12,14;13,15) münden.
  14. Flachstrahler nach Anspruch 13, wobei die beiden busartigen Stromzuführung (12,14;13,15) auf der Außenwandung des Entladungsgefäßes angeordnet sind.
  15. Bestrahlungssystem mit einem Flachstrahler und einer elektrischen Impulsspannungsquelle, die geeignet ist, im Betrieb durch Pausen voneinander getrennte Spannungspulse zu liefern, dadurch gekennzeichnet, daß der Flachstrahler Merkmale eines oder mehrerer der Ansprüche 1 bis 8 aufweist, wobei die Impulsspannungsquelle mit den äußeren Stromzuführungen des Flachstrahlers elektrisch leitend verbunden ist.
EP98925419A 1997-03-21 1998-03-20 Flachstrahler mit dielektrisch behinderter entladung und anordnung zur durchführung der elektroden in den entladungsraum Expired - Lifetime EP0968521B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE1997111891 DE19711891A1 (de) 1997-03-21 1997-03-21 Flachstrahler
DE19711891 1997-03-21
DE19729175 1997-07-08
DE19729175A DE19729175A1 (de) 1997-03-21 1997-07-08 Flachstrahler
PCT/DE1998/000828 WO1998043280A1 (de) 1997-03-21 1998-03-20 Flachstrahler mit dielektrisch behinderter entladung und anordnung zur durchführung der elektroden in den entladungsraum

Publications (2)

Publication Number Publication Date
EP0968521A1 EP0968521A1 (de) 2000-01-05
EP0968521B1 true EP0968521B1 (de) 2009-02-11

Family

ID=26035100

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98925419A Expired - Lifetime EP0968521B1 (de) 1997-03-21 1998-03-20 Flachstrahler mit dielektrisch behinderter entladung und anordnung zur durchführung der elektroden in den entladungsraum

Country Status (9)

Country Link
EP (1) EP0968521B1 (de)
JP (1) JP3490461B2 (de)
KR (1) KR100417438B1 (de)
CN (1) CN1278375C (de)
CA (1) CA2281091C (de)
DE (2) DE19729175A1 (de)
HU (1) HUP0003101A3 (de)
TW (1) TW393665B (de)
WO (1) WO1998043280A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19927791A1 (de) * 1999-06-18 2000-12-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Farbanzeige mit sequentieller Primärfarberzeugung
JP4493064B2 (ja) * 2000-10-06 2010-06-30 日本電気株式会社 平面型蛍光ランプの固定構造、及び液晶表示装置
KR100745746B1 (ko) * 2001-01-04 2007-08-02 삼성전자주식회사 수직 대향 방전형 평판램프
DE10133949C1 (de) * 2001-07-17 2003-03-20 Inst Niedertemperatur Plasmaph Vorrichtung zur Erzeugung von Gasentladungen, die nach dem Prinzip der dielektrisch behinderten Entladung aufgebaut ist, für Lichtquellen und Sichtanzeigeeinrichtungen
EP1562221A3 (de) * 2003-12-03 2008-09-17 Samsung Electronics Co., Ltd. Flache Lampe
DE102004039902B3 (de) * 2004-08-17 2006-04-06 Berger Gmbh Flächige Gasentladungslampe und Verfahren zu ihrer Herstellung
KR100657902B1 (ko) * 2004-10-13 2006-12-14 삼성코닝 주식회사 평판 램프
DE102004055328B3 (de) * 2004-11-16 2006-04-13 Institut für Niedertemperatur-Plasmaphysik e.V. Vorrichtung nach dem Prinzip einer dielektrisch behinderten Entladung zur Strahlungserzeugung
KR101491949B1 (ko) * 2014-02-11 2015-02-09 조선대학교산학협력단 멤스 기반 우주용 가변 방사율 라디에이터

