EP1526104B1 - Dispositif de sécurité pour un système multi-pont d'ascenseur - Google Patents

Dispositif de sécurité pour un système multi-pont d'ascenseur Download PDF

Info

Publication number
EP1526104B1
EP1526104B1 EP20040024136 EP04024136A EP1526104B1 EP 1526104 B1 EP1526104 B1 EP 1526104B1 EP 20040024136 EP20040024136 EP 20040024136 EP 04024136 A EP04024136 A EP 04024136A EP 1526104 B1 EP1526104 B1 EP 1526104B1
Authority
EP
European Patent Office
Prior art keywords
safety
shaft
cage
data
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20040024136
Other languages
German (de)
English (en)
Other versions
EP1526104A1 (fr
Inventor
Romeo Dr. Deplazes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP20040024136 priority Critical patent/EP1526104B1/fr
Publication of EP1526104A1 publication Critical patent/EP1526104A1/fr
Application granted granted Critical
Publication of EP1526104B1 publication Critical patent/EP1526104B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • B66B5/0031Devices monitoring the operating condition of the elevator system for safety reasons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B13/00Doors, gates, or other apparatus controlling access to, or exit from, cages or lift well landings
    • B66B13/22Operation of door or gate contacts

Definitions

  • the invention relates to a safety system for an elevator installation for the transport of persons / goods in a building and to a method for operating an elevator installation with a safety system according to the definition of the preamble of the independent claims.
  • No. 5,419,414 A shows an elevator installation with cabs arranged one above the other in a shaft of a building, which cabins can be moved independently of one another.
  • Each cabin has a drive and a counterweight.
  • the cabins are connected via ropes as propellant with counterweights.
  • the drives are mounted above the shaft and move the propellant.
  • the drives are controlled by drive control signals from a drive control.
  • Car position detecting sensors detect the positions of the cars and transmit car position signals to the drive controller.
  • a first object of the invention is to provide a safety system for such an elevator installation which has means for avoiding collisions between booths moved independently of one another in a hoistway.
  • a second object of the invention is to provide a safety system for an elevator installation, which comprises means for restricting a method of cabins, which take place independently of one another in a shaft, to shaft areas with closed storey doors.
  • a third object of the invention is to provide a safety system for an elevator installation which has means for avoiding collisions of booth-end cabins which are moved independently of one another in a hoistway.
  • the invention relates to a safety system for an elevator installation for transporting persons / goods in a building and to a method for operating an elevator installation with a safety system.
  • Several cabins are moved one above the other in a shaft. Each cabin is driven by a drive.
  • At least one drive control controls the drives via drive control signals.
  • Car position detecting sensors detect positions of each car and transmit car position data to at least one safety controller. Access to the shaft is via open shaft doors. A lock locks shaft doors. Lock position detection sensors detect positions of the locks of the landing doors and transmit lock position data to the safety controller.
  • the safety control system determines shaft area data with information on shaft areas in which each car can be safely moved.
  • cab position data and locking position data to a safety controller, which determines shaft areas in which the cabins can be safely moved on the basis of these data.
  • a safely movable for a car shaft area such a shaft area in which the cabin, while maintaining a safe distance to a next car or to the shaft end and with Normal retraction seen in the direction of travel of the cabin retract to a next floor stop and can hold there.
  • the safety controller transmits the manhole area data to the propulsion controller, which converts the manhole area data into propulsion control signals to move the cars in separate manhole areas and to move the cars to manhole areas with locked landing doors.
  • the car position detection sensors, the lock position detection sensors, the safety control and the drive control are modular components of the safety system. These components communicate with each other via a data bus.
  • the advantages of the data bus are that, on the one hand, data can be transmitted quickly from and to the safety control and, on the other hand, the sensors of the car positions and the locking positions can be controlled in a simple and individually targeted manner. This rapid communication and this targeted control of the sensors takes place at a very favorable price / performance ratio. Also, this modular safety system is easy to install and maintain.
  • the safety controller is advantageously a central unit.
  • the central safety controller receives all car position data of the cars, it receives all lock position data of the landing doors and it transmits all manhole area data to a central drive control.
  • the safety controller advantageously consists of decentralized units. Each cabin is individually assigned a safety control and a drive control. Cabin position data is transmitted only to the safety control associated with the car. The safety controllers exchange recorded cabin position data with each other. Lock position data is transmitted to all safety controllers. Well area data is only transmitted to the drive control associated with the cabin.
  • the drive control systematically controls the drives and thus prevents a collision of cabins in the shaft, a collision of cabins with shaft ends and an approaching of open shaft doors.
