EP0929654A1 - Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne turm-verfahren - Google Patents
Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne turm-verfahrenInfo
- Publication number
- EP0929654A1 EP0929654A1 EP97931059A EP97931059A EP0929654A1 EP 0929654 A1 EP0929654 A1 EP 0929654A1 EP 97931059 A EP97931059 A EP 97931059A EP 97931059 A EP97931059 A EP 97931059A EP 0929654 A1 EP0929654 A1 EP 0929654A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mixer
- agglomerates
- surfactant
- residence time
- mean residence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 99
- 230000008569 process Effects 0.000 title claims abstract description 95
- 239000003599 detergent Substances 0.000 title claims abstract description 93
- 239000000203 mixture Substances 0.000 title claims abstract description 56
- 239000004094 surface-active agent Substances 0.000 claims abstract description 50
- 239000007788 liquid Substances 0.000 claims abstract description 39
- 239000000843 powder Substances 0.000 claims abstract description 38
- 239000011248 coating agent Substances 0.000 claims abstract description 14
- 238000005507 spraying Methods 0.000 claims abstract description 9
- 238000000576 coating method Methods 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 4
- -1 alkyl alkoxy sulfates Chemical class 0.000 claims description 26
- 239000007921 spray Substances 0.000 claims description 21
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical group [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 18
- 229920000642 polymer Polymers 0.000 claims description 14
- 239000000243 solution Substances 0.000 claims description 14
- 239000003945 anionic surfactant Substances 0.000 claims description 13
- 235000019832 sodium triphosphate Nutrition 0.000 claims description 13
- 125000000217 alkyl group Chemical group 0.000 claims description 10
- 150000004760 silicates Chemical class 0.000 claims description 10
- 235000017550 sodium carbonate Nutrition 0.000 claims description 9
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- PMZURENOXWZQFD-UHFFFAOYSA-L sodium sulphate Substances [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 8
- 239000003093 cationic surfactant Substances 0.000 claims description 6
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 6
- 235000011152 sodium sulphate Nutrition 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 235000013162 Cocos nucifera Nutrition 0.000 claims description 5
- 244000060011 Cocos nucifera Species 0.000 claims description 5
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 5
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 5
- 239000002736 nonionic surfactant Substances 0.000 claims description 5
- 150000004996 alkyl benzenes Chemical class 0.000 claims description 4
- 229910019142 PO4 Inorganic materials 0.000 claims description 3
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical class OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 claims description 3
- 235000021317 phosphate Nutrition 0.000 claims description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 3
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 claims description 3
- 150000008051 alkyl sulfates Chemical class 0.000 claims description 2
- 150000001860 citric acid derivatives Chemical class 0.000 claims description 2
- 239000000463 material Substances 0.000 description 27
- 239000012530 fluid Substances 0.000 description 23
- 239000008187 granular material Substances 0.000 description 23
- 239000004615 ingredient Substances 0.000 description 23
- 239000002245 particle Substances 0.000 description 20
- 238000005054 agglomeration Methods 0.000 description 19
- 230000002776 aggregation Effects 0.000 description 19
- 239000000047 product Substances 0.000 description 17
- 238000005342 ion exchange Methods 0.000 description 15
- 238000001035 drying Methods 0.000 description 14
- 229920005646 polycarboxylate Polymers 0.000 description 13
- 150000003839 salts Chemical class 0.000 description 11
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 239000012467 final product Substances 0.000 description 9
- 239000011734 sodium Substances 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical group [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 7
- 229910052708 sodium Inorganic materials 0.000 description 7
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 7
- 239000004115 Sodium Silicate Substances 0.000 description 6
- 125000002947 alkylene group Chemical group 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 229920000768 polyamine Polymers 0.000 description 6
- 235000019351 sodium silicates Nutrition 0.000 description 6
- 238000001694 spray drying Methods 0.000 description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 125000000129 anionic group Chemical group 0.000 description 5
- 229910001424 calcium ion Inorganic materials 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 150000007942 carboxylates Chemical class 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- 229930182556 Polyacetal Natural products 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- 150000003863 ammonium salts Chemical class 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 238000005469 granulation Methods 0.000 description 4
- 230000003179 granulation Effects 0.000 description 4
- 125000001183 hydrocarbyl group Chemical group 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 4
- 239000011976 maleic acid Substances 0.000 description 4
- 229920006324 polyoxymethylene Polymers 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical class C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 229920002873 Polyethylenimine Polymers 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229940077388 benzenesulfonate Drugs 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010924 continuous production Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000011031 large-scale manufacturing process Methods 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 159000000001 potassium salts Chemical class 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000004513 sizing Methods 0.000 description 3
