EP0936179B1 - Staplersteuerung - Google Patents

Staplersteuerung Download PDF

Info

Publication number
EP0936179B1
EP0936179B1 EP98120848A EP98120848A EP0936179B1 EP 0936179 B1 EP0936179 B1 EP 0936179B1 EP 98120848 A EP98120848 A EP 98120848A EP 98120848 A EP98120848 A EP 98120848A EP 0936179 B1 EP0936179 B1 EP 0936179B1
Authority
EP
European Patent Office
Prior art keywords
pressure
directional control
control
proportional
way
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98120848A
Other languages
English (en)
French (fr)
Other versions
EP0936179A1 (de
Inventor
Martin Heusser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hawe Hydraulik GmbH and Co KG
Original Assignee
Hawe Hydraulik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hawe Hydraulik GmbH and Co KG filed Critical Hawe Hydraulik GmbH and Co KG
Publication of EP0936179A1 publication Critical patent/EP0936179A1/de
Application granted granted Critical
Publication of EP0936179B1 publication Critical patent/EP0936179B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/003Systems with load-holding valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/12Platforms; Forks; Other load supporting or gripping members
    • B66F9/14Platforms; Forks; Other load supporting or gripping members laterally movable, e.g. swingable, for slewing or transverse movements
    • B66F9/147Whole unit including fork support moves relative to mast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50545Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using braking valves to maintain a back pressure