  • the safety controller monitors whether safety-critical distances are exceeded. If a safety-critical distance is exceeded, predefined safety measures are initiated.
  • a first safety measure is to delay at least one drive.
  • Another safety measure is emergency braking of at least one drive.
  • Another safety measure is the collapse of at least one safety gear of the cabins.
  • the security controller checks the availability of the sensors with availability requests, which increases the security of the elevator system.
  • cab position data and lock position data transmitted to the safety control can be examined for transmission errors.
  • the sensors can be interrogated on a test basis for functionality at periodic intervals.
  • FIGS. 1 and 2 show two different embodiments of an elevator installation 10 for the transport of persons / goods between floors 30.1 to 30.8 of a building 30 .
  • the elevator installation 10 has at least one elevator, which elevator is advantageously installed in a shaft 31 of the building 30 .
  • the person skilled in various options of variation in the installation of an elevator in a building 30 free.
  • the shaft can only partially pass through the building 30 , or an elevator is installed without a box in a courtyard of the building 30 or outside the building 30 .
  • the elevator has at least one cabin 2, 2 ' , which cabins 2, 2' as a single or double cabin in the vertical direction of travel advantageously on a pair of guide rails 5, 5 ' are moved.
  • the cabins 2, 2 ' are conventional and proven elevator cars, which are moved over guide shoes on the guide rails 5, 5' .
  • Each cabin has at least one car door 8, 8 ' , over which car doors 8, 8' persons / goods access to the car 2, 2 ' have ..
  • the elevator installation 10 has a drive 6 , 6 ' per booth 2, 2' .
  • traction sheave drives with traction sheaves, which connect the cabins 2, 2 ' via propellant 4, 4' with counterweights 3, 3 ' .
  • the Cabins 2, 2 ' and the counterweights 3, 3' are arranged in the representations according to FIGS. 1 and 2 in different planes.
  • the propellant 4, 4 ' can have any shape, whether it may be made of any materials. For example.
  • the propellant 4, 4 ' is a round rope, double rope or a belt.
  • the blowing agent 4, 4 ' at least partially made of steel or aramid fibers.
  • the skilled person can use all known and proven drives 6, 6 ' .
  • Gearless drives or those with gearboxes can be used.
  • drives 6, 6 ' with permanent magnets, with synchronous motors, with asynchronous motors or with linear motors can be used.
  • the drives 6, 6 ' can be arranged stationarily directly in the shaft 31 in a stationary manner in a separate machine room 32 or as shown in the embodiment according to FIG. 2 .
  • the skilled person has knowledge of the present invention, free choice of the arrangement of the drives.
  • the drives 6, 6 ' as shown in the embodiment in the embodiment according to FIG. 1 , at the upper end of guide rails 5, 5' at substantially the same height in the shaft 31 may be arranged.
  • the drives need not be stationary, but they can also be mobile on the cabins or the counterweights.
  • the drives 6, 6 ' are controlled by at least one drive control 16, 16' .
  • a central stationary drive control 16 is provided for both drives 6, 6 ' with at least one arithmetic unit and at least one memory in the machine room 32 .
  • a separate stationary drive control 16, 16 ' with at least one computing unit and at least one memory close to the shaft 31 is provided for each drive 6, 6' .
  • At least one control program is stored in the memory, which control program is executed by the arithmetic unit.
  • the drive control 16, 16 ' transmits drive control signals to the drives 6, 6' in order to accelerate or brake or at least hold them in accordance with a programmed travel curve.
  • the drive control can also be mobile on the cabins or Counterweights arranged.
  • a central drive control or multiple drive controls for each cabin can / may be arranged so mobile.
  • the elevator system 10 has at least one car position detection sensor 21, 21 ' for detecting the current absolute position of each of the cars 2, 2' moved independently of each other in the shaft 31 .
  • a coding is attached to a speed governor cable 12, 12 ' .
  • Each cabin 2, 2 ' has a speed governor rope 12, 12' , which is arranged next to the car 2, 2 ' in the shaft 31 and mechanically fixed to the car 2, 2' .
  • the upward and downward movement of the cabin 2, 2 'in the shaft 31 is thus on the speed governor 12, 12' transmitted.
  • the distances in FIG. 1 between the cars 2, 2 ' and the speed governor cables 12, 12' are not to scale.
  • Each speed limiter cable 12, 12 ' is mechanically connected to a speed limiter 14, 14' arranged in the engine room 32 .
  • Speed limiter 14, 14 ' detects an overspeed of the car 2, 2' and triggers at overspeed at least one of the safety measures described below.
  • a deflection roller 13, 13 ' arranged on the shaft bottom enables the return of the speed governor cable 12, 12'.
  • the car position detecting sensor 21, 21 ' is mounted in the engine room 32 on the speed limiter 13, 13' .
  • the car position detecting sensor 21, 21 ' may decode optical codings such as color codings or magnetic codings on the speed limiter cable 12, 12' .
  • the decoding may be done by the car position detecting sensor 21, 21 ' or by the safety controller 26, 26' .
  • the car position detection sensor 21, 21 ' can also be arranged in the shaft 31 .
  • the person skilled in the art can also attach codings to the propellant 4, 4 ' of each car 2, 2' and to detect codings on the propellant 4, 4 ' by means of car position detection sensors 21, 21'.
  • the person skilled in the speed limiter rope 12, 12 ' or on the propellant 4, 4' attach mechanical markings such as ball or hook, which are detected by correspondingly designed mechanical car position detection sensors 21, 21 ' .