- 239000000344 soap Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- PSZAEHPBBUYICS-UHFFFAOYSA-N 2-methylidenepropanedioic acid Chemical compound OC(=O)C(=C)C(O)=O PSZAEHPBBUYICS-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical group [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229940091181 aconitic acid Drugs 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 150000001335 aliphatic alkanes Chemical group 0.000 description 2
- 125000000732 arylene group Chemical group 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 229960003237 betaine Drugs 0.000 description 2
- 239000007844 bleaching agent Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 2
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 2
- 229940018557 citraconic acid Drugs 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 229910001425 magnesium ion Chemical group 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical class OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 229910021647 smectite Inorganic materials 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 2
- FXTWIIBOJYNFAW-UHFFFAOYSA-N (2,2-dihydroxyethylamino) propane-1-sulfonate Chemical compound CCCS(=O)(=O)ONCC(O)O FXTWIIBOJYNFAW-UHFFFAOYSA-N 0.000 description 1
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical class OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- TYIOVYZMKITKRO-UHFFFAOYSA-N 2-[hexadecyl(dimethyl)azaniumyl]acetate Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)CC([O-])=O TYIOVYZMKITKRO-UHFFFAOYSA-N 0.000 description 1
- XYJLPCAKKYOLGU-UHFFFAOYSA-N 2-phosphonoethylphosphonic acid Chemical class OP(O)(=O)CCP(O)(O)=O XYJLPCAKKYOLGU-UHFFFAOYSA-N 0.000 description 1
- WCSAPKHLAQFSIW-UHFFFAOYSA-N 3-(dimethylamino)-2-hydroxypropane-1-sulfonic acid Chemical compound CN(C)CC(O)CS(O)(=O)=O WCSAPKHLAQFSIW-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 238000006677 Appel reaction Methods 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- GXGJIOMUZAGVEH-UHFFFAOYSA-N Chamazulene Chemical group CCC1=CC=C(C)C2=CC=C(C)C2=C1 GXGJIOMUZAGVEH-UHFFFAOYSA-N 0.000 description 1
- RKWGIWYCVPQPMF-UHFFFAOYSA-N Chloropropamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical class OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical class OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- SXKQTYJLWWQUKA-UHFFFAOYSA-N O.O.O.O.O.O.O.O.O.O.OB(O)O.OB(O)O.OB(O)O.OB(O)O Chemical compound O.O.O.O.O.O.O.O.O.O.OB(O)O.OB(O)O.OB(O)O.OB(O)O SXKQTYJLWWQUKA-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920000388 Polyphosphate Chemical class 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- ZUBJEHHGZYTRPH-KTKRTIGZSA-N [(z)-octadec-9-enyl] hydrogen sulfate Chemical compound CCCCCCCC\C=C/CCCCCCCCOS(O)(=O)=O ZUBJEHHGZYTRPH-KTKRTIGZSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- ZRIUUUJAJJNDSS-UHFFFAOYSA-N ammonium phosphates Chemical class [NH4+].[NH4+].[NH4+].[O-]P([O-])([O-])=O ZRIUUUJAJJNDSS-UHFFFAOYSA-N 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- CMFFZBGFNICZIS-UHFFFAOYSA-N butanedioic acid;2,3-dihydroxybutanedioic acid Chemical compound OC(=O)CCC(O)=O.OC(=O)CCC(O)=O.OC(=O)C(O)C(O)C(O)=O CMFFZBGFNICZIS-UHFFFAOYSA-N 0.000 description 1
- HXDRSFFFXJISME-UHFFFAOYSA-N butanedioic acid;2,3-dihydroxybutanedioic acid Chemical compound OC(=O)CCC(O)=O.OC(=O)C(O)C(O)C(O)=O HXDRSFFFXJISME-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- MRXJLUSSMZAJGV-UHFFFAOYSA-N dimethylamino hexane-1-sulfonate Chemical compound CCCCCCS(=O)(=O)ON(C)C MRXJLUSSMZAJGV-UHFFFAOYSA-N 0.000 description 1
- DUCCPNVOQJMMAN-UHFFFAOYSA-N dimethylamino hexanoate Chemical compound CCCCCC(=O)ON(C)C DUCCPNVOQJMMAN-UHFFFAOYSA-N 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- UZABCLFSICXBCM-UHFFFAOYSA-N ethoxy hydrogen sulfate Chemical class CCOOS(O)(=O)=O UZABCLFSICXBCM-UHFFFAOYSA-N 0.000 description 1
- 238000007046 ethoxylation reaction Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229960002598 fumaric acid Drugs 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical class CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000001205 polyphosphate Chemical class 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/0082—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
- C11D11/0088—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads the liquefied ingredients being sprayed or adsorbed onto solid particles
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/0082—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/02—Preparation in the form of powder by spray drying
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0039—Coated compositions or coated components in the compositions, (micro)capsules
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/06—Powder; Flakes; Free-flowing mixtures; Sheets
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/06—Powder; Flakes; Free-flowing mixtures; Sheets
- C11D17/065—High-density particulate detergent compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/146—Sulfuric acid esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/22—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/29—Sulfates of polyoxyalkylene ethers
Definitions
- the present invention generally relates to a non-tower process for producing a particulate detergent composition. More particularly, the invention is directed to a continuous process during which detergent agglomerates are produced by feeding a surfactant and coating materials into a series of mixers. The process produces a free flowing, detergent composition whose density can be adjusted for wide range of consumer needs, and which can be commercially sold.
