EP0950855A2 - Verfahren und Vorrichtung zur Verbrennung von partikelförmigen Feststoffen - Google Patents

Verfahren und Vorrichtung zur Verbrennung von partikelförmigen Feststoffen Download PDF

Info

Publication number
EP0950855A2
EP0950855A2 EP99103353A EP99103353A EP0950855A2 EP 0950855 A2 EP0950855 A2 EP 0950855A2 EP 99103353 A EP99103353 A EP 99103353A EP 99103353 A EP99103353 A EP 99103353A EP 0950855 A2 EP0950855 A2 EP 0950855A2
Authority
EP
European Patent Office
Prior art keywords
air
combustion chamber
fresh air
cyclone furnace
cyclone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99103353A
Other languages
English (en)
French (fr)
Other versions
EP0950855A3 (de
Inventor
Erwin Dipl.-Ing. Brunnmair
Gerhard Dipl.-Ing. Moosmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andritz AG
Original Assignee
Andritz Patentverwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andritz Patentverwaltungs GmbH filed Critical Andritz Patentverwaltungs GmbH
Publication of EP0950855A2 publication Critical patent/EP0950855A2/de
Publication of EP0950855A3 publication Critical patent/EP0950855A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/32Incineration of waste; Incinerator constructions; Details, accessories or control therefor the waste being subjected to a whirling movement, e.g. cyclonic incinerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • F23G5/165Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber arranged at a different level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/20Waste feed arrangements using airblast or pneumatic feeding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/12Sludge, slurries or mixtures of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/26Biowaste