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778127A (en) * 1971-12-30 1973-12-11 Ibm Sealing technique for gas panel
JPS54184065U (de) * 1978-06-19 1979-12-27
JPS60172135A (ja) * 1984-02-15 1985-09-05 Mitsubishi Electric Corp 平板状光源
CH676168A5 (de) * 1988-10-10 1990-12-14 Asea Brown Boveri
JPH05503607A (ja) * 1990-08-03 1993-06-10 リン ジャド ビー 薄平状真空シール形外囲容器
JP2965861B2 (ja) * 1994-07-07 1999-10-18 スタンレー電気株式会社 平面型蛍光ランプ
JP3053548B2 (ja) * 1995-04-07 2000-06-19 スタンレー電気株式会社 電界放電型の平面蛍光ランプ
KR200143501Y1 (ko) * 1995-05-09 1999-06-15 박현승 평면 형광 램프
DE19526211A1 (de) * 1995-07-18 1997-01-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zum Betreiben von Entladungslampen bzw. -strahler
KR100263773B1 (ko) * 1998-03-23 2000-08-16 구자홍 플라즈마 디스플레이 패널의 유지전극 구조
KR100720412B1 (ko) * 2000-10-31 2007-05-22 엘지.필립스 엘시디 주식회사 면 발광용 플랫램프 및 이를 구비한 액정표시장치

Also Published As

Publication number Publication date
TW393665B (en) 2000-06-11
JP2000510283A (ja) 2000-08-08
KR20000076318A (ko) 2000-12-26
KR100417438B1 (ko) 2004-02-05
WO1998043280A1 (de) 1998-10-01
CA2281091C (en) 2006-11-21
CN1251205A (zh) 2000-04-19
HUP0003101A3 (en) 2003-02-28
JP3490461B2 (ja) 2004-01-26
CN1278375C (zh) 2006-10-04
EP0968521A1 (de) 2000-01-05
HUP0003101A2 (hu) 2001-01-29
DE19729175A1 (de) 1999-01-14
DE59814343D1 (de) 2009-03-26
CA2281091A1 (en) 1998-10-01

Similar Documents

Publication Publication Date Title
EP0912991B1 (de) Flachleuchtstofflampe für die hintergrundbeleuchtung und flüssigkristallanzeige-vorrichtung mit dieser flachleuchtstofflampe
EP0922297B1 (de) Leuchtstofflampe
EP0912990B1 (de) Gasentladungslampe mit dielektrisch behinderten elektroden
DE69624905T2 (de) Plasmaanzeigetafel und herstellungsverfahren derselben
DE60220121T2 (de) Bildröhre und Bildwiedergabeanordnung
EP0968521B1 (de) Flachstrahler mit dielektrisch behinderter entladung und anordnung zur durchführung der elektroden in den entladungsraum
DE19817480B4 (de) Flachstrahlerlampe für dielektrisch behinderte Entladungen mit Abstandshaltern
EP0901687B1 (de) Flachstrahler
EP0912992B1 (de) Flachstrahler
DE19826808C2 (de) Entladungslampe mit dielektrisch behinderten Elektroden
EP1050066B1 (de) Entladungslampe mit dielektrisch behinderten elektroden
DE69811974T2 (de) Edelgasentladungslampe
DE2641283A1 (de) Verfahren zur herstellung eines flachbildschirms
EP1175692A2 (de) Flache gasentladungslampe mit abstandselementen
EP1417699B1 (de) Entladungslampe mit zündhilfe
EP0990262B1 (de) Entladungslampe mit dielektrisch behinderten elektroden
DE1539443C3 (de) Zeichenanzeigende Kathodenglimmlichtröhre
DE69914990T2 (de) Flache Anzeigetafel
DE19711891A1 (de) Flachstrahler
DE69809830T2 (de) Edelgasentladungslampe
DE4203594A1 (de) Entladungsroehre
EP1088336A1 (de) Dielektrische schicht für entladungslampen und zugehöriges herstellungsverfahren
DE1464156C (de) Kaltkathodenanzeigerohre
DE4409832A1 (de) Anzeigevorrichtung vom Gasentladungstyp und Verfahren zu ihrer Herstellung
WO2003032350A2 (de) Entladungslampe mit stabilisierter entladungsgefässplatte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE DK ES FI FR GB IT LI NL SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE DK ES FI FR GB IT LI NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59814343

Country of ref document: DE

Date of ref document: 20090326

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090522

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090511

BERE Be: lapsed

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUR ELEKTRISCHE GLUH

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091130

26N No opposition filed

Effective date: 20091112

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100521

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59814343

Country of ref document: DE

Effective date: 20111001