- the first type of process involves spray- drying an aqueous detergent slurry in a spray-drying tower to produce highly porous detergent granules (e.g., tower process for low density detergent compositions).
- the various detergent components are dry mixed after which they are agglomerated with a binder such as a nonionic or anionic surfactant, to produce high density detergent compositions (e.g., agglomeration process for high density detergent compositions).
- a binder such as a nonionic or anionic surfactant
- the Laid-open No.W093/23,523 (Henkel) describes the process comprising pre-aggiomeration by a low speed mixer and further agglomeration step by high speed mixer for obtaining high density detergent composition with less than 25 wt% of the granules having a diameter over 2 mm.
- the U.S. Patent No. 4,427,417 (Korex) describes continuous process for agglomeration which reduces caking and oversized agglomerates.
- the present invention meets the aforementioned needs in the art by providing a process which produces a high density granular detergent composition.
- the present invention also meets the aforementioned needs in the art by providing a process which produces a granular detergent composition for flexibility in the ultimate density of the final composition from agglomeration (e.g., non-tower) process.
- the process does not use the conventional spray drying towers currently which is limited in producing high surfactant loading compositions.
- the process of the present invention is more efficient, economical and flexible with regard to the variety of detergent compositions which can be produced in the process.
- the process is more amenable to environmental concerns in that it does not use spray drying towers which typically emit particulates and volatile organic compounds into the atmosphere.
- agglomerates refers to particles formed by agglomerating raw materials with binder such as surfactants and or inorganic solutions / organic solvents and polymer solutions.
- binder such as surfactants and or inorganic solutions / organic solvents and polymer solutions.
- a process for preparing a granular detergent composition having a density at least about 600 g/l is provided.
- the process comprises the steps of: (a) dispersing a surfactant, and coating the surfactant with fine powder having a diameter from 0.1 to 500 microns, in a mixer wherein conditions of the mixer include (i) from about 2 to about 50 seconds of mean residence time, (ii) from about 4 to about 25 m/s of tip speed, and (iii) from about 0.15 to about 7 kj/kg of energy condition, wherein first agglomerates are formed; (b) spraying finely atomized liquid onto the first agglomerates in a mixer wherein conditions of the mixer include (i) from about 0.2 to about 5 seconds of mean residence time, (ii) from about 10 to about 30 m/s of tip speed, and (iii) from about 0.15 to about 5 kj/kg of energy condition, wherein second agglomerates are formed; and
- conditions of the mixer include (i) from about 0.2 to about 5 seconds of mean residence time, (ii) from about 10 to about 30 m/s of tip speed, and (iii) from about 0.15 to about 5 kj/kg of energy condition, wherein second agglomerates are formed;
- each of the fluidizing apparatus includes (i) from about 1 to about 10 minutes of mean residence time, (ii) from about 100 to about 300 mm of depth of unfluidized bed, (iii) not more than about 50 micron of droplet spray size, (iv) from about 175 to about 250 mm of spray height, (v) from about 0.2 to about 1.4 m/s of fluidizing velocity and (vi) from about 12 to about 100 °C of bed temperature.