Definitions

  • the invention relates to a method and a device for combustion of particulate solids, especially biological ones Waste materials with a low calorific value.
  • Such a method is known for example from WO 92/14969.
  • This process uses finely ground, dried sludge together with primary air in a bricked combustion chamber for combustion blown in.
  • the cyclone combustion chamber in which mainly takes place in solid combustion, becomes solid set amount of damp, reduced oxygen content, air to prevent of the sintered ash.
  • the amount of air for the primary air just like that of the secondary air, is fixed for a certain furnace size set.
  • the heating output is regulated by adding more or less fuel with the fixed primary air volume.
  • the aim of the invention is the combustion of organic fuels, especially sewage sludge, at low temperatures, preferably at 850 ° C, and thus fuels with a low ash melting point without Burn ash sintering and also better separation to reach the ashes to protect the following components.
  • the invention is therefore characterized in that the waste materials ge together with fresh air in a substoichiometric ratio into the combustion chamber be blown in.
  • the fresh air flow can therefore easily match the Combustion capacity can be adjusted.
  • cooling air or additional fresh air creates another Oxygen supply and thus further combustion under air or Excess oxygen. This ensures that a complete The fuel burns out and also prevents CO formation becomes.
  • a favorable further development of the invention is characterized in that that cooling air is introduced into the combustion chamber above the fresh air supply becomes. This ensures good dust separation without harmful ones Secondary flow reached.
  • An advantageous embodiment of the invention is characterized in that that a moist, oxygen-reduced air is used as cooling air is, the air from the drying circuit upstream Sludge drying system can be removed. Thereby the combustion temperature can already be found in the upper part of the combustion chamber keep it low.
  • An advantageous development of the invention is characterized in that that additional cooling air is fed into the core of the cyclone. Thereby can favorably overheat and melt ash inside the Combustion chamber can be avoided.
  • a favorable further development of the invention is characterized in that that the cooling air quantities are different in size or adjustable. This makes it easy to regulate the temperature in the combustion chamber.
  • a favorable embodiment of the invention is characterized in that that additional fresh air is supplied through a dip tube. So that can the ash separation can be significantly improved.
  • An advantageous embodiment of the invention is characterized in that that the fresh air supply is regulated depending on the burner output.
  • the cooling air supply can be dependent on the Burner output can be regulated. This way you can always get an optimal one Combustion and low temperature reach and then on Avoid sintering the ashes.
  • the invention further relates to a device for the combustion of particulate solids, especially biological waste with low calorific value, with a cyclone furnace. It is according to the invention characterized in that the cyclone furnace a guide tube for targeted Fresh air supply, also in the transition (cyclone neck) between the secondary combustion chamber and the primary combustion chamber of the cyclone furnace a dip tube can be provided. This makes it special good adaptation of the fresh air volume to the combustion performance possible.
  • An advantageous embodiment of the invention is characterized in that that the guide tube is arranged centrally in the cyclone furnace, the guide tube Air outlet openings in the area of the primary combustion chamber of the cyclone furnace can have. This allows the fresh air to be directed to the required positions are introduced.
  • a favorable further development of the invention is characterized in that that the dip tube has a double jacket, through the additional Fresh air is introduced into the primary combustion chamber. With that, besides the fresh air supply also ensures appropriate cooling become.
  • FIG. 1 shows a cyclone furnace according to the invention
  • FIG. 2 shows another 3 shows a detail from FIG. 2
  • FIG. 4 shows a variant of the invention analog section
  • Fig. 5 shows a section through Fig. 1 along line V-V
  • FIG. 6 shows an overall system for drying and burning Represents mud.
  • Fig. 1 shows a cyclone furnace 1 with an adjustable and tangentially arranged nozzle 2, through the ground fuel, in the
  • the main thing is biological waste, together with fresh air as combustion air in a substoichiometric ratio in the primary part 3 of the Combustion chamber 4 is blown.
  • the mixture is burned in the oven a burner 5 to support materials with low calorific value or is arranged in the start-up phase.
  • the ashes are over one Discharge 6 discharged from the cyclone furnace 1.
  • the fed through the nozzle 2 Fresh air flow can affect the combustion output to the desired extent or the amount of fuel to be adjusted.
  • the cooling air is tangential as secondary air for combustion via an inlet 6 ' blown into the combustion chamber 3 above the primary air supply 2.
  • the finely ground fuel from the primary air supply 2 contains, via the cyclone neck 8 into the secondary combustion chamber 9 is carried out.
  • the flue gases then exit through an outlet 10 the cyclone furnace 1 and are subsequently used for the Heat e.g. a heat exchanger for heating the dryer air an upstream dryer circuit.
  • Air from the dryer circuit is fed to the incinerator.
  • Air from the dryer circuit is fed to the incinerator.
  • a central guide tube 12 can be used through which through targeted arrangement of holes 13 cooling air into the interior of the Combustion chamber 3 can be passed, with an overheating inside of the combustion chamber 3 can be avoided.
  • the guide tube 12 extends with its lower end into the ash discharge 6.
  • Fig. 2 shows an analog design, the guide tube 12 is omitted.
  • a 1 represents the dip tube 43, which in the combustion chamber 3 is sufficient.
  • FIG. 3 shows an example of the area of the cyclone neck 8 with dip tube 43 according to the embodiment of Fig. 2.
  • feed pipes here 44 for additional fresh air to see that in a double jacket 45 of Dip tube 43 opens.
  • the fresh air supplied is here as cooling air used and then led to the core of the cyclone. From there it flows with the remaining air from the combustion chamber 3 into the Secondary combustion chamber 9.
  • Fig. 4 shows an analog section like Fig. 3. In addition, here is still to see the guide tube 12. 4 thus shows the combination of the guide tube 12 and dip tube 43.
  • Fig. 5 shows a section along line V-V in Fig. 1, with particular emphasis here the arrangement of the tangential nozzles 2, 11 and the secondary air supply 6 are recognizable.
  • the arrangement of the guide tube 12 can also be seen and the burner 5.
  • the last fresh air supply for post-combustion can be replaced via an exchangeable, internally cooled dip tube 43 (see FIG. 3, 4) take place, whereby the ash separation compared to the known Systems is significantly improved.
  • FIG. 6 shows the system diagram of an overall system for sludge treatment / Sludge disposal.
  • the facility consists of one Drying part 14 with sludge dryer 21 and air circulation, and a combustion part 15 with a cyclone furnace 1.
  • Pre-dewatered sludge is fed to a silo 17 via a line 16 and is already dried with a collected in silo 18 Sludge mixed in mixer 19. This mixture is made over a Line 20, into which hot drying air is also blown, into one Dryer 21 introduced.
