EP1526104B1 - Safety system for a multi cabin elevator system - Google Patents

Safety system for a multi cabin elevator system Download PDF

Info

Publication number
EP1526104B1
EP1526104B1 EP20040024136 EP04024136A EP1526104B1 EP 1526104 B1 EP1526104 B1 EP 1526104B1 EP 20040024136 EP20040024136 EP 20040024136 EP 04024136 A EP04024136 A EP 04024136A EP 1526104 B1 EP1526104 B1 EP 1526104B1
Authority
EP
European Patent Office
Prior art keywords
safety
shaft
cage
data
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20040024136
Other languages
German (de)
French (fr)
Other versions
EP1526104A1 (en
Inventor
Romeo Dr. Deplazes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP20040024136 priority Critical patent/EP1526104B1/en
Publication of EP1526104A1 publication Critical patent/EP1526104A1/en
Application granted granted Critical
Publication of EP1526104B1 publication Critical patent/EP1526104B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • B66B5/0031Devices monitoring the operating condition of the elevator system for safety reasons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B13/00Doors, gates, or other apparatus controlling access to, or exit from, cages or lift well landings
    • B66B13/22Operation of door or gate contacts

Definitions

  • the invention relates to a safety system for an elevator installation for the transport of persons / goods in a building and to a method for operating an elevator installation with a safety system according to the definition of the preamble of the independent claims.
  • No. 5,419,414 A shows an elevator installation with cabs arranged one above the other in a shaft of a building, which cabins can be moved independently of one another.
  • Each cabin has a drive and a counterweight.
  • the cabins are connected via ropes as propellant with counterweights.
  • the drives are mounted above the shaft and move the propellant.
  • the drives are controlled by drive control signals from a drive control.
  • Car position detecting sensors detect the positions of the cars and transmit car position signals to the drive controller.
  • a first object of the invention is to provide a safety system for such an elevator installation which has means for avoiding collisions between booths moved independently of one another in a hoistway.
  • a second object of the invention is to provide a safety system for an elevator installation, which comprises means for restricting a method of cabins, which take place independently of one another in a shaft, to shaft areas with closed storey doors.
  • a third object of the invention is to provide a safety system for an elevator installation which has means for avoiding collisions of booth-end cabins which are moved independently of one another in a hoistway.
  • the invention relates to a safety system for an elevator installation for transporting persons / goods in a building and to a method for operating an elevator installation with a safety system.
  • Several cabins are moved one above the other in a shaft. Each cabin is driven by a drive.
  • At least one drive control controls the drives via drive control signals.
  • Car position detecting sensors detect positions of each car and transmit car position data to at least one safety controller. Access to the shaft is via open shaft doors. A lock locks shaft doors. Lock position detection sensors detect positions of the locks of the landing doors and transmit lock position data to the safety controller.
  • the safety control system determines shaft area data with information on shaft areas in which each car can be safely moved.
  • cab position data and locking position data to a safety controller, which determines shaft areas in which the cabins can be safely moved on the basis of these data.
  • a safely movable for a car shaft area such a shaft area in which the cabin, while maintaining a safe distance to a next car or to the shaft end and with Normal retraction seen in the direction of travel of the cabin retract to a next floor stop and can hold there.
  • the safety controller transmits the manhole area data to the propulsion controller, which converts the manhole area data into propulsion control signals to move the cars in separate manhole areas and to move the cars to manhole areas with locked landing doors.
  • the car position detection sensors, the lock position detection sensors, the safety control and the drive control are modular components of the safety system. These components communicate with each other via a data bus.
  • the advantages of the data bus are that, on the one hand, data can be transmitted quickly from and to the safety control and, on the other hand, the sensors of the car positions and the locking positions can be controlled in a simple and individually targeted manner. This rapid communication and this targeted control of the sensors takes place at a very favorable price / performance ratio. Also, this modular safety system is easy to install and maintain.
  • the safety controller is advantageously a central unit.
  • the central safety controller receives all car position data of the cars, it receives all lock position data of the landing doors and it transmits all manhole area data to a central drive control.
  • the safety controller advantageously consists of decentralized units. Each cabin is individually assigned a safety control and a drive control. Cabin position data is transmitted only to the safety control associated with the car. The safety controllers exchange recorded cabin position data with each other. Lock position data is transmitted to all safety controllers. Well area data is only transmitted to the drive control associated with the cabin.
  • the drive control systematically controls the drives and thus prevents a collision of cabins in the shaft, a collision of cabins with shaft ends and an approaching of open shaft doors.
  • the safety controller monitors whether safety-critical distances are exceeded. If a safety-critical distance is exceeded, predefined safety measures are initiated.
  • a first safety measure is to delay at least one drive.
  • Another safety measure is emergency braking of at least one drive.
  • Another safety measure is the collapse of at least one safety gear of the cabins.
  • the security controller checks the availability of the sensors with availability requests, which increases the security of the elevator system.
  • cab position data and lock position data transmitted to the safety control can be examined for transmission errors.
  • the sensors can be interrogated on a test basis for functionality at periodic intervals.
  • FIGS. 1 and 2 show two different embodiments of an elevator installation 10 for the transport of persons / goods between floors 30.1 to 30.8 of a building 30 .
  • the elevator installation 10 has at least one elevator, which elevator is advantageously installed in a shaft 31 of the building 30 .
  • the person skilled in various options of variation in the installation of an elevator in a building 30 free.
  • the shaft can only partially pass through the building 30 , or an elevator is installed without a box in a courtyard of the building 30 or outside the building 30 .
  • the elevator has at least one cabin 2, 2 ' , which cabins 2, 2' as a single or double cabin in the vertical direction of travel advantageously on a pair of guide rails 5, 5 ' are moved.
  • the cabins 2, 2 ' are conventional and proven elevator cars, which are moved over guide shoes on the guide rails 5, 5' .
  • Each cabin has at least one car door 8, 8 ' , over which car doors 8, 8' persons / goods access to the car 2, 2 ' have ..
  • the elevator installation 10 has a drive 6 , 6 ' per booth 2, 2' .
  • traction sheave drives with traction sheaves, which connect the cabins 2, 2 ' via propellant 4, 4' with counterweights 3, 3 ' .
  • the Cabins 2, 2 ' and the counterweights 3, 3' are arranged in the representations according to FIGS. 1 and 2 in different planes.
  • the propellant 4, 4 ' can have any shape, whether it may be made of any materials. For example.
  • the propellant 4, 4 ' is a round rope, double rope or a belt.
  • the blowing agent 4, 4 ' at least partially made of steel or aramid fibers.
  • the skilled person can use all known and proven drives 6, 6 ' .
  • Gearless drives or those with gearboxes can be used.
  • drives 6, 6 ' with permanent magnets, with synchronous motors, with asynchronous motors or with linear motors can be used.
  • the drives 6, 6 ' can be arranged stationarily directly in the shaft 31 in a stationary manner in a separate machine room 32 or as shown in the embodiment according to FIG. 2 .
  • the skilled person has knowledge of the present invention, free choice of the arrangement of the drives.
  • the drives 6, 6 ' as shown in the embodiment in the embodiment according to FIG. 1 , at the upper end of guide rails 5, 5' at substantially the same height in the shaft 31 may be arranged.
  • the drives need not be stationary, but they can also be mobile on the cabins or the counterweights.
  • the drives 6, 6 ' are controlled by at least one drive control 16, 16' .
  • a central stationary drive control 16 is provided for both drives 6, 6 ' with at least one arithmetic unit and at least one memory in the machine room 32 .
  • a separate stationary drive control 16, 16 ' with at least one computing unit and at least one memory close to the shaft 31 is provided for each drive 6, 6' .
  • At least one control program is stored in the memory, which control program is executed by the arithmetic unit.
  • the drive control 16, 16 ' transmits drive control signals to the drives 6, 6' in order to accelerate or brake or at least hold them in accordance with a programmed travel curve.
  • the drive control can also be mobile on the cabins or Counterweights arranged.
  • a central drive control or multiple drive controls for each cabin can / may be arranged so mobile.
  • the elevator system 10 has at least one car position detection sensor 21, 21 ' for detecting the current absolute position of each of the cars 2, 2' moved independently of each other in the shaft 31 .
  • a coding is attached to a speed governor cable 12, 12 ' .
  • Each cabin 2, 2 ' has a speed governor rope 12, 12' , which is arranged next to the car 2, 2 ' in the shaft 31 and mechanically fixed to the car 2, 2' .
  • the upward and downward movement of the cabin 2, 2 'in the shaft 31 is thus on the speed governor 12, 12' transmitted.
  • the distances in FIG. 1 between the cars 2, 2 ' and the speed governor cables 12, 12' are not to scale.
  • Each speed limiter cable 12, 12 ' is mechanically connected to a speed limiter 14, 14' arranged in the engine room 32 .
  • Speed limiter 14, 14 ' detects an overspeed of the car 2, 2' and triggers at overspeed at least one of the safety measures described below.
  • a deflection roller 13, 13 ' arranged on the shaft bottom enables the return of the speed governor cable 12, 12'.
  • the car position detecting sensor 21, 21 ' is mounted in the engine room 32 on the speed limiter 13, 13' .
  • the car position detecting sensor 21, 21 ' may decode optical codings such as color codings or magnetic codings on the speed limiter cable 12, 12' .
  • the decoding may be done by the car position detecting sensor 21, 21 ' or by the safety controller 26, 26' .
  • the car position detection sensor 21, 21 ' can also be arranged in the shaft 31 .
  • the person skilled in the art can also attach codings to the propellant 4, 4 ' of each car 2, 2' and to detect codings on the propellant 4, 4 ' by means of car position detection sensors 21, 21'.
  • the person skilled in the speed limiter rope 12, 12 ' or on the propellant 4, 4' attach mechanical markings such as ball or hook, which are detected by correspondingly designed mechanical car position detection sensors 21, 21 ' .
  • a marking is provided for a cable unit length of 10 cm. By counting the markings, the current position d of the cars 2, 2 ' can be determined with respect to a specific, known starting position. The counting of the markings can be done by the car position detecting sensor 21, 21 ' or by the safety controller 26, 26' .
  • the skilled person can also define smaller or larger cable unit lengths.
  • the car position detection sensor 21, 21 ' is a magnetic sensor mounted on the car 2, 2' , which magnetic sensor scans a coded magnetic tape 9 mounted in the shaft 31 with high resolution. Codes on the magnetic tape 9 are decoded into a current absolute position of the car 2, 2 ' . The decoding may be done by the car position detecting sensor 21, 21 ' or by the safety controller 26, 26' .
  • a straight-line installation, for example, in addition to at least one guide rail 5, 5 ' allows a magnetic tape 9 to be used with a high information density.
  • the car position detection sensor 21, 21 ' may also be an optical sensor mounted on the car 2, 2' which detects any pattern in the carousel 31 as car position data. In a calibration run, these patterns are captured and stored as primary cabin position data. During operation of the elevator installation 10 currently detected car position data is compared with the stored primary car position data. The storage or comparison of cabin position data can be done by the car position detection sensor 21, 21 ' or by the safety controller 26, 26' . Also, those skilled in the art can attach mechanical markings such as balls or hooks in the well 31 which are detected by correspondingly designed mechanical car position detecting sensors 21 , 21 ' . For example. are at least one guide rail 5, 5 ' every 10 cm a mark provided.
  • the skilled person can not attach codings over the entire length of the shaft 31 or patterns over the entire length of the shaft 31 detect or not on the entire length of the speed limiter rope 12, 12 ' or propellant 4, 4' attach.
  • the expert can attach codes or patterns only in such area of the shaft 31 or capture where an actual risk of collision of cabins 2, 2 ' in the shaft 31 or where an actual risk of collision of cabins 2, 2' with Shaft ends exists.
  • the detection of the car position data advantageously takes place continuously, for example at regular intervals of 10 msec.
  • Shaft doors / interlocks On each floor 30.0 to 30.8 , access to the shaft 34 takes place via shaft doors 11.0 to 11.8 .
  • the shaft doors 11.0 to 11.8 can be single-sided or double-sided opening doors.
  • the shaft doors 11.0 to 11.8 are preferably carried out complacent; that is, they close automatically as soon as they are not actively held open. In addition to closing the shaft doors 11.0 to 11.8 closed shaft doors are locked 11.0 to 11.8.
  • each shaft door 11.0 to 11.8 on a lock 18.0 to 18.8 is self-coincident when the landing door 11.0 to 11.8 is closed.
  • An active lock is not necessary.
  • the latches 18.0 to 18.8 are preferably designed such that they can only be unlocked and opened or closed and locked by a car door 8, 8 ' provided on a car 2, 2' , or that they unlock with a special tool and postpone by hand.
  • Lock position detection sensors Each shaft door 11.0 to 11.8 has at least one lock position detection sensor 20.0 to 20.8 .
  • the lock position detection sensor 20.0 to 20.8 detects positions of the latches 18.0 to 18.8 of the landing doors 11.0 to 11.8.
  • Locking position detection sensors 20.0 to 20.8 can be used by well-known and proven sensors such as locking device contacts, microswitches, inductive sensors such as radio frequency identification (RFID) sensors, capacitive sensors or optical sensors, etc., in elevator construction.
  • RFID radio frequency identification
  • the detection of the locking position data advantageously takes place continuously, for example at regular intervals of 10 msec.
  • Safety control / data bus At least one safety control 26, 26 ' is provided which, as exemplified in FIGS. 3 and 4 , receives cabin position data determined by the car position detection sensors 21 , 21' via a data bus 22 and interlock position data determined by the locking position detection sensors 20.0 to 20.8 which transmits via the data bus 22 to the drive control 16, 16 ' shaft area data.
  • the safety controller 26, 26 ' advantageously has at least one arithmetic unit and at least one memory. At least one safety program is stored in the memory, which safety program is executed by the computer.
  • the safety controller 26, 26 ' monitors whether safety-critical distances are exceeded. These distances are described in detail below. If a safety-critical distance is exceeded, predefined safety measures are initiated.
  • a first security measure is the delaying of at least one drive 6, 6 ' .
  • Another safety measure is emergency braking, ie the engagement of the holding brake of at least one drive 6 , 6 ' .
  • Another safety measure is the collapse of at least one safety gear of the cabins 2, 2 '.
  • the first and the better security measures can be staggered or triggered in combination. Thus, as a first security measure, a delay can be initiated. If the safety-critical distance continues to decrease, emergency braking can also be initiated as a further safety measure.
  • a safety gear can additionally take place as a further safety measure.
  • the person skilled in the art can also make other types of shutdown of the cabins 2, 2 ' . So he can, for example, provide a cabin brake in the form of a disc brake. He may also provide a braking of the propellant.
  • the data bus 22 is a known and proven signal bus. It can be a signal bus based on electrical or optical signal transmission, such as an Ethernet network, a token ring network, etc. It can also be a wireless network, an infrared network, a radar network , a beam network, etc. act.
  • the transmission media such as two-wire, 230/400 VAC network, radio, infrared, microwaves, fiber optics, Internet, etc. can be freely selected.
  • the safety system thus consists of the components car position detection sensors 21, 21 ' , the lock position detection sensors 20.0 to 20.8 , safety controller 26, 26' and drive control 16, 16 ' , which communicate with each other via the data bus 22 .
  • the components of the security system are advantageously bus modules.
  • a bus module is an electronic card, with at least one data memory and at least one arithmetic unit.
  • data bus 22 is a LON bus, where bus modules communicate easily with each other and are programmable.
  • the LON bus is a technology that enables the creation of distributed networks using many simple bus nodes. In particular, a direct communication between the individual computing units of the components is possible.
  • the LON bus protocol is the carrier of the control information and the individual computing units of the components can be controlled directly via the LON bus.
  • the bus nodes can be programmed with logical links.
  • the LON bus has a free topology and can be structured in lines, circles, trees, etc.
  • the data bus 22 has, for example, a branche
  • the car position detection sensors 21, 21 ' and locking position detection sensors 20.0 to 20.8 are jointly monitored by a central safety controller 26 .
  • the central safety controller 26 transmits shaft area data to a central drive control 16 .
  • each cabin 2, 2 ' has a safety circuit 26, 26' .
  • a first car position detection sensor 21 of a first car 2 is monitored by a first safety controller 26 .
  • a second car position detection sensor 21 'of a second car 2' is monitored by a second safety control 26 ' .
  • the two safety controllers 26 , 26 ' mutually exchange detected cabin position data.
  • the lock position detection sensors 20.0 to 20.8 are monitored by both safety controllers 26, 26 ' .
  • the first safety controls 26 transmit shaft area data to the drive control 16 of the drive 6 of the first car 2 and the second safety controls 26 ' transmit shaft area data to the drive control 16' of the drive 6 'of the second car 2 '.
  • the data bus 22 thus enables two important functions, a rapid transmission of data and a request for the availability of the sensors of the security system.
  • the safety controller 26, 26 ' is designed to evaluate the car position data or the locking position data in order to trigger one or more predefined reactions, in particular the detection and localization of an error, the initiation of a service call, the stoppage of a car 2, 2 ' or carrying out a different situation-adapted reaction when recognizing a dangerous mutual approach of the cabins 2 , 2' or the open standing of a shaft door 11.0 to 11.8.
  • the safety controller 26, 26 ' is designed such that it evaluates the car position data or the locking position data in order to correct detected transmission errors by evaluating a plurality of data packets.
  • the car doors 8, 8 ' are also monitored; As a result, by means of a coincidence test of the signals of the shaft doors 11.0 to 11.8 on the one hand and the car doors 8, 8 ', on the other hand, a statement about the functionality of the locking position detection sensors 20.0 to 20.8 attained.
  • the safety controller 26, 26 ' evaluates the transmitted locking position data, for example, in such a way that it interrogates the locking position detection sensors 20.0 to 20.8 at periodic intervals of 20 ms. In this way, a communication interruption in the area of the data bus 22 or the bus node can thus be detected very quickly.
  • each locking position detection sensor 20.0 to 20.8 periodically at greater intervals, for example. once within 8 hours of 2 hours.
  • D azu the corresponding shaft doors 11.0 to 11.8 are opened and closed again or at least the contacts operated (unlocked / locked), and it is observed whether expected locking position data is transmitted to the safety controller 26 . This test can be done when opening and closing the shaft doors 11.0 to 11.8 in normal operation.
  • a test drive to this floor 30.0 to 30.8 is initiated by the safety controller 26, 26 ' for test purposes (forced test).
  • the execution of all tests is monitored by the safety controller 26, 26 ' and entered into a table and stored.
  • Safe shaft areas The safety control 26, 26 ' determined for the cars 2, 2' safe shaft areas in which the cabs, while maintaining a defined safety distance to a next car 2, 2 ' or the shaft end and with normal delay in the direction of travel of the car 2, 2 ' seen in a next floor stop retract and can hold there. Safe shaft areas are thus such shaft areas in which the cabins 2, 2 'can be moved without initiating further safety measures such as emergency braking, ie engagement of the holding brake or engagement of a safety gear. For this purpose, at least one travel curve is stored in the safety program, according to which the cars 2, 2 'are accelerated, braked or held by the drives 6, 6' .
  • the travel curve on three areas an acceleration range where the cabins 2, 2 'are accelerated by a predetermined normal acceleration, a speed range where the cabins 2, 2' are moved at a predetermined normal speed, and a deceleration range where the cabins 2, 2 ' be decelerated with a given normal deceleration.
  • a normal acceleration or a normal deceleration is understood to be an acceleration or deceleration perceived by the persons as pleasant and acceptable.
  • the safety program advantageously determines a safe manhole area in real time for each car 2, 2 ' .
  • those skilled in the art may use other definitions of a safety margin. So he can, for example, use a stronger delay than the normal delay, he can also emergency braking, ie initiate a collapse of the holding brake.