- granular detergent compositions having a high density of at least about 600g/l, produced by any one of the process embodiments described herein.
- FIG. 1 is a flow diagram of a process in accordance with one embodiment of the invention which includes the agglomeration process by the first mixer, followed by the second mixer, then fluidizing apparatus, to produce a granular detergent composition having a density of at least 600g/l.
- FIG. 2 is a flow diagram of a process in accordance with one embodiment of the invention which includes the agglomeration process by the first mixer, followed by the second mixer, then the third mixer, finally fluidizing apparatus, to produce a granular detergent composition having a density of at least 600g/l.
- FIG. 3 is a flow diagram of a process which is capable to conduct variety of agglomeration processes selected from the group consisting of the first mixer, the second mixer, the third mixer, fluidizing apparatus, and the combination thereof, to produce a granular detergent composition.
- the present invention is directed to a process which produces free flowing, granular detergent agglomerates having a density of at least about 600 g/l.
- the process produces granular detergent agglomerates from an aqueous and/or non-aqueous surfactant which is then coated with fine powder having a diameter from 0.1 to 500 microns, in order to obtain low density granules.
- Fig.1 presents a flow chart illustrating an embodiment of the present invention, i.e., process comprising the first step, the second step (i) and the third step below
- Fig.2 presents a flow chart illustrating an embodiment of the present invention, i.e., process comprising the first step, the second steps (i) and (ii), and the third step below
- Fig.3 presents a flow chart illustrating various embodiments which include the present invention.
- surfactant 11 i.e., one or more of aqueous and/or non-aqueous surfactant(s), which is/are in the form of powder, paste and/or liquid
- fine powder 12 having a diameter from 0.1 to 500 microns, preferably from about 1 to about 100 microns are fed into a first mixer 13, so as to make agglomerates.
- an internal recycle stream of powder 30, having a diameter of about 0.1 to about 300 microns generated from fluidizing apparatus 27, which are described hereinafter in the step 3 can be fed into the mixer in addition to the fine powder.
- the amount of such internal recycle stream of powder 30 can be 0 to about 60 wt% of final product 29.
- the surfactant 11 can be initially fed into a mixer or pre-mixer (e.g. a conventional screw extruder or other similar mixer) prior to the above, after which the mixed detergent materials are fed into the first step mixer as described herein for agglomeration.
- a mixer or pre-mixer e.g. a conventional screw extruder or other similar mixer
- the mean residence time of the first mixer is in range from about 2 to about 50 seconds and tip speed of the first mixer is in range from about 4 m/s to about 25 m/s
- the energy per unit mass of the first mixer (energy condition) is from about 0.15 kj/kg to about 7 kj/kg
- the mean residence time of the first mixer is in range from about 5 to about 30 seconds and tip speed of the first mixer is in range from about 6 m/s to about 18 m/s
- the energy per unit mass of the first mixer (energy condition) is in range from about 0.3 kj/kg to about 4 kj/kg
- the mean residence time of the first mixer is in range from about 5 to about 20 seconds and tip speed of the first mixer is in range from about 8 m/s to about 18 m/s
- the energy per unit mass of the first mixer (energy condition) is in range from about 0.3 kj/kg to about 4 kj/kg.
- the examples of mixers for the first step can be any types of mixer known to the skilled in the art, as long as the mixer can maintain the above mentioned condition for the first step.
- An Example can be L ⁇ dige CB Mixer manufactured by the L ⁇ dige company (Germany).
- the resultant product 16 (first agglomerates having fine powder on the surface of the agglomerates) is then obtained.
- second step (i) only, or second step (i) followed by second step (ii).
- the resultant product 16, i.e., the first agglomerates, is fed into a second mixer 17, and then finely atomized liquid 18 is sprayed on the first agglomerates in the mixer 17.
- excessive fine powder formed in the first step is added to the second step. If the excessive fine powder is added to the second step (i), spraying the finely atomized liquid is useful in order to bind the excessive fine powder onto the surface of agglomerates.
- About 0-10% , more preferably about 2-5% of powder detergent ingredients of the kind used in the first step and/or other detergent ingredients can be added to the mixer 17.