  • a marking is provided for a cable unit length of 10 cm. By counting the markings, the current position d of the cars 2, 2 ' can be determined with respect to a specific, known starting position. The counting of the markings can be done by the car position detecting sensor 21, 21 ' or by the safety controller 26, 26' .
  • the skilled person can also define smaller or larger cable unit lengths.
  • the car position detection sensor 21, 21 ' is a magnetic sensor mounted on the car 2, 2' , which magnetic sensor scans a coded magnetic tape 9 mounted in the shaft 31 with high resolution. Codes on the magnetic tape 9 are decoded into a current absolute position of the car 2, 2 ' . The decoding may be done by the car position detecting sensor 21, 21 ' or by the safety controller 26, 26' .
  • a straight-line installation, for example, in addition to at least one guide rail 5, 5 ' allows a magnetic tape 9 to be used with a high information density.
  • the car position detection sensor 21, 21 ' may also be an optical sensor mounted on the car 2, 2' which detects any pattern in the carousel 31 as car position data. In a calibration run, these patterns are captured and stored as primary cabin position data. During operation of the elevator installation 10 currently detected car position data is compared with the stored primary car position data. The storage or comparison of cabin position data can be done by the car position detection sensor 21, 21 ' or by the safety controller 26, 26' . Also, those skilled in the art can attach mechanical markings such as balls or hooks in the well 31 which are detected by correspondingly designed mechanical car position detecting sensors 21 , 21 ' . For example. are at least one guide rail 5, 5 ' every 10 cm a mark provided.
  • the skilled person can not attach codings over the entire length of the shaft 31 or patterns over the entire length of the shaft 31 detect or not on the entire length of the speed limiter rope 12, 12 ' or propellant 4, 4' attach.
  • the expert can attach codes or patterns only in such area of the shaft 31 or capture where an actual risk of collision of cabins 2, 2 ' in the shaft 31 or where an actual risk of collision of cabins 2, 2' with Shaft ends exists.
  • the detection of the car position data advantageously takes place continuously, for example at regular intervals of 10 msec.
  • Shaft doors / interlocks On each floor 30.0 to 30.8 , access to the shaft 34 takes place via shaft doors 11.0 to 11.8 .
  • the shaft doors 11.0 to 11.8 can be single-sided or double-sided opening doors.
  • the shaft doors 11.0 to 11.8 are preferably carried out complacent; that is, they close automatically as soon as they are not actively held open. In addition to closing the shaft doors 11.0 to 11.8 closed shaft doors are locked 11.0 to 11.8.
  • each shaft door 11.0 to 11.8 on a lock 18.0 to 18.8 is self-coincident when the landing door 11.0 to 11.8 is closed.
  • An active lock is not necessary.
  • the latches 18.0 to 18.8 are preferably designed such that they can only be unlocked and opened or closed and locked by a car door 8, 8 ' provided on a car 2, 2' , or that they unlock with a special tool and postpone by hand.
  • Lock position detection sensors Each shaft door 11.0 to 11.8 has at least one lock position detection sensor 20.0 to 20.8 .
  • the lock position detection sensor 20.0 to 20.8 detects positions of the latches 18.0 to 18.8 of the landing doors 11.0 to 11.8.
  • Locking position detection sensors 20.0 to 20.8 can be used by well-known and proven sensors such as locking device contacts, microswitches, inductive sensors such as radio frequency identification (RFID) sensors, capacitive sensors or optical sensors, etc., in elevator construction.
  • RFID radio frequency identification
  • the detection of the locking position data advantageously takes place continuously, for example at regular intervals of 10 msec.
  • Safety control / data bus At least one safety control 26, 26 ' is provided which, as exemplified in FIGS. 3 and 4 , receives cabin position data determined by the car position detection sensors 21 , 21' via a data bus 22 and interlock position data determined by the locking position detection sensors 20.0 to 20.8 which transmits via the data bus 22 to the drive control 16, 16 ' shaft area data.
  • the safety controller 26, 26 ' advantageously has at least one arithmetic unit and at least one memory. At least one safety program is stored in the memory, which safety program is executed by the computer.
  • the safety controller 26, 26 ' monitors whether safety-critical distances are exceeded. These distances are described in detail below. If a safety-critical distance is exceeded, predefined safety measures are initiated.
  • a first security measure is the delaying of at least one drive 6, 6 ' .
  • Another safety measure is emergency braking, ie the engagement of the holding brake of at least one drive 6 , 6 ' .
  • Another safety measure is the collapse of at least one safety gear of the cabins 2, 2 '.
  • the first and the better security measures can be staggered or triggered in combination. Thus, as a first security measure, a delay can be initiated. If the safety-critical distance continues to decrease, emergency braking can also be initiated as a further safety measure.
  • a safety gear can additionally take place as a further safety measure.
  • the person skilled in the art can also make other types of shutdown of the cabins 2, 2 ' . So he can, for example, provide a cabin brake in the form of a disc brake. He may also provide a braking of the propellant.
  • the data bus 22 is a known and proven signal bus. It can be a signal bus based on electrical or optical signal transmission, such as an Ethernet network, a token ring network, etc. It can also be a wireless network, an infrared network, a radar network , a beam network, etc. act.