Landscapes

  • Elevator Control (AREA)

Description

Die Erfindung bezieht sich auf ein Sicherheitssystem für eine Aufzugsanlage zum Transport von Personen / Gütern in einem Gebäude und auf ein Verfahren zum Betrieb einer Aufzugsanlage mit einem Sicherheitssystem gemäss der Definition der Oberbegriff der unabhängigen Ansprüche.The invention relates to a safety system for an elevator installation for the transport of persons / goods in a building and to a method for operating an elevator installation with a safety system according to the definition of the preamble of the independent claims.

US 5,419,414 A zeigt eine Aufzugsanlage mit übereinander in einem Schacht eines Gebäudes angeordneten Kabinen, welche Kabinen unabhängig voneinander verfahrbar sind. Jede Kabine weist einen Antrieb und ein Gegengewicht auf. Die Kabinen sind über Seile als Treibmittel mit Gegengewichten verbunden. Die Antriebe sind oberhalb des Schachtes montiert und bewegen die Treibmittel. Die Antriebe werden mit Antriebssteuersignalen von einer Antriebssteuerung angesteuert. Kabinenpositionserfassungssensoren erfassen die Positionen der Kabinen und übermitteln Kabinenpositionssignale an die Antriebssteuerung.No. 5,419,414 A shows an elevator installation with cabs arranged one above the other in a shaft of a building, which cabins can be moved independently of one another. Each cabin has a drive and a counterweight. The cabins are connected via ropes as propellant with counterweights. The drives are mounted above the shaft and move the propellant. The drives are controlled by drive control signals from a drive control. Car position detecting sensors detect the positions of the cars and transmit car position signals to the drive controller.

Eine erste Aufgabe der Erfindung besteht darin, ein Sicherheitssystem für eine solche Aufzugsanlage bereitzustellen, welches Mittel aufweist, um Kollisionen zwischen unabhängig voneinander in einem Schacht verfahrenen Kabinen zu vermeiden.A first object of the invention is to provide a safety system for such an elevator installation which has means for avoiding collisions between booths moved independently of one another in a hoistway.