- the mean residence time of the second mixer is in range from about 0.2 to about 5 seconds and tip speed of the mixer of the second mixer is in range from about 10 m/s to about 30 m/s
- the energy per unit mass of the second mixer (energy condition) of the second mixer is in range from about 0.15 kj/kg to about 5 kj/kg
- the mean residence time of the second mixer is in range from about 0.2 to about 5 seconds and tip speed of the second mixer is in range from about 10 m/s to about 30 m/s
- the energy per unit mass of the second mixer (energy condition) is in range from about 0.15 kj/kg to about 5 kj/kg
- the most preferably, the mean residence time of the second mixer is in range from about 0.2 to about 5 seconds
- tip speed of the second mixer is in range from about 15 m/s to about 26 m/s
- the energy per unit mass of the second mixer (energy condition) is from about 0.2 kj/kg to about 3 kj/kg.
- the examples of the second mixer 17 can be any types of mixer known to the skilled in the art, as long as the mixer can maintain the above mentioned condition for the second step (i).
- An Example can be Flexomic Model manufactured by the Schugi company (Netherlands).
- the resultant product 20 is then obtained.
- the resultant product 20 (second agglomerates) is then subjected to either the second step (ii) or the third step.
- the resultant product 20 (second agglomerates) of the second step (i) is fed into a third mixer 21.
- the resultant product from the second mixer is mixed and sheared thoroughly for rounding and growth of the agglomerates in the third mixer 21.
- about 0-10% , more preferably about 2-5% of powder detergent ingredients of the kind used in the first step and/or the second step (i), and/or other detergent ingredients can be added to the second step (ii).
- choppers which are attachable for the third mixer can be used to break up undesirable oversized agglomerates.
- the process including the third mixer 21 with choppers is useful in order to obtain reduced amount of oversized agglomerates as final products, and such process is one preferred embodiment of the present invention.
- the mean residence time of the third mixer is in range from about 0.5 to about 15 minutes and the energy per unit mass of the third mixer (energy condition) is in range from about 0.15 to about 7 kj/kg, more preferably, the mean residence time of the third mixer is from about 3 to about 6 minutes and the energy per unit mass of the third mixer (energy condition) is in range from about 0.15 to about 4kj/kg.
- the examples of the third mixer 21 can be any types of mixer known to the skilled in the art, as long as the mixer can maintain the above mentioned condition for the second step (ii).
- An Example can be Lodige KM Mixer manufactured by the L ⁇ dige company (Germany).
- the resultant product 24, i.e., granules with round shape is then obtained.
- the resultant product of the second step i.e., a resultant product 20 or a resultant product 24, is fed into a fluidized apparatus 27, such as fluidized bed, in order to enhance granulation for producing free flowing high density granules.
- the third step can proceed in one or more than one fluidized apparatus (e.g., combining different kinds of fluidized apparatus such as fluid bed dryer and fluid bed cooler ).
- the resultant product from the second step is fluidized thoroughly so that the granules from the third step have a round shape.
- about 0 to about 10% , more preferably about 2-5% of powder detergent materials of the kind used in the first step and/or other detergent ingredients can be added to the third step.
- liquid detergent materials of the kind used in the first step, the second step and/or other detergent ingredients can be added to the step, for enhancing granulation and coating on the surface of the granules.
- condition of a fluidized apparatus can be; Mean residence time : from about 1 to about 10 minutes Depth of unfluidized bed : from about 100 to about 300 mm Droplet spray size : not more than about 50 micron Spray height: from about 175 to about 250 mm Fluidizing velocity : from about 0.2 to about 1.4 m/s Bed temperature : from about 12 to about 100 °C, more preferably;
- Mean residence time from about 2 to about 6 minutes
- Depth of unfluidized bed from about 100 to about 250 mm
- Droplet spray size less than about 50 micron Spray height: from about 175 to about 200 mm
- Fluidizing velocity from about 0.3 to about 1.0 m/s
- Bed temperature from about 12 to about 80 °C.
- mean residence time of the third step in total can be from about 2 to about 20 minutes, more preferably, from about 2 to 12 minutes.
- a coating agent to improve flowability and/or minimize over agglomeration of the detergent composition can be added in one or more of the following locations of the instant process: (1) the coating agent can be added directly after the fluid bed cooler or fluid bed dryer; (2) the coating agent may be added between the fluid bed dryer and the fluid bed cooler; and/or (3) the coating agent may be added directly to the third mixer 21 and the fluid bed dryer.
- the coating agent is preferably selected from the group consisting of aluminosilicates, silicates, carbonates and mixtures thereof.
- the coating agent not only enhances the free flowability of the resulting detergent composition which is desirable by consumers in that it permits easy scooping for detergent during use, but also serves to control agglomeration by preventing or minimizing over agglomeration. As those skilled in the art are well aware, over agglomeration can lead to very undesirable flow properties and aesthetics of the final detergent product.
