EP0953731A1 - Dampfeinführungsvorrichtung in Kraftwerksanlage - Google Patents

Dampfeinführungsvorrichtung in Kraftwerksanlage Download PDF

Info

Publication number
EP0953731A1
EP0953731A1 EP98810384A EP98810384A EP0953731A1 EP 0953731 A1 EP0953731 A1 EP 0953731A1 EP 98810384 A EP98810384 A EP 98810384A EP 98810384 A EP98810384 A EP 98810384A EP 0953731 A1 EP0953731 A1 EP 0953731A1
Authority
EP
European Patent Office
Prior art keywords
pinhole
introduction device
steam
steam introduction
openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98810384A
Other languages
English (en)
French (fr)
Inventor
Rainer Schlageter
Vaclav Svoboda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Priority to EP98810384A priority Critical patent/EP0953731A1/de
Priority to IDP990380D priority patent/ID22555A/id
Priority to US09/299,647 priority patent/US6189871B1/en
Priority to JP11118473A priority patent/JP2000054807A/ja
Priority to AU25015/99A priority patent/AU743291B2/en
Publication of EP0953731A1 publication Critical patent/EP0953731A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B5/00Condensers employing a combination of the methods covered by main groups F28B1/00 and F28B3/00; Other condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/002Steam conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/04Plants characterised by condensers arranged or modified to co-operate with the engines with dump valves to by-pass stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/02Auxiliary systems, arrangements, or devices for feeding steam or vapour to condensers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/13Desuperheaters

