EP0933323B1 - Double-Decker or Multi-Decker Elevator - Google Patents

Double-Decker or Multi-Decker Elevator Download PDF

Info

Publication number
EP0933323B1
EP0933323B1 EP99101343A EP99101343A EP0933323B1 EP 0933323 B1 EP0933323 B1 EP 0933323B1 EP 99101343 A EP99101343 A EP 99101343A EP 99101343 A EP99101343 A EP 99101343A EP 0933323 B1 EP0933323 B1 EP 0933323B1
Authority
EP
European Patent Office
Prior art keywords
distance
deck
cars
difference
mean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99101343A
Other languages
German (de)
French (fr)
Other versions
EP0933323A1 (en
Inventor
Miroslav Dipl. El.-Ing. Kostka
Raffaele Starace
Walter Dipl. Masch.-Ing. Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP99101343A priority Critical patent/EP0933323B1/en
Publication of EP0933323A1 publication Critical patent/EP0933323A1/en
Application granted granted Critical
Publication of EP0933323B1 publication Critical patent/EP0933323B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/36Means for stopping the cars, cages, or skips at predetermined levels
    • B66B1/40Means for stopping the cars, cages, or skips at predetermined levels and for correct levelling at landings
    • B66B1/42Means for stopping the cars, cages, or skips at predetermined levels and for correct levelling at landings separate from the main drive
    • B66B1/425Means for stopping the cars, cages, or skips at predetermined levels and for correct levelling at landings separate from the main drive adapted for multi-deck cars in a single car frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/36Means for stopping the cars, cages, or skips at predetermined levels
    • B66B1/40Means for stopping the cars, cages, or skips at predetermined levels and for correct levelling at landings
    • B66B1/42Means for stopping the cars, cages, or skips at predetermined levels and for correct levelling at landings separate from the main drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/0065Roping
    • B66B11/008Roping with hoisting rope or cable operated by frictional engagement with a winding drum or sheave
    • B66B11/0095Roping with hoisting rope or cable operated by frictional engagement with a winding drum or sheave where multiple cars drive in the same hoist way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • B66B11/0206Car frames
    • B66B11/0213Car frames for multi-deck cars
    • B66B11/022Car frames for multi-deck cars with changeable inter-deck distances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S187/00Elevator, industrial lift truck, or stationary lift for vehicle
    • Y10S187/902Control for double-decker car

Definitions

  • the invention relates to a method and a device to adjust the deck distance for biplane or Multi-deck elevators.
  • DE 1 113 293 is an elevator system became known, which consists of an elevator with two one below the other, to the height of two floors includes extending cabins.
  • the two cabins which are driven by a common motor, form a so-called double-decker elevator and are rigidly coupled.
  • Double decker elevator is unable to accommodate both cabins stop precisely on the corresponding floors allow. At least one or both Cabins create stopping inaccuracies or so-called Thresholds to the floors.
  • One or both of the cabins are in the respective cabin unit movably attached to the vertical distance between the cabins to the distances adapt each of the superimposed floors can.
  • a measuring device which is the position of a cabin relative to each Cabin unit determines
  • a control unit that comprises a data memory.
  • the control unit takes over the directed call Task to drive the cabin unit to one Control reference point in the shaft and the positions one or both cabins relative to the reference point According to the values stored in the data memory for the distances between the floors to be controlled adapt.
  • the cabin unit Reference point to choose would be detailed Process steps for controlling movement of the Cabins relative to the reference point are not disclosed.
  • the invention has for its object a Double-decker or multi-deck elevator and a process to propose to control such an elevator, which does not have the aforementioned disadvantages.
  • FIG. 1 shows a cover distance control according to the invention for an elevator one consisting of three lifts Elevator group shown, which with a known for example from EP 365 782 Group control works.
  • An elevator a is in one Elevator shaft 1, one of three elevators, for example a, b and c existing elevator group.
  • a Carrier 2 drives a via a rope 3 in Elevator shaft 1 guided, from two in one Car frame 4 arranged cabins 5, 6 formed Double decker elevator 7, according to the example selected elevator system sixteen floors E1 to E16 to be served.
  • a shown in detail A of Figure 1 Drive a so-called deck distance drive machine DA, can, for example, a spindle gear change the mutual coverage distance of the cabins 5, 6 so that this with the distance between two adjacent floors always matches.
  • the carrier 2 is one of, for example, from the EP 026 406 controlled drive control, wherein the setpoint generation, the control functions and the Stop initiation by means of a microcomputer system 8 be realized, and with 9 the measuring and Actuators of the drive control are symbolized via a first interface IF1 with the microcomputer system 8 communicating. With 10 are measuring and Actuators of the deck distance drive machine DA designated, which via an interface IF5 with the Microcomputer system 8 are connected. The Microcomputer system 8 processes the necessary ones Information that is shown in the flow chart according to Fig. 2 are shown.
  • Each car 5, 6 of the double-decker elevator 7 has a load measuring device 11, a device 12 signaling the respective operating state Z of the car 5, 6, a device 13 for detecting the position of the cars 5, 6 relative to the entire elevator and car call transmitter 14.
  • the devices 11, 12 are connected to the microcomputer system 8 via the interface IF1 and the measuring and actuating elements 10 via an interface IF6.
  • the car call transmitter 14 and the floor call transmitter 15 provided on the floors are connected to the microcomputer system 8, for example, via an input device 16 that has become known from EP 062 141 and a second interface IF2.
  • the microcomputer system 8 comprises a storey call memory RAM1, two car call memories RAM2, RAM3 assigned to the cabins 5, 6 of the double-decker elevator 7, a load memory RAM4 storing the current load P M of each car 5, 6, two the operating state Z of the cabins 5, 6 storage memory RAM5, RAM6, two tabular partial cost memories RAM7, RAM8 assigned to the cabins 5, 6 of the double-decker elevator 7, a first total cost memory RAM9, a second total cost memory RAM10, a deck / call assignment memory RAM11, an elevator with the lowest operating costs
  • the RAM12 memory a RAM13 memory with the differences determined for all adjacent floor distances against a mean deck distance DMDD, a RAM14 memory for the values mean deck distance MDD, actual value deck distance difference IDDD, target value deck Distance range SDDS, etc., a program memory EPROM, a span Fail-safe data memory DBRAM and a microprocessor CPU, which is connected via a bus B to the memories RAM1 to RAM14, EPROM and DB
  • R1 and R2 denote a first and a second scanner of a scanner, the scanner R1, R2 being registers by means of which addresses corresponding to the floor numbers and the direction of travel are formed.
  • the cost memories RAM7 to RAM10 each have one or more memory locations, which can be assigned to the individual possible cabin positions.
  • R3 and R4 denote the selectors corresponding to the individual cabins in the form of a register which, when the cabin is moving, indicates the address of the floor on which the cabin can still stop. At a standstill, R3 and R4 point to the floor where a call can be served or to a possible cabin position (for "blind" floors).
  • the selector addresses are assigned target paths which are compared with a target value generated in a setpoint generator. If these paths are identical and a stop command is present, the delay phase is initiated. If there is no stop command, the selectors R3 and R4 are switched to the next floor.
  • microcomputer systems of the individual elevators a, b, c are known from, for example, EP 050 304 Comparison device 17 and a third interface IF3 and also, for example, from EP 050 305 known party line transmission system 18 and a fourth Interface IF4 interconnected and form in it A group control with adjustment of the deck distance for double-decker or multi-decker elevators.
  • the measured position values are saved and at every trip or periodically updated for any Changes such as building shrinkage, to be able to record. From this data the necessary coverage distances calculated, which for a simultaneous stopping without thresholds for the cabins 5.6 are necessary. It is also possible to follow the procedure not just with a conventional group control, but in any type of control (Destination call control, etc.).
  • FIG. 2 shows a flowchart for the control of the Adjustment of deck distance while driving.
  • the setpoint deck distance distance SDDS is lifted the difference the difference to the middle deck distance DMDD and the actual value difference to the mean deck distance IDMDD determined.
  • Is the required deck distance already preset that means the setpoint deck-distance distance SDDS is zero, no action is taken because both cabins 5, 6 in the target stop exactly the floor levels to reach.
  • FIG. 3 shows a schematic representation of a Device for adjusting the deck distance at a Double decker elevator 7 with two opposite Car frame movable cabins 5, 6.
  • the two cabins 5, 6 arranged. Both cabins 5, 6 each have one Cabin guides 53 guided on guide rails, separate cabin frames 54, 55.
  • a pulse tachodynamo 60 To determine the mutual position of the cabins 5, 6 is used for example a pulse tachodynamo 60.
  • DA deck distance drive machine
  • the control of this drive is located for example in the machine room of the elevator system.
  • a spindle 62 with opposing threads for the two assigned cabins 5, 6 and reaches through an opening 63 through the plate 61.
  • the Cabin frames 54, 55 are provided with threaded plates 64, which accommodate the spindle 62.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Elevator Control (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Types And Forms Of Lifts (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