  • a (three-pass) drum dryer is a (three-pass) drum dryer. However, it can also be a fluidized bed or fluid bed dryer or another directly heated dryer can be used.
  • the one with dried Sludge granules loaded with moist exhaust air is a filter 22 fed to separate the solid particles.
  • a circulating air fan 23 the moist exhaust air is fed to a condenser 24, which is designed here as a spray condenser.
  • the dried and cooled Air is passed through a recirculation line 25, the majority via line 26 and a heat exchanger 27 in which they are heated again is introduced into line 20, whereupon the air circuit again begins.
  • the remaining part of the circulating air is via line 28 as secondary air as described above at various points in the cyclone furnace blown in.
  • the exhaust gas that is discharged from the cyclone furnace 1 exits is fed via line 29 to the heat exchanger 27, in which it its energy content to the circulating air for heating the drying air delivers.
  • the flue gas then goes through a cleaning system, represented here by a dust filter 30 and a cooler 31, which here is again designed as a spray cooler, and is via line 32 to the Atmosphere.
  • the solid granules from the filter 22 are first fed to a cooler 33, from where it is fed to a sieve 34. Part of the granules is fed back into the silo 18 via line 35 and serves as backmixing material, sufficient dryness for the material supply to ensure the dryer 21.
  • the regulation of the material supply and mixing takes place in a known manner.
  • a partial flow of the material from screen 34 is fed to a silo 36 and then finely ground in a crusher 37.
  • This material is called Fuel from line 38 together with the combustion air Line 39 injected into the cyclone furnace 1.
  • the cyclone furnace 1 was already described above.
  • the resulting ash is cooled in a cooler 40 and discharged from the system and deposited via conveyors 41, 42 or recycled.
  • the invention is not restricted to the examples shown. It can e.g. B. other types of dryers or condensers etc. ver be applied.
  • the entire drying section can be done differently if it is a recirculation system in which the solid preferably crushed at the end and fed to the cyclone furnace becomes.
  • the exhaust gas heat exchanger can also be arranged elsewhere become.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Treatment Of Sludge (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Verbrennung von partikelförmigen Feststoffen, insbesondere von biologischen Abfallstoffen mit geringem Heizwert. Sie ist vornehmlich dadurch gekennzeichnet, daß die Abfallstoffe gemeinsam mit Frischluft in unterstöchiometrischem Verhältnis in die Brennkammer eingeblasen werden. Die Erfindung betrifft auch eine Vorrichtung zur Verbrennung von partikelförmigen Feststoffen, insbesondere von biologischen Abfallstoffen mit geringem Heizwert, mit einem Zyklonofen, insbesondere zur Durchführung des Verfahrens, dadurch gekennzeichnet, daß der Zyklonofen (1) ein Leitrohr (12) zur gezielten Zufuhr von Frischluft aufweist. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Verbrennung von partikelförmigen Feststoffen, insbesondere von biologischen Abfallstoffen mit geringem Heizwert.
Ein derartiges Verfahren ist beispielsweise aus der WO 92/14969 bekannt. Bei diesem Verfahren wird fein gemahlener, getrockneter Schlamm gemeinsam mit Primärluft in eine ausgemauerte Brennkammer zur Verbrennung eingeblasen. Im unteren Bereich der Zyklonbrennkammer, in dem hauptsächlich die Feststoffverbrennung stattfindet, wird eine fest eingestellte Menge feuchte, im Sauerstoffgehalt reduzierte, Luft zur Verhinderung der Aschesinterung eingeblasen. Mit dieser Luft wird der Bereich des Ascheaustrags gekühlt. Die Luftmenge für die Primärluft, ebenso wie jene der Sekundärluft, wird für eine bestimmte Ofengröße fix eingestellt. Die Regelung der Heizleistung erfolgt über die Zugabe von mehr oder weniger Brennstoff mit der fix eingestellten Primärluftmenge. Dieses Verfahren hat den Nachteil, daß die Regelbarkeit schwierig ist, daß nur geringe Leistungsveränderungen möglich sind und daß schwankende Brennstoffmengen bzw. Heizwerte zu Störungen führen.
Ziel der Erfindung ist es, die Verbrennung von organischen Brennstoffen, insbesondere Klärschlamm, bei niedrigen Temperaturen, vorzugsweise bei 850 °C, und somit Brennstoffe mit niedrigem Ascheschmelzpunkt ohne Aschesinterung zu verbrennen und zusätzlich eine bessere Abscheidung der Asche zum Schutz der nachfolgenden Bauteile zu erreichen.
Die Erfindung ist daher dadurch gekennzeichnet, daß die Abfallstoffe ge meinsam mit Frischluft in unterstöchiometrischem Verhältnis in die Brennkammer eingeblasen werden. Der Frischluftstrom kann damit gut an die Verbrennungsleistung angepaßt werden. Damit erfolgt vorerst eine Verbrennung unter Luft- bzw. Sauerstoffmangel. Durch die nachfolgende Zugabe von Kühlluft bzw. weiterer Frischluft kommt es zu einer weiteren Sauerstoffzufuhr und damit zu einer weiteren Verbrennung unter Luft- bzw. Sauerstoffüberschuß. Damit ist gewährleistet, daß ein vollständiger Ausbrand des Brennstoffes eintritt und außerdem die CO-Bildung verhindert wird.
Eine günstige Weiterbildung der Erfindung ist dadurch gekennzeichnet, daß Kühlluft oberhalb der Frischluftzufuhr in die Brennkammer eingebracht wird. Damit wird eine gute Staubabscheidung ohne schädliche Sekundärströmung erreicht.
Eine vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, daß als Kühlluft eine feuchte, im Sauerstoffgehalt reduzierte Luft verwendet wird, wobei die Luft aus dem Trocknungskreislauf einer vorgeschalteten Schlammtrocknungsanlage entnommen werden kann. Dadurch läßt sich die Verbrennungstemperatur bereits im oberen Teil der Brennkammer niedrig halten.
Eine vorteilhafte Weiterbildung der Erfindung ist dadurch gekennzeichnet, daß zusätzliche Kühlluft im Kern des Zyklons zugeführt wird. Dadurch kann günstig eine Überhitzung und Ascheschmelzung im Inneren des Verbrennungsraumes vermieden werden.
Eine günstige Weiterbildung der Erfindung ist dadurch gekennzeichnet, daß die Kühlluftmengen unterschiedlich groß bzw. einstellbar sind. Dadurch läßt sich die Temperatur im Brennraum gut regeln.
Eine günstige Ausgestaltung der Erfindung ist dadurch gekennzeichnet, daß zusätzliche Frischluft durch ein Tauchrohr zugeführt wird. Damit kann die Ascheabscheidung wesentlich verbessert werden.
Eine vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, daß die Frischluftzufuhr in Abhängigkeit der Brennerleistung geregelt wird. Alternativ oder auch zusätzlich kann die Kühlluftzufuhr in Abhängigkeit der Brennerleistung geregelt werden. Dadurch kann man immer eine optimale Verbrennung und niedrige Temperatur erreichen und in weiterer Folge ein Sintern der Asche vermeiden.
Weiters betrifft die Erfindung eine Vorrichtung zur Verbrennung von partikelförmigen Feststoffen, insbesondere von biologischen Abfallstoffen mit geringem Heizwert, mit einem Zyklonofen. Sie ist erfindungsgemäß dadurch gekennzeichnet, daß der Zyklonofen ein Leitrohr zur gezielten Zufuhr von Frischluft aufweist, wobei auch im Übergang (Zyklonhals) zwischen Sekundärbrennkammer und Primärbrennkammer des Zyklonofens ein Tauchrohr vorgesehen sein kann. Dadurch ist eine besonders gute Anpassung der Frischluftmenge an die Verbrennungsleistung möglich.
Eine vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, daß das Leitrohr zentral im Zyklonofen angeordnet ist, wobei das Leitrohr im Bereich der Primärbrennkammer des Zyklonofens Luftaustrittsöffnungen aufweisen kann. Dadurch kann gezielt die Frischluft an die benötigten Stellen eingebracht werden.