Definitions

  • the invention relates to a steam power plant with a boiler, a steam turbine, a condenser and a bypass line that bypasses the steam turbine, by leading directly from the boiler to the condenser. It particularly affects one Steam introduction device between the bypass line and the condenser and the first of two vents in this one Steam introducer.
  • the steam from the Boiler When starting and stopping a steam power plant and when Steam turbine load shedding due to a shutdown of the plant, the steam from the Boiler not led to the steam turbine because it contains too much water and therefore the would damage the turbine blades. Instead, the steam from the Boiler directly through a bypass line and a steam introducer led the capacitor.
  • the steam introduction device is used for relaxation and desuperheating the steam before entering the condenser for condensation reached.
  • the steam flowing in via the bypass line has one high flow rate, on the other hand a temperature of up to 600 ° C.
  • the temperature in the condenser however, is around 40 ° C. It applies So the temperature of the steam as well as the speed can be greatly reduced. This also means that the components of the steam introduction device are one are exposed to large temperature gradients.
  • CH-T 080 273 of the Brown Boveri Companie is one Bypass control valve downstream of a two-stage steam introduction device, which is arranged in the capacitor.
  • the first stage of the steam introducer consists of a steam passage cover, a perforated cover in the shape of a Truncated cone, through which the hot steam stream is sprayed and fanned out. After the pinhole, it enters a relaxation or de-heating chamber.
  • a pinhole of the first stage of the steam introducer is off finished several flat components, namely a part for the jacket of the Truncated cone, a closing part for the tip of the cone and one Transition part for the connection to the end of the bypass line.
  • the openings the pinhole is drilled in the still flat part of the cone shell, the is then hot formed into a cone and welded together.
  • the Final part for the tip of the cone is then with the truncated cone and that The transition part is welded to the end of the bypass line.
  • the task is accomplished by a steam introduction device according to the preamble of the first claim solved, the pinhole from a single spherical Part exists.
  • the main advantage of a pinhole of this type is the increased mechanical Stability and thermal resilience of the pinhole and the achieved with it Operational safety of the steam introduction device. This is also the Operational reliability of the entire power plant increased because of a longer one Operating time of the device is guaranteed without repairs.
  • a spherical shape is mechanically more stable.
  • the selected form of the aperture thus grants one in comparison to the prior art increased mechanical stability.
  • the aperture according to the invention has a smaller wall thickness than the conical, the stability required for the panel is nevertheless guaranteed.
  • a Smaller wall thickness also has the advantage that the through the Thermal gradients caused by thermal stresses in the material are smaller are. As a result, the thermal load capacity is significantly increased and the Aperture susceptibility to breakage reduced.
  • the openings of the pinhole are such arranged so that each opening is equidistant from each nearest opening. This also results in a uniform material thickness and thermal Stability of the panel.
  • the one-piece, spherical diaphragm is produced by a pressing process. After After reaching the desired shape, the workpiece is annealed and checked cooled and relaxed. The end product points through this manufacturing method minimal material stresses, which increases the thermal resistance of the panel is favored in operation.
  • a second advantage is the cost reduction for the manufacture of the pinhole. This is done primarily by reducing the number of parts to a single part and the number of processing steps achieved. There is only one to manufacture the cover Pressing process is necessary, and welding processes are no longer required. It there is no separate production and assembly of a closing part, as is the case with cone-shaped pinhole was the case, and especially one Transition piece between the pinhole and the end of the bypass line.
  • the spherical pinhole has a straight rim, the diameter of which The diameter of the bypass line is adjusted.
  • FIG. 1 shows a cross section of a steam introduction device 1 in a Steam power plant.
  • a bypass line 2 leads from a not shown Boiler of the system for steam introduction device 1. This is with the Capacitor 9 connected, in the condenser neck 7 of the capacitor 9 protrudes.
  • hot steam is emitted from the boiler according to the direction of the arrow a temperature of over 500 ° C through the bypass line 2, whereupon it a first pinhole 3 of the steam introduction device hits.
  • the steam arrives through openings in the pinhole 3 and is thereby fanned out.
  • the Pinhole aims to expand the steam flow as much as possible so that it fills the subsequent desuperheating chamber 4 as far as possible.
  • the steam through Mixing with the water is heated.
  • the steam is in the chamber relaxed due to turbulence.
  • This second Pinhole 8 is semi-cylindrical in shape, with the cylinder in the plane of Drawing protrudes and protrudes from the plane of the drawing.
  • the Pinhole 8 causes a regular distribution of the cooled steam in one level in the condenser neck 7 above the tube bundles 10. This level becomes the steam is sucked into the condenser 9 and on the cooling pipes in the Tube bundles 10 condensed.
  • FIG. 2 shows the first pinhole 3 according to the invention in detail.
  • the pinhole 3 has the shape of a basket arch floor in this version. This form is for Example also known under the German industry standard number 28013. she is characterized in particular by the spherical central part, which creates the aperture has increased mechanical stability. It is therefore with thinner walls executed and still has the necessary stability.
  • the basket arch floor with the straight board is manufactured in a single pressing process.
  • the openings 12 are made after the pressing process by means of a programmable, on five axes working drilling machine (NC machine) drilled. With this way of working it is achieved that the axes of the openings 12 are each in the same center to cut. This orientation of the openings 12 makes it more uniform
  • NC machine five axes working drilling machine
  • the straight shaped board of the The arched floor is welded directly onto the end of the bypass line 2.
  • the arrangement of the drilling openings 12 of the perforated diaphragm 3 according to the invention is shown in FIG Figure 3 shown. It is characterized in that the distance between adjacent openings 12 is the same in each case. This will make the mechanical Stability favored over the entire area of the aperture.
  • the coordinates of the Openings are made according to the curvature of the basket arch floor and the required diameter of the openings calculated and directly the NC machine fed for manufacturing.
  • the pinhole protrudes less far into the Desuperheating chamber as a conical aperture. This has the advantage that Water droplets in the condensate line after switching off the condensate nozzles 6 located and fall into the desuperheating chamber, not on the hot pinhole reach. Such drops would otherwise cause local thermal shock and possibly cause a resulting erosion of the screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

In einer Dampfkraftwerksanlage ist zwischen Kessel und Kondensator (9) eine Bypass-Leitung (2) angeordnet, die der Ableitung von Dampf beim An- oder Abfahren der Kraftwerksanlage dient. In der Bypass-Leitung (2) ist vor dem Kondensator (9) eine Dampfeinführungsvorrichtung (1) angeordnet, in welcher der Dampf vor der Einfuhr in den Kondensator (9) entspannt und enthitzt wird. Die Dampfeinführungsvornchtung (1) weist eine erste Lochblende (3), eine Enthitzungskammer (4) und eine zweite Lochblende (8) auf. Erfindungsgemäss besteht die erste Lochblende (3) aus einem einzigen, kugelförmigen Teil. Die Lochblende (3) besitzt durch diese Form eine günstige mechanische und thermische Stabilität, wodurch dünne Wanddicken und eine Herstellung durch Pressen ermöglicht sind. Die Öffnungen (12) der Lochblende werden nach dem Pressen durch einmaliges Bohren gefertigt und sind jeweils von den nächstliegenden Öffnungen gleich weit entfernt. Die Lochblende (3) zeichnet sich durch eine erhöhte Betriebssicherheit und tiefere Fabrikationskosten aus. <IMAGE>