Vertical distance between two adjacent lift cabins (5, 6) is adjustable in order to adapt the lift cabin position to the floor level in the neighbouring storey (E1-E16) of the building, even where the heights of the individual storeys within the building can vary. Two or more lift cabins are mounted in a single lift cage frame (4) moved up and down a lift shaft (1) using a winch (2) and lift cable (3). An Independent claim is also included for the distance control system.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Anpassung der Deckdistanz bei Doppeldecker- oder Multidecker-Aufzügen.The invention relates to a method and a device to adjust the deck distance for biplane or Multi-deck elevators.

Aus der DE 1 113 293 ist eine Aufzugsanlage bekanntgeworden, die aus einem Aufzug mit zwei untereinanderliegenden, auf die Höhe zweier Stockwerke sich erstreckende Kabinen umfasst. Die beiden Kabinen, die mittels einem gemeinsamen Motor angetrieben sind, bilden einen sogenannten Doppeldecker-Aufzug und sind starr miteinander gekoppelt.DE 1 113 293 is an elevator system became known, which consists of an elevator with two one below the other, to the height of two floors includes extending cabins. The two cabins which are driven by a common motor, form a so-called double-decker elevator and are rigidly coupled.

Bei der oben beschriebenen Doppeldecker-Aufzugsanlage sind die beiden Kabinen starr miteinander verbunden und erlauben keine Änderungen der gegenseitigen Position. In diesem Fall ist eine exakte Einhaltung der gleichen Stockwerksdistanzen über die gesamte Gebäudehöhe notwendig, da sonst beim Anhalten auf einem Stockwerk bei einem oder sogar bei beiden Decks Schwellen entstehen. Dasselbe Problem entsteht wenn sich Monate oder Jahre nach der Erstellung das Mauerwerk bei einem Gebäude setzt oder wenn die Bautoleranzen nicht eingehalten werden, was sich besonders in hohen Gebäuden in verstärktem Masse auswirkt. Eine Steuerung eines wie eingangs beschriebenen Doppeldecker-Aufzugs ist nicht in der Lage beide Kabinen positionsgenau auf den zugehörigen Stockwerken anhalten zu lassen. Mindestens bei einer oder auch bei beiden Kabinen entstehen Anhalteungenauigkeiten oder sogenannte Schwellen zu den Stockwerksböden.In the double-decker elevator system described above the two cabins are rigidly connected and do not allow mutual position changes. In this case is an exact adherence to the same Floor distances across the entire building height necessary, otherwise when stopping on one floor one or even both decks have thresholds. The same problem arises when there are months or years after creating the masonry in a building or if the building tolerances are not met, what particularly in tall buildings effect. A control of one as described at the beginning Double decker elevator is unable to accommodate both cabins stop precisely on the corresponding floors allow. At least one or both Cabins create stopping inaccuracies or so-called Thresholds to the floors.

In US 5 220 981 sind Doppeldecker-Aufzüge mit je einer Kabineneinheit, welche jeweils zwei Kabinen aufweist, und ein Verfahren zur Steuerung solcher Aufzüge offenbart. In US 5 220 981 are double-decker elevators with one each Cabin unit, each having two cabins, and discloses a method for controlling such elevators.

Jeweils eine oder beide der Kabinen sind in der jeweiligen Kabineneinheit beweglich angebracht, um die vertikale Distanz zwischen den Kabinen an die Abstände jeweils übereinander liegender Stockwerke anpassen zu können. Zur Kontrolle der Positionen der Kabinen eines solchen Doppeldecker-Aufzugs sind eine Messeinrichtung, die die Position einer Kabine relativ zur jeweiligen Kabineneinheit bestimmt, und eine Kontrolleinheit, die einen Datenspeicher umfasst, vorgesehen. Vor der Aufnahme des Betriebs eines Doppeldecker-Aufzugs werden bei einer Fahrt der Kabineneinheit durch den jeweiligen Aufzugsschacht die Abstände aller Stockwerke ermittelt und in dem Datenspeicher gespeichert. Bei einem an die Kabineneinheit bzw. an eine der jeweiligen Kabinen gerichteten Ruf übernimmt die Kontrolleinheit die Aufgabe, die Fahrt der Kabineneinheit an einen Referenzpunkt im Schacht zu steuern und die Positionen einer oder beider Kabinen relativ zum Referenzpunkt bei Bedarf enstprechend der im Datenspeicher abgelegten Werte für die Abstände der jeweils anzusteuernden Stockwerke anzupassen. Wie der von der Kabineneinheit anzusteuernde Referenzpunkt zu wählen wäre und detaillierte Verfahrensschritte zur Steurung einer Bewegegung der Kabinen relativ zu dem Referenzpunkt ist nicht offenbart.One or both of the cabins are in the respective cabin unit movably attached to the vertical distance between the cabins to the distances adapt each of the superimposed floors can. To control the positions of the cabins one such double-decker elevator are a measuring device, which is the position of a cabin relative to each Cabin unit determines, and a control unit that comprises a data memory. Before shooting of operating a double decker elevator at a Driving the cabin unit through the respective Elevator shaft determines the distances of all floors and stored in the data storage. At one to the Cabin unit or to one of the respective cabins the control unit takes over the directed call Task to drive the cabin unit to one Control reference point in the shaft and the positions one or both cabins relative to the reference point According to the values stored in the data memory for the distances between the floors to be controlled adapt. Like the one to be controlled by the cabin unit Reference point to choose would be detailed Process steps for controlling movement of the Cabins relative to the reference point are not disclosed.

Der Erfindung liegt die Aufgabe zugrunde, einen Doppeldecker- oder Multidecker-Aufzug und ein Verfahren zur Steuerung eines solchen Aufzugs vorzuschlagen, welcher die vorgenannten Nachteile nicht aufweist. The invention has for its object a Double-decker or multi-deck elevator and a process to propose to control such an elevator, which does not have the aforementioned disadvantages.

Diese Aufgabe wird durch die in dem Patentansprüchen 1 und 8 gekennzeichnete Erfindung gelöst.This object is achieved by the in claims 1 and 8 characterized invention solved.