Eine zweite Aufgabe der Erfindung besteht darin, ein Sicherheitssystem für eine Aufzugsanlage bereitzustellen, welches Mittel aufweist, um ein unabhängig voneinander in einem Schacht stattfindendes Verfahren von Kabinen auf Schachtbereiche mit geschlossenen Stockwerkstüren einzuschränken.A second object of the invention is to provide a safety system for an elevator installation, which comprises means for restricting a method of cabins, which take place independently of one another in a shaft, to shaft areas with closed storey doors.

Eine dritte Aufgabe der Erfindung besteht darin, ein Sicherheitssystem für eine Aufzugsanlage bereitzustellen, welches Mittel aufweist, um Kollisionen von unabhängig voneinander in einem Schacht verfahrenen Kabinen mit Schachtenden zu vermeiden.A third object of the invention is to provide a safety system for an elevator installation which has means for avoiding collisions of booth-end cabins which are moved independently of one another in a hoistway.

Diese Aufgaben sollen mit bekannten und bewährten Mitteln des Aufzugsbaus realisiert werden.These tasks should be realized with known and proven means of elevator construction.

Diese Aufgaben werden durch die Erfindung gemäss der unabhängigen Ansprüche gelöst. Vorteilhafte Ausgestaltungen der Erfindung zeigen die abhängigen Ansprüche.These objects are achieved by the invention according to the independent claims. Advantageous embodiments of the invention show the dependent claims.

Die Erfindung bezieht sich auf ein Sicherheitssystem für eine Aufzugsanlage zum Transport von Personen / Gütern in einem Gebäude und auf ein Verfahren zum Betrieb einer Aufzugsanlage mit einem Sicherheitssystem. Mehrere Kabinen werden übereinander in einem Schacht verfahren. Jede Kabine wird von einem Antrieb verfahren. Mindestens eine Antriebssteuerung steuert die Antriebe über Antriebssteuersignale.The invention relates to a safety system for an elevator installation for transporting persons / goods in a building and to a method for operating an elevator installation with a safety system. Several cabins are moved one above the other in a shaft. Each cabin is driven by a drive. At least one drive control controls the drives via drive control signals.

Kabinenpositionserfassungssensoren erfassen Positionen von jeder Kabine und übermitteln Kabinenpositionsdaten an mindestens eine Sicherheitssteuerung. Der Zutritt zum Schacht erfolgt über geöffnete Schachttüren. Eine Verriegelung verriegelt Schachttüren. Verriegelungsstellungserfassungssensoren erfassen Stellungen der Verriegelungen der Schachttüren und übermitteln Verriegelungsstellungsdaten an die Sicherheitssteuerung.Car position detecting sensors detect positions of each car and transmit car position data to at least one safety controller. Access to the shaft is via open shaft doors. A lock locks shaft doors. Lock position detection sensors detect positions of the locks of the landing doors and transmit lock position data to the safety controller.

Die Sicherheitssteuerung ermittelt aus den Kabinenpositionsdaten und den Verriegelungsstellungsdaten Schachtbereichsdaten mit Angaben zu Schachtbereichen, in denen jede Kabinen sicher verfahrbar ist.From the cabin position data and the locking position data, the safety control system determines shaft area data with information on shaft areas in which each car can be safely moved.

Erfindungsgemäss erfolgt somit ein Bereitstellen von Kabinenpositionsdaten und von Verriegelungsstellungsdaten an eine Sicherheitssteuerung, welche basierend auf diesen Daten Schachtbereiche ermittelt, in denen die Kabinen sicher verfahrbar sind. Vorteilhafterweise ist ein für eine Kabine sicher verfahrbarer Schachtbereich ein solcher Schachtbereich, in dem die Kabine unter Bewahrung eines Sicherheitsabstandes zu einer nächsten Kabine bzw. zum Schachtende und mit Normalverzögerung in Fahrtrichtung der Kabine gesehen in einen nächsten Stockwerkhalt einfahren und dort halten kann. Vorteilhafterweise übermittelt die Sicherheitssteuerung die Schachtbereichsdaten an die Antriebssteuerung, welche die Schachtbereichsdaten in Antriebssteuersignale umsetzt, um die Kabinen in getrennten Schachtbereichen zu verfahren und um die Kabinen in Schachtbereichen mit verriegelten Schachttüren zu verfahren.According to the invention, provision is thus made of cab position data and locking position data to a safety controller, which determines shaft areas in which the cabins can be safely moved on the basis of these data. Advantageously, a safely movable for a car shaft area such a shaft area in which the cabin, while maintaining a safe distance to a next car or to the shaft end and with Normal retraction seen in the direction of travel of the cabin retract to a next floor stop and can hold there. Advantageously, the safety controller transmits the manhole area data to the propulsion controller, which converts the manhole area data into propulsion control signals to move the cars in separate manhole areas and to move the cars to manhole areas with locked landing doors.

Vorteilhafterweise sind die Kabinenpositionserfassungssensoren, die Verriegelungsstellungserfassungssensoren, die Sicherheitssteuerung und die Antriebssteuerung modulare Komponenten des Sicherheitssystems. Diese Komponenten kommunizieren über einen Datenbus miteinander. Die Vorteile des Datenbusses liegen darin, dass zum einen Daten rasch von und zur Sicherheitssteuerung übermittelt werden können und dass zum anderen die Sensoren der Kabinenpositionen und der Verriegelungsstellungen einfach und individuell gezielt ansteuerbar sind. Diese rasche Kommunikation und dieses gezielte Ansteuern der Sensoren erfolgt bei einem sehr günstigen Preis / Leistungsverhältnis. Auch ist dieses modulare Sicherheitssystem einfach zu installieren und zu warten.Advantageously, the car position detection sensors, the lock position detection sensors, the safety control and the drive control are modular components of the safety system. These components communicate with each other via a data bus. The advantages of the data bus are that, on the one hand, data can be transmitted quickly from and to the safety control and, on the other hand, the sensors of the car positions and the locking positions can be controlled in a simple and individually targeted manner. This rapid communication and this targeted control of the sensors takes place at a very favorable price / performance ratio. Also, this modular safety system is easy to install and maintain.

In einer ersten Ausführungsform ist die Sicherheitssteuerung vorteilhafterweise eine zentrale Einheit. Die zentrale Sicherheitssteuerung empfängt alle Kabinenpositionsdaten der Kabinen, sie empfängt alle Verriegelungsstellungsdaten der Schachttüren und sie übermittelt alle Schachtbereichsdaten an eine zentrale Antriebssteuerung. In einer zweiten Ausführungsform besteht die Sicherheitssteuerung vorteilhafterweise aus dezentralen Einheiten. Jeder Kabine ist individuell eine Sicherheitssteuerung und eine Antriebssteuerung zugeordnet. Kabinenpositionsdaten werden nur an die der Kabine zugeordneten Sicherheitssteuerung übermittelt. Die Sicherheitssteuerungen tauschen erfasste Kabinenpositionsdaten untereinander aus. Verriegelungsstellungsdaten werden an alle Sicherheitssteuerungen übermittelt. Schachtbereichsdaten werden nur an die der Kabine zugeordneten Antriebssteuerung übermittelt.In a first embodiment, the safety controller is advantageously a central unit. The central safety controller receives all car position data of the cars, it receives all lock position data of the landing doors and it transmits all manhole area data to a central drive control. In a second embodiment, the safety controller advantageously consists of decentralized units. Each cabin is individually assigned a safety control and a drive control. Cabin position data is transmitted only to the safety control associated with the car. The safety controllers exchange recorded cabin position data with each other. Lock position data is transmitted to all safety controllers. Well area data is only transmitted to the drive control associated with the cabin.

Die Antriebssteuerung steuert mit den von der Sicherheitssteuerung bereitgestellten Schachtbereichsdaten die Antriebe gezielt an und verhindert so eine Kollision von Kabinen im Schacht, eine Kollision von Kabinen mit Schachtenden und ein Überfahren von offenen Schachttüren.With the shaft area data provided by the safety control system, the drive control systematically controls the drives and thus prevents a collision of cabins in the shaft, a collision of cabins with shaft ends and an approaching of open shaft doors.

Vorteilhafterweise überwacht die Sicherheitssteuerung ob sicherheitskritische Abstände überschritten werden. Bei Überschreiten eines sicherheitskritischen Abstandes werden vordefinierte Sicherheitsmassnahmen eingeleitet. Eine erste Sicherheitsmassnahme ist das Verzögern mindestens eines Antriebes. Eine weitere Sicherheitsmassnahme ist eine Notbremsung mindestens eines Antriebe. Eine weitere Sicherheitsmassnahme ist das Einfallen mindestens einer Fangvorrichtung der Kabinen. Diese Sicherheitsmassnahmen können gestaffelt oder in Kombination ausgelöst werden.Advantageously, the safety controller monitors whether safety-critical distances are exceeded. If a safety-critical distance is exceeded, predefined safety measures are initiated. A first safety measure is to delay at least one drive. Another safety measure is emergency braking of at least one drive. Another safety measure is the collapse of at least one safety gear of the cabins. These security measures can be staggered or triggered in combination.

Vorteilhafterweise überprüft die Sicherheitssteuerung die Verfügbarkeit der Sensoren mit Verfügbarkeitsanfragen, was die Sicherheit der Aufzugsanlage erhöht. So lassen sich an die Sicherheitssteuerung übermittelte Kabinenpositionsdaten und Verriegelungsstellungsdaten auf Übertragungsfehler untersuchen. Auch lassen sich die Sensoren in periodischen Zeitabständen testweise auf Funktionsfähigkeit abfragen.Advantageously, the security controller checks the availability of the sensors with availability requests, which increases the security of the elevator system. Thus, cab position data and lock position data transmitted to the safety control can be examined for transmission errors. In addition, the sensors can be interrogated on a test basis for functionality at periodic intervals.

Nachstehend wird die Erfindung anhand von beispielhaften Ausführungsformen im Detail erläutert. Hierbei zeigt:

  • Fig. 1 eine schematische Darstellung eines Teils einer ersten Ausführungsform einer Aufzugsanlage mit zwei unabhängig voneinander in einem Schacht verfahrenen Kabinen und einer zentralen Sicherheitssteuerung für beide Kabinen,
  • Fig. 2 eine schematische Darstellung eines Teils einer zweiten Ausführungsform einer Aufzugsanlage mit zwei unabhängig voneinander in einem Schacht verfahrenen Kabinen und einer Sicherheitssteuerung für jede Kabine, und
  • Fig. 3 eine schematische Darstellung einer ersten Ausführungsform der Komponenten des Sicherheitssystems für eine Aufzugsanlage gemäss Fig. 1 und
  • Fig. 4 eine schematische Darstellung einer zweiten Ausführungsform der Komponenten des Sicherheitssystems für eine Aufzugsanlage gemäss Fig. 2.
The invention will be explained in detail below with reference to exemplary embodiments. Hereby shows:
  • 1 shows a schematic representation of part of a first embodiment of an elevator installation with two booths moved independently of one another in a hoistway and a central safety control for both booths,
  • 2 shows a schematic representation of a part of a second embodiment of an elevator installation with two booths moved independently of one another in a hoistway and a safety control for each booth, and FIG
  • Fig. 3 is a schematic representation of a first embodiment of the components of the safety system for an elevator system according to FIG. 1 and
  • 4 shows a schematic illustration of a second embodiment of the components of the safety system for an elevator installation according to FIG. 2.