  • the transmission media such as two-wire, 230/400 VAC network, radio, infrared, microwaves, fiber optics, Internet, etc. can be freely selected.
  • the safety system thus consists of the components car position detection sensors 21, 21 ' , the lock position detection sensors 20.0 to 20.8 , safety controller 26, 26' and drive control 16, 16 ' , which communicate with each other via the data bus 22 .
  • the components of the security system are advantageously bus modules.
  • a bus module is an electronic card, with at least one data memory and at least one arithmetic unit.
  • data bus 22 is a LON bus, where bus modules communicate easily with each other and are programmable.
  • the LON bus is a technology that enables the creation of distributed networks using many simple bus nodes. In particular, a direct communication between the individual computing units of the components is possible.
  • the LON bus protocol is the carrier of the control information and the individual computing units of the components can be controlled directly via the LON bus.
  • the bus nodes can be programmed with logical links.
  • the LON bus has a free topology and can be structured in lines, circles, trees, etc.
  • the data bus 22 has, for example, a branche
  • the car position detection sensors 21, 21 ' and locking position detection sensors 20.0 to 20.8 are jointly monitored by a central safety controller 26 .
  • the central safety controller 26 transmits shaft area data to a central drive control 16 .
  • each cabin 2, 2 ' has a safety circuit 26, 26' .
  • a first car position detection sensor 21 of a first car 2 is monitored by a first safety controller 26 .
  • a second car position detection sensor 21 'of a second car 2' is monitored by a second safety control 26 ' .
  • the two safety controllers 26 , 26 ' mutually exchange detected cabin position data.
  • the lock position detection sensors 20.0 to 20.8 are monitored by both safety controllers 26, 26 ' .
  • the first safety controls 26 transmit shaft area data to the drive control 16 of the drive 6 of the first car 2 and the second safety controls 26 ' transmit shaft area data to the drive control 16' of the drive 6 'of the second car 2 '.
  • the data bus 22 thus enables two important functions, a rapid transmission of data and a request for the availability of the sensors of the security system.
  • the safety controller 26, 26 ' is designed to evaluate the car position data or the locking position data in order to trigger one or more predefined reactions, in particular the detection and localization of an error, the initiation of a service call, the stoppage of a car 2, 2 ' or carrying out a different situation-adapted reaction when recognizing a dangerous mutual approach of the cabins 2 , 2' or the open standing of a shaft door 11.0 to 11.8.
  • the safety controller 26, 26 ' is designed such that it evaluates the car position data or the locking position data in order to correct detected transmission errors by evaluating a plurality of data packets.
  • the car doors 8, 8 ' are also monitored; As a result, by means of a coincidence test of the signals of the shaft doors 11.0 to 11.8 on the one hand and the car doors 8, 8 ', on the other hand, a statement about the functionality of the locking position detection sensors 20.0 to 20.8 attained.
  • the safety controller 26, 26 ' evaluates the transmitted locking position data, for example, in such a way that it interrogates the locking position detection sensors 20.0 to 20.8 at periodic intervals of 20 ms. In this way, a communication interruption in the area of the data bus 22 or the bus node can thus be detected very quickly.
  • each locking position detection sensor 20.0 to 20.8 periodically at greater intervals, for example. once within 8 hours of 2 hours.
  • D azu the corresponding shaft doors 11.0 to 11.8 are opened and closed again or at least the contacts operated (unlocked / locked), and it is observed whether expected locking position data is transmitted to the safety controller 26 . This test can be done when opening and closing the shaft doors 11.0 to 11.8 in normal operation.
  • a test drive to this floor 30.0 to 30.8 is initiated by the safety controller 26, 26 ' for test purposes (forced test).
  • the execution of all tests is monitored by the safety controller 26, 26 ' and entered into a table and stored.
  • Safe shaft areas The safety control 26, 26 ' determined for the cars 2, 2' safe shaft areas in which the cabs, while maintaining a defined safety distance to a next car 2, 2 ' or the shaft end and with normal delay in the direction of travel of the car 2, 2 ' seen in a next floor stop retract and can hold there. Safe shaft areas are thus such shaft areas in which the cabins 2, 2 'can be moved without initiating further safety measures such as emergency braking, ie engagement of the holding brake or engagement of a safety gear. For this purpose, at least one travel curve is stored in the safety program, according to which the cars 2, 2 'are accelerated, braked or held by the drives 6, 6' .
  • the travel curve on three areas an acceleration range where the cabins 2, 2 'are accelerated by a predetermined normal acceleration, a speed range where the cabins 2, 2' are moved at a predetermined normal speed, and a deceleration range where the cabins 2, 2 ' be decelerated with a given normal deceleration.
  • a normal acceleration or a normal deceleration is understood to be an acceleration or deceleration perceived by the persons as pleasant and acceptable.
  • the safety program advantageously determines a safe manhole area in real time for each car 2, 2 ' .
  • those skilled in the art may use other definitions of a safety margin. So he can, for example, use a stronger delay than the normal delay, he can also emergency braking, ie initiate a collapse of the holding brake.