Die durch die Erfindung erreichten Vorteile sind im wesentlichen darin zu sehen, dass die Kabinen auch bei Gebäuden mit unterschiedlichen Stockwerkshöhen auf dem zugehörigen Stockwerk positionsgenau, dass heisst ohne Schwelle, anhalten kann.The advantages achieved by the invention are in essential to see that the cabins also at Buildings with different floor heights on the associated floor exactly, that means without Threshold, may persist.

Durch die in den Unteransprüchen aufgeführten Massnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Verfahren und der Vorrichtung zur Anpassung der Deckdistanz bei Doppeldecker- oder Multidecker-Aufzügen möglich. In einer Steuerungseinheit werden die gemessenen Positionswerte gespeichert und periodisch nachgeführt um eventuelle Änderungen, wie beispielsweise Gebäudeschrumpfung, erfassen zu können. Aus diesen Daten werden die notwendigen Deckdistanzen berechnet, welche für ein gleichzeitiges schwellenloses Anhalten für alle Kabinen notwendig sind. Weiter kann dadurch in jeder beliebigen Steuerungsart (konventionelle Steuerung, Zielrufsteuerung, usw.) die für den nächst folgenden Halt notwendige Deckdistanz während der Fahrt und noch vor dem Anhalten eingestellt werden.By the measures listed in the subclaims are advantageous developments and improvements of in the method specified in claim 1 and the device to adjust the deck distance for biplane or Multi-deck elevators possible. In a control unit the measured position values are saved and periodically updated for possible changes, such as for example shrinking buildings. The necessary coverage distances become from this data calculated which for a simultaneous thresholdless Stopping is necessary for all cabins. Can continue therefore in any type of control (conventional Control, destination call control, etc.) for the next following stop necessary deck distance while driving and be set before stopping.

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt und im folgenden näher erläutert.
Es zeigen:

Fig.1
eine schematische Darstellung der erfindungsgemässen Deckdistanzsteuerung für einen Aufzug einer aus drei Aufzügen bestehenden Aufzugsgruppe,
Fig.2
ein Flussdiagramm für die Steuerung der Deckdistanzanpassung während der Fahrt,,
Fig.3
eine schematische Darstellung einer Vorrichtung zur Anpassung der Deckdistanz bei einem Doppeldecker-Aufzug.
In the drawing, an embodiment of the invention is shown and explained in more detail below.
Show it:
Fig.1
1 shows a schematic representation of the covering distance control according to the invention for an elevator of an elevator group consisting of three elevators,
Fig.2
a flowchart for the control of the deck distance adjustment while driving ,,
Figure 3
is a schematic representation of a device for adjusting the deck distance in a double decker elevator.

In Fig.1 ist eine erfindungsgemässen Deckdistanzsteuerung für einen Aufzug einer aus drei Aufzügen bestehenden Aufzugsgruppe dargestellt, welche mit einer beispielsweise aus der EP 365 782 bekannten Gruppensteuerung arbeitet. Ein Aufzug a ist in einem Aufzugsschacht 1, einer aus beispielsweise drei Aufzügen a, b und c bestehenden Aufzugsgruppe, geführt. Eine Fördermaschine 2 treibt über ein Förderseil 3 einen im Aufzugsschacht 1 geführten, aus zwei in einem gemeinsamen Fahrkorbrahmen 4 angeordnete Kabinen 5, 6 gebildeten Doppeldecker-Aufzug 7 an, wobei gemäss der als Beispiel gewählten Aufzugsanlage sechzehn Stockwerke E1 bis E16 bedient werden. Ein im Detail A der Figur 1 gezeigter Antrieb, eine sogenannte Deckdistanz-Antriebsmaschine DA, kann über beispielsweise ein Spindelgetriebe die gegenseitige Deckdistanz der Kabinen 5, 6 so verändern, dass diese mit dem Abstand zweier benachbarter Stockwerke immer übereinstimmt.1 shows a cover distance control according to the invention for an elevator one consisting of three lifts Elevator group shown, which with a known for example from EP 365 782 Group control works. An elevator a is in one Elevator shaft 1, one of three elevators, for example a, b and c existing elevator group. A Carrier 2 drives a via a rope 3 in Elevator shaft 1 guided, from two in one Car frame 4 arranged cabins 5, 6 formed Double decker elevator 7, according to the example selected elevator system sixteen floors E1 to E16 to be served. A shown in detail A of Figure 1 Drive, a so-called deck distance drive machine DA, can, for example, a spindle gear change the mutual coverage distance of the cabins 5, 6 so that this with the distance between two adjacent floors always matches.

Die Fördermaschine 2 wird von einer zum Beispiel aus der EP 026 406 bekannten Antriebssteuerung gesteuert, wobei die Sollwerterzeugung, die Regelfunktionen und die Stoppeinleitung mittels eines Mikrocomputersystems 8 realisiert werden, und wobei mit 9 die Mess- und Stellglieder der Antriebssteuerung symbolisiert sind, die über ein erstes Interface IF1 mit dem Mikrocomputersystem 8 in Verbindung stehen. Mit 10 sind Mess- und Stellglieder der Deckdistanz-Antriebsmaschine DA bezeichnet, die über ein Interface IF5 mit dem Mikrocomputersystem 8 in Verbindung stehen. Das Mikrocomputersystem 8 verarbeitet die notwendigen Informationen, die im Flussdiagramm gemäss Fig.2 dargestellt sind.The carrier 2 is one of, for example, from the EP 026 406 controlled drive control, wherein the setpoint generation, the control functions and the Stop initiation by means of a microcomputer system 8 be realized, and with 9 the measuring and Actuators of the drive control are symbolized via a first interface IF1 with the microcomputer system 8 communicating. With 10 are measuring and Actuators of the deck distance drive machine DA designated, which via an interface IF5 with the Microcomputer system 8 are connected. The Microcomputer system 8 processes the necessary ones Information that is shown in the flow chart according to Fig. 2 are shown.