Gebäude/Schacht: Die Fig. 1 und 2 zeigen zwei verschiedene Ausführungsformen einer Aufzugsanlage 10 zur Beförderung von Personen / Gütern zwischen Stockwerken 30.1 bis 30.8 eines Gebäudes 30. Die Aufzugsanlage 10 weist mindestens einen Aufzug auf, welcher Aufzug vorteilhafterweise in einem Schacht 31 des Gebäudes 30 installiert ist. Dem Fachmann stehen vielfältige Möglichkeiten der Variation bei der Installation eines Aufzugs in einem Gebäude 30 frei. So kann der Schacht nur teilweise durch das Gebäude 30 reichen, oder ein Aufzug ist schachtlos in einem Innenhof des Gebäudes 30 bzw. ausserhalb des Gebäudes 30 installiert. Building / Shaft : FIGS. 1 and 2 show two different embodiments of an elevator installation 10 for the transport of persons / goods between floors 30.1 to 30.8 of a building 30 . The elevator installation 10 has at least one elevator, which elevator is advantageously installed in a shaft 31 of the building 30 . The person skilled in various options of variation in the installation of an elevator in a building 30 free. Thus, the shaft can only partially pass through the building 30 , or an elevator is installed without a box in a courtyard of the building 30 or outside the building 30 .

Kabinen: Der Aufzug weist mindestens eine Kabine 2, 2' auf, welche Kabinen 2, 2' als Einzel- oder Doppelkabine in vertikaler Verfahrrichtung vorteilhafterweise an einem Paar Führungsschienen 5, 5' verfahren werden. Bei den Kabinen 2, 2' handelt es sich um übliche und bewährte Aufzugskabinen, die über Führungsschuhe an den Führungsschienen 5, 5' verfahren werden. Jede Kabine weist mindestens eine Kabinentüre 8, 8' auf, über welche Kabinentüre 8, 8' Personen / Gütern Zutritt zur Kabine 2, 2' haben.. Bei Kenntnis der vorliegenden Erfindung lassen sich natürlich auch Kabinen verwenden, welche an einer einzigen Führungsschiene oder auch an mehr als zwei Führungsschienen verfahren werden. Cabins: The elevator has at least one cabin 2, 2 ' , which cabins 2, 2' as a single or double cabin in the vertical direction of travel advantageously on a pair of guide rails 5, 5 ' are moved. The cabins 2, 2 ' are conventional and proven elevator cars, which are moved over guide shoes on the guide rails 5, 5' . Each cabin has at least one car door 8, 8 ' , over which car doors 8, 8' persons / goods access to the car 2, 2 ' have .. With knowledge of the present invention can of course also use cabs which on a single guide rail or also be moved to more than two guide rails.

Antriebe/Treibmittel: Die Aufzugsanlage 10 weist pro Kabine 2, 2' einen Antrieb 6, 6' auf. Bei den Antrieben handelt es sich vorteilhafteweise um Treibscheibenantriebe mit Treibscheiben, welche die Kabinen 2, 2' über Treibmittel 4, 4' mit Gegengewichten 3, 3' verbinden. Vorteilhafterweise ist jede Kabine 2, 2' über mindestens ein Treibmittel 4, 4' mit einem Gegengewicht 3, 3' verbunden, welche Treibmittel 4, 4' von Treibscheiben durch Reibschluss angetrieben werden. Die Kabinen 2, 2' und die Gegengewichte 3, 3' sind in den Darstellungen gemäss Fig. 1 und 2 in verschiedenen Ebenen angeordnet. Das Treibmittel 4, 4' kann eine beliebige Form haben, auch kann es aus beliebigen Materialien sein. Bspw. ist das Treibmittel 4, 4' ein Rundseil, Doppelseil oder ein Riemen. Bspw. ist das Treibmittel 4, 4' zumindestens teilweise aus Stahl bzw. Aramidfasern. Bei Kenntnis der vorliegenden Erfindung kann der Fachmann alle bekannten und bewährten Antriebe 6, 6' verwenden. Bspw. lassen sich getriebelose Antriebe oder solche mit Getriebe verwenden. Auch lassen sich Antriebe 6, 6' mit Permanentmagneten, mit Synchronmotor, mit Asynchronmotor oder mit Linearmotoren verwenden. Die Antriebe 6, 6' können wie in der Ausführungsform gemäss Fig. 1 gezeigt stationär in einem separaten Maschinenraum 32 oder wie in der Ausführungsform gemäss Fig. 2 gezeigt stationär direkt im Schacht 31 angeordnet sein. Auch hier hat der Fachmann bei Kenntnis der vorliegenden Erfindung freie Wahl der Anordnung der Antriebe. Bspw. können die Antriebe 6, 6', wie in der Ausführungsform in der Ausführungsform gemäss Fig. 1 dargestellt, am oberen Ende von Führungsschienen 5, 5' auf weitgehend gleicher Höhe im Schacht 31 angeordnet sein. Schliesslich müssen die Antriebe nicht stationär angeordnet sein, sondern sie können sich auch mobil auf den Kabinen bzw. den Gegegenwichten befinden. Drives / propellant: The elevator installation 10 has a drive 6 , 6 ' per booth 2, 2' . In the drives, it is advantageous to traction sheave drives with traction sheaves, which connect the cabins 2, 2 ' via propellant 4, 4' with counterweights 3, 3 ' . Advantageously, each cabin 2, 2 ' via at least one propellant 4, 4' connected to a counterweight 3, 3 ' , which propellant 4, 4' are driven by traction sheaves by frictional engagement. The Cabins 2, 2 ' and the counterweights 3, 3' are arranged in the representations according to FIGS. 1 and 2 in different planes. The propellant 4, 4 'can have any shape, whether it may be made of any materials. For example. the propellant 4, 4 'is a round rope, double rope or a belt. For example. is the blowing agent 4, 4 ' at least partially made of steel or aramid fibers. With knowledge of the present invention, the skilled person can use all known and proven drives 6, 6 ' . For example. Gearless drives or those with gearboxes can be used. It is also possible to use drives 6, 6 ' with permanent magnets, with synchronous motors, with asynchronous motors or with linear motors. As is shown in the embodiment according to FIG. 1 , the drives 6, 6 ' can be arranged stationarily directly in the shaft 31 in a stationary manner in a separate machine room 32 or as shown in the embodiment according to FIG. 2 . Here, too, the skilled person has knowledge of the present invention, free choice of the arrangement of the drives. For example. can the drives 6, 6 ', as shown in the embodiment in the embodiment according to FIG. 1 , at the upper end of guide rails 5, 5' at substantially the same height in the shaft 31 may be arranged. Finally, the drives need not be stationary, but they can also be mobile on the cabins or the counterweights.

Antriebssteuerung: Die Antriebe 6, 6' werden über mindestens eine Antriebssteuerung 16, 16' gesteuert. In der Ausführungsform gemäss Fig. 1 ist eine zentrale stationäre Antriebssteuerung 16 für beide Antriebe 6, 6' mit mindestens einer Recheneinheit und mindestens einem Speicher im Maschinenraum 32 vorgesehen. In der Ausführungsform gemäss Fig. 2 ist für jeden Antrieb 6, 6' eine separate stationäre Antriebssteuerung 16, 16' mit mindestens einer Recheneinheit und mindestens einem Speicher nahe am Schacht 31 vorgesehen. Im Speicher ist mindestens ein Steuerprogramm gespeichert, welches Steuerprogramm von der Recheneinheit ausgeführt wird. Hierzu übermittelt die Antriebssteuerung 16, 16' Antriebssteuersignale an die Antriebe 6, 6', um diese mindestens einer gemäss programmierten Fahrkurve zu beschleunigen bzw. zu bremsen bzw. festzuhalten. Natürlich kann die Antriebssteuerung auch mobil auf den Kabinen oder Gegengewichten angeordnet sein. Auch kann eine zentrale Antriebssteuerung bzw, mehrere Antriebsssteurungen für jede Kabine kann/können derart mobil angeordnet sein. Drive control: The drives 6, 6 ' are controlled by at least one drive control 16, 16' . In the embodiment according to FIG. 1 , a central stationary drive control 16 is provided for both drives 6, 6 ' with at least one arithmetic unit and at least one memory in the machine room 32 . In the embodiment according to FIG. 2 , a separate stationary drive control 16, 16 ' with at least one computing unit and at least one memory close to the shaft 31 is provided for each drive 6, 6' . At least one control program is stored in the memory, which control program is executed by the arithmetic unit. For this purpose, the drive control 16, 16 ' transmits drive control signals to the drives 6, 6' in order to accelerate or brake or at least hold them in accordance with a programmed travel curve. Of course, the drive control can also be mobile on the cabins or Counterweights arranged. Also, a central drive control or multiple drive controls for each cabin can / may be arranged so mobile.

Kabinenpositionserfassungssensoren: Die Aufzugsanlage 10 weist mindestens einen Kabinenpositionserfassungssensor 21, 21' zum Erfassen der aktuellen absoluten Position von jeder der unabhängig voneinander im Schacht 31verfahrenen Kabinen 2, 2' auf. Cab Position Detection Sensors: The elevator system 10 has at least one car position detection sensor 21, 21 ' for detecting the current absolute position of each of the cars 2, 2' moved independently of each other in the shaft 31 .