Definitions

  • the invention relates to a shelf stacker specified in the preamble of claim 1 Art.
  • Require shelf stackers especially high-rack stackers, with swivel sliding fork high level of security when controlling the fork in case it is in a laterally limited Hallway, work between rows of shelves, for example. Because this corridor area is often so limited due to space constraints that uncontrolled pan and slide adjustments the fork could easily collide. For such complicated ones Maneuvering operations are therefore often operated by a stacker using a computer, which the forklift control with simultaneous swiveling and shifting the fork leads so that the fork does not collide with shelf rows. It is not for that only required that the computer provides precise information about the actual position of the fork , but that the forklift controls also run precisely through the computer lets, i.e. exactly proportional to the control signals.
  • Another problem with one precise proportional control of the swivel sliding fork results from the fact that the swiveling and pushing, if necessary simultaneously, performing hydraulic motors need significantly different throughputs, e.g. in a relationship from 1: 3 to 1: 6, and the control of the hydraulic motor with the smaller amount too then must be reliably proportional, if at the same time the larger one Quantity required hydraulic motor is moved.
  • a hydraulic steering control with a double-acting steering cylinder as privileged Hydromotor integrated in the truck control system which also has a lifting cylinder and controls two swivel cylinders of the fork.
  • Two are separated in the forklift control contain actuatable pressure sources, of which those assigned to the steering cylinder
  • the pressure source is running continuously and the pumped pressure medium via a 3-way pressure compensator if the hydraulic motors are not actuated via an unpressurized circulation through the directional spool of the lifting cylinder and the swivel cylinder to the tank leads.
  • the 3-way pressure compensator is dependent on the pressure difference between the Input pressure of the directional control spool of the steering cylinder and the current working pressure piloted and regulates for the lift cylinder and the swivel cylinder only the available excess quantity that the steering cylinder does not need at the moment. Should the excess amount for proper actuation of the lifting cylinder and the swivel cylinder is not sufficient, the second pressure source is switched on.
  • the two directional spool for the lifting cylinder and the swivel cylinder are connected in parallel to a common pressure line so that the swivel cylinder cannot gain priority over the lifting cylinder. All directional spool are designed with a blocked zero position, so that in the zero position each Shut off the working line to a hydraulic motor. This requires for the unpressurized Circulation in the directional control slide for the lifting cylinder and the swivel cylinder at least one additional tax level.
  • the invention has for its object a shelf stacker of the aforementioned Art to create that with an inexpensive, space-saving and comfortable Forklift control the safe maneuvering of the swivel sliding fork in narrow corridors, if necessary, computer-guided, enables.
  • the 3-way pressure compensator is structurally simple and inexpensive priority is always given to the swivel hydraulic motor, with simultaneous control of another hydraulic motor the risk of being no longer exactly proportional Control is given, i.e. the hydraulic motor with the lower volume throughput.
  • the other one or more hydraulic motors receive by influencing the 3-way pressure compensator always only the excess quantity, so that at least the privileged Swivel hydraulic motor precisely proportional under all operating conditions to be controlled by means of the proportional directional control spool, which is for the 3-way pressure compensator also contains the control panel.
  • the installation space for the forklift control and the outlay on equipment is also reduced because there are few compact components are sufficient and because of the 3-way pressure compensator also a very simple one Circulation switching is possible, via which that is usually operated electrically Hydraulic medium pumped with pressure source with low throttle resistance and low Back pressure gets into the return if no hydraulic motor can be controlled.
  • the Load holding device is provided to hydraulically block and hydromotor each to be able to keep a load leak-free.
  • the load holding device alternately with Load control valves that can be controlled in the working lines enable sensitive movement control under load and helps to simplify the circulation circuit because, in a load holding situation, both work lines downstream of the Directional spool valve and automatic control pressure for the 3-way pressure compensator that switches the 3-way pressure compensator to the circulation position. Furthermore, only the load holding device enables the use of one in the zero position open, and therefore short directional spool, which has no separate flow paths needed for circulation.
  • control pressure for the 3-way pressure compensator and the circulation circuit tapped in a structurally simple manner, without being therefore compact Directional spool valves have to provide complex structural measures.
  • the 3-way pressure compensator gives priority to the swivel hydraulic motor with respect to the further or further hydraulic motors, regardless of whether and how these are applied.
  • the 3-way pressure compensator is structurally particularly simple.
  • the proportional directional spool relieves the privileged Swivel hydraulic motor in the zero position the two working lines to the return, so that there is a strong control pressure drop that can be used for the circulation circuit is.
  • the further hydraulic motor is controlled either only in its direction at a rate that depends on how much the privileged Hydromotor leaves, or if necessary via a conveyor control of the Pressure source (speed-controlled pump).
  • the further hydraulic motor is also via the 3-way quantity regulator precisely controllable proportionally, the 3-way flow regulator, the 3-way pressure compensator and the further directional spool cooperate in the circulation circuit.
  • the swivel sliding fork can be guided through the computer, when complicated movement maneuvers are to be controlled, the path and / or Position sensors provide the actual parameters for the computer.
  • a rack stacker in FIGS. 1 and 2 in particular a high rack stacker F, has one Vehicle 1 with actuating elements 2 of an actuation system 3 for one Fork G, and if necessary for a steering not emphasized, one Travel drive, a raise / lower and occasionally a tilt function.
  • the actuator 3 is connected to a stacker controller S, and if necessary with a computer C.
  • the fork G is in guides 4 horizontally across the longitudinal direction of the stack F is displaceable and, for example, on a axis 7 defining a vertical axis Mast 6 swivel mounted (swivel sliding fork).
  • the mast 6 is in a support structure 5 held.
  • a hydromotor H1 the shifting movement the fork G is controlled, while with at least one hydraulic motor H2 Swivel movement of the fork G around the vertical axis 7 (swivel range at least 180 °) is controlled.
  • the computer C is linked to the stacker control S or switchable. Furthermore, position or path indicators 8, 9 for the current position the fork G can be provided, the signals of which are fed to the computer C.
  • Fig. 2 it is indicated how the shelf stacker F in a laterally limited hall area 12 between shelf lines 10, 11 works, the hall width only slightly is wider than the width of the fork G.
  • This maneuver can be performed by computer C, for example.
  • the movements of the hydraulic motors H1, H2 are superimposed on one another in such a way that that the fork G does not collide with the shelf rows 10, 11.
  • the hydraulic motor H1 is a rotating for the displacement movement Hydraulic motor (or a pair of hydraulic cylinders, not shown) during the Hydromotor H2 for the swiveling movement of the fork G from two loadable sides
  • Hydraulic motor or a pair of hydraulic cylinders, not shown
  • the Hydromotor H2 for the swiveling movement of the fork G from two loadable sides
  • cylinders 13, 14 which the fork back and forth about the vertical axis 7 fro. Both cylinders 13, 14 are, for example, only on their piston rod sides pressurized while their piston sides are short-circuited.
  • the stacker control S in Fig. 3 is from a pressure source 15, for. B. one electrically driven hydraulic pump, supplied with pressure medium.
  • a pressure relief valve 18 to a return R secured pump line P leads to the inlet connection a 3-way pressure compensator D.
  • a pressure connection 22 of the 3-way pressure compensator D is via a pressure line 16 to the pressure inlet of a proportional directional spool W1 connected in both directions by means of proportional magnets 33, 34 can be deflected from a zero position centered by springs (4/3-way control spool with open zero position). From the proportional directional spool W1 lead two working lines A1, B1 to the two cylinders 13, 14 of the Hydromotor H2.
  • a load holding valve arrangement L is located in the working lines A1, B1 with two load holding valves 35, each controllable against a spring 36, and these immediate check valves 38 arranged.
  • Each in a work line A1 or B1 arranged load holding valve 35 is via a control line 37 from each other working line B1, A1 openable depending on pressure.
  • a cross line 31 connects the two working lines A1 and B1.
  • a shuttle valve 30 with a higher pressure in a working line leading connection 32 is provided.
  • a control line leads from connection 32 27 via a throttle 28 to a control side of the 3-way pressure compensator D.
  • a control line 25 branches off, which is connected via a throttle 26 to the opposite one Control side of the 3-way pressure compensator D leads.
  • the 3-way pressure compensator contains a control piston 21, which by means of the control pressure in the control line 25 in the closing direction of a connection between the pump line P and the pressure line 16 is acted upon. In the opposite direction, i.e. in Direction of opening of this connection, however, the control piston 21 is from the control pressure in the control line 27 and acted upon by a control spring 24.
  • a second pressure connection 23 of the 3-way pressure compensator D there is another one Pressure line 17 connected to at least one further hydraulic motor, i.e. the sliding hydraulic motor H1 leads.
  • a 3-way flow regulator in the pressure line 17 19 arranged, which is adjustable by means of a proportional magnet 20 is and has a connection to the return R. Downstream of the 3-way flow regulator 19 is the pressure line 17 to a connection 39 of a solenoid-operated Directional spool W2 (4/3-way spool with open zero position) connected.
  • Two working lines A2, B2 lead from the directional control valve W2 to Hydromotor H1.
  • the directional spool W2 could be operated with proportional magnets and work precisely proportional.
  • the pressure line 17 is direct in the forklift control S in FIG. 4 to the directional spool W2 (4/3-way spool with open zero position), in which, in the central position, the transverse channel 40 has both working lines A2, B2 connects to the return, and also the pressure line 17 via its pressure connection 39 'and the cross channel 40 is connected to the return.
  • a circulation circuit U is provided, via which the hydraulic medium delivered by the pressure source 15 is drained to the return line if none of the hydraulic motors H1, H2 moves and one load is held at a time.
  • Part of the circulation circuit U is the 3-way pressure compensator D, which in the closed position of the connection from the pump line P leads to the pressure line 16, the hydraulic medium in the pressure line 17, from which it is in Fig. 3 reaches the return via the 3-way flow controller 19, in the stacker control in contrast, in FIG. 4 via the transverse channel 40.
  • control piston K, 21 is sealed in the housing bore 42 movable according to the effective in both axial directions Control pressures from the control lines 25 and 27, the control pressure of the control line 27 nor the force of the, suitably adjustable, control spring 24 is added.
  • the control spring is designed very weak, and is essentially only sufficient to do so, the control piston K in the open position of the connection from the pressure connection Hold P to pressure port 16 when the system is depressurized.
  • the power the control spring 24 is essentially the relevant throttle factor, that in the unpressurized Circulation from the pressure source has to be overcome.
  • a flow channel in the form of a recess 45 is formed in the control piston K, which is delimited on both sides by control edges 46 and 47.
  • the control edges 46 and 47 work alternately with apertures 43, 44 or their Control edges together to throttle the pressure medium accordingly and either to lead to the pressure port 16 or to the pressure port 17, and the Directional spool W1 through the pressure difference set by the current supply keep corresponding control movements constant. It is obvious that the Control pressure acting on the left-hand side of the control piston also from the pressure connection 16 could be tapped directly in the housing 41 via a throttle bore.