Jede Kabine 5, 6 des Doppeldecker-Aufzugs 7 weist eine Lastmesseinrichtung 11, eine den jeweiligen Betriebszustand Z der Kabine 5, 6 signalisierende Einrichtung 12, eine Einrichtung 13 zur Positionserfassung der Kabinen 5, 6 gegenüber dem Gesamtaufzug und Kabinenrufgeber 14 auf. Die Einrichtungen 11, 12 sind über das Interface IF1 und die Mess- und Stellglieder 10 über ein Interface IF6 mit dem Mikrocomputersystem 8 verbunden. Die Kabinenrufgeber 14 und auf den Stockwerken vorgesehene Stockwerkrufgeber 15 sind beispielsweise über eine mit der EP 062 141 bekannt gewordene Eingabeeinrichtung 16 und ein zweites Interface IF2 am Mikrocomputersystem 8 angeschlossen. Das Mikrocomputersystem 8 besteht aus einem Stockwerkrufspeicher RAM1, zwei den Kabinen 5, 6 des Doppeldecker-Aufzugs 7 zugeordnete Kabinenrufspeichern RAM2, RAM3, einem die momentane Last PM jeder Kabine 5, 6 speichernden Lastspeicher RAM4, zwei den Betriebszustand Z der Kabinen 5, 6 speichernden Speicher RAM5, RAM6, zwei den Kabinen 5, 6 des Doppeldecker-Aufzugs 7 zugeordneten, tabellenförmigen Teilkostenspeichern RAM7, RAM8, einem ersten Gesamtkostenspeicher RAM9, einem zweiten Gesamtkostenspeicher RAM10, einem Deck/Ruf-Zuordnungspeicher RAM11, einem dem Aufzug mit den kleinsten Bedienungskosten pro Abtasterstellung und Bedienungsrichtung bezeichnenden Speicher RAM12, einen Speicher RAM13 mit den für alle benachbarten Stockwerksdistanzen ermittelten Differenzen gegen eine Mittlere Deck-Distanz DMDD, einen Speicher RAM14 für die Werte Mittlere Deck-Distanz MDD, Istwert Deck-Distanz-Differenz IDDD, Sollwert Deck-Distanz-Strecke SDDS, usw., einem Programmspeicher EPROM, einem spannungsausfallsicheren Datenspeicher DBRAM und einem Mikroprozessor CPU, der über einen Bus B mit den Speichern RAM1 bis RAM14, EPROM und DBRAM verbunden ist. Mit R1 und R2 sind ein erster und ein zweiter Abtaster einer Abtasteinrichtung bezeichnet, wobei die Abtaster R1, R2 Register sind, mittels welcher den Stockwerknummern und der Laufrichtung entsprechende Adressen gebildet werden. Die Kostenspeicher RAM7 bis RAM10 weisen je einen bis mehrere Speicherplätze auf, welche den einzelnen möglichen Kabinenpositionen zugeordnet werden können. Mit R3 und R4 sind die den einzelnen Kabinen entsprechenden Selektoren in Form eines Registers bezeichnet, welches bei fahrender Kabine die Adresse desjenigen Stockwerkes anzeigt, auf dem die Kabine noch anhalten kann. Im Stillstand zeigen R3 und R4 auf das Stockwerk, wo ein Ruf bedient werden kann oder auf eine mögliche Kabinenposition (bei "blinden" Stockwerken). Wie aus vorstehend genannter Antriebssteuerung bekannt, sind den Selektoradressen Zielwege zugeordnet, die mit einem in einem Sollwertgeber erzeugten Zielwert verglichen werden. Bei Gleichheit dieser Wege und Vorliegen eines Haltebefehls wird die Verzögerungsphase eingeleitet. Ist kein Haltebefehl vorhanden, so werden die Selektoren R3 und R4 auf das nächste Stockwerk geschaltet.Each car 5, 6 of the double-decker elevator 7 has a load measuring device 11, a device 12 signaling the respective operating state Z of the car 5, 6, a device 13 for detecting the position of the cars 5, 6 relative to the entire elevator and car call transmitter 14. The devices 11, 12 are connected to the microcomputer system 8 via the interface IF1 and the measuring and actuating elements 10 via an interface IF6. The car call transmitter 14 and the floor call transmitter 15 provided on the floors are connected to the microcomputer system 8, for example, via an input device 16 that has become known from EP 062 141 and a second interface IF2. The microcomputer system 8 comprises a storey call memory RAM1, two car call memories RAM2, RAM3 assigned to the cabins 5, 6 of the double-decker elevator 7, a load memory RAM4 storing the current load P M of each car 5, 6, two the operating state Z of the cabins 5, 6 storage memory RAM5, RAM6, two tabular partial cost memories RAM7, RAM8 assigned to the cabins 5, 6 of the double-decker elevator 7, a first total cost memory RAM9, a second total cost memory RAM10, a deck / call assignment memory RAM11, an elevator with the lowest operating costs For each scanning position and direction of operation, the RAM12 memory, a RAM13 memory with the differences determined for all adjacent floor distances against a mean deck distance DMDD, a RAM14 memory for the values mean deck distance MDD, actual value deck distance difference IDDD, target value deck Distance range SDDS, etc., a program memory EPROM, a span Fail-safe data memory DBRAM and a microprocessor CPU, which is connected via a bus B to the memories RAM1 to RAM14, EPROM and DBRAM. R1 and R2 denote a first and a second scanner of a scanner, the scanner R1, R2 being registers by means of which addresses corresponding to the floor numbers and the direction of travel are formed. The cost memories RAM7 to RAM10 each have one or more memory locations, which can be assigned to the individual possible cabin positions. R3 and R4 denote the selectors corresponding to the individual cabins in the form of a register which, when the cabin is moving, indicates the address of the floor on which the cabin can still stop. At a standstill, R3 and R4 point to the floor where a call can be served or to a possible cabin position (for "blind" floors). As is known from the drive control mentioned above, the selector addresses are assigned target paths which are compared with a target value generated in a setpoint generator. If these paths are identical and a stop command is present, the delay phase is initiated. If there is no stop command, the selectors R3 and R4 are switched to the next floor.

Die Mikrocomputersysteme der einzelnen Aufzüge a, b, c sind über eine beispielsweise aus der EP 050 304 bekannte Vergleichseinrichtung 17 und ein drittes Interface IF3 sowie über ein beispielsweise aus der EP 050 305 bekanntes Partyline-Übertragungssystem 18 und ein viertes Interface IF4 miteinander verbunden und bilden in dieser Weise eine Gruppensteuerung mit Anpassung der Deckdistanz bei Doppeldecker- oder Multidecker-Aufzügen.The microcomputer systems of the individual elevators a, b, c are known from, for example, EP 050 304 Comparison device 17 and a third interface IF3 and also, for example, from EP 050 305 known party line transmission system 18 and a fourth Interface IF4 interconnected and form in it A group control with adjustment of the deck distance for double-decker or multi-decker elevators.

Die folgende Funktionsbeschreibung bezieht sich auf einen Doppeldecker-Aufzug mit beiden gegenüber dem Aufzugsrahmen beweglichen Decks, resp. Kabinen 5, 6. Wird ein Deck, resp. eine der Kabinen 5, 6 mit dem Fahrkorbrahmen 4 fest verbunden und nur die zweite Kabine beweglich konstruiert, können die Flussdiagramme für die Steuerung der Deckdistanz von den in den Fig.2 dargestellten und beschriebenen Flussdiagrammen abgeleitet werden. Ebenso können bei einem Multidecker-Aufzug alle Kabinen 5, 6 beweglich gegenüber dem Fahrkorbrahmen konstruiert werden oder eine der Kabinen 5, 6 kann mit dem Rahmen fest verbunden und die restlichen Kabinen 5, 6 beweglich gegenüber dem Fahrkorbrahmen konstruiert werden.