Description

Technisches Gebiet
Die Erfindung betrifft ein Dampfkraftwerk mit einem Kessel, einer Dampfturbine, einem Kondensator und einer Bypass-Leitung, welche die Dampfturbine umgeht, indem sie vom Kessel direkt zum Kondensator führt. Sie betrifft insbesondere eine Dampfeinführungsvorrichtung zwischen der Bypass-Leitung und dem Kondensator und die erste von zwei Dampfdurchtrittsblenden in dieser Dampfeinführungsvorrichtung.
Stand der Technik
Beim Anfahren und Abfahren einer Dampfkraftwerksanlage sowie beim Dampfturbinenlastabwurf infolge eines Abschaltens der Anlage wird der Dampf vom Kessel nicht zur Dampfturbine geführt, da er zuviel Wasser enthält und dadurch die Beschaufelung der Turbine beschädigen würde. Stattdessen wird der Dampf vom Kessel durch eine Bypass-Leitung und eine Dampfeinführungsvorrichtung direkt in den Kondensator geführt. Die Dampfeinführungsvorrichtung dient der Entspannung und Enthitzung des Dampfes bevor er in den Kondensator zur Kondensation gelangt. Der über die Bypass-Leitung heranströmende Dampf besitzt zum einen eine hohe Strömungsgeschwindigkeit, zum anderen eine Temperatur von bis zu 600°C. Die im Kondensator herrschende Temperatur hingegen beträgt um die 40°C. Es gilt also die Temperatur des Dampfes sowie auch die Geschwindigkeit stark zu senken. Dies bedeutet auch, dass die Bauteile der Dampfeinführungsvorrichtung einem grossen Temperaturgradienten ausgesetzt sind.
Gemäss der Druckschrift Nr. CH-T 080 273 der Brown Boveri Companie ist einem Bypass-Regelventil eine zwei-stufige Dampfeinführungsvorrichtung nachgeschaltet, die im Kondensator angeordnet ist. Die erste Stufe der Dampfeinführungsvorrichtung besteht aus einer Dampfdurchtrittsblende, einer Lochblende in der Form eines Kegelstumpfes, durch die der heisse Dampfstrom versprüht und aufgefächert wird. Nach der Lochblende gelangt er in eine Entspannungs- oder Enthitzungskammer.
Hier wird er durch kühles Kondensat enthitzt, das von mehreren Düsen in den aufgefächerten Dampfstrom versprüht wird. In der zweiten Stufe der Dampfeinführungsvorrichtung strömt der Dampf durch eine zweite Lochblende, durch die der Dampf im Kondensatorhals und über den Kühlrohren des Kondensators verteilt wird.
Eine Lochblende der ersten Stufe der Dampfeinführungsvorrichtung ist aus mehreren ebenen Bauteilen fertiggestellt, nämlich einem Teil für den Mantel des Kegelstumpfes, einem Abschlussteil für die Spitze des Kegels und einem Übergangsteil für die Verbindung mit dem Ende der Bypass-Leitung. Die Öffnungen der Lochblende werden in das noch ebene Teil des Kegelmantels gebohrt, das danach in einen Kegel warmumformt und zusammengeschweisst wird. Das Abschlussteil für die Spitze des Kegels wird sodann mit dem Kegelstumpf und das Übergangsteil mit dem Ende der Bypass-Leitung verschweisst.
Um eine genügende mechanische Stabilität des Kegels mit einer Vielzahl von Bohröffnungen zu erzielen, sind relativ grosse Wanddicken notwendig. Je grösser die Wanddicke, desto grösser auch die thermischen Spannungen. Wie erwähnt ist diese Lochblende einem sehr grossen Temperaturgradienten ausgesetzt. Im Einsatz führt also der erhebliche Temperaturgradient von einer zur anderen Seite der Lochblende bei grosse Wanddicken zu entsprechend grossen thermischen Spannungen, woraus sich Risse im Material bilden können. Auch beim Prozess der Warmumformung können sich bereits kleine Risse bilden, die sich später während des Betriebs vergrössern und schliesslich zu einem Materialbruch führen können. Durch eine solche Riss- oder Bruchanfälligkeit ist die Betriebssicherheit der Kraftwerksanlage beeinträchtigt, denn ein Schaden an der Lochblende kann nur durch eine Reparatur unter Abschalten der gesamten Anlage behoben werden. Weiter ist die kostenaufwendige Herstellung der Lochblende nachteilig. Einerseits erfordert die Fertigung der mehreren Einzelteile sowie die Schweissarbeit bei ihrem Zusammenbau einen grossen Fabrikations- und Kostenaufwand. Anderseits wird bei der Umformung in den Kegel die Geometrie der gebohrten Öffnungen verzerrt, sodass gegebenenfalls die Öffnungen nachbearbeitet werden müssen.