- the process of the present invention is carried out by using (1) CB mixer which has flexibility to inject at least two liquid ingredients; (2) Schugi Mixer which has flexibility to inject at least two liquid ingredients; (3) KM mixer which has flexibility to inject at least a liquid ingredient; (4) Fluidized (Fluid) Bed which has flexibility to inject at least two liquid ingredients, the process can inco ⁇ orate seven different kinds of liquid ingredients in the process. Therefore, the proposed process is beneficial for persons skilled in the art in order to incorporate into a granule making process starting detergent materials which are in liquid form and are rather expensive and sometimes more difficult in terms of handling and/or storage than solid materials.
- the proposed invention is also useful in view of industrial requirement, because the person skilled in the art can set a series of apparatuses (e.g., shown in the Fig. 3) in a plant, and by using divertors which are capable for connecting/disconnecting between each apparatus, so that the skilled in the art can select variations of the process to meet desired property (e.g., particle size, density, formula design) of the final product.
- desired property e.g., particle size, density, formula design
- the total amount of the surfactants in products made by the present invention, which are included in the following detergent materials, finely atomized liquid and adjunct detergent ingredients is generally from about 5% to about 60%, more preferably from about 12% to about 40%, more preferably, from about 15 to about 35%, in percentage ranges.
- the surfactants which are included in the above can be from any part of the process of the present invention., e.g., from either one of the first step, the second step and/or the third step of the present invention.
- Detergent Surfactant (Agueous /Non-agueous)
- the amount of the surfactant of the present process can be from about 5% to about 60%, more preferably from about 12% to about 40%, more preferably, from about 15 to about 35%, in total amount of the final product obtained by the process of the present invention.
- the surfactant of the present process which is used as the above mentioned starting detergent materials in the first step, is in the form of powdered, pasted or liquid raw materials.
- the surfactant itself is preferably selected from anionic, nonionic, zwitterionic, ampholytic and cationic classes and compatible mixtures thereof.
- Detergent surfactants useful herein are described in U.S. Patent 3,664,961, Norris, issued May 23, 1972, and in U.S. Patent 3,929,678, Laughlin et al., issued December 30, 1975, both of which are incorporated herein by reference.
- Useful cationic surfactants also include those described in U.S. Patent 4,222,905, Cockrell, issued September 16, 1980, and in U.S. Patent 4,239,659, Murphy, issued December 16, 1980, both of which are also incorporated herein by reference.
- anionics and nonionics are preferred and anionics are most preferred.
- Nonlimiting examples of the preferred anionic surfactants useful in the present invention include the conventional C-j 1-C-
- LAS C-j 1-C-
- Useful anionic surfactants also include water-soluble salts of 2-acyloxy- alkane-1-sulfonic acids containing from about 2 to 9 carbon atoms in the acyl group and from about 9 to about 23 carbon atoms in the alkane moiety; water- soluble salts of olefin sulfonates containing from about 12 to 24 carbon atoms; and beta-alkyloxy alkane sulfonates containing from about 1 to 3 carbon atoms in the alkyl group and from about 8 to 20 carbon atoms in the alkane moiety .
- exemplary surfactants useful in the paste of the invention include C ⁇ n-C-i ⁇ alkyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the C-JQ-18 glycerol ethers, the CIQ-C-JS alkyl polyglycosides and the corresponding sulfated polyglycosides, and C12-C18 alpha-sulfonated fatty acid esters.
- the conventional nonionic and amphoteric surfactants such as the C-12-C18 a ' k y' ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C6-C12 al yi phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), Cin-C-is amine oxides, and the like, can also be included in the overall compositions.
- the C ⁇ n- C-J8 N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C12-C18 N-methylglucamides. See WO 9,206,154.
- sugar- derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C10-C18 N-(3-methoxypropyl) glucamide.
- 8 glucamides can be used for low sudsing.
- C-J0-C20 conventional soaps may also be used. If high sudsing is desired, the branched-chain C10-C16 soaps may be used. Mixtures of anionic and nonionic surfactants are especially useful. Other conventional useful surfactants are listed in standard texts.