Eine günstige Weiterbildung der Erfindung ist dadurch gekennzeichnet, daß das Tauchrohr einen Doppelmantel aufweist, durch den zusätzliche Frischluft in die Primärbrennkammer eingebracht wird. Damit kann neben der Frischlufteinbringung auch für eine entsprechende Kühlung gesorgt werden.
Die Erfindung wird nun anhand der Zeichnungen beispielhaft beschrieben, wobei Fig. 1 einen Zyklonofen gemäß der Erfindung, Fig. 2 eine weitere Variante der Erfindung, Fig. 3 einen Ausschnitt aus Fig. 2, Fig. 4 einen analogen Ausschnitt, Fig. 5 einen Schnitt durch Fig. 1 gemäß Linie V-V und Fig. 6 eine Gesamtanlage zur Trocknung und Verbrennung von Schlamm darstellt.
Fig. 1 zeigt einen Zyklonofen 1 mit einer verstellbar ausgeführten und tangential angeordneten Düse 2, durch die gemahlener Brennstoff, in der Hauptsache biologische Abfälle, gemeinsam mit Frischluft als Verbrennungsluft in unterstöchiometrischem Verhältnis in den Primärteil 3 der Brennkammer 4 eingeblasen wird. Das Gemisch wird im Ofen verbrannt, wobei ein Brenner 5 zur Unterstützung bei Materialien mit geringem Heizwert oder in der Anfahrphase angeordnet ist. Die Asche wird über einen Austrag 6 aus dem Zyklonofen 1 ausgetragen. Der durch die Düse 2 zugeführte Frischluftstrom kann dabei in gewünschtem Umfang an die Verbrennungsleistung bzw. Brennstoffmenge angepaßt werden. Die Kühlluft wird als Sekundärluft zur Verbrennung über einen Einlaß 6' tangential oberhalb der Primärluftzufuhr 2 in den Brennraum 3 eingeblasen. Damit wird zum einen ein weiterer Anteil des für die Verbrennung notwendigen Sauerstoffes in die Brennkammer 3 gebracht und zusätzlich verhindert, daß eine für eine gute Staubabscheidung schädliche Sekundärströmung 7, die fein gemahlenen Brennstoff aus der Primärluftzufuhr 2 enthält, über den Zyklonhals 8 in die Sekundärbrennkammer 9 ausgetragen wird. Die Rauchgase treten dann über einen Auslaß 10 aus dem Zyklonofen 1 aus und werden in weiterer Folge zur Nutzung der Wärme z.B. einem Wärmetauscher zur Aufheizung der Trocknerumluft eines vorgeschalteten Trocknerkreislaufes zugeführt.
Durch Verwendung einer vorzugsweise von der Verbrennungsleistung abhängigen, feuchten, im Sauerstoffgehalt reduzierten Luftmenge als Sekundärluft läßt sich gleichzeitig die Verbrennungstemperatur bereits im oberen Teil der Primärbrennkammer 3 niedrig halten und erlaubt somit die Verbrennung von organischen Brennstoffen mit niedrigem Ascheschmelzpunkt ohne Gefahr zur Aschesinterung. Diese Sekundärluft wird vorteilhafterweise aus dem Trocknerkreislauf der gesamten Schlammbehandlungsanlage entnommen.
Im unteren Teil der Primärbrennkammer 3 wird über weitere tangential angeordnete Düsen 11 ebenfalls feuchte, im Sauerstoffgehalt reduzierte Luft aus dem Trocknerkreislauf der Verbrennungsanlage zugeführt. Durch Anpassung der Luftmenge läßt sich hier gezielt die Temperatur niedrig halten um ein Sintern der Asche zu vermeiden.
Zusätzlich kann ein zentrales Leitrohr 12 verwendet werden, durch das durch gezielte Anordnung von Bohrungen 13 Kühlluft in das Innere des Brennraumes 3 geleitet werden kann, womit eine Überhitzung im Inneren des Verbrennungsraumes 3 vermieden werden kann. Das Leitrohr 12 reicht mit seinem unteren Ende bis in den Ascheaustrag 6 hinein. Durch diese Kühlluftzufuhr wird ein sehr gleichmäßiges, niedriges Temperaturprofil über den gesamten Verbrennungsraum 3 erreicht, was außer zur Verhinderung von Aschesinterung noch zur Senkung des Stickoxidgehaltes in den bei 10 austretenden Rauchgasen beiträgt.
Fig. 2 zeigt eine analoge Ausführung, wobei das Leitrohr 12 entfällt. Eine weitere Änderung gegenüber Fig. 1 stellt das Tauchrohr 43 dar, das in den Verbrennungsraum 3 reicht.
Fig. 3 zeigt beispielhaft den Bereich des Zyklonhalses 8 mit Tauchrohr 43 gemäß der Ausgestaltung von Fig. 2. Es sind hier weiters die Zuführrohre 44 für zusätzliche Frischluft zu sehen, das in einen Doppelmantel 45 des Tauchrohres 43 mündet. Die zugeführte Frischluft wird hier als Kühlluft verwendet und anschließend zum Kern des Zyklons hingeleitet. Von dort strömt sie mit der übrigen Luft aus dem Verbrennungsraum 3 in die Sekundärbrennkammer 9.
Fig. 4 zeigt einen analogen Ausschnitt wie Fig. 3. Zusätzlich ist hier noch das Leitrohr 12 zu sehen. Fig. 4 zeigt somit die Kombination von Leitrohr 12 und Tauchrohr 43.
Fig. 5 zeigt einen Schnitt gemäß Linie V-V in Fig. 1, wobei hier besonders die Anordnung der tangentialen Düsen 2, 11 und der Sekundärluftzufuhr 6 erkennbar sind. Ebenfalls sieht man die Anordnung des Leitrohres 12 sowie des Brenners 5. Die letzte Frischluftzufuhr zur Nachverbrennung kann über ein austauschbares, innen gekühltes Tauchohr 43 (siehe Fig. 3, 4 )erfolgen, wodurch die Ascheabscheidung gegenüber den bekannten Systemen wesentlich verbessert wird.
Fig. 6 zeigt das Anlagenschema einer Gesamtanlage zur Schlammbehandlung / Schlammentsorgung. Die Anlage besteht aus einem Trocknungsteil 14 mit Schlammtrockner 21 und Umluftkreislauf, sowie einem Verbrennungsteil 15 mit Zyklonofen 1.
Vorentwässerter Schlamm wird über eine Leitung 16 einem Silo 17 zugeführt und wird mit einem in Silo 18 gesammelten, bereits getrockneten Schlamm im Mischer 19 vermischt. Diese Mischung wird über eine Leitung 20, in die auch heiße Trocknungsluft eingeblasen wird, in einen Trockner 21 eingebracht. Hier ist ein (Dreizug-) Trommeltrockner dargestellt. Es kann jedoch auch ein Wirbelschicht- oder Fließbett-Trockner oder ein anderer direkt beheizter Trockner eingesetzt werden. Die mit getrocknetem Schlammgranulat beladene feuchte Abluft wird einem Filter 22 zur Abtrennung der Feststoffteilchen zugeführt. Mittels eines Umluftventilators 23 wird die feuchte Abluft einem Kondensator 24 zugeleitet, der hier als Sprühkondensator ausgeführt ist. Die getrocknete und abgekühlte Luft wird über eine Umluftleitung 25 geführt, wobei der Großteil über Leitung 26 und einen Wärmetauscher 27, in dem sie wieder aufgeheizt wird, in Leitung 20 eingebracht wird, worauf der Luftkreislauf erneut beginnt. Der übrige Teil der Umluft wird über Leitung 28 als Sekundärluft wie oben bereits beschrieben an verschiedenen Stellen des Zyklonofens eingeblasen. Das Abgas, das über den Auslaß 10 aus dem Zyklonofen 1 austritt wird über Leitung 29 dem Wärmetauscher 27 zugeführt, in dem es seinen Energieinhalt an die Umluft zur Erwärmung der Trocknungsluft abgibt. Anschließend durchläuft das Rauchgas eine Reinigungsanlage, hier dargestellt durch ein Staubfilter 30 und einen Kühler 31, der hier wiederum als Sprühkühler ausgeführt ist, und wird über Leitung 32 an die Atmosphäre abgegeben.
Das Feststoffgranulat aus dem Filter 22 wird erst einem Kühler 33 zugeleitet, von wo es zu einem Sieb 34 geführt wird. Ein Teil des Granulates wird über Leitung 35 zurück in den Silo 18 geführt und dient als Rückmischmaterial, um einen ausreichenden Trockengehalt für die Materialzufuhr zum Trockner 21 zu gewährleisten. Die Regelung der Materialzufuhr und Mischung erfolgt auf bekannte Art.
Ein Teilstrom des Materials von Sieb 34 wird einem Silo 36 zugeführt und anschließend in einem Brecher 37 fein gemahlen. Dieses Material wird als Brennstoff über Leitung 38 gemeinsam mit der Verbrennungsluft aus Leitung 39 in den Zyklonofen 1 eingedüst. Der Zyklonofen 1 wurde bereits oben beschrieben. Die anfallende Asche wird in einem Kühler 40 gekühlt und über Förderer 41, 42 aus dem System ausgetragen und deponiert oder verwertet.
Die Erfindung ist nicht auf die dargestellten Beispiele beschränkt. Es können z. B. andere Typen von Trocknern oder Kondensatoren etc. ver wendet werden. Der gesamte Trocknungsteil kann anders ausgeführt werden, sofern es sich um ein Umluftsystem handelt, bei dem der Feststoff am Ende vorzugsweise zerkleinert und dem Zyklonofen zugeführt wird. Auch kann der Abgaswärmetauscher an anderer Stelle angeordnet werden.