In einer ersten bevorzugten Ausführungsform gemäss Fig. 1 ist eine Kodierung an einem Geschwindigkeitsbegrenzerseil 12, 12' angebracht. Jede Kabine 2, 2' weist ein Geschwindigkeitsbegrenzerseil 12, 12' auf, welches neben der Kabine 2, 2' im Schacht 31 angeordnet und mit der Kabine 2, 2' mechanisch fest verbunden ist. Die Auf- und abwärtsbewegung der Kabinen 2, 2' im Schacht 31 wird somit auf das Geschwindigkeitsbegrenzerseil 12, 12' übertragen. Aus Gründen der Übersichtlichkeit sind die Distanzen in Fig. 1 zwischen den Kabinen 2, 2' und den Geschwindigkeitsbegrenzerseilen 12, 12' nicht massstäblich. Jedes Geschwindigkeitsbegrenzerseil 12, 12' ist mechanisch mit einem im Maschinenraum 32 angeordneten Geschwindigkeitsbegrenzer 14, 14' verbunden. Geschwindigkeitsbegrenzer 14, 14' erfasst eine Übergeschwindigkeit der Kabine 2, 2' und löst bei Übergeschwindigkeit mindestens eine der weiter unten beschriebenen Sicherheitsmassnahmen aus. Eine am Schachtboden angeordnete Umlenkrolle 13, 13' ermöglicht den Rücklauf des Geschwindigkeitsbegrenzerseils 12, 12'. In dieser ersten Ausführungsform ist der Kabinenpositionserfassungssensor 21, 21' im Maschinenraum 32 am Geschwindigkeitsbegrenzer 13, 13' montiert. Der Kabinenpositionserfassungssensor 21, 21' kann optische Kodierungen wie Farbkodierungen oder magnetische Kodierungen auf dem Geschwindigkeitsbegrenzerseil 12, 12' dekodieren. Die Dekodierung kann durch den Kabinenpositionserfassungssensor 21, 21' oder durch die Sicherheitssteuerung 26, 26' erfolgen.In a first preferred embodiment according to FIG. 1 , a coding is attached to a speed governor cable 12, 12 ' . Each cabin 2, 2 ' has a speed governor rope 12, 12' , which is arranged next to the car 2, 2 ' in the shaft 31 and mechanically fixed to the car 2, 2' . The upward and downward movement of the cabin 2, 2 'in the shaft 31 is thus on the speed governor 12, 12' transmitted. For reasons of clarity, the distances in FIG. 1 between the cars 2, 2 ' and the speed governor cables 12, 12' are not to scale. Each speed limiter cable 12, 12 ' is mechanically connected to a speed limiter 14, 14' arranged in the engine room 32 . Speed limiter 14, 14 ' detects an overspeed of the car 2, 2' and triggers at overspeed at least one of the safety measures described below. A deflection roller 13, 13 ' arranged on the shaft bottom enables the return of the speed governor cable 12, 12'. In this first embodiment, the car position detecting sensor 21, 21 'is mounted in the engine room 32 on the speed limiter 13, 13' . The car position detecting sensor 21, 21 ' may decode optical codings such as color codings or magnetic codings on the speed limiter cable 12, 12' . The decoding may be done by the car position detecting sensor 21, 21 ' or by the safety controller 26, 26' .

Diese erste Ausführungsform ist für den Fachmann nicht zwingend. Der Kabinenpositionserfassungssensor 21, 21' kann auch im Schacht 31 angeordnet werden. Natürlich kann der Fachmann Kodierungen auch am Treibmittel 4, 4' einer jeden Kabine 2, 2' anbringen und am Treibmittel 4, 4' angebrachten Kodierungen mittels Kabinenpositionserfassungssensoren 21, 21' erfassen. Auch kann der Fachmann am Geschwindigkeitsbegrenzerseils 12, 12' bzw. am Treibmittel 4, 4' mechanische Markierungen wie Kugel oder Haken anbringen, welche von entsprechend gestalteten mechanischen Kabinenpositionserfassungssensoren 21, 21' erfasst werden. Bspw. ist für eine Seileinheitslänge von 10 cm eine Markierung vorgesehen. Durch Zählen der Markierungen lässt sich so die aktuelle Position d er Kabinen 2, 2' bezüglich einer bestimmten, bekannten Ausgangsposition bestimmen. Das Zählen der Markierungen kann durch den Kabinenpositionserfassungssensor 21, 21' oder durch die Sicherheitssteuerung 26, 26' erfolgen. Bei Kenntnis der vorliegenden Erfindung kann der Fachmann natürlich auch kleinere oder grössere Seileinheitslängen definieren.This first embodiment is not mandatory for the skilled person. The car position detection sensor 21, 21 ' can also be arranged in the shaft 31 . Of course, the person skilled in the art can also attach codings to the propellant 4, 4 ' of each car 2, 2' and to detect codings on the propellant 4, 4 ' by means of car position detection sensors 21, 21'. Also, the person skilled in the speed limiter rope 12, 12 ' or on the propellant 4, 4' attach mechanical markings such as ball or hook, which are detected by correspondingly designed mechanical car position detection sensors 21, 21 ' . For example. a marking is provided for a cable unit length of 10 cm. By counting the markings, the current position d of the cars 2, 2 ' can be determined with respect to a specific, known starting position. The counting of the markings can be done by the car position detecting sensor 21, 21 ' or by the safety controller 26, 26' . Of course, with knowledge of the present invention the skilled person can also define smaller or larger cable unit lengths.

In einer zweiten bevorzugten Ausführungsform gemäss Fig. 2 handelt es sich beim Kabinenpositionserfassungssensor 21, 21' um einen auf der Kabine 2, 2' montierten Magnetsensor, welcher Magnetsensor ein im Schacht 31 montiertes kodiertes Magnetband 9 mit hoher Auflösung abtastet. Kodierungen auf dem Magnetband 9 werden in eine aktuelle Absolutposition der Kabine 2, 2' dekodiert. Die Dekodierung kann durch den Kabinenpositionserfassungssensor 21, 21' oder durch die Sicherheitssteuerung 26, 26' erfolgen. Eine geradlinige Verlegung bspw. neben mindestens einer Führungsschiene 5, 5' erlaubt ein Magnetband 9 mit hoher Informationsdichte zu verwenden.In a second preferred embodiment according to FIG. 2 , the car position detection sensor 21, 21 ' is a magnetic sensor mounted on the car 2, 2' , which magnetic sensor scans a coded magnetic tape 9 mounted in the shaft 31 with high resolution. Codes on the magnetic tape 9 are decoded into a current absolute position of the car 2, 2 ' . The decoding may be done by the car position detecting sensor 21, 21 ' or by the safety controller 26, 26' . A straight-line installation, for example, in addition to at least one guide rail 5, 5 ' allows a magnetic tape 9 to be used with a high information density.

Auch diese zweite Ausführungsform ist für den Fachmann nicht zwingend. Beim Kabinenpositionserfassungssensor 21, 21' kann es sich auch um einen auf der Kabine 2, 2' montierten optische Sensor handeln, welcher beliebige Muster im Schacht 31 als Kabinenpositionsdaten erfassen. In einer Eichfahrt werden diese Muster als primäre Kabinenpositionsdaten erfasst und abgespeichert. Im Betrieb der Aufzugsanlage 10 werden aktuell erfasste Kabinenpositionsdaten mit den gespeicherten primären Kabinenpositionsdaten verglichen. Das Speichern bzw. Vergleichen von Kabinenpositionsdaten kann durch den Kabinenpositionserfassungssensor 21, 21' oder durch die Sicherheitssteuerung 26, 26' erfolgen. Auch kann der Fachmann im Schacht 31 mechanische Markierungen wie Kugel oder Haken anbringen, welche von entsprechend gestalteten mechanischen Kabinenpositionserfassungssensoren 21, 21' erfasst werden. Bspw. sind an mindestens einer Führungsschiene 5, 5' alle 10 cm eine Markierung vorgesehen. Durch Zählen der Markierungen lässt sich so die aktuelle Position der Kabinen 2, 2' bezüglich einer bestimmten, bekannten Ausgangsposition bestimmen. Das Zählen der Markierungen kann durch den Kabinenpositionserfassungssensor 21, 21' oder durch die Sicherheitssteuerung 26, 26' erfolgen. Schliesslich können die auf Kabinen 2, 2' montierte Kabinenpositionserfassungssensor 21, 21' auch die relative Entfernung zwischen Kabine 2, 2' erfassen.This second embodiment is not mandatory for the skilled person. The car position detection sensor 21, 21 ' may also be an optical sensor mounted on the car 2, 2' which detects any pattern in the carousel 31 as car position data. In a calibration run, these patterns are captured and stored as primary cabin position data. During operation of the elevator installation 10 currently detected car position data is compared with the stored primary car position data. The storage or comparison of cabin position data can be done by the car position detection sensor 21, 21 ' or by the safety controller 26, 26' . Also, those skilled in the art can attach mechanical markings such as balls or hooks in the well 31 which are detected by correspondingly designed mechanical car position detecting sensors 21 , 21 ' . For example. are at least one guide rail 5, 5 ' every 10 cm a mark provided. By counting the markings, it is thus possible to determine the current position of the cars 2, 2 ' with respect to a specific, known starting position. The counting of the markings can be done by the car position detecting sensor 21, 21 ' or by the safety controller 26, 26' . Finally, the car position detection sensors 21, 21 ' mounted on cars 2, 2' can also detect the relative distance between car 2, 2 ' .

Schliesslich kann der Fachmann Kodierungen nicht über die gesamte Länge des Schachts 31 anbringen bzw. Muster nicht über die gesamte Länge des Schachts 31 erfassen bzw. nicht an der gesamte Länge des Geschwindigkeitsbegrenzerseils 12, 12' bzw. Treibmittels 4, 4' anbringen. So kann der Fachmann Kodierungen bzw. Muster nur in solchen Bereiches des Schachts 31 anbringen bzw. erfassen, wo eine tatsächliche Gefahr der Kollision von Kabinen 2, 2' im Schacht 31 bzw. wo eine tatsächliche Gefahr der Kollision von Kabinen 2, 2' mit Schachtenden besteht. Das Erfassen der Kabinenpositionsdaten erfolgt vorteilhafterweise kontinuierlich, bspw. in regelmässigen Zeitabständen von 10 msec.Finally, the skilled person can not attach codings over the entire length of the shaft 31 or patterns over the entire length of the shaft 31 detect or not on the entire length of the speed limiter rope 12, 12 ' or propellant 4, 4' attach. Thus, the expert can attach codes or patterns only in such area of the shaft 31 or capture where an actual risk of collision of cabins 2, 2 ' in the shaft 31 or where an actual risk of collision of cabins 2, 2' with Shaft ends exists. The detection of the car position data advantageously takes place continuously, for example at regular intervals of 10 msec.

Schachttüren/Verriegelungen: In jedem Stockwerk 30.0 bis 30.8 erfolgt der Zutritt zum Schacht 34 über Schachttüren 11.0 bis 11.8. Die Schachttüren 11.0 bis 11.8 können einseitig oder beidseitig öffnende Türen sein. Die Schachttüren 11.0 bis 11.8 sind vorzugsweise selbstzufallend ausgeführt; das heisst, sie schliessen automatisch, sobald sie nicht aktiv offengehalten werden. Zusätzlich zum Schliessen der Schachtüren 11.0 bis 11.8 werden geschlossene Schachttüren 11.0 bis 11.8 verriegelt. Shaft doors / interlocks: On each floor 30.0 to 30.8 , access to the shaft 34 takes place via shaft doors 11.0 to 11.8 . The shaft doors 11.0 to 11.8 can be single-sided or double-sided opening doors. The shaft doors 11.0 to 11.8 are preferably carried out complacent; that is, they close automatically as soon as they are not actively held open. In addition to closing the shaft doors 11.0 to 11.8 closed shaft doors are locked 11.0 to 11.8.