- Cationic surfactants can also be used as a detergent surfactant herein and suitable quaternary ammonium surfactants are selected from mono C6-C16, preferably C6-C10 N-alkyl or alkenyl ammonium surfactants wherein remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
- Ampholytic surfactants can also be used as a detergent surfactant herein, which include aliphatic derivatives of heterocyclic secondary and tertiary amines; zwitterionic surfactants which include derivatives of aliphatic quaternary ammonium, phosphonium and sulfonium compounds; water-soluble salts of esters of alpha-sulfonated fatty acids; alkyl ether sulfates; water-soluble salts of olefin sulfonates; beta-alkyloxy alkane sulfonates; betaines having the formula R(R 1 )2N + R 2 COO _ , wherein R is a C6-C18 hydrocarbyl group, preferably a C10- C16 alkyl group or C10-C16 acylamido alkyl group, each R1 is typically C1-C3 alkyl, preferably methyl and R2 is a C1-C5 hydrocarbyl group, preferably
- betaines examples include coconut acylamidopropyldimethyl betaine; hexadecyl dimethyl betaine; C 12-14 acylamidopropylbetaine; C8-14 acylamidohexyldiethyl betaine; 4[C14-16 acylmethylamidodiethylammonio]-1-carboxybutane; Ci6-18 acylamidodimethylbetaine; C12-I6 acylamidopentanediethylbetaine; and [C12-16 acylmethylamidodimethylbetaine.
- Preferred betaines are C12-I8 dimethyl-ammonio hexanoate and the C10-I8 acylamidopropane (or ethane) dimethyl (or diethyl) betaines; and the sultaines having the formula (R(R 1 )2N + R 2 S ⁇ 3 " wherein R is a C6-C18 hydrocarbyl group, preferably a C10- C16 alkyl group, more preferably a C12-C13 alkyl group, each R 1 is typically C ⁇
- Suitable sultaines include C12-C14 dimethylammonio-2-hydroxypropyl sulfonate, C12- C14 amido propyl ammonio-2-hydroxypropyl sultaine, C12-C14 dihydroxyethylammonio propane sulfonate, and C16-I8 dimethylammonio hexane sulfonate, with C12-14 amido propyl ammonio-2-hydroxypropyl sultaine being preferred. Fine Powder
- the amount of the fine powder of the present process, which is used in the first step, can be from about 94% to 30%, preferably from 86% to 54%, in total amount of starting material for the first step .
- the starting fine powder of the present process preferably selected from the group consisting of ground soda ash, powdered sodium tripolyphosphate (STPP), hydrated tripolyphosphate, ground sodium sulphates, aluminosilicates, crystalline layered silicates, nitrilotriacetates (NTA), phosphates, precipitated silicates, polymers, carbonates, citrates, powdered surfactants (such as powdered alkane sulfonic acids) and internal recycle stream of powder occurring from the process of the present invention, wherein the average diameter of the powder is from 0.1 to 500 microns, preferably from 1 to 300 microns, more preferably from 5 to 100 microns.
- the aluminosiiicate ion exchange materials used herein as a detergent builder preferably have both a high calcium ion exchange capacity and a high exchange rate. Without intending to be limited by theory, it is believed that such high calcium ion exchange rate and capacity are a function of several interrelated factors which derive from the method by which the aluminosiiicate ion exchange material is produced. In that regard, the aluminosiiicate ion exchange materials used herein are preferably produced in accordance with Corkill et al, U.S. Patent No.
- the aluminosiiicate ion exchange material is in "sodium" form since the potassium and hydrogen forms of the instant aluminosiiicate do not exhibit as high of an exchange rate and capacity as provided by the sodium form.
- the aluminosiiicate ion exchange material preferably is in over dried form so as to facilitate production of crisp detergent agglomerates as described herein.
- the aluminosiiicate ion exchange materials used herein preferably have particle size diameters which optimize their effectiveness as detergent builders.
- particle size diameter represents the average particle size diameter of a given aluminosiiicate ion exchange material as determined by conventional analytical techniques, such as microscopic determination and scanning electron microscope (SEM).
- the preferred particle size diameter of the aluminosiiicate is from about 0.1 micron to about 10 microns, more preferably from about 0.5 microns to about 9 microns. Most preferably, the particle size diameter is from about 1 microns to about 8 microns.
- the aluminosiiicate ion exchange material has the formula
- the aluminosiiicate has the formula Na 12 [(Al ⁇ 2)i2 (Si ⁇ 2)l2]xH 2 0 wherein x is from about 20 to about 30, preferably about 27.
- These preferred aluminosilicates are available commercially, for example under designations Zeolite A, Zeolite B and Zeolite X.