Claims (14)

  1. Verfahren zur Verbrennung von partikelförmigen Feststoffen, insbesondere von biologischen Abfallstoffen mit geringem Heizwert, dadurch gekennzeichnet, daß die Abfallstoffe gemeinsam mit Frischluft in unterstöchiometrischem Verhältnis in die Brennkammer eingeblasen werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Kühlluft oberhalb der Frischluftzufuhr in die Brennkammer eingebracht wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß als Kühlluft eine feuchte, im Sauerstoffgehalt reduzierte Luft verwendet wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Luft aus dem Trocknungskreislauf einer vorgeschalteten Schlammtrocknungsanlage entnommen wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zusätzliche Kühlluft im Kern des Zyklons zugeführt wird.
  6. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die Kühlluftmengen unterschiedlich groß sind.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß zusätzliche Frischluft durch ein Tauchrohr zugeführt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Frischluftzufuhr in Abhängigkeit der Brennerleistung geregelt wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Kühlluftzufuhr in Abhängigkeit der Brennerleistung geregelt wird.
  10. Vorrichtung zur Verbrennung von partikelförmigen Feststoffen, insbesondere von biologischen Abfallstoffen mit geringem Heizwert, mit einem Zyklonofen, insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Zyklonofen (1) ein Leitrohr (12) zur gezielten Zufuhr von Frischluft aufweist.
  11. Vorrichtung zur Verbrennung von partikelförmigen Feststoffen, insbesondere von biologischen Abfallstoffen mit geringem Heizwert, mit einem Zyklonofen, insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß im Übergang (Zyklonhals (8)) zwischen Sekundärbrennkammer (9) und Primärbrennkammer (3) des Zyklonofens (1) ein Tauchrohr (43) vorgesehen ist.
  12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß das Leitrohr (12) zentral im Zyklonofen (1) angeordnet ist.
  13. Vorrichtung nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß das Leitrohr (12) im Bereich der Primärbrennkammer (3) des Zyklonofens (1) Luftaustrittsöffnungen (13) aufweist.
  14. Vorrichtung nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß das Tauchrohr (43) einen Doppelmantel (45) aufweist, durch den zusätzliche Frischluft in die Primärbrennkammer (3) eingebracht wird.
EP99103353A 1998-04-17 1999-02-20 Verfahren und Vorrichtung zur Verbrennung von partikelförmigen Feststoffen Withdrawn EP0950855A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT64798 1998-04-17
AT0064798A AT406901B (de) 1998-04-17 1998-04-17 Verfahren und vorrichtung zur verbrennung von partikelförmigen feststoffen