Claims (13)

  1. Système de sécurité pour une installation d'ascenseur (10) destinée au transport de personnes / marchandises dans un bâtiment (30), avec au moins deux cabines (2, 2'), agencées l'une sur l'autre, ces cabines (2, 2') étant susceptibles d'être déplacées indépendamment l'une de l'autre dans une cage d'ascenseur (31), avec un dispositif moteur (6, 6') pour chaque cabine (2, 2'), avec au moins une commande de dispositif moteur (16, 16') pour commander le dispositif moteur (6, 6') et avec des capteurs de détection des positions des cabines (21, 21') pour la détection des positions de chaque cabine (2, 2'), caractérisé en ce que les capteurs de détection des positions des cabines (21, 21') retransmettent des données de position de cabine à au moins une commande de sécurité (26, 26'), que des portes palières (11.0 à 11.8) bloquent l'accès à la cage d'ascenseur (31), que des dispositif de verrouillage (18.0 à 18.8) verrouillent les portes palières (11.0 à 11.8), que des capteurs de détection des positions du dispositif de verrouillage (20.0 à 20.8) détectent des positions des dispositifs de verrouillage (18.0 à 18.8), que les capteurs de détection des positions du dispositif de verrouillage (20.0 à 20.8) retransmettent des données de position du dispositif de verrouillage à la commande de sécurité (26, 26') et que la commande de sécurité (26, 26') détecte à partir des données de position de cabine et des données de position du dispositif de verrouillage des données de secteur de cage d'ascenseur avec des indications concernant les secteurs de cage d'ascenseur, dans lesquels chacune cabine (2, 2') est susceptible d'être déplacée de façon sûre.
  2. Système de sécurité selon la revendication 1, caractérisé en ce que la commande de sécurité (26, 26') retransmet les données de secteur de cage d'ascenseur à la commande de dispositif moteur (16, 16') et que la commande de dispositif moteur (16, 16') convertit les données de secteur de cage d'ascenseur dans des signaux de commande de dispositif moteur.
  3. Système de sécurité selon la revendication 2, caractérisé en ce que les capteurs de détection des positions des cabines (21, 21') retransmettent des données de position de cabines et les capteurs de détection des positions du dispositif de verrouillage (20.0 à 20.8) retransmettent des données de position du dispositif de verrouillage à la commande de sécurité (26, 26') à travers un bus de données (22) et/ou que la commande de sécurité (26, 26') retransmet des données de secteur de cage d'ascenseur à la commande de dispositif moteur (16, 16') à travers un bus de données (22).
  4. Système de sécurité selon la revendication 3, caractérisé en ce que les capteurs de détection des positions des cabines (21, 21') retransmettent des données de position de cabine à une commande de sécurité centrale (26, 26'), que les capteurs de détection des positions du dispositif de verrouillage (20.0 à 20.8) retransmettent des données de position du dispositif de verrouillage à la commande de sécurité centrale (26, 26') et que la commande de sécurité centrale (26, 26') retransmet des données de secteur de cage d'ascenseur à une commande de dispositif moteur (16) centrale pour toutes les cabines (2, 2').
  5. Système de sécurité selon la revendication 3, caractérisé en ce qu'un capteur de détection des positions des cabines (21) d'une première cabine (2) retransmet des données de position de cabine à une première commande de sécurité (26), qu'un capteur de détection des positions des cabines (21') d'une deuxième cabine (2') retransmet des données de position de cabine à une deuxième commande de sécurité (26') et que les deux commandes de sécurité (26, 26') échangent mutuellement des données de position de cabine des deux cabines (2, 2').
  6. Système de sécurité selon la revendication 5, caractérisé en ce que les capteurs de détection des positions du dispositif de verrouillage (20.0 à 20.8) retransmettent des données de position du dispositif de verrouillage aux deux commandes de sécurité (26, 26'), et/ou que la première commande de sécurité (26) retransmet des données de secteur de cage d'ascenseur à une première commande de dispositif moteur (16) pour commander un dispositif moteur (6) de la première cabine (2) et que la deuxième commande de sécurité (26') retransmet des données de secteur de cage d'ascenseur à une deuxième commande de dispositif moteur (16') pour commander un dispositif moteur (6') de la deuxième cabine (2').