Description

Die Erfindung betrifft einen Regalstapler der im Oberbegriff des Anspruchs 1 angegebenen Art.
Regalstapler, insbesondere Hochregalstapler, mit Schwenkschiebegabel erfordern hohe Sicherheit bei der Steuerung der Gabel, falls sie in einem seitlich begrenzten Flurbereich, beispielsweise zwischen Regalzeilen, arbeiten. Denn dieser Flurbereich ist aus Platzgründen häufig so begrenzt, dass unkontrollierte Schwenk- und Schiebeverstellungen der Gabel leicht zu Kollisionen führen könnten. Für solche komplizierte Manövdervorgänge sind deshalb Regalstapler oftmals mittels eines Computers betreibbar, der die Staplersteuerung unter gleichzeitiger Verschwenkung und Verschiebung der Gabel führt, damit die Gabel nicht mit Regalzeilen kollidiert. Dazu ist es nicht nur erforderlich, dass der Computer über die Ist-Stellung der Gabel präzise informiert ist, sondern dass sich die Staplersteuerung auch präzise durch den Computer führen lässt, d.h. genau proportional mit den Steuersignalen. Ein weiteres Problem bei einer präzisen proportionalen Steuerung der Schwenkschiebegabel resultiert daraus, dass das Schwenken und Schieben, gegebenenfalls gleichzeitig, ausführende Hydromotoren deutlich unterschiedliche Durchsatzmengen benötigen, z.B. in einem Verhältnis von 1 : 3 bis 1 : 6, und die Steuerung des Hydromotors mit der kleineren Menge auch dann zuverlässig proportional sein muss, wenn gleichzeitig auch der die größere Menge benötigende Hydromotor bewegt wird.
Es ist aus der Praxis bekannt, in der Staplersteuerung eines Regalstaplers jedem Hydromotor einen 3-Wege-Mengenregler und einen Proportionalwegesteuerschieber mit vorgesetztem Zulaufregler zuzuordnen, um jeweils eine präzise Proportionalität bei der Steuerung zu erreichen, wie sie z.B. für das Manövrieren in engen Flurbereichen erforderlich ist. Diese Staplersteuerung ist nicht nur sehr aufwendig und teuer, sondem beansprucht aufgrund der komplizierten hydraulischen Komponenten viel Platz, der bei Regalstaplern nicht ohne weiteres zur Verfügung steht. Diese Staplersteuerung ist auch deshalb sehr aufwendig, weil für die Umlaufsteuerung des von der Druckquelle geförderten Hydraulikmediums eine spezielle Umlaufschaltung, z.B. mit Steuerdruckabzapfungen (PSL-Prinzip) in den Wegesteuerschiebem erforderlich ist.
Ferner ist es aus der Praxis bekannt, die Staplersteuerung solcher Regalstapler mit mehreren Druckwaagen, Wegesteuerschiebem und Senkbremsventilen auszustatten, um Platz und Kosten zu sparen. Jedoch lässt sich hiermit keine ausreichend proportionale Steuerung erzielen, wie sie beispielsweise für Manöver in begrenzten Flurbereichen gebraucht wird. Diese Regalstapler müssen zur Schwenk-Schiebeverstellung der Gabel aus dem Flurbereich herausfahren, und mit verstellter Gabel wieder in den Flur einfahren oder es sind die Flurbereiche zwischen Regalzeilen im relativ zur Gabelbreite entsprechend breit zu machen.
Bei einem aus WO86/06142 A bekannten Regalstapler ist eine hydraulische Lenksteuerung mit einem doppelseitig beaufschlagbaren Lenkzylinder als bevorrechtigten Hydromotor in die Staplersteuerung eingegliedert, die zusätzlich einen Hubzylinder und zwei Schwenkzylinder der Gabel steuert. In der Staplersteuerung sind zwei getrennt betätigbare Druckquellen enthalten, von denen die den Lenkzylinder zugeordnete Druckquelle permanent läuft und das geförderte Druckmittel über eine 3-Wege-Druckwaage bei Nichtbetätigung der Hydromotoren über einen drucklosen Umlauf durch die Wegesteuerschieber des Hubzylinders und der Schwenkzylinder zum Tank führt. Die 3-Wege-Druckwaage wird abhängig von der Druckdifferenz zwischen dem Eingangsdruck des Wegesteuerschiebers des Lenkzylinders und dem aktuellen Arbeitsdruck vorgesteuert und regelt für den Hubzylinder und die Schwenkzylinder nur die jeweils verfügbare Überschussmenge ein, die der Lenkzylinder gerade nicht benötigt. Sollte die Überschussmenge zur ordnungsgemäßen Betätigung des Hubzylinders und der Schwenkzylinder nicht ausreichen, wird die zweite Druckquelle zugeschaltet. Die beiden Wegesteuerschieber für den Hubzylinder und die Schwenkzylinder sind parallel an eine gemeinsame Druckleitung angeschlossen, so dass die Schwenkzylinder keinen Vorrang gegenüber dem Hubzylinder gewinnen können. Alle Wegesteuerschieber sind mit blockierter Nullstellung ausgelegt, so dass in der Nullstellung jede Arbeitsleitung zu einem Hydromotor absperren. Dies erfordert für den drucklosen Umlauf in den Wegesteuerschiebem für den Hubzylinder und die Schwenkzylinder wenigstens eine zusätzliche Steuerebene.
Bei aus US-A-3 911 942, US-A-3 987 623 und DE-A-195 49150 bekannten Steuervorrichtungen wird einer ausgewählten Verbrauchergruppe Steuerpriorität gegenüber anderen Verbrauchern eingeräumt. In den Steuervorrichtungen sind 3-Wege-Druckwaagen bzw. Mehrwegeventile enthalten, die der Stromregelung dienen.
Weiterer Stand der Technik ist enthalten in US-A-4 517 800, US-A-4 733 533, DE-A-301 61 57 und US-A-45 43 031.
Der Erfindung liegt die Aufgabe zugrunde, einen Regalstapler der eingangs genannten Art zu schaffen, der mit einer kostengünstigen, platzsparenden und komfortablen Staplersteuerung das sichere Manövrieren der Schwenkschiebegabel in engen Flurbereichen, gegebenenfalls computergeführt, ermöglicht.
Die gestellte Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst.