Darstellung der Erfindung
Es ist die Aufgabe der Erfindung eine Lochblende für eine Dampfeinführungsvorrichtung in der Bypass-Leitung einer Dampfkraftwerksanlage zu schaffen, die im Vergleich zum beschriebenen Stand der Technik durch eine verbesserte thermische Standfestigkeit eine erhöhte Betriebssicherheit besitzt und einen geringeren Fabrikations- und Kostenaufwand erfordert.
Die Aufgabe wird durch eine Dampfeinführungsvorrichtung gemäss dem Oberbegriff des ersten Anspruchs gelöst, deren Lochblende aus einem einzigen kugelförmigen Teil besteht.
Der Hauptvorteil einer Lochblende dieser Art liegt in der erhöhten mechanischen Stabilität und thermischen Belastbarkeit der Lochblende und der damit erreichten Betriebssicherheit der Dampfeinführungsvorrichtung. Dadurch ist auch die Betriebssicherheit der gesamten Kraftwerksanlage erhöht, da eine längere Betriebszeit der Vorrichtung ohne Reparaturen gewährleistet ist.
Im Vergleich zu einer Kegelform ist eine Kugelform an sich mechanisch stabiler. Die gewählte Form der Blende gewährt also im Vergleich zum Stand der Technik eine erhöhte mechanische Stabilität. Aufgrund dieser erhöhten formbedingten Stabilität besitzt die erfindungsgemässe Blende eine kleinere Wanddicke als die kegelförmige, wobei die für die Blende erforderliche Stabilität dennoch gewährleistet ist. Eine kleinere Wanddicke erbringt weiter den Vorteil, dass die durch den Temperaturgradienten hervorgerufenen thermischen Spannungen im Material kleiner sind. Dadurch ist die thermische Belastbarkeit wesentlich erhöht und die Bruchanfälligkeit der Blende verringert.
In einer bevorzugten Ausführung sind die Öffnungen der Lochblende derart angeordnet, dass jede Öffnung zu jeder nächstliegenden Öffnung äquidistant ist. Dies bewirkt ebenfalls eine gleichmässige Materialstärke und thermische Standfestigkeit der Blende.
Die einteilige, kugelförmige Blende wird durch einen Pressvorgang hergestellt. Nach Erreichen der gewünschten Form wird das Werkstück nachgeglüht und kontrolliert abgekühlt und entspannt. Das Endprodukt weist durch diese Fertigungsmethode minimale Materialspannungen auf, wodurch die thermische Belastbarkeit der Blende im Betrieb begünstigt wird.
Ein zweiter Vorteil liegt in der Kostenreduktion für die Fabrikation der Lochblende. Dies wird in erster Linie durch die Reduktion der Anzahl Teile auf ein einziges Teil und der Anzahl der Bearbeitungsschritte erzielt. Zur Fertigung der Blende ist nur ein Pressvorgang notwendig, und es sind keine Schweissvorgänge mehr erforderlich. Es entfällt die separate Fertigung und Montage eines Abschlussteils, wie es bei der kegelförmigen Lochblende der Fall war, und insbesondere auch eines Übergangsstücks zwischen der Lochblende und dem Ende der Bypass-Leitung. Die kugelförmige Lochblende weist einen geraden Bord auf, dessen Durchmesser dem Durchmesser der Bypass-Leitung angepasst ist. Bei der Montage wird die Lochblende ohne die Hilfe eines separat gefertigten Übergangsstückes direkt auf das Ende der Bypass-Leitung aufgeschweisst.
Schliesslich wird das Bohren der Öffnungen in der Lochblende nach dem Pressvorgang der Blende mittels NC-Maschine vorgenommen. Eine Nachbearbeitung der Öffnungen wie im Stand der Technik ist nicht mehr erforderlich, wodurch weiterer Fabrikationsaufwand eingespart wird.
Kurze Beschreibung der Zeichnungen
Es zeigen:
  • Figur 1 ein Bypass-Leitung mit einer Dampfeinführungsvorrichtung und einem Kondensator verbunden,
  • Figur 2 die erfindungsgemässe Lochblende der Dampfeinführungsvorrichtung im Detail,
  • Figur 3 eine Vorderansicht der Lochgeometrie der erfindungsgemässen Lochblende.
  • Weg der Ausführung der Erfindung