  7. Système de sécurité selon une des revendications de 1 à 6, caractérisé en ce que les capteurs de détection des positions des cabines (21, 21') sont des capteurs optiques et/ou magnétiques, lesquels comprennent des codages optiques et/ou magnétiques d'un câble limiteur de vitesse (12, 12') ou d'un moyen d'entraînement (4, 4'), ou que les capteurs de détection des positions des cabines (21, 21') sont des capteurs mécaniques, lesquels comprennent des marquages mécaniques d'un câble limiteur de vitesse (12, 12') ou d'un moyen d'entraînement (4, 4'), ou que les capteurs de détection des positions des cabines (21, 21') sont des capteurs magnétiques, lesquels comprennent les codages d'une bande magnétique (9) montée dans la cage d'ascenseur (31), ou que les capteurs de détection des positions des cabines (21, 21') sont des capteurs optiques, lesquels comprennent des dessins dans la cage d'ascenseur (31), ou que les capteurs de détection des positions des cabines (21, 21') sont des capteurs mécaniques, lesquels comprennent des marquages dans la cage d'ascenseur (31).
  8. Méthode pour le fonctionnement d'une installation d'ascenseur (10) avec un système de sécurité pour le transport de personnes / marchandises dans un bâtiment (30), avec au moins deux cabines (2, 2'), agencées l'une sur l'autre, ces cabines (2, 2') étant susceptibles d'être déplacées indépendamment l'une de l'autre dans une cage d'ascenseur (31), avec un dispositif moteur (6, 6') pour chaque cabine (2, 2'), avec au moins une commande de dispositif moteur (16, 16') pour commander le dispositif moteur (6, 6') et avec des capteurs de détection des positions des cabines (21, 21') pour la détection des position de chaque cabine (2, 2'), caractérisée en ce que des données de position de cabine sont retransmises à au moins une commande de sécurité (26, 26'), que l'accès à la cage d'ascenseur (31) est fermé par des portes palières (11.0 à 11.8), que des portes palières (11.0 à 11.8) sont verrouillées par des dispositifs de verrouillage (18.0 à 18.8), que des positions des dispositifs de verrouillage (18.0 à 18.8) sont détectées par des capteurs de détection des positions du dispositif de verrouillage (20.0 à 20.8), que des données de position du dispositif de verrouillage sont retransmises à la commande de sécurité (26, 26') et que, à partir des données de position de cabine et des données de position du dispositif de verrouillage, des données de secteur cage d'ascenseur avec des indications concernant les secteurs de cage d'ascenseur, dans lesquels chaque cabine (2, 2') est susceptible d'être déplacée de façon sûre, sont détectées.
  9. Méthode selon la revendication 8, caractérisé en ce que les données de secteur de cage d'ascenseur sont retransmises à la commande de dispositif moteur (16, 16') et que les données de secteur de cage d'ascenseur sont converties par la commande de dispositif moteur (16, 16') en signaux de commande de dispositif moteur.
  10. Méthode selon la revendication 9, caractérisé en ce que les cabines (2, 2') sont déplacées avec des données de secteur de cage d'ascenseur dans les secteurs de cage d'ascenseur sûrs, dans lesquels la cabine (2, 2'), en gardant une distance de sécurité vis-à-vis d'une prochaine cabine (2, 2') et/ou vis-à-vis de l'extrémité de cage d'ascenseur, peut être mise en route, et avec un ralentissement normal vu dans le sens de marche de la cabine (2, 2'), vers un prochain arrêt d'étage et peut s'arrêter là.
  11. Méthode selon la revendication 9 ou 10, caractérisé en ce que les cabines (2, 2') sont déplacées avec une distance de sécurité qui est identique à l'ensemble de la distance de freinage des cabines (2, 2'), lors d'un ralentissement normal.
  12. Méthode selon une des revendications de 9 à 11, caractérisé en ce que une disponibilité des capteurs de détection des positions des cabines (21, 21') et des capteurs de détection des positions du dispositif de verrouillage (20.0 à 20.8) est contrôlée par la commande de sécurité (26, 26') à travers un bus de données (22).
  13. Méthode selon une des revendications de 9 à 12, caractérisé en ce qu'en franchissant une distance critique du point de vue de la sécurité, au moins un dispositif moteur (6, 6') est ralenti, en tant que première mesure de sécurité, et/ou qu'au moins un dispositif moteur (6, 6') est arrêté d'urgence, en tant qu'ultérieure mesure de sécurité, et/ou qu'au moins un dispositif d'arrêt de la cabine (2, 2') s'engage.
EP20040024136 2003-10-20 2004-10-09 Dispositif de sécurité pour un système multi-pont d'ascenseur Active EP1526104B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20040024136 EP1526104B1 (fr) 2003-10-20 2004-10-09 Dispositif de sécurité pour un système multi-pont d'ascenseur