Auf baulich einfache und kostengünstige Weise wird mit der 3-Wege-Druckwaage dem Schwenk-Hydromotor stets Vorrang verliehen, bei dem bei gleichzeitiger Steuerung eines weiteren Hydromotors die Gefahr einer nicht mehr exakt proportionalen Steuerung gegeben ist, d.h. dem Hydromotor mit dem geringeren Mengendurchsatz. Der weitere oder die weiteren Hydromotoren erhalten durch die Einflussnahme der 3-Wege-Druckwaage stets nur die überschüssige Menge, so dass zumindest der bevorrechtigte Schwenk-Hydromotor unter allen Betriebsbedingungen präzise proportional mittels des Proportional-Wegesteuerschiebers zu steuern ist, der für die 3-Wege-Druckwaage auch die Regelblende enthält. Der Einbauraum für die Staplersteuerung und auch der Ausstattungsaufwand sind reduziert, weil wenige kompakte Komponenten ausreichen und weil mittels der 3-Wege-Druckwaage auch eine sehr einfache Umlaufschaltung möglich ist, über die das von der im Regelfall elektrisch betriebenen Druckquelle geförderte Hydraulikmedium mit geringem Drosselwiderstand und geringem Gegendruck in den Rücklauf gelangt, wenn kein Hydromotor zu steuern ist. Die Lasthaltevorrichtung ist vorgesehen, um jeden Hydromotor hydraulisch blockieren und eine Last leckagefrei halten zu können. Die Lasthaltevorrichtung mit wechselseitig aus den Arbeitsleitungen aufsteuerbaren Lasthalteventilen ermöglicht eine feinfühlige Bewegungssteuerung unter Last und trägt vor allem zur Vereinfachung der Umlaufschaltung bei, da in einer Lasthaltesituation beide Arbeitsleitungen stromab des Wegesteuerschiebers entlastet sind und automatisch Steuerdruck für die 3-Wege-Druckwaage vorliegt, der die 3-Wege-Druckwaage in die Umlaufstellung schaltet. Ferner ermöglicht erst die Lasthaltevorrichtung die Verwendung eines in der Nullstellung offenen, und dadurch kurzen Wegesteuerschiebers, der keine getrennten Strömungswege für den Umlauf benötigt.
Gemäß Anspruch 2 wird der Steuerdruck für die 3-Wege-Druckwaage und die Umlaufschaltung auf baulich einfache Weise abgegriffen, ohne im deshalb kompakten Wegesteuerschieber aufwendige bauliche Maßnahmen vorsehen zu müssen.
Gemäß Anspruch 3 gibt die 3-Wege-Druckwaage dem Schwenk-Hydromotor Zuführvorrang gegenüber dem weiteren oder den weiteren Hydromotoren, unabhängig davon, ob und wie diese beaufschlagt werden.
Gemäß Anspruch 4 ist die 3-Wege-Druckwaage baulich besonders einfach ausgebildet.
Gemäß Anspruch 5 entlastet der Proportional-Wegesteuerschieber des bevorrechtigten Schwenk-Hydromotors in der Nullstellung die beiden Arbeitsleitungen zum Rücklauf, so dass ein für die Umlaufschaltung nutzbarer starker Steuerdruckabfall gegeben ist.
Gemäß Anspruch 6 wird in der Umlaufschaltung, falls kein weiterer Hydromotor beaufschlagt wird, das von der Druckquelle geförderte Druckmittel über den Wegesteuerschieber des weiteren Hydromotors oder diesen Wegesteuerschieber und dem diesen vorgesetzten 3-Wege-Mengenregler mit geringem Drosselverlust in den Rücklauf geführt.
Gemäß Anspruch 7 wird der weitere Hydromotor entweder nur in seiner Richtung gesteuert mit einer Geschwindigkeit, die davon abhängt, welche Menge der bevorrechtigte Hydromotor übrig lässt, oder gegebenenfalls über eine Fördersteuerung der Druckquelle (drehzahlgeregelte Pumpe).
Gemäß Anspruch 8 ist über den 3-Wege-Mengenregler auch der weitere Hydromotor präzise proportional steuerbar, wobei der 3-Wege-Mengenregler, die 3-Wege-Druckwaage und der weitere Wegesteuerschieber bei der Umlaufschaltung kooperieren.
Gemäß Anspruch 9 lässt sich die Schwenkschiebegabel durch den Computer führen, wenn komplizierte Bewegungsmanöver zu steuern sind, wobei die Wege- und/oder Positionsmelder die Ist-Parameter für den Computer bereitstellen.
Anhand der Zeichnung werden Ausführungsformen des Erfindungsgegenstandes erläutert. Es zeigen:
Fig. 1
eine schematische Seitenansicht eines Regalstaplers,
Fig. 2
eine schematische Draufsicht auf einen Regalstapler beim Arbeiten in einem begrenzten Flurbereich,
Fig. 3
ein Blockschaltbild einer ersten Ausführungsform einer Staplersteuerung,
Fig. 4
ein Blockschaltbild einer weiteren Ausführungsform einer Staplersteuerung, und
Fig. 5
einen schematischen Längsschnitt eines Details.
Ein Regalstapler in den Fig. 1 und 2, insbesondere ein Hochregalstapler F, weist einen Fahrkörper 1 mit Betätigungselementen 2 eines Betätigungssystems 3 für eine Gabel G, und gegebenenfalls für eine nicht näher vorgehobene Lenkung, einen Fahrantrieb, eine Heben/Senken- und fallweise eine Kippfunktion auf. Die Betätigungseinrichtung 3 ist mit einer Staplersteuerung S verbunden, und gegebenenfalls mit einem Computer C. Die Gabel G ist in Führungen 4 horizontal quer zur Längsrichtung des Staples F verschiebbar und beispielsweise an einem eine Hochachse 7 definierenden Mast 6 schwenkbar angebracht (Schwenkschiebegabel). Der Mast 6 ist in einer Stützkonstruktion 5 gehalten. Mit einem Hydromotor H1 wird die Verschiebebewegung der Gabel G gesteuert, während mit wenigstens einem Hydromotor H2 die Schwenkbewegung der Gabel G um die Hochachse 7 (Schwenkbereich mindestens 180°) gesteuert wird. Der Computer C ist mit der Staplersteuerung S verknüpft oder zuschaltbar. Ferner können Positions- oder Wegmelder 8, 9 für die Momentanposition der Gabel G vorgesehen sein, deren Signale dem Computer C zugeführt werden.
In Fig. 2 ist angedeutet, wie der Regalstapler F in einem seitlich begrenzten Flurbereich 12 zwischen Regalzeilen 10, 11 arbeitet, wobei die Flurbreite nur geringfügig breiter als die Breite der Gabel G ist. Mit gleichzeitigen Schwenk- und Schiebebewegungen der Gabel G wird diese innerhalb der Flurweite aus der in ausgezogenen Linien gezeigten Grundstellung, in der die Gabelzinken in Fahrtrichtung weisen, um ca. 90° zur einen oder anderen Seite verschwenkt, bis die Gabelzinken zu den Regalzeilen weisen. Dieses Manöver kann beispielsweise vom Computer C geführt werden. Die Bewegungen der Hydromotoren H1, H2 werden dabei einander derart überlagert, daß die Gabel G nicht mit den Regalzeilen 10, 11 kollidiert.
Gemäß den Fig. 3 und 4 ist der Hydromotor H1 für die Verschiebebewegung ein drehender Hydraulikmotor (oder ein Hydraulikzylinderpaar, nicht gezeigt), während der Hydromotor H2 für die Schwenkbewegung der Gabel G aus zwei einseitig beaufschlagbaren Zylindern 13, 14 besteht, die die Gabel um die Hochachse 7 hin- und herschwenken. Beide Zylinder 13, 14 werden beispielsweise nur an ihren Kolbenstangenseiten beaufschlagt, während ihre Kolbenseiten kurzgeschlossen sind.