    Figur 1 zeigt einen Querschnitt einer Dampfeinführungsvorrichtung 1 in einer Dampfkraftwerksanlage. Eine Bypass-Leitung 2 führt von einem nicht dargestellten Kessel der Anlage zur Dampfeinführungsvorrichtung 1. Diese ist mit dem Kondensator 9 verbunden, wobei sie in den Kondensatorhals 7 des Kondensators 9 hereinragt. Während des An- oder Abfahrens oder eines kurzfristigen Abschaltens der Kraftwerksanlage wird gemäss der Pfeilrichtung heisser Dampf vom Kessel mit einer Temperatur von über 500 °C durch die Bypass-Leitung 2 geleitet, worauf er auf eine erste Lochblende 3 der Dampfeinführungsvorrichtung trifft. Der Dampf gelangt durch Öffnungen in der Lochblende 3 und wird dadurch aufgefächert. Die Lochblende bezweckt, den Dampfstrom so stark wie möglich aufzuweiten, sodass er die nachfolgende Enthitzungskammer 4 möglichst ausfüllt. In der Enthitzungskammer 4 sind mehrere Düsen 6 angeordnet, die kühles Kondensat in Form von Wassertropfen in die Kammer einspritzen. Hier wird der Dampf durch Vermischung mit dem Wasser enthitzt. Zusätzlich zur Abkühlung wird der Dampf in der Kammer durch Verwirbelungen entspannt. Am Ende der Enthitzungskammer 4 gelangt der Dampf durch die Öffnungen 8' einer zweiten Lochblende 8. Diese zweite Lochblende 8 ist halbzylindrisch geformt, wobei der Zylinder in die Ebene der Zeichnung hereinragt sowie aus der Ebene der Zeichnung herausragt. Die Lochblende 8 bewirkt eine regelmässige Verteilung des abgekühlten Dampfes in einer Ebene im Kondensatorhals 7 über den Rohrbündeln 10. Aus dieser Ebene wird der Dampf in den Kondensator 9 hineingesaugt und an den Kühlrohren in den Rohrbündeln 10 kondensiert.
    Figur 2 zeigt die erfindungsgemässe erste Lochblende 3 im Detail. Die Lochblende 3 hat in dieser Ausführung die Form eines Korbbogenbodens. Diese Form ist zum Beispiel auch unter der Deutschen Industrienormnummer 28013 bekannt. Sie zeichnet sich insbesondere durch den kugelförmigen Mittelteil, wodurch die Blende eine erhöhte mechanische Stabilität besitzt. Sie ist deshalb mit dünneren Wänden ausgeführt und besitzt dennoch die notwendige Stabilität. Der Korbbogenboden mit dem geraden Bord wird in einem einzigen Pressvorgang hergestellt. Die Öffnungen 12 werden nach dem Pressvorgang mittels einer programmierbaren, auf fünf Achsen arbeitenden Bohrmaschine (NC-Maschine) gebohrt. Mit dieser Bearbeitungsweise wird erreicht, dass die Achsen der Öffnungen 12 sich jeweils im gleichen Mittelpunkt schneiden. Durch diese Orientierung der Öffnungen 12 wird eine gleichmässigere Auffächerung des Dampfstroms bewirkt. Der gerade geformte Bord des Korbbogenbodens wird direkt auf das Ende der Bypass-Leitung 2 aufgeschweisst. Die Anordnung der Bohröffnungen 12 der erfindungsgemässen Lochblende 3 ist in Figur 3 gezeigt. Sie zeichnet sich dadurch aus, dass die Distanz zwischen benachbarten Öffnungen 12 jeweils gleich ist. Dadurch wird die mechanische Stabilität über die gesamte Fläche der Blende begünstigt. Die Koordinaten der Öffnungen werden dabei gemäss der Krümmung des Korbbogenbodens und der erforderlichen Durchmesser der Öffnungen berechnet und direkt der NC-Maschine für die Fertigung zugeführt.
    Durch die Kugelform der Lochblende ragt die Lochblende weniger weit in die Enthitzungskammer als eine kegelförmige Lochblende. Dies hat den Vorteil, dass Wassertropfen, die nach Abschalten der Kondensatdüsen 6 in der Kondensatleitung sich befinden und in die Enthitzungskammer fallen, nicht auf die heisse Lochblende gelangen. Solche Tropfen würden sonst einen lokalen Thermoschock und möglicherweise eine daraus resultierende Erosion der Blende verursachen.
    Bezugszeichenliste
    1
    Dampfeinführungsvorrichtung
    2
    Bypass-Leitung
    3
    kugelförmige Lochblende
    4
    Enthitzungskammer
    5
    Kondensatzufuhdeitung
    6
    Düse
    7
    Kondensatorhals
    8
    zweite Lochblende
    8'
    Öffnungen
    9
    Kondensator
    10
    Kühlrohrbündel
    11
    Wand der Enthitzungskammer
    12
    Öffnungen
    13
    Bord
    14
    Verbindungsstelle