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03405757 2003-10-20
EP03405757 2003-10-20
EP20040024136 EP1526104B1 (fr) 2003-10-20 2004-10-09 Dispositif de sécurité pour un système multi-pont d'ascenseur

Publications (2)

Publication Number Publication Date
EP1526104A1 EP1526104A1 (fr) 2005-04-27
EP1526104B1 true EP1526104B1 (fr) 2006-06-07

Family

ID=34395308

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20040024136 Active EP1526104B1 (fr) 2003-10-20 2004-10-09 Dispositif de sécurité pour un système multi-pont d'ascenseur

Country Status (1)

Country Link
EP (1) EP1526104B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128311B1 (ko) * 2003-10-20 2012-03-26 인벤티오 아게 승강기 설비용 안전시스템 및 안전시스템을 가진 승강기설비의 작동방법
US8297409B2 (en) 2007-11-30 2012-10-30 Otis Elevator Company Coordination of multiple elevator cars in a hoistway
EP1935823B2 (fr) 2006-12-21 2017-06-28 Inventio AG Procédé destiné à empêcher les cas où deux cabines d'ascenseur se déplacent dans la même cage d'ascenseur d'une installation d'ascenseur et installation d'ascenseur correspondante
EP3209589B1 (fr) 2014-10-21 2022-04-20 Inventio AG Ascenseur équipé d'un système de sécurité électronique décentralisé