  • Der Wert Mittlere Deck-Distanz MDD wird aus der Stockwerk- und Schachtdisposition des Gebäudes als mittlerer Wert zwischen grösster und kleinster Stockwerksdistanz von zwei benachbarten Stockwerken definiert, wobei als benachbarte Stockwerke nur die von dem Aufzug bei einem Halt bedienbaren Stockwerke gelten. Für die Stockwerke, welche von dem Doppeldecker-Aufzug 7 so bedient werden können, dass eines der Decks im Schachtbereich ohne eine Schachttüre steht (z.B. in einer Expresszone), kann die Mittlere Deck-Distanz MDD als Steuergrösse verwendet werden.
  • Für jeden Doppelhalt, d.h. für jeden Halt bei dem beide Kabinen 5, 6 ein Stockwerk bedienen, wird die Differenz gegen die Mittlere Deck-Distanz DMDD für den entsprechenden Halt ermittelt:
  • positiver Wert von DMDD bedeutet: die Kabinen 5, 6 müssen um diesen Wert weiter auseinander sein als MDD um gleichzeitig mit beiden Decks die beiden Stockwerksniveaux zu erreichen.
  • negativer Wert von DMDD bedeutet: die Kabinen 5, 6 müssen um diesen Wert näher zusammen sein als MDD um gleichzeitig mit beiden Decks die beiden Stockwerksniveaux zu erreichen.
  • Diese DMDD-Werte für alle Doppelhalte werden in einer Tabelle im Speicher RAM13 festgehalten.
  • Die gegenseitige Kabinenposition wird mit einer geeigneten Vorrichtung, beispielsweise mit einem Impuls-Tachodynamo und einem entsprechenden Wandler zur Bestimmung der Distanz, ermittelt.
  • Die Abweichung der Distanz beider Kabinen 5, 6 gegenüber MDD wird als Istwert-Differenz zur Mittleren Deck-Distanz IDMDD dauernd nachgeführt. IDMDD kann ein positiver oder negativer Wert sein. Beispielsweise bedeutet IDMDD=-10, dass die beiden Kabinen 5, 6 10cm näher aneinander sind als MDD vorgibt.
  • Sobald der nächste Halt bekannt wird, kann aus der Tabelle mit den gespeicherten DMDD-Werten abgelesen werden, wie weit auseinander die beiden Kabinen 5, 6 sein sollten. Die Differenz aus DMDD und IDMDD ergibt die notwendige Fahrstrecke SDDS für die relative Bewegung der beiden Kabinen 5, 6 gegeneinander.
  • SDDS bedeutet die Sollwert Deck-Distanz-Strecke, um welche sich die Kabinen 5, 6 gegeneinander entfernen oder annähern müssen, so dass beide Kabinen 5, 6 im Zielhalt das Stockwerksniveau genau erreichen. Ein positiver SDDS-Wert zeigt an, dass sich die Kabinen 5, 6 voneinander entfernen müssen. Ein negativer SDDS-Wert bedeutet eine notwendige Annäherung der beiden Kabinen 5, 6.
  • Die Deckdistanzsteuerung wählt die Richtung der distanzregulierenden Fahrt einer oder beider Kabinen 5, 6 und kontrolliert, ob die Kabinen 5, 6 die gewünschte Distanz erreicht haben und dass die Kabinen 5, 6 nicht eine Extremposition, d.h. eine maximal mögliche obere oder untere Deck-Position in Bezug auf den Aufzug, erreicht haben.
  • Die Steuerung der gegenseitigen Positionierung beider Kabinen 5, 6 wird beispielsweise durch folgende Ereignisse aktiviert:
    • Kabine in Beschleunigungsphase und Fahrziel bekannt.
    • Neues während der Fahrt ermitteltes Fahrziel bekannt.
  • Der Antriebsteil der Aufzugssteuerung (nicht die Deckdistanzsteuerung) sorgt dafür, dass der Aufzug genau anhält. Sie steuert den Doppeldecker-Aufzug 7 mit den beiden beweglichen Kabinen 5, 6 immer auf den Mittelpunkt zwischen den beiden benachbarten Stockwerken. Die beiden Kabinen 5, 6 vergrössern oder verkleinern ihre gegenseitige Distanz immer symmetrisch zum Mittelpunkt des Doppeldecker-Aufzugs 7. Wird eine der Kabinen 5, 6 fest mit dem Aufzugsrahmen verbunden, steuert die Aufzugssteuerung den Aufzug 7 so an, dass die im Aufzugsrahmen unbewegliche Kabine 5, 6 die Referenzposition für das Erreichen des Zielstockwerkniveaus darstellt.
  • Ebenfalls der Antriebsteil der Aufzugssteuerung regelt den Doppeldecker-Aufzug 7, der Last in beiden Kabinen 5, 6 entsprechend, nach. Zum Zeitpunkt der Nachregulierung sind die Positionen beider Kabinen 5, 6 in Bezug auf den Aufzugsrahmen bereits fixiert. Deshalb korrigiert die Nachregulierung auf beide Stockwerks-Niveaux gleichzeitig und in der gleichen Richtung.
The following functional description refers to a double-decker elevator with both decks that are movable relative to the elevator frame, respectively. Cabins 5, 6. If a deck, respectively. If one of the cabins 5, 6 is firmly connected to the car frame 4 and only the second cabin is designed to be movable, the flow diagrams for controlling the deck distance can be derived from the flow diagrams shown and described in FIG. Likewise, in a multi-deck elevator, all of the cabins 5, 6 can be designed to be movable relative to the car frame, or one of the cabins 5, 6 can be fixed to the frame and the remaining cabins 5, 6 can be designed to be movable relative to the car frame.
  • The average deck distance MDD value is defined from the floor and shaft disposition of the building as the average value between the largest and smallest floor distance of two adjacent floors, whereby only the floors that can be operated by the elevator during a stop are considered to be adjacent floors. For the floors which can be operated by the double-decker elevator 7 so that one of the decks in the shaft area is without a shaft door (eg in an express zone), the middle deck distance MDD can be used as a control variable.
  • For each double stop, ie for each stop in which both cabins 5, 6 serve one floor, the difference against the mean deck distance DMDD is determined for the corresponding stop:
  • positive value of DMDD means: cabins 5, 6 must be further apart than MDD by this value in order to reach the two floor levels simultaneously with both decks.
  • negative value of DMDD means: the cabins 5, 6 must be closer to this value than MDD in order to reach the two floor levels simultaneously with both decks.
  • These DMDD values for all double stops are recorded in a table in the RAM13.
  • The mutual cabin position is determined with a suitable device, for example with a pulse tachodynamo and a corresponding converter for determining the distance.
  • The deviation of the distance between the two cabins 5, 6 compared to MDD is continuously tracked as the actual value difference to the mean deck distance IDMDD. IDMDD can be a positive or negative value. For example, IDMDD = -10 means that the two cabins 5, 6 are 10 cm closer to each other than MDD specifies.
  • As soon as the next stop becomes known, the table with the stored DMDD values shows how far apart the two cabins 5, 6 should be. The difference between DMDD and IDMDD results in the necessary travel distance SDDS for the relative movement of the two cabins 5, 6 against one another.
  • SDDS means the setpoint deck-distance distance, by which the cabins 5, 6 have to move away from or approach each other, so that both cabins 5, 6 reach the floor level exactly at the destination stop. A positive SDDS value indicates that the cabins 5, 6 must move away from each other. A negative SDDS value means that the two cabins 5, 6 must approach each other.
  • The deck distance control selects the direction of the distance-regulating journey of one or both cabins 5, 6 and checks whether the cabins 5, 6 have reached the desired distance and that the cabins 5, 6 are not in an extreme position, ie a maximum possible upper or lower deck position in relation to the elevator.
  • The control of the mutual positioning of both cabins 5, 6 is activated, for example, by the following events:
    • Cab known in acceleration phase and destination.
    • New destination determined while driving known.
  • The drive part of the elevator control (not the deck distance control) ensures that the elevator stops exactly. It controls the double-decker elevator 7 with the two movable cars 5, 6 always to the center between the two adjacent floors. The two cabins 5, 6 always increase or decrease their mutual distance symmetrically to the center of the double-decker elevator 7. If one of the cabins 5, 6 is permanently connected to the elevator frame, the elevator control controls the elevator 7 in such a way that the cabin which is immobile in the elevator frame 5, 6 represents the reference position for reaching the target floor level.
  • The drive part of the elevator control also adjusts the double-decker elevator 7, corresponding to the load in both cabins 5, 6. At the time of the readjustment, the positions of both cars 5, 6 are already fixed in relation to the elevator frame. Therefore, the adjustment to both floor levels corrects simultaneously and in the same direction.