Publications (2)

Publication Number Publication Date
EP0950855A2 true EP0950855A2 (de) 1999-10-20
EP0950855A3 EP0950855A3 (de) 1999-12-29

Family

ID=3496118

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99103353A Withdrawn EP0950855A3 (de) 1998-04-17 1999-02-20 Verfahren und Vorrichtung zur Verbrennung von partikelförmigen Feststoffen

Country Status (9)

Country Link
US (2) US6216610B1 (de)
EP (1) EP0950855A3 (de)
JP (1) JPH11325439A (de)
KR (1) KR19990083127A (de)
AT (1) AT406901B (de)
CA (1) CA2266770A1 (de)
CZ (1) CZ125399A3 (de)
HU (1) HUP9900553A3 (de)
PL (1) PL332526A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2191506A1 (es) * 2000-03-22 2003-09-01 Tecnica Instaladora Iberica S Instalacion de postcombustion para aparatos generadores de efluentes con componentes organicos gaseosos.
CN106090882A (zh) * 2016-06-14 2016-11-09 西安圣华农业科技股份有限公司 分腔燃烧及自动除渣的生物质颗粒自动燃烧设备
CN110107901A (zh) * 2019-04-26 2019-08-09 北京科太亚洲生态科技股份有限公司 一种三废一体化反应器废弃物的控制系统及控制方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413057B1 (ko) * 2000-08-22 2003-12-31 한국과학기술연구원 토네이도의 원리를 이용한 그라운드 플레어의 소각 용량증대방법 및 그 장치
US6601526B2 (en) * 2001-01-09 2003-08-05 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Compact dual cyclone combustor
CN101027522B (zh) * 2004-05-19 2010-08-18 创新能量公司 燃烧方法和装置
US7669348B2 (en) * 2006-10-10 2010-03-02 Rdp Company Apparatus, method and system for treating sewage sludge
US9657989B2 (en) * 2008-04-07 2017-05-23 Wastedry, Llc Systems and methods for processing municipal wastewater treatment sewage sludge
US20100012006A1 (en) * 2008-07-15 2010-01-21 Covanta Energy Corporation System and method for gasification-combustion process using post combustor
WO2010009231A2 (en) * 2008-07-15 2010-01-21 Covanta Energy Corporation System and method for gasification-combustion process using post combustor
US8707875B2 (en) 2009-05-18 2014-04-29 Covanta Energy Corporation Gasification combustion system
WO2010019877A2 (en) * 2008-08-15 2010-02-18 Wayne/Scott Fetzer Company Biomass fuel furnace system and related methods
JP5174618B2 (ja) * 2008-10-31 2013-04-03 株式会社日立製作所 酸素燃焼ボイラシステム及び酸素燃焼ボイラシステムの制御方法
US8701573B2 (en) * 2009-05-18 2014-04-22 Convanta Energy Corporation Gasification combustion system
US20100294179A1 (en) * 2009-05-18 2010-11-25 Covanta Energy Corporation Gasification combustion system
US8459192B2 (en) * 2009-06-24 2013-06-11 Kimmo Ahola Device for gasification and combustion of solid fuel
DE102009060882A1 (de) * 2009-12-30 2011-07-07 Wörle Umwelttechnik GmbH, 74172 Brennersystem
CN101900322B (zh) * 2010-04-01 2015-05-27 广东迪奥技术有限公司 一种双筒双回程分级燃烧装置
CN101956987A (zh) * 2010-11-02 2011-01-26 无锡爱姆迪环保科技有限公司 一种智能型污泥焚烧炉
FR2970764B1 (fr) * 2011-01-21 2013-02-22 Expl Energetique De Sous Produits Ind Et Agricoles Exedia Dispositif de combustion, unite d'incineration comprenant un tel dispositif de combustion, et procede de mise en oeuvre d'un tel dispositif de combustion
WO2014063249A1 (en) * 2012-10-24 2014-05-01 Maralto Environmental Technologies Ltd. Heat exchanger and method for heating a fracturing fluid
DE102013207724A1 (de) * 2013-04-26 2014-10-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verbrennungsanlage mit verbesserter Lüftung und zyklonartiger Brennkammer
US10252611B2 (en) * 2015-01-22 2019-04-09 Ford Global Technologies, Llc Active seal arrangement for use with vehicle condensers
EP3589891A1 (de) 2017-03-03 2020-01-08 Douglas Technical Limited Vorrichtung und verfahren zum kontinuierlichen trocknen von schüttgut, insbesondere holzspänen und/oder holzfasern, mit einem festen befeuerten heissgasgenerator
CA3053976A1 (en) * 2017-03-03 2018-09-07 Douglas Technical Limited Apparatus and method for continuously drying bulk goods, in particular wood chips and/or wood fibers comprising a hot gas cyclone
CN106881336A (zh) * 2017-04-14 2017-06-23 重庆秋松环保科技有限公司 垃圾处理系统
KR101736838B1 (ko) * 2017-04-20 2017-05-29 채재우 물과 연소공기의 열분해를 이용한 하이브리드형 연소장치
CA3063517C (en) 2017-06-06 2023-08-01 Douglas Technical Limited Apparatus and method for continuously drying bulk goods
CA3074336A1 (en) 2017-09-01 2019-03-07 Alberto CARLOS PEREIRA FILHO Reactor for advanced combustion process for burning biomass and waste