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945817B (zh) * 2007-12-21 2013-04-03 因温特奥股份公司 具有距离控制器的电梯系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419414A (en) * 1993-11-18 1995-05-30 Sakita; Masami Elevator system with multiple cars in the same hoistway
DE59610869D1 (de) * 1995-10-17 2004-01-29 Inventio Ag Sicherheitseinrichtung bei Multimobil-Aufzugsgruppen
SG126669A1 (en) * 1998-02-02 2006-11-29 Inventio Ag Double-decker or multi-decker elevator
WO2002038482A1 (fr) * 2000-11-08 2002-05-16 Mitsubishi Denki Kabushiki Kaisha Dispositif de cabine pour ascenseurs a double cabine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128311B1 (ko) * 2003-10-20 2012-03-26 인벤티오 아게 승강기 설비용 안전시스템 및 안전시스템을 가진 승강기설비의 작동방법
EP1935823B2 (fr) 2006-12-21 2017-06-28 Inventio AG Procédé destiné à empêcher les cas où deux cabines d'ascenseur se déplacent dans la même cage d'ascenseur d'une installation d'ascenseur et installation d'ascenseur correspondante
US8297409B2 (en) 2007-11-30 2012-10-30 Otis Elevator Company Coordination of multiple elevator cars in a hoistway
EP3209589B1 (fr) 2014-10-21 2022-04-20 Inventio AG Ascenseur équipé d'un système de sécurité électronique décentralisé

Also Published As

Publication number Publication date
EP1526104A1 (fr) 2005-04-27

Similar Documents

Publication Publication Date Title
CA2484984C (fr) Systeme de securite pour installation d'ascenseur et methode d'utilisation d'une installation d'ascenseur avec un systeme de securite
EP2022742B1 (fr) Système d'ascenseur
EP1371596B1 (fr) Dispositif de sécurité pour groupe d'ascenseurs
EP2250115B1 (fr) Escalier roulant ou trottoir roulant
EP1401757B2 (fr) Procede pour empecher une vitesse inacceptablement elevee du moyen de suspension de charge d'un ascenseur
DE112013007449T5 (de) Aufzugvorrichtung
EP1562848B1 (fr) Dispositif de securite destine a un systeme d'ascenseur comportant plusieurs cabines dans une cage
EP1490284B1 (fr) Systeme de controle de cage destine a un ascenseur
EP1404603B1 (fr) Installation d'ascenseur avec zone de protection virtuelle au niveau du fond et/ou du sommet de la cage d'ascenseur, et procede de commande de cette installation
DE112009004592B4 (de) Aufzuganlage und Verfahren zum Überprüfen derselben
WO2016058940A1 (fr) Procédé de fonctionnement d'un système de transport et système de transport correspondant
EP1698580A1 (fr) Système d'ascenseur
EP3347295B1 (fr) Installation de transport de passagers ayant un dispositif destiné a determiner l'état de fonctionnement
DE102015111754A1 (de) Verfahren und Einrichtung zum Schließen von Türen eines Aufzuges
EP2229332A1 (fr) Procédé d'utilisation d'un ascenseur à deux cabines d'ascenseur et un contrepoids
DE112015006721T5 (de) Aufzugsvorrichtung
EP2594519A1 (fr) Ascenseur doté d'un dispositif de sécurité
EP2457860A2 (fr) Dispositif de sécurité pour ascenseur
DE112006000498T5 (de) Aufzuganlage
DE60038579T2 (de) Sicherheitsvorrichtung, um auf einer Aufzugskabine zu arbeiten
EP1526104B1 (fr) Dispositif de sécurité pour un système multi-pont d'ascenseur
DE102019207265A1 (de) Bereichsobjekterfassungssystem für ein aufzugsystem
EP2640655B1 (fr) Bande codée pour un système d'ascenseur
WO2022058276A1 (fr) Dispositif de sécurité pour la commande de fonctions ucm et udm relatives à la sécurité dans un système d'ascenseur
DE202022106605U1 (de) Aufzugsvorrichtung mit wenigstens einem Positionierungs-, Rettungs- oder Geschwindigkeitsbegrenzungssystem sowie entsprechende Verwendungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20051005

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1076622

Country of ref document: HK

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004000698

Country of ref document: DE

Date of ref document: 20060720

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060724

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1076622

Country of ref document: HK

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121031

Year of fee payment: 9

Ref country code: CH

Payment date: 20121030

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121019

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131009

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502004000698

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231027

Year of fee payment: 20