Die Staplersteuerung S in Fig. 3 wird aus einer Druckquelle 15, z. B. einer elektrisch getriebenen Hydraulikpumpe, mit Druckmittel versorgt. Eine über ein Druckbegrenzungsventil 18 zu einem Rücklauf R abgesicherte Pumpenleitung P führt zum Einlaßanschluß einer 3-Wege-Druckwaage D. Ein Druckanschluß 22 der 3-Wege-Druckwaage D ist über eine Druckleitung 16 mit dem Druckeinlaß eines Proportional-Wegesteuerschiebers W1 verbunden, der in beiden Stellrichtungen mittels Proportionalmagneten 33, 34 aus einer durch Federn zentrierten Nullstellung auslenkbar ist (4/3-Wegesteuerschieber mit offener Nullstellung). Vom Proportional-Wegesteuerschieber W1 führen zwei Arbeitsleitungen A1, B1 zu den beiden Zylindern 13, 14 des Hydromotors H2. In den Arbeitsleitungen A1, B1 ist eine Lasthalteventilanordnung L mit zwei jeweils gegen eine Feder 36 aufsteuerbaren Lasthalteventilen 35 und diesen umgehenden Rückschlagventilen 38 angeordnet. Jedes in einer Arbeitsleitung A1 oder B1 angeordnete Lasthalteventil 35 ist über eine Steuerleitung 37 aus der jeweils anderen Arbeitsleitung B1, A1 druckabhängig aufsteuerbar.
Zwischen dem Proportional-Wegesteuerschieber W1 und der Lasthaltevorrichtung L verbindet eine Querleitung 31 die beiden Arbeitsleitungen A1 und B1. In der Querleitung 31 ist ein Wechselventil 30 mit einem den jeweils höheren Druck in einer Arbeitsleitung führenden Anschluß 32 vorgesehen. Vom Anschluß 32 führt eine Steuerleitung 27 über eine Drossel 28 zu einer Steuerseite der 3-Wege-Druckwaage D. Zwischen der 3-Wege-Druckwaage D und dem Proportional-Wegesteuerschieber W1 zweigt an einem Punkt 29 eine Steuerleitung 25 ab, die über eine Drossel 26 zur gegenüberliegenden Steuerseite der 3-Wege-Druckwaage D führt. Die 3-Wege-Druckwaage enthält einen Regelkolben 21, der mittels des Steuerdrucks in der Steuerleitung 25 in Schließrichtung einer Verbindung zwischen der Pumpenleitung P und der Druckleitung 16 beaufschlagt wird. In der entgegengesetzten Richtung, d.h. in Öffnungsrichtung dieser Verbindung, wird der Regelkolben 21 hingegen vom Steuerdruck in der Steuerleitung 27 und durch eine Regelfeder 24 beaufschlagt.
An einem zweiten Druckanschluß 23 der 3-Wege-Druckwaage D ist eine weitere Druckleitung 17 angeschlossen, die zu wenigstens einem weiteren Hydromotor, d.h. dem Schiebe-Hydromotor H1 führt. In der Druckleitung 17 ist in Fig. 3 ein 3-Wege-Mengen-regler 19 angeordnet, der mittels eines Proportionalmagneten 20 verstellbar ist und eine Verbindung zum Rücklauf R besitzt. Stromab des 3-Wege-Mengenreglers 19 ist die Druckleitung 17 an einen Anschluß 39 eines magnetbetätigten Wegesteuerschiebers W2 (4/3-Wegesteuerschieber mit offener Nullstellung) angeschlossen. Vom Wegesteuerschieber W2 führen zwei Arbeitsleitungen A2, B2 zum Hydromotor H1. Zwischen dem Wegesteuerschieber W2 und dem Hydromotor H1 ist eine weitere Lasthaltevorrichtung L entsprechend der Lasthaltevorrichtung L des Hydromotors H2 vorgesehen. Offene Nullstellung bedeutet für die Wegesteuerschieber W1, W2, daß - angedeutet in W2 - in einer durch Federn zentrierten Mittelstellung beide Arbeitsleitungen über einen Querkanal 40 mit dem Rücklauf R verbunden ist, während der Druckanschluß 39 abgesperrt ist. Auch der Wegesteuerschieber W2 könnte mit Proportionalmagneten betätigt werden und präzise proportional arbeiten.
In der Staplersteuerung S in Fig. 4 ist im Unterschied zur Fig. 3 die Druckleitung 17 direkt zum Wegesteuerschieber W2 geführt (4/3-Wegesteuerschieber mit offener Nullstellung), bei dem in der Mittelstellung der Querkanal 40 beide Arbeitsleitungen A2, B2 mit dem Rücklauf verbindet, und auch die Druckleitung 17 über ihren Druckanschluß 39' und den Querkanal 40 mit dem Rücklauf verbunden ist.
Bei beiden Ausführungsformen der Staplersteuerung S der Fig. 3 und 4 ist eine Umlaufschaltung U vorgesehen, über die das von der Druckquelle 15 geförderte Hydraulikmittel zum Rücklauf abgelassen wird, falls keiner der Hydromotoren H1, H2 bewegt und jeweils eine Last gehalten wird. Ein Teil der Umlaufschaltung U ist die 3-Wege-Druckwaage D, die in der Schließstellung der Verbindung von der Pumpenleitung P zur Druckleitung 16 das Hydraulikmedium in die Druckleitung 17 führt, von der es in Fig. 3 über den 3-Wege-Mengenregler 19 zum Rücklauf gelangt, in der Staplersteuerung in Fig. 4 hingegen über den Querkanal 40.
Bei der Staplersteuerung S in Fig. 4 könnte eine präzisierte Steuerung des Schiebe-Hydromotors beispielsweise mittels einer drehzahlregelbaren Hydraulikpumpe erfolgen.
In Fig. 5 ist eine einfache Ausführungsform der 3-Wege-Druckwaage D der vorhergehenden Figuren im Längsschnitt gezeigt. In einem Gehäuse 41 mit einer Gehäusebohrung 42 sind zwei Druckanschlüsse 16, 17 mit Steuerkanten definierenden Einstichen 43, 44 vorgesehen. In der Gehäusebohrung 42 ist der Regelkolben K, 21 abgedichtet verschieblich nach Maßgabe der in beiden axialen Richtungen wirksamen Steuerdrücke aus den Steuerleitungen 25 bzw. 27, wobei zum Steuerdruck der Steuerleitung 27 noch die Kraft der, zweckmäßigerweise einstellbaren, Regelfeder 24 hinzukommt. Die Regelfeder ist sehr schwach ausgelegt, und reicht im wesentlichen nur dazu aus, den Regelkolben K in der Öffnungsstellung der Verbindung vom Druckanschluß P zum Druckanschluß 16 zu halten, wenn das System drucklos ist. Die Kraft der Regelfeder 24 ist im wesentlichen der maßgebliche Drosselfaktor, der bei drucklosem Umlauf von der Druckquelle zu überwinden ist.
Im Regelkolben K ist ein Strömungskanal in Form eines Einstiches 45 ausgebildet, der beiderseits durch Steuerkanten 46 und 47 begrenzt wird. Die Steuerkanten 46 und 47 arbeiten blendenartig wechselweise mit den Einstichen 43, 44 bzw. deren Steuerkanten zusammen, um das Druckmittel entsprechend abzudrosseln und entweder zum Druckanschluß 16 oder zum Druckanschluß 17 zu leiten, und dabei die im Wegesteuerschieber W1 durch die Bestromung eingestellte Druckdifferenz durch entsprechende Regelbewegungen konstant zu halten. Es liegt auf der Hand, daß der linksseitig auf den Regelkolben wirkende Steuerdruck auch aus dem Druckanschluß 16 über eine Drosselbohrung direkt im Gehäuse 41 abgegriffen werden könnte.