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014969A1 (en) 1991-02-15 1992-09-03 Atlas Industries A/S Method of burning a particulate fuel and use of the method for burning sludge

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US548254A (en) * 1895-10-22 horsfali
US1952227A (en) * 1930-11-07 1934-03-27 Arthur L Adams Furnace for burning bagasse
US2121661A (en) * 1936-08-14 1938-06-21 Nichols Eng & Res Corp Process and apparatus for drying and burning moist materials
DE1024191B (de) * 1954-06-18 1958-02-13 Steinmueller Gmbh L & C Mit Kuehlrohren ausgekleidete Zyklon-Brennkammer
GB874059A (en) * 1959-02-17 1961-08-02 Foster Wheeler Ltd Improved cyclone furnaces
US3626876A (en) * 1969-05-05 1971-12-14 Orian R Gardner Rice hull burners
US3577940A (en) 1969-10-27 1971-05-11 Gen Electric Incinerator
US4408548A (en) * 1979-04-17 1983-10-11 Jorg Schmalfeld Pulverized coal combustion method and apparatus
JPS56916A (en) 1979-06-15 1981-01-08 Hokkaido Togyo Kk Method and apparatus for generating hot blast for incineration of chaff
US4246853A (en) * 1979-08-27 1981-01-27 Combustion Engineering, Inc. Fuel firing method
US4481890A (en) * 1980-09-29 1984-11-13 Sterling Drug Inc. Method for controlling temperatures in the afterburner and combustion hearths of a multiple hearth furnace
US4391208A (en) * 1980-09-29 1983-07-05 Sterling Drug, Inc. Method for controlling temperatures in the afterburner and combustion hearths of a multiple hearth furnace
DE3145799A1 (de) * 1981-11-19 1983-05-26 Ruhrkohle-Carborat GmbH, 4152 Kempen Drehstroemungsfeuerung
US4672900A (en) * 1983-03-10 1987-06-16 Combustion Engineering, Inc. System for injecting overfire air into a tangentially-fired furnace
JPS59197722A (ja) * 1983-04-22 1984-11-09 Okawara Mfg Co Ltd 汚泥の焼却方法
GB8334332D0 (en) * 1983-12-23 1984-02-01 Coal Industry Patents Ltd Combustors
US4512267A (en) * 1984-01-24 1985-04-23 John Zink Company Methods and apparatus for combusting ash producing solids
US4850288A (en) * 1984-06-29 1989-07-25 Power Generating, Inc. Pressurized cyclonic combustion method and burner for particulate solid fuels
DE3910215A1 (de) 1989-03-30 1990-10-04 Saarbergwerke Ag Verfahren zur verwertung von klaerschlamm
DE59007204D1 (de) * 1989-07-19 1994-10-27 Siemens Ag Brennkammer zum Verbrennen zumindest teilweise brennbarer Stoffe.
JP2540636B2 (ja) * 1989-11-20 1996-10-09 三菱重工業株式会社 ボイラ
US5024170A (en) * 1990-08-31 1991-06-18 General Motors Corporation External combustor for gas turbine engine
US5557873A (en) * 1990-10-23 1996-09-24 Pcl/Smi, A Joint Venture Method of treating sludge containing fibrous material
US5536488A (en) * 1991-07-01 1996-07-16 Manufacturing And Technology Conversion Indirectly heated thermochemical reactor processes
US5123361A (en) * 1991-11-25 1992-06-23 The United States Of America As Represented By The Secretary Of The Navy Annular vortex combustor
JPH0756371B2 (ja) * 1992-02-21 1995-06-14 熱技研工業株式会社 焼却炉
FR2701087B1 (fr) * 1993-02-04 1999-08-06 Tiru Procédé d'incinération de combustibles solides, notamment résidus urbains, à rejets solides et gazeux sensiblement neutres vis-à-vis de l'environnement.
DE4409951A1 (de) * 1994-03-23 1995-09-28 Abfallwirtschaftsges Vorrichtung zum Verbrennen von staubförmigen Materialien
US5937772A (en) * 1997-07-30 1999-08-17 Institute Of Gas Technology Reburn process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014969A1 (en) 1991-02-15 1992-09-03 Atlas Industries A/S Method of burning a particulate fuel and use of the method for burning sludge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2191506A1 (es) * 2000-03-22 2003-09-01 Tecnica Instaladora Iberica S Instalacion de postcombustion para aparatos generadores de efluentes con componentes organicos gaseosos.
CN106090882A (zh) * 2016-06-14 2016-11-09 西安圣华农业科技股份有限公司 分腔燃烧及自动除渣的生物质颗粒自动燃烧设备
CN110107901A (zh) * 2019-04-26 2019-08-09 北京科太亚洲生态科技股份有限公司 一种三废一体化反应器废弃物的控制系统及控制方法