    Claims (8)

    1. Dampfeinführungsvorrichtung (1) in einer Kraftwerksanlage mit einer Bypass-Leitung (2), die von einem Kessel zu einem Kondensator (9) führt, wobei die Dampfeinführungsvorrichtung (1) in der Bypass-Leitung (2) und vor dem Kondensatorhals (7) angeordnet ist
      und eine Enthitzungskammer (4), eine erste Lochblende (3) am Anfang der Enthitzungskammer (4), eine zweite Lochblende (8) am Ende der Enthitzungskammer (4) und mehrere Düsen (6) zwecks Einsprühung von Kühlkondensat in die Enthitzungskammer (4) aufweist,
      dadurch gekennzeichnet, dass
      die erste Lochblende (3) am Anfang der Enthitzungskammer (4) aus einem einzigen, kugelförmigen Teil besteht.
    2. Dampteinführungsvomchtung (1) nach Anspruch 1
      dadurch gekennzeichnet, dass
      die erste Lochblende (3) die Form eines Korbbogenbodens aufweist.
    3. Dampfeinführungsvorrichtung (1) nach Anspruch 1 oder 2
      dadurch gekennzeichnet, dass
      die erste Lochblende (3) einen geraden Bord aufweist, dessen Durchmesser dem der Bypass-Leitung (2) angepasst ist.
    4. Dampfeinführungsvorrichtung (1) nach Anspruch 3
      dadurch gekennzeichnet, dass
      die erste Lochblende (3) Öffnungen (12) aufweist, die von allen nächstliegenden Öffnungen (12) gleich weit entfernt ist.
    5. Dampfeinführungsvorrichtung (1) nach Anspruch (4)
      dadurch gekennzeichnet, dass
      die Achsen aller Öffnungen (12) sich in einem Punkt schneiden.
    6. Dampfeinführungsvorrichtung (1) nach Anspruch 5
      dadurch gekennzeichnet, dass
      die erste Lochblende (3)auf das Ende der Bypass-Leitung (2) aufgeschweisst ist.
    7. Dampfeinführungsvorrichtung (1) nach Anspruch 6
      dadurch gekennzeichnet, dass
      das Ende der ersten Lochblende (3) von den Düsen (6) beabstandet sind, sodass die Lochblende (3) frei von Wassertropfen bleibt, die aus den geschlossenen Düsen (6) fallen.
    8. Verfahren zur Herstellung einer Dampfeinführungsvorrichtung nach den Ansprüchen 1-7
      dadurch gekennzeichnet, dass
      die kugelförmige Lochblende (3) durch Erhitzen und Pressen gefertigt wird und nach dem Pressen die Lochblende (3) entspannt wird und die Öffnungen (12) gebohrt werden.
    EP98810384A 1998-04-30 1998-04-30 Dampfeinführungsvorrichtung in Kraftwerksanlage Withdrawn EP0953731A1 (de)

    Priority Applications (5)

    Application Number Priority Date Filing Date Title
    EP98810384A EP0953731A1 (de) 1998-04-30 1998-04-30 Dampfeinführungsvorrichtung in Kraftwerksanlage
    IDP990380D ID22555A (id) 1998-04-30 1999-04-23 Alat introduksi uap di dalam suatu pembangkit tenaga uap
    US09/299,647 US6189871B1 (en) 1998-04-30 1999-04-24 Steam introduction device in a power plant
    JP11118473A JP2000054807A (ja) 1998-04-30 1999-04-26 パワ―プラントにおける蒸気導入装置
    AU25015/99A AU743291B2 (en) 1998-04-30 1999-04-29 Steam introduction device in a power plant

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP98810384A EP0953731A1 (de) 1998-04-30 1998-04-30 Dampfeinführungsvorrichtung in Kraftwerksanlage

    Publications (1)

    Publication Number Publication Date
    EP0953731A1 true EP0953731A1 (de) 1999-11-03

    Family

    ID=8236061

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98810384A Withdrawn EP0953731A1 (de) 1998-04-30 1998-04-30 Dampfeinführungsvorrichtung in Kraftwerksanlage