Claims (9)

  1. Regalstapler, insbesondere Hochregalstapler (F), mit einer Schwenkschiebegabel (G), die mit über eine, gegebenenfalls computergeführte, Staplersteuerung (S) hydraulisch gesteuerten Hydromotoren (H1, H2) über an eine gemeinsame Druckquelle (15) angeschlossene magnetbetätigte Wegesteuerschieber (W1, W2) wenigstens um eine Hochachse (7) schwenkbar und horizontal verschiebbar ist, dadurch gekennzeichnet, dass in der Staplersteuerung (S) in einer Druckleitung (16) zwischen der Druckquelle (15, P) und den Wegesteuerschiebem (W1, W2) zur Bevorrechtigung des Schwenk-Hydromotors (H2) eine 3-Wege-Druckwaage (D) vorgesehen ist, die von stromauf und stromab des Wegesteuerschiebers (W1, W2) des bevorrechtigten Schwenk-Hydromotors (H2) abgegriffenen Steuerdrücken gesteuert ist, dass zumindest der Wegesteuerschieber (W1) des bevorrechtigten Schwenk-Hydromotors (H2) als Proportional-Wegesteuerschieber mit zum Tank offener Nullstellung ausgebildet ist, dass die 3-Wege-Druckwaage (D) Teil einer über die Steuerung des weiteren Hydromotors (H1) geführten Umlaufschaltung (U) von der Druckquelle (15, P) zum Tank ist, und dass der Schwenk-Hydromotor (H2) und der weitere Hydromotor (H1) jeweils an zwei Arbeitsleitungen (A1, B1, A2, B2) angeschlossen ist, in denen zwischen dem Wegesteuerschieber (W1, W2) und dem Hydromotor (H1, H2) eine Lasthaltevorrichtung (L) mit wechselseitig aus den Arbeitsleitungen aufsteuerbaren Lasthalteventilen (35) vorgesehen ist.
  2. Regalstapler nach Anspruch 1, dadurch gekennzeichnet, dass die Arbeitsleitungen (A1, B1) des bevorrechtigten Schwenk-Hydromotors (H2) zwischen dem Proportional-Wegesteuerschieber (W1) und der Lasthaltevorrichtung (L) durch eine Querleitung (31) verbunden sind, in der ein Wechselventil (30) mit einem den jeweils höheren Arbeitsleitungsdruck führenden Ausgang (32) enthalten ist, und das vom Ausgang (32) eine Steuerleitung (27) zur 3-Wege-Druckwaage (D) führt.
  3. Regalstapler nach Anspruch 1, dadurch gekennzeichnet, dass die 3-Wege-Druckwaage (D) einen Regelkolben (K, 21) enthält, der in Schließrichtung einer Verbindung von der Druckquelle (15, P) zum Proportional-Wegesteuerschieber (W1) des Schwenk-Hydromotors (H2) vom höheren Steuerdruck stromauf des Proportional-Steuerschiebers (W1) und in Öffnungsrichtung der Verbindung vom niedrigeren Steuerdruck stromab des Proportional-Wegesteuerschiebers (W1) und von einer Regelfeder (24) beaufschlagt ist.
  4. Regalstapler nach Anspruch 3, dadurch gekennzeichnet, dass der Regelkolben (K) in einer zwei Druckanschlüsse (43, 44) aufweisenden Gehäusebohrung (42) verstellbar ist, einen von zwei sich gegenüberliegenden Steuerkanten (46, 47) begrenzten Strömungsweg (45) aufweist, und mit den beiden Steuerkanten (46, 47) blendenartig und wechselseitig mit den beiden Druckanschlüssen zusammenarbeitet.
  5. Regalstapler nach Anspruch 1, dadurch gekennzeichnet, dass der Proportional-Wegesteuerschieber (W1) in der Nullstellung beide Arbeitsleitungen (A1, B1) mit dem Tank verbindet und die von der 3-Wege-Druckwaage (D) kommende Druckleitung (16) absperrt.
  6. Regalstapler nach Anspruch 1, dadurch gekennzeichnet, dass die Umlaufschaltung (U) zusätzlich über eine weitere Druckleitung (17) über den Wegesteuerschieber (W2) des weiteren Hydromotors (H1) oder über einen diesem Wegesteuerschieber (W2) vorgesetzten 3-Wege-Mengenregler (19) verläuft, vorzugsweise durch einen durch einen Proportionalmagneten (20) betätigten 3-Wege-Mengenregler.
  7. Regalstapler nach Anspruch 6, dadurch gekennzeichnet, dass der als magnetbetätigte Wegesteuerschieber ausgebildete Wegesteuerschieber (W2) des weiteren Hydromotors (H1) direkt über die weitere Druckleitung (17) an die 3-Wege-Druckwaage (D) angeschlossen ist und in seiner Nullstellung beide Arbeitsleitungen (A2, B2) des weiteren Hydromotors (H1) und die weitere Druckleitung (17) mit dem Rücklauf (R) verbindet.
  8. Regalstapler nach Anspruch 6, dadurch gekennzeichnet, dass der als magnetbetätigte Wegesteuerschieber ausgebildete Wegesteuerschieber (W2) des weiteren Hydromotors (H1) an die 3-Wege-Druckwaage (D) über die weitere Druckleitung (17) angeschlossen ist, in der der an den Rücklauf (R) angeschlossene, mittels eines Proportionalmagneten (20) verstellbare 3-Wege-Mengenregler (19) angeordnet ist, und dass der Wegesteuerschieber (W2) in seiner Nullstellung beide Arbeitsleitungen (A2, B2) mit dem Rücklauf (R) verbindet und die weitere Druckleitung (17) absperrt.
  9. Regalstapler nach Anspruch 1, dadurch gekennzeichnet, dass mit den Magneten bzw. Proportionalmagneten (33, 34, 20) der Wegesteuerschieber (W1, W2) und gegebenenfalls des 3-Wege-Mengenreglers (19) ein Führungscomputer (C) in Steuerverbindung steht, und dass Wege- und/oder Positionsmelder (8, 9) der Schwenkschiebe-Gabel (G) an den Führungscomputer (C) angeschlossen sind.
EP98120848A 1998-02-13 1998-11-03 Staplersteuerung Expired - Lifetime EP0936179B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE29802498U 1998-02-13
DE29802498U DE29802498U1 (de) 1998-02-13 1998-02-13 Staplersteuerung