Hierzu weist jede Schachttüre 11.0 bis 11.8 eine Verriegelung 18.0 bis 18.8 auf. Die Verriegelung 18.0 bis 18.8 ist selbstzufallend, wenn die Schachttür 11.0 bis 11.8 geschlossen ist. Eine aktive Verriegelung ist nicht nötig. Bei Kenntnis der vorliegenden Erfindung kann der Fachmann hierbei vielfältige Variationen vornehmen. Bspw. sind die Verriegelungen 18.0 bis 18.8 aus Sicherheitsgründen vorzugsweise so ausgebildet, dass sie sich nur von einer an einer Kabine 2, 2' vorgesehenen Kabinentüre 8, 8' entriegeln und öffnen bzw. schliessen und verriegeln lassen, oder dass sie sich mit einem Spezialwerkzeug entriegeln und von Hand aufschieben lassen.For this purpose, each shaft door 11.0 to 11.8 on a lock 18.0 to 18.8 . The lock 18.0 to 18.8 is self-coincident when the landing door 11.0 to 11.8 is closed. An active lock is not necessary. With knowledge of the present invention, the skilled person can make a variety of variations. For example. For safety reasons, the latches 18.0 to 18.8 are preferably designed such that they can only be unlocked and opened or closed and locked by a car door 8, 8 ' provided on a car 2, 2' , or that they unlock with a special tool and postpone by hand.

Verriegelungsstellungserfassungssensoren: Jede Schachttüre 11.0 bis 11.8 weist mindestens einen Verriegelungsstellungserfassungssensor 20.0 bis 20.8 auf. Der Verriegelungsstellungserfassungssensor 20.0 bis 20.8 erfasst Stellungen der Verriegelungen 18.0 bis 18.8 der Schachttüren 11.0 bis 11.8. Als Verriegelungsstellungserfassungssensoren 20.0 bis 20.8 lassen sich dem Fachmann im Aufzugsbau bekannte und bewährte Sensoren wie Verriegelungsvorrichtungskontakte, Mikroschalter, induktive Sensoren wie bspw. Radio Frequenz Identifikations-(RFID)-Sensoren, kapazitive Sensoren bzw. optische Sensoren, usw. verwenden. Das Erfassen der Verriegelungsstellungsdaten erfolgt vorteilhafterweise kontinuierlich, bspw. in regelmässigen Zeitabständen von 10 msec. Lock position detection sensors: Each shaft door 11.0 to 11.8 has at least one lock position detection sensor 20.0 to 20.8 . The lock position detection sensor 20.0 to 20.8 detects positions of the latches 18.0 to 18.8 of the landing doors 11.0 to 11.8. Locking position detection sensors 20.0 to 20.8 can be used by well-known and proven sensors such as locking device contacts, microswitches, inductive sensors such as radio frequency identification (RFID) sensors, capacitive sensors or optical sensors, etc., in elevator construction. The detection of the locking position data advantageously takes place continuously, for example at regular intervals of 10 msec.

Sicherheitssteuerung/Datenbus: Mindestens eine Sicherheitssteuerung 26, 26' ist vorgesehen, welche wie in Fig. 3 und 4 beispielhaft dargestellt, über einen Datenbus 22 von den Kabinenpositionserfassungssensoren 21, 21' ermittelte Kabinenpositionsdaten sowie von den Verriegelungsstellungserfassungssensoren 20.0 bis 20.8 ermittelte Verriegelungsstellungsdaten übermittelt erhält und welche über den Datenbus 22 an die Antriebssteuerung 16, 16' Schachtbereichsdaten übermittelt. Die Sicherheitssteuerung 26, 26' weist vorteilhafterweise mindestens eine Recheneinheit und mindestens einen Speicher auf. Im Speicher ist mindestens ein Sicherheitsprogramm gespeichert, welches Sicherheitsprogramm von der Recheneinheit ausgeführt wird. Safety control / data bus: At least one safety control 26, 26 ' is provided which, as exemplified in FIGS. 3 and 4 , receives cabin position data determined by the car position detection sensors 21 , 21' via a data bus 22 and interlock position data determined by the locking position detection sensors 20.0 to 20.8 which transmits via the data bus 22 to the drive control 16, 16 ' shaft area data. The safety controller 26, 26 ' advantageously has at least one arithmetic unit and at least one memory. At least one safety program is stored in the memory, which safety program is executed by the computer.

Die Sicherheitssteuerung 26, 26' überwacht, ob sicherheitskritische Abstände überschritten werden. Diese Abstände werden weiter unten im Detail beschriebenen. Bei Überschreiten eines sicherheitskritischen Abstandes werden vordefinierte Sicherheitsmassnahmen eingeleitet. Eine erste Sicherheitsmassnahme ist das Verzögern mindestens eines Antriebes 6, 6'. Eine weitere Sicherheitsmassnahme ist eine Notbremsung, d.h. das Einfallen der Haltebremse mindestens eines Antriebe 6, 6'. Eine weitere Sicherheitsmassnahme ist das Einfallen mindestens einer Fangvorrichtung der Kabinen 2, 2'. Die erste und die weteren Sicherheitsmassnahmen können gestaffelt oder in Kombination ausgelöst werden. So kann als erste Sicherheitsmassnahme eine Verzögerung initiert werden. Falls der sicherheitskritische Abstand weiter abnimmt, kann zusätzlich als weitere Sicherheitsmassnahme eine Notbremsung initiert werden. Falls der sicherheitskritische Abstand weiter abnimmt, kann zusätzlich als weitere Sicherheitsmassnahme das Einfallen einer Fangvorrichtung erfolgen. Bei Kenntnis der vorliegenden Erfidnung kann der Fachmann natürlich auch andere Arten der Stilllegens der Kabinen 2, 2' vornehmen. So kann er bspw. eine Kabinenbremse in Form einer Scheibenbremse vorsehen. Auch kann er eine Bremsung des Treibmittels vorsehen.The safety controller 26, 26 ' monitors whether safety-critical distances are exceeded. These distances are described in detail below. If a safety-critical distance is exceeded, predefined safety measures are initiated. A first security measure is the delaying of at least one drive 6, 6 ' . Another safety measure is emergency braking, ie the engagement of the holding brake of at least one drive 6 , 6 ' . Another safety measure is the collapse of at least one safety gear of the cabins 2, 2 '. The first and the better security measures can be staggered or triggered in combination. Thus, as a first security measure, a delay can be initiated. If the safety-critical distance continues to decrease, emergency braking can also be initiated as a further safety measure. If the safety-critical distance continues to decrease, the fall of a safety gear can additionally take place as a further safety measure. Of course, with knowledge of the present invention, the person skilled in the art can also make other types of shutdown of the cabins 2, 2 ' . So he can, for example, provide a cabin brake in the form of a disc brake. He may also provide a braking of the propellant.

Beim Datenbus 22 handelt es sich um einen bekannten und bewährten Signalbus. Es kann sich um einen Signal-Bus auf Basis elektrischer - bzw. optischer Signalübermittlung handeln, wie ein Ethernet-Netzwerk, ein Tokenring-Netzwerk, usw.. Auch kann es sich um ein Funknetzwerk, um ein Infrarot-Netzwerk, ein Radar-Netzwerk, ein Richtstrahl-Netzwerk, usw. handeln. Die Übertragungsmedien wie Zweidraht, 230/400 VAC Netz, Funk, Infrarot, Mikrowellen, Fiberoptik, Internet, usw. können frei gewählt werden.The data bus 22 is a known and proven signal bus. It can be a signal bus based on electrical or optical signal transmission, such as an Ethernet network, a token ring network, etc. It can also be a wireless network, an infrared network, a radar network , a beam network, etc. act. The transmission media such as two-wire, 230/400 VAC network, radio, infrared, microwaves, fiber optics, Internet, etc. can be freely selected.

Das Sicherheitssystem besteht somit aus den Komponenten Kabinenpositionserfassungssensoren 21, 21', den Verriegelungsstellungserfassungssensoren 20.0 bis 20.8, Sicherheitssteuerung 26, 26' und Antriebssteuerung 16, 16', welche über den Datenbus 22 miteinander kommunizieren. Die Komponenten des Sicherheitssystems sind vorteilhafterweise Bus-Module. Ein Bus-Modul ist eine Elektronik-Karte, mit mindestens einem Datenspeicher und mindestens einer Recheneinheit. Vorteilhafterweise ist Datenbus 22 ein LON-Bus, wo Bus-Module auf einfache Weise direkt miteinander kommunizieren und programmierbar sind. Der LON-Bus ist eine Technologie, die den Aufbau von dezentral gesteuerten Netzwerken unter Anwendung vieler einfacher Busknoten ermöglicht. Insbesondere ist eine direkte Kommunikation zwischen den einzelnen Recheneinheiten der Komponenten möglich. Das LON-Bus-Protokoll ist der Träger der Steuerinformation und die einzelnen Recheneinheiten der Komponenten können direkt über den LON-Bus gesteuert werden. Die Busknoten können mit logischen Verknüpfungen programmiert werden. Der LON-Bus verfügt über eine freie Topologie und kann in Linien, Kreisen, Bäumen, usw. strukturiert werden. Der Datenbus 22 weist bspw. eine verzweigte Topologie auf.The safety system thus consists of the components car position detection sensors 21, 21 ' , the lock position detection sensors 20.0 to 20.8 , safety controller 26, 26' and drive control 16, 16 ' , which communicate with each other via the data bus 22 . The components of the security system are advantageously bus modules. A bus module is an electronic card, with at least one data memory and at least one arithmetic unit. Advantageously, data bus 22 is a LON bus, where bus modules communicate easily with each other and are programmable. The LON bus is a technology that enables the creation of distributed networks using many simple bus nodes. In particular, a direct communication between the individual computing units of the components is possible. The LON bus protocol is the carrier of the control information and the individual computing units of the components can be controlled directly via the LON bus. The bus nodes can be programmed with logical links. The LON bus has a free topology and can be structured in lines, circles, trees, etc. The data bus 22 has, for example, a branched topology.

In der ersten Ausführungsform gemäss Fig. 3 werden die Kabinenpositionserfassungssensoren 21, 21' und Verriegelungsstellungserfassungssensoren 20.0 bis 20.8 von einer zentralen Sicherheitssteuerung 26 gemeinsam überwacht. Die zentralen Sicherheitssteuerung 26 übermittelt Schachtbereichsdaten an eine zentrale Antriebssteuerung 16.In the first embodiment according to FIG. 3 , the car position detection sensors 21, 21 ' and locking position detection sensors 20.0 to 20.8 are jointly monitored by a central safety controller 26 . The central safety controller 26 transmits shaft area data to a central drive control 16 .