Die Initialisierung der Werttabellen für die Steuerung der Deckdistanz bei einem Doppeldecker-Aufzug 7 wird bei einer Lernfahrt folgendermassen durchgeführt (bei einem Multidecker-Aufzug würden die Werttabellen und deren Behandlung sinngemäss erstellt und eingesetzt):

  • Alle Distanzen zwischen benachbarten Stockwerken SD werden ermittelt.
  • Grösste Stockwerk-Distanz, Kleinste Stockwerk-Distanz und Mittlere Stockwerk-Distanz werden ermittelt. Die Mittlere Stockwerk-Distanz entspricht der Mittleren Deck-Distanz MDD.
  • Pro Haltepaar wird die Differenz zur Mittleren Stockwerk-Distanz DMDD ermittelt.
The initialization of the value tables for controlling the deck distance in a double-decker elevator 7 is carried out as follows during a learning trip (in the case of a multi-deck elevator, the value tables and their treatment would be created and used accordingly):
  • All distances between adjacent floors SD are determined.
  • Largest floor distance, smallest floor distance and middle floor distance are determined. The middle floor distance corresponds to the middle deck distance MDD.
  • The difference to the middle floor distance DMDD is determined for each stop pair.

Die gemessenen Positionswerte werden gespeichert und bei jeder Fahrt oder periodisch nachgeführt um eventuelle Änderungen, wie beispielsweise Gebäudeschrumpfung, erfassen zu können. Aus diesen Daten werden die notwendigen Deckdistanzen berechnet, welche für ein gleichzeitiges schwellenloses Anhalten für die Kabinen 5,6 notwendig sind. Weiter ist es möglich, das Verfahren nicht nur mit einer konventionellen Gruppensteuerung, sondern in jeder beliebigen Steuerungsart (Zielrufsteuerung, usw.) durchzuführen.The measured position values are saved and at every trip or periodically updated for any Changes such as building shrinkage, to be able to record. From this data the necessary coverage distances calculated, which for a simultaneous stopping without thresholds for the cabins 5.6 are necessary. It is also possible to follow the procedure not just with a conventional group control, but in any type of control (Destination call control, etc.).

Fig.2 zeigt ein Flussdiagramm für die Steuerung der Deckdistanzanpassung während der Fahrt. Mit dem Start des Aufzugs wird die Sollwert Deck-Distanz-Strecke SDDS aus der Differenz der Differenz zur Mittleren Deck-Distanz DMDD und der Istwert-Differenz zur Mittleren Deck-Distanz IDMDD ermittelt. Ist die notwendige Deck-Distanz bereits voreingestellt, das heisst die Sollwert Deck-Distanz-Strecke SDDS ist gleich Null, erfolgt keine Aktion, da beide Kabinen 5, 6 im Zielhalt die Stockwerkniveaux genau erreichen.2 shows a flowchart for the control of the Adjustment of deck distance while driving. With the start of the The setpoint deck distance distance SDDS is lifted the difference the difference to the middle deck distance DMDD and the actual value difference to the mean deck distance IDMDD determined. Is the required deck distance already preset, that means the setpoint deck-distance distance SDDS is zero, no action is taken because both cabins 5, 6 in the target stop exactly the floor levels to reach.

Während der Fahrt des Aufzugs und der relativen Bewegung der Decks wird die Istwert-Differenz zur Mittleren Deck-Distanz IDMDD dauernd nachgeführt, da bei einer eventuellen Zielstockwerkänderung die neue Sollwert Deck-Distanz-Strecke SDDS bestimmt werden muss und der Prozess der Deckdistanzanpassung neu eingeleitet wird. Ist die Deckdistanzanpassung beendet, erhalten die Türen ein Freigabesignal zum Öffnen. Das Türöffnen erfolgt unter Berücksichtigung aller andern vorschrifts- und steuerungstechnisch bedingten Massnahmen. Beide Decks erreichen genau das jeweilige Stockwerksniveau.During elevator travel and relative movement the decks becomes the actual value difference to the mean deck distance IDMDD constantly updated, since at one possible change of target floor the new setpoint deck distance distance SDDS needs to be determined and the process of the deck distance adjustment is initiated. Is the The deck distance adjustment finished, the doors get one Release signal for opening. The door is opened under Consideration of all other regulations and Control-related measures. Both decks reach exactly the respective floor level.

Fig.3 zeigt eine schematische Darstellung einer Vorrichtung zur Anpassung der Deckdistanz bei einem Doppeldecker-Aufzug 7 mit zwei gegenüber dem Fahrkorbrahmen beweglichen Kabinen 5, 6. In einem gemeinsamen, mit Führungen 50 und einer Aufhängung 51 versehenen Fahrkorbrahmen 4 sind die beiden Kabinen 5, 6 angeordnet. Beide Kabinen 5, 6 weisen je einen, mit Kabinenführungen 53 an Führungsschienen geführten, separaten Kabinenrahmen 54, 55 auf. Zur Ermittlung der gegenseitigen Position der Kabinen 5, 6 dient beispielsweise ein Impuls-Tachodynamo 60. Zwischen den Kabinen 5, 6 ist an einer Platte 61 am Fahrkorbrahmen 4 die Deckdistanz-Antriebsmaschine (DA) mit Elektromotor befestigt. Die Steuerung dieses Antriebs befindet sich zum Beispiel im Maschinenraum der Aufzugsanlage. Zur gegenseitigen Verstellung der Kabinen 5, 6 dient beispielsweise eine Spindel 62 mit gegenläufigen Gewinden für die beiden zugeordneten Kabinen 5, 6 und greift durch eine Öffnung 63 durch die Platte 61 hindurch. Die Kabinenrahmen 54, 55 sind mit Gewindeplatten 64 versehen, die die Spindel 62 aufnehmen. Bei einer Deckdistanz-Anpassung, d.h. wenn die Spindel 62 von der Deckdistanz-Antriebsmaschine DA angetrieben wird, vergrössert oder verkleinert sich die Distanz zwischen den Kabinen 5, 6 symmetrisch zum Mittelpunkt des Doppeldecker-Aufzugs 7. Als Alternative zur Spindel 62 kann beispielsweise auch eine Schere, Hydraulikstempel oder ein anderer Antrieb verwendet werden.3 shows a schematic representation of a Device for adjusting the deck distance at a Double decker elevator 7 with two opposite Car frame movable cabins 5, 6. In one common, with guides 50 and a suspension 51st provided car frame 4 are the two cabins 5, 6 arranged. Both cabins 5, 6 each have one Cabin guides 53 guided on guide rails, separate cabin frames 54, 55. To determine the mutual position of the cabins 5, 6 is used for example a pulse tachodynamo 60. Between the Cabins 5, 6 are on a plate 61 on car frame 4 the deck distance drive machine (DA) with electric motor attached. The control of this drive is located for example in the machine room of the elevator system. to mutual adjustment of the cabins 5, 6 is used for example a spindle 62 with opposing threads for the two assigned cabins 5, 6 and reaches through an opening 63 through the plate 61. The Cabin frames 54, 55 are provided with threaded plates 64, which accommodate the spindle 62. When adjusting the coverage distance, i.e. when the spindle 62 from the top distance driving machine DA is driven, enlarged or the distance between the cabins 5, 6 decreases symmetrical to the center of the double-decker elevator 7. As an alternative to the spindle 62, for example a pair of scissors, hydraulic rams or another drive be used.