    Country Status (5)

    Country Link
    US (1) US6189871B1 (de)
    EP (1) EP0953731A1 (de)
    JP (1) JP2000054807A (de)
    AU (1) AU743291B2 (de)
    ID (1) ID22555A (de)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1260782A1 (de) 2001-05-21 2002-11-27 ALSTOM (Switzerland) Ltd Dampfkondensator
    US6550249B2 (en) 2000-07-11 2003-04-22 Alstom (Switzerland) Ltd Condenser neck between a steam turbine and a condenser
    EP3591179A1 (de) * 2018-07-03 2020-01-08 Siemens Aktiengesellschaft Umleitdampfeinführung

    Families Citing this family (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    SE517823C2 (sv) * 2000-11-29 2002-07-16 Tetra Laval Holdings & Finance Reglerbar ånginjektor
    US20020190404A1 (en) * 2001-03-27 2002-12-19 Baarda Isaac F. Gas/liquid contact chamber and a contaminated water treatment system incorporating said chamber
    US7055324B2 (en) * 2003-03-12 2006-06-06 Fisher Controls International Llc Noise abatement device and method for air-cooled condensing systems
    US7584822B2 (en) * 2003-08-08 2009-09-08 Fisher Controls International Llc Noise level reduction of sparger assemblies
    US7044437B1 (en) * 2004-11-12 2006-05-16 Fisher Controls International Llc. Flexible size sparger for air cooled condensors
    JP5864886B2 (ja) * 2011-04-20 2016-02-17 東京電力株式会社 凝縮装置
    EP3104107B1 (de) * 2015-06-12 2018-08-08 General Electric Technology GmbH Dampfentsorgungsvorrichtung für ein kernkraftwerk
    US10731513B2 (en) * 2017-01-31 2020-08-04 Control Components, Inc. Compact multi-stage condenser dump device

    Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5749004A (en) * 1980-09-10 1982-03-20 Hitachi Ltd In-flowing device for bypassing steam to condenser of turbine
    EP0108298A1 (de) * 1982-11-02 1984-05-16 Siemens Aktiengesellschaft Dampfturbinenkondensator mit mindestens einer in den Dampfdom einmündenden Umleitdampfeinführung
    US5338496A (en) * 1993-04-22 1994-08-16 Atwood & Morrill Co., Inc. Plate type pressure-reducting desuperheater
    JPH08303209A (ja) * 1995-05-10 1996-11-19 Mitsubishi Heavy Ind Ltd 空冷復水器用タービンバイパス管

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US1473449A (en) * 1920-06-28 1923-11-06 Ralph O Stearns Condenser for steam-driven machinery
    US1773054A (en) * 1928-04-21 1930-08-12 Elliott Co Method and apparatus for the treatment of steam
    US2091664A (en) * 1935-11-21 1937-08-31 Self Locking Carton Co Carton
    US3287001A (en) * 1962-12-06 1966-11-22 Schutte & Koerting Co Steam desuperheater
    US3318589A (en) * 1964-12-28 1967-05-09 Girdler Corp Desuperheater
    US3732851A (en) * 1971-05-26 1973-05-15 R Self Method of and device for conditioning steam
    US3981946A (en) * 1974-02-12 1976-09-21 Tokico Ltd. Perforated plate of steam reforming valve
    CH641540A5 (de) * 1979-09-05 1984-02-29 Sulzer Ag Dampf-drosselventil.
    US4474477A (en) * 1983-06-24 1984-10-02 Barrett, Haentjens & Co. Mixing apparatus
    NL9102185A (nl) * 1991-12-24 1993-07-16 Hollander Eng Bv Valstroomverhitterinstallatie.
    US5385121A (en) * 1993-01-19 1995-01-31 Keystone International Holdings Corp. Steam desuperheater

    Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5749004A (en) * 1980-09-10 1982-03-20 Hitachi Ltd In-flowing device for bypassing steam to condenser of turbine
    EP0108298A1 (de) * 1982-11-02 1984-05-16 Siemens Aktiengesellschaft Dampfturbinenkondensator mit mindestens einer in den Dampfdom einmündenden Umleitdampfeinführung
    US5338496A (en) * 1993-04-22 1994-08-16 Atwood & Morrill Co., Inc. Plate type pressure-reducting desuperheater
    JPH08303209A (ja) * 1995-05-10 1996-11-19 Mitsubishi Heavy Ind Ltd 空冷復水器用タービンバイパス管