Publications (2)

Publication Number Publication Date
EP0936179A1 EP0936179A1 (de) 1999-08-18
EP0936179B1 true EP0936179B1 (de) 2004-05-26

Family

ID=8052632

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98120848A Expired - Lifetime EP0936179B1 (de) 1998-02-13 1998-11-03 Staplersteuerung

Country Status (3)

Country Link
US (1) US6220027B1 (de)
EP (1) EP0936179B1 (de)
DE (2) DE29802498U1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE512652C2 (sv) * 1999-04-20 2000-04-17 Bt Ind Ab Anordning för, och förfarande vid, förflyttning av lastbärare hos industritruck
US6422121B1 (en) * 2000-05-25 2002-07-23 Finn Corporation Hydraulic system
US20040238326A1 (en) * 2002-10-08 2004-12-02 Wayne Lichti Method and apparatus for material handling and storage
SE525019C2 (sv) * 2003-03-21 2004-11-09 Parker Hannifin Ab Anordning för styrning av en hydraulisk motor
SE525018C2 (sv) * 2003-03-21 2004-11-09 Parker Hannifin Ab Anordning för styrning av en hydrauliskt driven motor
DE202004014030U1 (de) 2004-09-08 2006-01-12 Hawe Hydraulik Gmbh & Co. Kg Elektrohydraulische Steuervorrichtung
DE102005011395A1 (de) * 2005-03-11 2006-09-14 Bosch Rexroth Ag Hydraulische Steueranordnung
JP2006283785A (ja) * 2005-03-31 2006-10-19 Nabtesco Corp 油圧回路およびその弁装置
DE502006006556D1 (de) * 2005-07-29 2010-05-12 Jungheinrich Ag Dreiseitenstapler
GB2436856A (en) * 2006-04-07 2007-10-10 Agco Gmbh Pressure control for system with primary and secondary consumers
DE102007029355A1 (de) * 2007-06-26 2009-01-02 Robert Bosch Gmbh Hydraulische Steueranordnung
EP2062848B1 (de) 2007-11-21 2010-07-14 HAWE Hydraulik SE Elektrohydraulischer Hubmodul
ITBO20090552A1 (it) * 2009-08-20 2011-02-21 Gd Spa Metodo ed unità di manovra per il cambio di un pannello frontale di una macchina automatica.
BR112013016370A2 (pt) 2011-01-04 2018-06-19 Crown Equip Corp veículo para o manuseio de materiais
EP2686493B1 (de) 2011-03-15 2016-02-03 Parker-Hannificn Corporation Gedämpfter schwenkkreislauf
DE102014216736A1 (de) 2014-08-22 2016-02-25 Jungheinrich Aktiengesellschaft Verfahren zum Steuern einer kombinierten Dreh-Schub-Bewegung
AU2016214966B2 (en) 2015-02-03 2017-08-31 Ogon Contracting Pty Ltd Safety valve for a hydraulic or pneumatic tool
CN107089629B (zh) * 2017-06-08 2018-08-28 太原理工大学 一种用于工程机械的混合储能举升系统
CN107235440B (zh) * 2017-06-08 2019-02-15 太原理工大学 一种用于举升机构的液电混合节能系统
JP6922613B2 (ja) * 2017-09-27 2021-08-18 株式会社豊田自動織機 フォークリフトの荷役制御方法及びフォークリフトの荷役制御装置
SE544628C2 (en) 2018-07-23 2022-09-27 Joab Foersaeljnings Ab Hydraulic system and method for controlling the speed and pressure of a hydraulic cylinder
CN114183416A (zh) * 2021-12-16 2022-03-15 杭叉集团股份有限公司 一种三向堆垛式叉车液压系统
WO2024006555A1 (en) 2022-07-01 2024-01-04 Clark Equipment Company Hydraulic control circuit for implement