In der zweiten Ausführungsform gemäss Fig. 4 weist jede Kabine 2, 2' eine Sicherheitsschaltung 26, 26' auf. Ein erster Kabinenpositionserfassungssensor 21 einer ersten Kabine 2 wird von einer ersten Sicherheitssteuerung 26 überwacht. Ein zweiter Kabinenpositionserfassungssensor 21' einer zweiten Kabine 2' wird von einer zweiten Sicherheitssteuerung 26' überwacht. Die beiden Sicherheitssteuerungen 26, 26' tauschen erfasste Kabinenpositionsdaten gegenseitig aus. Die Verriegelungsstellungserfassungssensoren 20.0 bis 20.8 werden von beiden Sicherheitssteuerungen 26, 26' überwacht. Die erste Sicherheitssteuerungen 26 übermittelt Schachtbereichsdaten an die Antriebssteuerung 16 des Antriebes 6 der ersten Kabine 2 und die zweite Sicherheitssteuerungen 26' übermittelt Schachtbereichsdaten an die Antriebssteuerung 16' des Antriebes 6' der zweiten Kabine 2'.In the second embodiment according to FIG. 4 , each cabin 2, 2 'has a safety circuit 26, 26' . A first car position detection sensor 21 of a first car 2 is monitored by a first safety controller 26 . A second car position detection sensor 21 'of a second car 2' is monitored by a second safety control 26 ' . The two safety controllers 26 , 26 ' mutually exchange detected cabin position data. The lock position detection sensors 20.0 to 20.8 are monitored by both safety controllers 26, 26 ' . The first safety controls 26 transmit shaft area data to the drive control 16 of the drive 6 of the first car 2 and the second safety controls 26 ' transmit shaft area data to the drive control 16' of the drive 6 'of the second car 2 '.

Der Datenbus 22 ermöglicht somit zwei wichtige Funktionen, eine rasche Übermittlung von Daten und eine Anfrage der Verfügbarkeit der Sensoren des Sicherheitssystems.The data bus 22 thus enables two important functions, a rapid transmission of data and a request for the availability of the sensors of the security system.

Verfügbarkeitsanfragen: Vorteilhafterweise ist die Sicherheitssteuerung 26, 26' so ausgebildet, dass es die Kabinenpositionsdaten bzw. die Verriegelungsstellungsdaten auswertet, um eine oder mehrere vordefinierte Reaktionen auszulösen, insbesondere das Erkennen und Lokalisieren eines Fehlers, das Auslösen eines Servicerufes, das Stoppen einer Kabine 2, 2' oder das Durchführen einer anderen situationsangepassten Reaktion bei Erkennen einer gefährlichen gegenseitigen Annäherung der Kabinen 2, 2' bzw. des Offenstehens einer Schachttüre 11.0 bis 11.8. Availability Requests: Advantageously, the safety controller 26, 26 'is designed to evaluate the car position data or the locking position data in order to trigger one or more predefined reactions, in particular the detection and localization of an error, the initiation of a service call, the stoppage of a car 2, 2 ' or carrying out a different situation-adapted reaction when recognizing a dangerous mutual approach of the cabins 2 , 2' or the open standing of a shaft door 11.0 to 11.8.

Vorteilhafterweise ist die Sicherheitssteuerung 26, 26' so ausgebildet, dass es die Kabinenpositionsdaten bzw. die Verriegelungsstellungsdaten auswertet, um festgestellte Übertragungsfehler durch die Auswertung mehrerer Datenpakete zu korrigieren.Advantageously, the safety controller 26, 26 'is designed such that it evaluates the car position data or the locking position data in order to correct detected transmission errors by evaluating a plurality of data packets.

Im Hinblick auf die Sicherheit der Aufzugsanlage 10 ist es besonders vorteilhaft, wenn zusätzlich zur Überwachung der Schachttüren 11.0 bis 11.8 auch die Kabinentüren 8, 8' überwacht wird; dadurch wird mittels einer Koinzidenzprüfung der Signale der Schachttüren 11.0 bis 11.8 einerseits und der Kabinentüren 8, 8' anderseits eine Aussage über die Funktionstüchtigkeit der Verriegelungsstellungserfassungssensoren 20.0 bis 20.8 erlangt.With regard to the safety of the elevator installation 10 , it is particularly advantageous if, in addition to monitoring the shaft doors 11.0 to 11.8 , the car doors 8, 8 'are also monitored; As a result, by means of a coincidence test of the signals of the shaft doors 11.0 to 11.8 on the one hand and the car doors 8, 8 ', on the other hand, a statement about the functionality of the locking position detection sensors 20.0 to 20.8 attained.

Die Sicherheitssteuerung 26, 26' wertet die übermittelten Verriegelungsstellungsdaten bspw. so aus, dass sie die Verriegelungsstellungserfassungssensoren 20.0 bis 20.8 in periodischen Zeitabständen von 20 ms abfragt. Auf diese Weise lässt sich ein Kommunikationsunterbruch im Bereich des Datenbusses 22 bzw. der Busknoten somit sehr schnell detektieren. Vorteilhafterweise wird jeder Verriegelungsstellungserfassungssensor 20.0 bis 20.8 periodisch in grösseren zeitlichen Abständen, bspw. einmal innerhalb von 8 o der 2 4 S tunden g etestet. D azu werden die entsprechenden Schachttüren 11.0 bis 11.8 geöffnet und wieder geschlossen bzw. wenigstens die Kontakte betätigt (entriegelt / verriegelt), und es wird beobachtet, ob dabei zu erwartende Verriegelungsstellungsdaten an die Sicherheitssteuerung 26 übermittelt werden. Dieser Test kann beim Öffnen und Schliessen der Schachttüren 11.0 bis 11.8 im Normalbetrieb erfolgen. Wurde ein Stockwerk 30.0 bis 30.8 innerhalb der vorgegebenen Zeitspanne von 8 bzw. 24 Stunden nie angefahren, so wird zu Testzwecken von der Sicherheitssteuerung 26, 26' eine Testfahrt zu diesem Stockwerk 30.0 bis 30.8 eingeleitet (Zwangstest). Vorteilhafterweise wird die Ausführung aller Tests von der Sicherheitssteuerung 26, 26' überwacht und in eine Tabelle eingetragen und gespeichert.The safety controller 26, 26 ' evaluates the transmitted locking position data, for example, in such a way that it interrogates the locking position detection sensors 20.0 to 20.8 at periodic intervals of 20 ms. In this way, a communication interruption in the area of the data bus 22 or the bus node can thus be detected very quickly. Advantageously, each locking position detection sensor 20.0 to 20.8 periodically at greater intervals, for example. once within 8 hours of 2 hours. D azu the corresponding shaft doors 11.0 to 11.8 are opened and closed again or at least the contacts operated (unlocked / locked), and it is observed whether expected locking position data is transmitted to the safety controller 26 . This test can be done when opening and closing the shaft doors 11.0 to 11.8 in normal operation. If a floor 30.0 to 30.8 was never started within the predetermined period of 8 or 24 hours , a test drive to this floor 30.0 to 30.8 is initiated by the safety controller 26, 26 ' for test purposes (forced test). Advantageously, the execution of all tests is monitored by the safety controller 26, 26 ' and entered into a table and stored.

Sichere Schachtbereiche: Die Sicherheitssteuerung 26, 26' ermittelt für die Kabinen 2, 2' sichere Schachtbereiche, in denen die Kabinen unter Bewahrung eines definierten Sicherheitsabstandes zu einer nächsten Kabine 2, 2' bzw. zum Schachtende und mit Normalverzögerung in Fahrtrichtung der Kabine 2, 2' gesehen in einen nächsten Stockwerkhalt einfahren und dort halten kann. Sichere Schachtbereiche sind somit solche Schachtbereiche, in denen die Kabinen 2, 2' ohne das Einleiten von weiteren Sicherheitsmassnahmen wie Notbremsung, d.h. Einfallen der Haltebremse bzw. Einfallen einer Fangvorrichtung verfahren werden können. Für diese Zwecke ist im Sicherheitsprogramm mindestens eine Fahrkurve abgelegt, nach welcher die Kabinen 2, 2' von den Antrieben 6, 6' beschleunigt, abgebremst bzw. gehalten werden. Vorteilhafterweise weist die Fahrkurve drei Bereiche auf, einen Beschleunigungsbereich, wo die Kabinen 2, 2' mit vorgegebener Normalbeschleunigung beschleunigt werden, einen Geschwindigkeitsbereich, wo die Kabinen 2, 2' mit vorgegebener Normalgeschwindigkeit verfahren werden und einen Abbremsbereich, wo die Kabinen 2, 2' mit vorgegebener Normalverzögerung abgebremst werden. Unter einer Normalbeschleunigung bzw. einer Normalverzögerung wird eine von den Personen als angenehm und akzeptal empfundene Beschleunigung bzw. Verzögerung verstanden. Safe shaft areas: The safety control 26, 26 ' determined for the cars 2, 2' safe shaft areas in which the cabs, while maintaining a defined safety distance to a next car 2, 2 ' or the shaft end and with normal delay in the direction of travel of the car 2, 2 ' seen in a next floor stop retract and can hold there. Safe shaft areas are thus such shaft areas in which the cabins 2, 2 'can be moved without initiating further safety measures such as emergency braking, ie engagement of the holding brake or engagement of a safety gear. For this purpose, at least one travel curve is stored in the safety program, according to which the cars 2, 2 'are accelerated, braked or held by the drives 6, 6' . Advantageously, the travel curve on three areas, an acceleration range where the cabins 2, 2 'are accelerated by a predetermined normal acceleration, a speed range where the cabins 2, 2' are moved at a predetermined normal speed, and a deceleration range where the cabins 2, 2 ' be decelerated with a given normal deceleration. A normal acceleration or a normal deceleration is understood to be an acceleration or deceleration perceived by the persons as pleasant and acceptable.

Der Sicherheitsabstand ist eine Funktion der aktuellen Geschwindigkeiten und Fahrtrichtungen der Kabinen 2, 2'. Die Kabinen 2, 2' werden mit einem Sicherheitsabstand verfahme, der gleich dem gesamten Bremsweg bei Normalverzögerung ist. Die folgenden Fallbeispiele veranschaulichen dies:

  • Für zwei mit Normalgeschwindigkeit aufeinanderzufahrende Kabinen 2, 2' ist der Sicherheitsabstand gleich dem doppelten vollen Bremsweg bei Normalverzögerung.
  • Fährt eine erste Kabine 2 mit Normalgeschwindigkeit auf eine stehende zweite Kabine 2' zu, so ist der Sicherheitsabstand gleich dem einfachen vollen Bremsweg bei Normalverzögerung.
  • Fährt eine Kabine 2, 2' mit Normalgeschwindigkeit auf ein Schachtende bzw. gegen geöffnete Schachttüren 11.0 bis 11.8 zu, so ist der Sicherheitsabstand gleich dem einfachen vollen Bremsweg bei Normalverzögerung.
The safety distance is a function of the current speeds and directions of the cabins 2, 2 '. Cabins 2, 2 ' are deployed at a safety distance equal to the total braking distance at normal deceleration. The following case studies illustrate this:
  • For two cabins 2, 2 ' traveling at normal speed, the safety distance is equal to twice the full braking distance at normal deceleration.
  • If a first car 2 drives at normal speed to a stationary second car 2 ' , then the safety distance is equal to the simple full braking distance with normal deceleration.
  • If a car 2, 2 ' drives at standard speed towards a shaft end or against open shaft doors 11.0 to 11.8 , the safety distance is equal to the simple full braking distance with normal deceleration.