Also Published As

Publication number Publication date
HU9900553D0 (en) 1999-05-28
HUP9900553A3 (en) 2000-12-28
KR19990083127A (ko) 1999-11-25
EP0950855A3 (de) 1999-12-29
US20010015160A1 (en) 2001-08-23
CZ125399A3 (cs) 1999-11-17
HUP9900553A2 (hu) 2000-02-28
US6216610B1 (en) 2001-04-17
JPH11325439A (ja) 1999-11-26
PL332526A1 (en) 1999-10-25
AT406901B (de) 2000-10-25
CA2266770A1 (en) 1999-10-17
ATA64798A (de) 2000-02-15
US6401636B2 (en) 2002-06-11

Similar Documents

Publication Publication Date Title
AT406901B (de) Verfahren und vorrichtung zur verbrennung von partikelförmigen feststoffen
EP0306695B1 (de) Heissgaserzeugungseinrichtung mit thermischer Nachverbrennung
EP0461305B1 (de) Verfahren zur Reinigung der Abgase von Anlagen zur Herstellung von Zementklinker
EP2771302B1 (de) Verfahren und vorrichtung zum aufarbeiten von nassen, organische komponenten enthaltenden abfallstoffen
CH648537A5 (de) Verfahren zum trocknen von schlamm, insbesondere kommunalem klaerschlamm.
DE2745425B2 (de) Verfahren und Vorrichtung zur Erzeugung von Kohlenstaub
AT519471B1 (de) Verkohlungsanlage
DE2604409B2 (de) Verfahren und Verbrennungsofen zur Verbrennung von Abfällen
DE3045253A1 (de) Verfahren und vorrichtung zum brennen von pellets
DE102010014479B4 (de) Vorrichtung und Verfahren zur Heißgaserzeugung mit integrierter Erhitzung eines Wärmeträgermediums
DE60122829T2 (de) Müllverbrennungsanlage mit Abgasrückführung
DE202007005195U1 (de) Heißgasbetriebene Trocknungsvorrichtung
DE3725512A1 (de) Schwebegas-reaktor
DE102011084902B3 (de) Verfahren und vorrichtung zur fluiderwärmung durch verbrennung kohlenstoffbasierter brennstoffe
EP0409790A1 (de) Feuerungsanlage
EP2044368B1 (de) Thermische abgasreinigungsvorrichtung und verfahren zur thermischen abgasreinigung
WO2002083815A1 (de) Anlage und verfahren zur energiegewinnung durch pyrolyse
DE102005057346A1 (de) Anlage zur Herstellung von Zementklinker, und Verfahren zum Betrieb einer solchen Anlage
DE3330667A1 (de) Verfahren und einrichtung zur entsorgung von schad- und abfallstoffen, insbesondere mit geringem heizwert, durch verbrennung
EP1026465B1 (de) Anlage zur thermischen Behandlung von mehlförmigen Rohmaterialien
EP0501944B1 (de) Verfahren und Vorrichtung zum Verbrennen von stückigen, biogenen Brennstoffen
DE2816282C2 (de) Müllverbrennungsofen mit einem Wirbelbett
DE2734623A1 (de) Verfahren und vorrichtung zum verbrennen fester substanzen, insbesondere abfallstoffe
BE1029441B1 (de) Verfahren und Vorrichtung zur Herstellung von Zementklinker
CH440527A (de) Verfahren zur Verbrennung von Klärschlamm unter Verwendung eines Wirbelschichtofens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE DK ES FR GB IT LI NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000428

AKX Designation fees paid

Free format text: BE CH DE DK ES FR GB IT LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANDRITZ AG

17Q First examination report despatched

Effective date: 20011114

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020326

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1025622

Country of ref document: HK