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE755815A (fr) * 1969-09-08 1971-02-15 Clark Equipment Co Systeme hydraulique d'un chariot elevateur
US3701446A (en) * 1970-12-02 1972-10-31 C & M Mfg Co Inc Horizontally turnable material handling forks
US3722723A (en) * 1972-01-20 1973-03-27 Allis Chalmers Tilt cylinder anticavitation circuit
GB1410193A (en) * 1972-04-14 1975-10-15 Lancer Boss Ltd Hydraulic control circuits
US3850322A (en) * 1973-04-03 1974-11-26 Cooperloy Corp Side loading device for fork lift trucks
US3911942A (en) * 1974-03-28 1975-10-14 Gen Signal Corp Compensated multifunction hydraulic system
US3998345A (en) * 1974-04-05 1976-12-21 Missouri Research Laboratories, Inc. Side loader for fork lift trucks
US4023646A (en) * 1975-11-24 1977-05-17 Allis-Chalmers Corporation Load sensitive hydraulic system
US3987623A (en) * 1976-01-23 1976-10-26 Caterpillar Tractor Co. Controlled priority fluid system of a crawler type vehicle
US4144946A (en) * 1977-07-05 1979-03-20 Towmotor Corporation Hydraulic priority circuit
DE2946765C2 (de) * 1979-11-20 1986-04-30 Thyssen Industrie Ag, 4300 Essen Entsperrbares Rückschlagventil
US4336687A (en) * 1980-04-21 1982-06-29 Eaton Corporation Load sensing controller
DE3016157C2 (de) * 1980-04-26 1985-11-21 Jungheinrich Unternehmensverwaltung Kg, 2000 Hamburg Regalstapler für große Hubhöhen
US4343151A (en) * 1980-05-16 1982-08-10 Caterpillar Tractor Co. Series - parallel selector for steering and implement
US4517800A (en) * 1980-10-31 1985-05-21 Kabushiki Kaisha Komatsu Seisakusho Hydraulic control system for off-highway self-propelled work machines
US4665695A (en) * 1981-03-13 1987-05-19 Trw Inc. Hydrostatic load sense steering system
US4485623A (en) * 1981-08-10 1984-12-04 Clark Equipment Company Vehicle hydraulic system with pump speed control
US4543031A (en) * 1983-04-22 1985-09-24 Crown Controls Corporation Apparatus for sideshift carriage control
DE3412871A1 (de) * 1984-04-05 1985-10-17 Linde Ag, 6200 Wiesbaden Steuereinrichtung fuer ein antriebsaggregat
US4663936A (en) * 1984-06-07 1987-05-12 Eaton Corporation Load sensing priority system with bypass control
US4635439A (en) * 1985-04-11 1987-01-13 Caterpillar Industrial Inc. Fluid operated system control
DE3800188A1 (de) * 1988-01-07 1989-07-20 Danfoss As Hydraulische sicherheitsbremsventilanordnung
DE4031951C2 (de) * 1990-10-09 1994-06-09 Danfoss As Hydraulisches Lenksystem für Fahrzeuge
DE4105459A1 (de) * 1991-02-21 1992-08-27 Heilmeier & Weinlein Hydraulische steuervorrichtung
KR0166131B1 (ko) * 1994-12-30 1998-12-01 석진철 지게차의 유압회로
US5653569A (en) * 1996-01-10 1997-08-05 Sears; David E. Turn-table attachment for fork lift vehicle

Also Published As

Publication number Publication date
DE59811468D1 (de) 2004-07-01
DE29802498U1 (de) 1998-04-16
EP0936179A1 (de) 1999-08-18
US6220027B1 (en) 2001-04-24

Similar Documents

Publication Publication Date Title
EP0936179B1 (de) Staplersteuerung
EP0546300B1 (de) Elektrohydraulische Steuereinrichtung
DE2651325C2 (de)
DE69602923T3 (de) Elektrohydraulische proportionale steuerventilvorrichtung
DE2433920C2 (de) Elektromagnetisch betätigtes Steuerventil zur Wegesteuerung der Durchflußmengen
DE102007001510B4 (de) Hydraulisches System mit mehrfachen Druckentlastungspegeln
DE2433437A1 (de) Steuersystem fuer einen hydraulischen kran
EP2142808B1 (de) Hydraulische steueranordnung
DE102017219942A1 (de) Ventilanordung für Hubwerkssteuerung mit einer Druckregelvorrichtung
EP2171289A1 (de) Steuervorrichtung für mindestens zwei hydraulische antriebe
DE1951429B2 (de) Hydraulisches steuersystem, insbesondere fuer mehrere hydraulikmotore
EP0092064B1 (de) Vorrichtung zum Betätigen eines Schiebekörpers, insbesondere des Kolbenschiebers eines Wegeventils
EP0219052B1 (de) Hydraulische Steuervorrichtung
DD212770A5 (de) Steuerventil fuer hydraulische praezisionssteuerungen
EP0823559B1 (de) Hydraulische Steuereinrichtung
EP2062848B1 (de) Elektrohydraulischer Hubmodul
EP1576241B1 (de) Steuereinrichtung für ein arbeitsgerät mit einer ausleger gehaltenen schaufel
EP1253327B1 (de) Hydraulische Steuereinrichtung
WO1997028374A1 (de) Hydraulische steuervorrichtung zur druckmittelversorgung mehrerer hydraulischer verbraucher
DE4410156B4 (de) Steuereinrichtung für eine Verstellpumpe
DE10151831A1 (de) Hydraulikanlage für ein Flurförderzeug
DE10007688A1 (de) Einrichtung zum Steuern der Neigenfunktion eines Hubmastes, insbesondere für einen Gabelstapler
EP1215397B1 (de) Wegeventilblock
EP1574720A1 (de) Elektrohydraulische Steuervorrichtung
EP4130493B1 (de) Hydraulische steueranordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990929

AKX Designation fees paid

Free format text: DE FR IT SE

17Q First examination report despatched

Effective date: 20021106

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HAWE HYDRAULIK GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SE

REF Corresponds to:

Ref document number: 59811468

Country of ref document: DE

Date of ref document: 20040701

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041118

Year of fee payment: 7

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081120

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20091123

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141126

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59811468

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601