Basierend auf den aktuellen Daten über die Kabinenpositionen und die Verriegelungsstellungen ermittelt das Sicherheitsprogramm vorteilhafterweise in Echtzeit für jede Kabine 2, 2' einen sicheren Schachtbereich. Bei Kenntnis der vorliegendne Erfindung kann der Fachmann natürlich andere Definitionen eines Sicherheitsabstandes verwenden. So kann er bspw. eine kräftigere Verzögerung als die Normalverzögerung verwenden, auch kann er eine Notbremsung, d.h. ein Einfallen der Haltebremse einleiten.Based on the current data on the car positions and the locking positions, the safety program advantageously determines a safe manhole area in real time for each car 2, 2 ' . Of course, with knowledge of the present invention, those skilled in the art may use other definitions of a safety margin. So he can, for example, use a stronger delay than the normal delay, he can also emergency braking, ie initiate a collapse of the holding brake.

Claims (13)

  1. Safety system for a lift installation (10) for the transport of persons/goods in a building (30), comprising at least two cages (2, 2') which are arranged one above the other and are movable independently of one another in a shaft (31), a drive (6, 6') for each cage (2, 2'), at least one drive control (16, 16') for controlling the drives (6, 6') and cage position detecting sensors (21, 21') for detecting the positions of each cage (2, 2'), characterised in that the cage position detecting sensors (21, 21') transmit cage position data to at least one safety control (26, 26'), that shaft doors (11.0 to 11.8) close accesses to the shaft (31 ), that locks (18.0 to 18.8) lock shaft doors (11.0 to 11.8), that lock setting detecting sensors (20.0 to 20.8) detect settings of the locks (18.0 to 18.8), that the lock setting detecting sensors (20.0 to 20.8) transmit lock setting data to the safety control (26, 26') and that the safety control (26, 26') ascertains, from the cage position data and the lock setting data, shaft region data with details with respect to shaft regions in which each cage (2, 2') is safely movable.
  2. Safety system according to claim 1, characterised in that the safety control (26, 26') transmits the shaft region data to the drive control (16, 16') and that the drive control (16, 16') converts the shaft region data into drive control signals.
  3. Safety system according to claim 2, characterised in that the cage position detecting sensors (21, 21') transmit cage position data, and the lock setting detecting sensors (20.0 to 20.8) transmit lock setting data, by way of a data bus (22) to the safety control (26, 26') and/or that the safety control (26, 26') transmits shaft region data by way of a data bus (22) to the drive control (16, 16').
  4. Safety system according to claim 3, characterised in that the cage position detecting sensors (21, 21') transmit cage position data to a central safety control (26, 26'), that the lock setting detecting sensors (20.0 to 20.8) transmit lock setting data to the central safety control (26, 26') and that the central safety control (26, 26') transmits shaft region data to a central drive control (16) for all cages (2, 2').
  5. Safety system according to claim 3, characterised in that a cage position detecting sensor (21) of a first cage (2) transmits cage position data to a first safety control (26), that a cage position detecting sensor (21') of a second cage (2') transmits cage position data to a second safety control (26') and that the two safety controls (26, 26') mutually exchange cage position data of the two cages (2, 2').
  6. Safety system according to claim 5, characterised in that the lock setting detecting sensors (20.0 to 20.8) transmit lock setting data to the two safety controls (26, 26') and/or that the first safety control (26) transmits shaft region data to a first drive control (16) for controlling a drive (6) of the first cage (2) and that the second safety control (26') transmits shaft region data to a second drive control (16') for controlling a drive (6') of the second cage (2').
  7. Safety system according to one of claims 1 to 6, characterised in that the cage position detecting sensors (21, 21') are optical or magnetic sensors which detect optical or magnetic codings of a speed limiter cable (12, 12') or of a drive means (4, 4') or that the cage position detecting sensors (21, 21') are mechanical sensors which detect mechanical markings of a speed limiter cable (12, 12') or of a drive means (4, 4') or that the cage position detecting sensors (21, 21') are magnetic sensors which detect codings of a magnetic strip (9) mounted in the shaft (31) or that the cage position detecting sensors (21, 21') are optical sensors which detect patterns in the shaft (31) or that the cage position detecting sensors (21, 21') are mechanical sensors which detect markings in the shaft (31).
  8. Method of operating a lift installation (10) for the transport of persons/goods in a building (30), comprising at least two cages (2, 2') which are arranged one above the other and are movable independently of one another in a shaft (31), a drive (6, 6') for each cage (2, 2'), at least one drive control (16, 16') for controlling the drives (6, 6') and cage position detecting sensors (21, 21') for detecting the positions of each cage (2, 2'), characterised in that cage position data are transmitted to at least one safety control (26, 26'), that accesses to the shaft (31) are closed by shaft doors (11.0 to 11.8), that shaft doors (11.0 to 11.8) are locked by locks (18.0 to 18.8), that settings of the locks (18.0 to 18.8) are detected by lock setting detecting sensors (20.0 to 20.8), that lock setting data are transmitted to the safety control (26, 26') and that shaft region data with details with respect to shaft regions in which each cage (2, 2') is safely movable are determined from the cage position data and the lock setting data.
  9. Method according to claim 8, characterised in that the shaft region data are transmitted to the drive control (16, 16') and that the shaft region data are converted by the drive control (16, 16') into drive control signals.
  10. Method according to claim 9, characterised in that the cages (2, 2') are moved by shaft region data in safe shaft regions in which the cage (2, 2') with preservation of a safety spacing from a next cage (2, 2') or from the shaft end and with normal retardation can move to a next storey stop as seen in travel direction of the cage (2, 2') and stop there.
  11. Method according to claim 9 or 10, characterised in that the cages (2, 2') are moved at a safety spacing which is equal to the entire braking travel of the cages (2, 2') with normal retardation.
  12. Method according to one of claims 9 to 11, characterised in that serviceability of the cage position detecting sensors (21, 21') and the lock setting detecting sensors (20.0 to 20.8) is checked by the safety control (26, 26') by way of a data bus (22).
  13. Method according to one of claims 9 to 12, characterised in that in the case of exceeding a safety-critical spacing at least one drive (6, 6') is retarded as a first safety measure and/or that at least one drive (6, 6') is emergency braked as a further safety measure and/or that at least one safety brake device of the cages (2, 2') engages as a further safety measure.
EP20040024136 2003-10-20 2004-10-09 Safety system for a multi cabin elevator system Active EP1526104B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20040024136 EP1526104B1 (en) 2003-10-20 2004-10-09 Safety system for a multi cabin elevator system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03405757 2003-10-20
EP03405757 2003-10-20
EP20040024136 EP1526104B1 (en) 2003-10-20 2004-10-09 Safety system for a multi cabin elevator system

Publications (2)

Publication Number Publication Date
EP1526104A1 EP1526104A1 (en) 2005-04-27
EP1526104B1 true EP1526104B1 (en) 2006-06-07

Family

ID=34395308

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20040024136 Active EP1526104B1 (en) 2003-10-20 2004-10-09 Safety system for a multi cabin elevator system

Country Status (1)

Country Link
EP (1) EP1526104B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128311B1 (en) * 2003-10-20 2012-03-26 인벤티오 아게 Safety system for a lift installation and method of operating a lift installation with a safety system
US8297409B2 (en) 2007-11-30 2012-10-30 Otis Elevator Company Coordination of multiple elevator cars in a hoistway
EP1935823B2 (en) 2006-12-21 2017-06-28 Inventio AG Method for preventing the collision of two lift cabins moving in one shaft and corresponding lift system
EP3209589B1 (en) 2014-10-21 2022-04-20 Inventio AG Elevator with a decentralised electronic safety system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009080478A1 (en) * 2007-12-21 2009-07-02 Inventio Ag Elevator system with distance control

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419414A (en) * 1993-11-18 1995-05-30 Sakita; Masami Elevator system with multiple cars in the same hoistway
DE59610869D1 (en) * 1995-10-17 2004-01-29 Inventio Ag Safety device for multimobile elevator groups
SG126669A1 (en) * 1998-02-02 2006-11-29 Inventio Ag Double-decker or multi-decker elevator
WO2002038482A1 (en) * 2000-11-08 2002-05-16 Mitsubishi Denki Kabushiki Kaisha Cage device for double deck elevators

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128311B1 (en) * 2003-10-20 2012-03-26 인벤티오 아게 Safety system for a lift installation and method of operating a lift installation with a safety system
EP1935823B2 (en) 2006-12-21 2017-06-28 Inventio AG Method for preventing the collision of two lift cabins moving in one shaft and corresponding lift system
US8297409B2 (en) 2007-11-30 2012-10-30 Otis Elevator Company Coordination of multiple elevator cars in a hoistway
EP3209589B1 (en) 2014-10-21 2022-04-20 Inventio AG Elevator with a decentralised electronic safety system

Also Published As

Publication number Publication date
EP1526104A1 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
CA2484984C (en) Safety system for a lift installation and method of operating a lift installation with a safety system
EP2022742B1 (en) Lift system
EP1371596B1 (en) Safety device for a group of elevators
EP2250115B1 (en) Escalator or moving walkway
EP1401757B2 (en) Method for preventing an inadmissibly high speed of the load receiving means of an elevator
DE112013007449T5 (en) winder
EP3599208B1 (en) Lift system having a plurality of cars and a decentralised safety system
EP1562848B1 (en) Safety device for an elevator system comprising a number of elevator cars inside a shaft
EP1490284B1 (en) Shaft monitoring system for an elevator
EP1404603B1 (en) Lift installation having a virtual protection area at the bottom and/or the top of the lift shaft, and method for controlling the same
DE60004501T2 (en) ELEVATOR RESCUE SYSTEM
DE112009004592B4 (en) Elevator installation and method for checking the same
EP2229332B1 (en) Operating method for an elevator having two elevator cabs and one counterweight
EP3347295B1 (en) Person transport system with a device for determining operating state
EP1698580A1 (en) Elevator system
EP2457860B1 (en) Safety device for a lift
DE112015006721T5 (en) LIFT DEVICE
EP2594519A1 (en) Lift with safety device
DE112006000498T5 (en) elevator system
EP1526104B1 (en) Safety system for a multi cabin elevator system
DE102019207265A1 (en) AREA SURVEILLANCE SYSTEM FOR AN ELEVATOR SYSTEM
EP2640655B1 (en) Code band for an elevator system
EP3744673B1 (en) Method for securing an elevator cabin through a temporary unlock zone
DE3788081T2 (en) Braking device for lifting equipment such as passenger or goods lifts.
EP2465804A1 (en) Multi-cabin lift with brake status indicator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20051005

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1076622

Country of ref document: HK

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004000698

Country of ref document: DE

Date of ref document: 20060720

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060724

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1076622

Country of ref document: HK

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121031

Year of fee payment: 9

Ref country code: CH

Payment date: 20121030

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121019

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131009

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502004000698

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231027

Year of fee payment: 20