    Non-Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Title
    KUEFFER M: "EXPLOIT TURBINE BYPASS SYSTEMS FOR IMPROVEMENTS IN OPERATION", POWER, vol. 134, no. 10, 1 October 1990 (1990-10-01), pages 71 - 72, 74, XP000161148 *
    KUFFER M: "STAND DER TECHNIK BEI DAMPFUMFORMVENTILEN TEIL 1: AUFGABENSTELLUNG, EINSATZBEREICH UND AUSLEGUNG", VGB KRAFTWERKSTECHNIK, vol. 73, no. 11, 1 November 1993 (1993-11-01), pages 947 - 953, XP000406653 *
    PATENT ABSTRACTS OF JAPAN vol. 006, no. 124 (M - 141) 9 July 1982 (1982-07-09) *
    PATENT ABSTRACTS OF JAPAN vol. 097, no. 003 31 March 1997 (1997-03-31) *

    Cited By (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6550249B2 (en) 2000-07-11 2003-04-22 Alstom (Switzerland) Ltd Condenser neck between a steam turbine and a condenser
    EP1260782A1 (de) 2001-05-21 2002-11-27 ALSTOM (Switzerland) Ltd Dampfkondensator
    EP3591179A1 (de) * 2018-07-03 2020-01-08 Siemens Aktiengesellschaft Umleitdampfeinführung
    WO2020007609A1 (de) * 2018-07-03 2020-01-09 Siemens Aktiengesellschaft Umleitdampfeinführung
    RU2756941C1 (ru) * 2018-07-03 2021-10-07 Сименс Энерджи Глоубл Гмбх Унд Ко. Кг Ввод пара в байпасе

    Also Published As

    Publication number Publication date
    AU2501599A (en) 1999-11-11
    AU743291B2 (en) 2002-01-24
    JP2000054807A (ja) 2000-02-22
    ID22555A (id) 1999-11-04
    US6189871B1 (en) 2001-02-20

    Similar Documents

    Publication Publication Date Title
    DE19605675C2 (de) Verfahren zum aerodynamischen Texturieren sowie Texturierdüse
    DE4015142C2 (de)
    EP3692188B1 (de) Vorrichtung für die extrusion von filamenten und herstellung von spinnvliesstoffen
    EP0953731A1 (de) Dampfeinführungsvorrichtung in Kraftwerksanlage
    CH430567A (fr) Sac de forte résistance, et procédé pour sa fabrication
    EP1323852A1 (de) Vorrichtung zur Herstellung einer Spinnvliesbahn
    DE69324705T2 (de) Dampfkühler
    EP1786961A1 (de) Luftdüsenspinnvorrichtung
    DE4036734C1 (de)
    EP0768424A2 (de) Heizwalze
    EP0048325A2 (de) Heissgaskühler mit einem Druckbehälter
    DE3314278C2 (de)
    DE4339949A1 (de) Vorrichtung zum Beaufschlagen planer Werkstückoberflächen mit einem Gas, insbesondere der Stirnflächen eines Bandbundes in einem Kammerofen
    DE69126024T2 (de) Sicherheitsvorrichtung für eine Verbrennungsvorrichtung
    DE2703024C3 (de) Vorrichtung zum Trocknen von Naßdampf und anschließendem Oberhitzen des getrockneten Dampfes
    DE1660661B2 (de) Trockenspinnvorrichtung
    DE1783165A1 (de) Vorrichtung zur speisung der blasoeffnungen im boden eines konverters
    DE10122992C1 (de) Vorrichtung zum Entölen von Massenteilen mit strukturierter Oberfläche mittels eines Druckluftstrahles
    DE2732012C2 (de) Verfahren zur Herstellung von Glasfasern
    DE1206718B (de) Trockenvorrichtung fuer Faserstoffbahnen
    DE19650965C1 (de) Vorrichtung zur gleichmäßigen Beaufschlagung einer planen Oberfläche eines Werkstückes mit einem Fluid
    DE10117989C1 (de) Dampferzeuger
    EP2345331A1 (de) Zuführeinrichtung für ein Beschichtungsmaterial
    EP3320967B1 (de) Einrichtung und verfahren zur verhinderung der korrosion an einem gaseintrittsstutzen bei einer salpetersäurekondensation
    EP1177335A1 (de) Dampfbeschleierung für spinnsysteme mit rechteckdüsen

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): CH DE LI

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20000413

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ASEA BROWN BOVERI AG

    AKX Designation fees paid

    Free format text: CH DE LI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM

    17Q First examination report despatched

    Effective date: 20020812

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM (SWITZERLAND) LTD

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20030906