Claims (10)

  1. Method of controlling a double-decker or multi-decker elevator (7) which is guided in an elevator hoistway (1) and is driven by a hoisting machine (2) via a suspension rope (3), there being arranged in a car sling (4) at least two cars (5, 6), the vertical distance between the cars (5, 6) being adjustable, so that even with variable floor heights in the building the positions of the cars are adjustable to the level of the respective landings on adjacent floors, and floor distances (SD) between two respectively adjacent floors being determined, characterized in that
    a) a "Mean Deck-Distance" (MDD) defined as the mean value between the largest and smallest floor distance (SD) of two adjacent floors is calculated,
    b) for each stop at which the cars (5, 6) respectively serve two adjacent floors a "Difference from the Mean Deck-Distance" (DMDD) is formed, which gives the difference between the distance between the floors and the value of the mean deck-distance (MDD),
    c) a pair of adjacent floors is selected, at which the two cars should stop,
    d) an "Actual Difference from the Mean Deck Distance" (IMDD) is calculated which gives the difference between an actual value for the distance between the cars and the value for the "Mean Deck-Distance" (MDD),
    e) a "Reference Deck-Distance Correction" SDDS is calculated from the difference between the value for the "Difference from the Mean Deck-Distance" (DMDD) which corresponds to the pair of adjacent floors, and the value for the "Actual Difference from the Mean Deck-Distance" (IDMDD), and from this is determined the direction in which, and the distance by which, the distance between the cars (5, 6) must be corrected.
  2. Method according to Claim 1, characterized in that the values for the "Mean Deck-Distance" (MDD) and the "Difference from the Mean Deck-Distance" (DMDD) is determined in a learning travel of the elevator for each pair of adjacent floors.
  3. Method according to one of Claims 1 or 2, characterized in that the values for the "Mean Deck-Distance" (MDD) and the "Difference from the Mean Deck-Distance" (DMDD) are determined on each trip of the elevator.
  4. Method according to one of Claims 1-3, characterized in that the values for the "Mean Deck-Distance" (MDD) and the "Difference from the Mean Deck-Distance" (DMDD) are written into a memory (RAM13, RAM14).
  5. Method according to one of Claims 1-4, characterized in that the values for the "Actual Difference from the Mean Deck-Distance" (IDMDD) and the "Reference Deck-Distance Correction" (SDDS) are calculated when there is a change of destination floor.
  6. Method according to one of Claims 1-5, characterized in that the distance between the cars (5, 6) is changed symmetrically about the midpoint of the double-decker elevator, and that the double-decker elevator (7) stops in such manner that the midpoint of the double-decker elevator (7) is directed to the midpoint between the pair of adjacent floors.
  7. Method according to one of Claims 1-5, characterized in that one of the cars (5, 6) is arranged immovably in the car sling (4), and that this car represents a reference position for reaching a target floor level.
  8. Device for a double-decker or multi-decker elevator (7) which is guided in an elevator hoistway (1) and is driven, for example, by a hoisting machine (2) via a suspension rope (3), there being arranged in a car sling (4) at least two cars (5, 6) and at least one of the cars (5, 6) being movable relative to the car sling (4), there being arranged on the car sling (4) at least one deck-distance drive machine (DA) for adjusting the distances between the cars (5, 6), a device for determining the relative positions of, or calculating the distance between, the cars (5, 6) and a control device (8, 10) for the deck-distance drive machine being provided for a selected pair of adjacent floors, and it being possible by means of the control device (8, 10) to bring the distance between the cars (5, 6) to match the distance of the floors,
    characterized in that
    the control device contains a memory (RAM13, RAM14) for the following values:
    a value for a "Mean Deck-Distance" (MDD), which is defined as the mean value between the largest and smallest floor distance (SD) of two adjacent floors;
    for each stop at which the cars (5, 6) respectively serve two adjacent floors, a value for a "Difference from the Mean Deck-Distance" (DMDD) which gives the difference between the distance between the floors and the value for the "Mean Deck-Distance" (MDD), a value for an "Actual Difference from the Mean Deck Distance" (IMDD), which gives the difference between an actual value for the distance between the cars and the value for the "Mean Deck-Distance" (MDD);
    for the selected pair of adjacent floors, a value for a "Reference Deck-Distance Correction" (SDDS), formed from the difference between the value for the "Difference from the Mean Deck-Distance" (DMDD) which corresponds to the selected pair of adjacent floors and to the value for the "Actual Difference from the Mean Deck-Distance" (IDMDD).
  9. Device according to Claim 8,
    characterized in that
    one or more of the cars (5, 6) is movable relative to the car sling (4), and that not more than one car (5, 6) is immovably fastened to the car sling (4).
  10. Device according to one of Claims 8 or 9,
    characterized in that
    with the deck-distance drive machine (DA), the distance between the cars (5, 6) can be changed symmetrically about the mid-point of the double-decker elevator (7).
EP99101343A 1998-02-02 1999-01-25 Double-Decker or Multi-Decker Elevator Expired - Lifetime EP0933323B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99101343A EP0933323B1 (en) 1998-02-02 1999-01-25 Double-Decker or Multi-Decker Elevator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP98810078 1998-02-02
EP98810078 1998-02-02
EP99101343A EP0933323B1 (en) 1998-02-02 1999-01-25 Double-Decker or Multi-Decker Elevator

Publications (2)

Publication Number Publication Date
EP0933323A1 EP0933323A1 (en) 1999-08-04
EP0933323B1 true EP0933323B1 (en) 2003-10-29

Family

ID=8235919

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99101343A Expired - Lifetime EP0933323B1 (en) 1998-02-02 1999-01-25 Double-Decker or Multi-Decker Elevator

Country Status (12)

Country Link
US (1) US6161652A (en)
EP (1) EP0933323B1 (en)
JP (1) JP4656681B2 (en)
CN (1) CN1093498C (en)
AT (1) ATE253009T1 (en)
CA (1) CA2260593C (en)
DE (1) DE59907487D1 (en)
HK (1) HK1023328A1 (en)
ID (1) ID21855A (en)
MY (1) MY120788A (en)
NZ (1) NZ333698A (en)
SG (1) SG126669A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344448A (en) * 1999-06-07 2000-12-12 Toshiba Corp Double deck elevator device
JP2001019287A (en) * 1999-06-28 2001-01-23 Otis Elevator Co Control device of movable double deck elevator
SG87910A1 (en) * 1999-10-29 2002-04-16 Toshiba Kk Double-deck elevator car
JP4457450B2 (en) * 1999-12-20 2010-04-28 三菱電機株式会社 Double deck elevator control device
US6526368B1 (en) * 2000-03-16 2003-02-25 Otis Elevator Company Elevator car position sensing system
JP4628518B2 (en) * 2000-05-18 2011-02-09 東芝エレベータ株式会社 Double deck elevator
JP2002087716A (en) * 2000-09-13 2002-03-27 Toshiba Corp Double deck elevator
JP4517506B2 (en) * 2000-12-26 2010-08-04 フジテック株式会社 Double deck elevator
JP4942264B2 (en) * 2001-09-18 2012-05-30 東芝エレベータ株式会社 Double deck elevator and control method thereof
JP4131456B2 (en) * 2001-11-26 2008-08-13 三菱電機株式会社 Elevator group management control device
EP1342690A1 (en) * 2002-03-04 2003-09-10 Inventio Ag System for positioning at least one deck of a multiple deck elevator cabin of an elevator
JP4107858B2 (en) * 2002-03-22 2008-06-25 東芝エレベータ株式会社 Double deck elevator
JP4204249B2 (en) * 2002-04-12 2009-01-07 東芝エレベータ株式会社 Double deck elevator
US7353914B2 (en) 2003-10-20 2008-04-08 Inventio Ag Safety system for an elevator
EP1526104B1 (en) * 2003-10-20 2006-06-07 Inventio Ag Safety system for a multi cabin elevator system
SG115736A1 (en) 2004-03-17 2005-10-28 Inventio Ag Equipment for fine positioning of a cage of a multi-stage cage
SG115739A1 (en) * 2004-03-17 2005-10-28 Inventio Ag Equipment for fine positioning of the cages of a multi-stage cage for a lift
FI118081B (en) * 2005-12-29 2007-06-29 Kone Corp Procedure and apparatus for monitoring the front opening of the doors in a double basket lift
JP4277878B2 (en) * 2006-07-07 2009-06-10 株式会社日立製作所 Multi car elevator
EP1967479A1 (en) * 2007-03-08 2008-09-10 Inventio Ag Frame for a multi-deck cabin.
EP2221269A1 (en) * 2009-02-20 2010-08-25 Inventio AG Lift assembly with a multiple-deck cabin
US9174822B2 (en) * 2009-12-15 2015-11-03 Inventio Ag Double-decker lift installation
WO2012028597A1 (en) * 2010-09-01 2012-03-08 Inventio Ag Carrying frame with damping elements for bearing a lift car
JP5641979B2 (en) * 2011-03-01 2014-12-17 東芝エレベータ株式会社 Control device for double deck elevator
JP5583055B2 (en) * 2011-03-01 2014-09-03 東芝エレベータ株式会社 Control device for double deck elevator
JP5496248B2 (en) * 2012-04-24 2014-05-21 東芝エレベータ株式会社 Double deck elevator system
WO2014184926A1 (en) * 2013-05-16 2014-11-20 三菱電機株式会社 Elevator device
EP2886501A1 (en) * 2013-12-18 2015-06-24 Inventio AG Elevator with an absolute positioning system for a double decker cabin
JP6658240B2 (en) * 2016-04-13 2020-03-04 フジテック株式会社 Double deck elevator
JP6686655B2 (en) * 2016-04-13 2020-04-22 フジテック株式会社 Double deck elevator
EP3232177B1 (en) * 2016-04-15 2019-06-05 Otis Elevator Company Building settling detection
US10329122B1 (en) * 2018-01-15 2019-06-25 Otis Elevator Company H frame for a double deck elevator
US11345566B2 (en) * 2018-07-30 2022-05-31 Otis Elevator Company Elevator car route selector
US11970363B2 (en) * 2019-09-30 2024-04-30 Inventio Ag Elevator car for a double-deck elevator

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1946982A (en) * 1929-10-10 1934-02-13 Patrick J Campbell Elevator system
US1914128A (en) * 1930-10-30 1933-06-13 Westinghouse Electric & Mfg Co Multicage elevator
DE1113293B (en) * 1957-09-27 1961-08-31 Rupert Burgmair Passenger elevator
JPS4876242A (en) * 1972-01-11 1973-10-13
JPS50113162U (en) * 1974-02-25 1975-09-16
CH649517A5 (en) * 1979-09-27 1985-05-31 Inventio Ag DRIVE CONTROL DEVICE FOR AN ELEVATOR.
CH651951A5 (en) * 1980-10-20 1985-10-15 Inventio Ag DEVICE FOR CONTROLLING access from PROCESSORS ON A DATA LINE.
CH651950A5 (en) * 1980-10-20 1985-10-15 Inventio Ag MULTIPROCESSOR ARRANGEMENT.
JPS58197168A (en) * 1982-05-11 1983-11-16 三菱電機株式会社 Controller for elevator
JPS59149278A (en) * 1983-02-09 1984-08-27 株式会社日立製作所 Measuring device for state of guide rail for elevator
ES2047073T3 (en) * 1988-10-28 1994-02-16 Inventio Ag PROCEDURE AND DEVICE FOR THE CONTROL OF GROUPS OF ELEVATORS WITH DOUBLE CABINS.
JPH0472288A (en) * 1990-07-10 1992-03-06 Toshiba Corp Double deck elevator
FI86836C (en) * 1990-12-17 1992-10-26 Kone Oy HISS OCH DESS STYRSYSTEM
JP3243160B2 (en) * 1995-10-31 2002-01-07 株式会社東芝 Control device for multiple deck elevator
JP3345565B2 (en) * 1997-04-11 2002-11-18 森ビル株式会社 Adjustable double deck elevator

Also Published As

Publication number Publication date
SG126669A1 (en) 2006-11-29
CA2260593C (en) 2008-06-17
JPH11314858A (en) 1999-11-16
ID21855A (en) 1999-08-05
DE59907487D1 (en) 2003-12-04
CN1093498C (en) 2002-10-30
EP0933323A1 (en) 1999-08-04
US6161652A (en) 2000-12-19
MY120788A (en) 2005-11-30
HK1023328A1 (en) 2000-09-08
NZ333698A (en) 2000-06-23
JP4656681B2 (en) 2011-03-23
CA2260593A1 (en) 1999-08-02
CN1234361A (en) 1999-11-10
ATE253009T1 (en) 2003-11-15

Similar Documents

Publication Publication Date Title
EP0933323B1 (en) Double-Decker or Multi-Decker Elevator
EP0769469B1 (en) Safety device for multi-mobile elevator groups
DE69805257T2 (en) METHOD AND APPARATUS FOR INSTALLING AN ELEVATOR
EP1619157B2 (en) Elevator system with independently movable elevator cars and method for controlling its movement
DE60214219T2 (en) LIFT SYSTEM
DE69808826T2 (en) Elevator with adjustable double deck
EP1418147B1 (en) Controller for elevator with multi-deck car
DE4219705C2 (en) Rotary printing press
DE69714347T2 (en) Elevator system with group control
WO2003004397A1 (en) Method for preventing an inadmissibly high speed of the load receiving means of an elevator
EP0356731A1 (en) Grouped control affording instantaneous attribution of destination calls
DE69323923T2 (en) Method for controlling an elevator group
EP2766292A1 (en) Elevator
WO2010052109A1 (en) Modernization method for elevator systems
DE2517514A1 (en) LIFT CONTROL SYSTEM
EP1693331A1 (en) Elevator system with several shafts and with elevator cars that can be coupled and uncoupled from the selected drive system.
EP0134892A1 (en) Lift group control for double-compartment cars
EP2512969A1 (en) Double-decker lift installation
DE69612354T2 (en) Shuttle elevator using a horizontally transferable cabin
WO2016055507A1 (en) Evacuation concept for elevator systems
EP3227216A1 (en) Elevator system
DE69117026T2 (en) Procedure for checking the engine of a crane
EP3774627A1 (en) Method for operating a lift system
EP3645443B1 (en) Elevator system
WO2023046643A1 (en) Method for creating an elevator shaft of an elevator system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000117

AKX Designation fees paid

Free format text: AT CH DE FR GB LI

17Q First examination report despatched

Effective date: 20020523

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RTI1 Title (correction)

Free format text: DOUBLE-DECKER OR MULTI-DECKER ELEVATOR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59907487

Country of ref document: DE

Date of ref document: 20031204

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040125

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040102

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070413

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170120

Year of fee payment: 19

Ref country code: DE

Payment date: 20170120

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170119

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59907487

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180125