- the aluminosilicates used herein are further characterized by their ion exchange capacity which is at least about 200 mg equivalent of CaC03 hardness/gram, calculated on an anhydrous basis, and which is preferably in a range from about 300 to 352 mg equivalent of CaCO3 hardness/gram. Additionally, the instant aluminosiiicate ion exchange materials are still further characterized by their calcium ion exchange rate which is at least about 2 grains Ca ++ /galion/minute/-gram/gallon, and more preferably in a range from about 2 grains Ca ++ /gallon/minute/-gram/gallon to about 6 grains Ca ++ /gallon/minute/ -gram/gallon.
- the amount of the finely atomized liquid of the present process can be from about 1% to about 10% (active basis), preferably from 2% to about 6% (active basis) in total amount of the final product obtained by the process of the present invention.
- the finely atomized liquid of the present process can be selected from the group consisting of liquid silicate, anionic or cationic surfactants which are in liquid form, aqueous or non-aqueous polymer solutions, water and mixtures thereof.
- Other optional examples for the finely atomized liquid of the present invention can be sodium carboxy methyl cellulose solution, polyethylene glycol (PEG), and solutions of dimethylene triamine pentamethyl phosphonic acid (DETMP),
- anionic surfactant solutions which can be used as the finely atomized liquid in the present inventions are about 88 - 97% active HLAS, about 30 - 50% active NaLAS, about 28% active AE3S solution, about 40-50% active liquid silicate, and so on.
- Cationic surfactants can also be used as finely atomized liquid herein and suitable quaternary ammonium surfactants are selected from mono C6-C16, preferably Ce-C-jo N-alkyl or alkenyl ammonium surfactants wherein remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
- suitable quaternary ammonium surfactants are selected from mono C6-C16, preferably Ce-C-jo N-alkyl or alkenyl ammonium surfactants wherein remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
- aqueous or non-aqueous polymer solutions which can be used as the finely atomized liquid in the present inventions are modified polyamines which comprise a polyamine backbone corresponding to the formula:
- V units are terminal units having the formula:
- W units are backbone units having the formula:
- Y units are branching units having the formula:
- backbone linking R units are selected from the group consisting of C2- C-12 alkylene, C4-C12 alkenylene, C3-C12 hydroxyaikylene, C4-C12 dihydroxy- alkylene, C8-C12 dialkylarylene, -(R 1 0) X R1-, -(R 1 0) x R5(OR 1 ) ⁇ -, -(CH2CH(OR2)CH 2 O) z (R 1 0)yRl(OCH2CH(OR2)CH2) -.
- R1 is C2- CQ alkylene and mixtures thereof;
- R is hydrogen, -(Rl ⁇ ) x B, and mixtures thereof;
- R 3 is C-I-C-J S alkyl, C7-C12 arylalkyl, C7-C-J2 a
- R 4 is C-1-C12 alkylene, C4-C12 alkenylene, C8- C12 arylalkylene, C ⁇ -C-io arylene, and mixtures thereof;
- R 5 is C1-C12 alkylene, C3-C12 hydroxyaikylene, C4-C12 dihydroxy-alkylene, C8-C12 dialkylarylene, -C(O)-, -C(0)NHR6NHC(0)-, -R1(0R1)
- polyethyleneimines a polyethyleneimine having a molecular weight of 1800 which is further modified by ethoxylation to a degree of approximately 7 ethyleneoxy residues per nitrogen (PEI 1800, E7). It is preferable for the above polymer solution to be pre-complex with anionic surfactant such as NaLAS.
- Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid.
- polymeric polycarboxylates herein of monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight of the polymer.
- homo-polymeric polycarboxylates which have molecular weights above 4000, such as described next are preferred.
- Particularly suitable homo- polymeric polycarboxylates can be derived from acrylic acid.
- acrylic acid- based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid.
- the average molecular weight of such polymers in the acid form preferably ranges from above 4,000 to 10,000, preferably from above 4,000 to 7,000, and most preferably from above 4,000 to 5,000.
- Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts.
- Co-polymeric polycarboxylates such as a Acrylic/maleic-based copolymers may also be used.
- Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid.
- the average molecular weight of such copolymers in the acid form preferably ranges from about 2,000 to 100,000, more preferably from about 5,000 to 75,000, most preferably from about 7,000 to 65,000.
- the ratio of acrylate to maleate segments in such copolymers will generally range from about 30:1 to about 1:1, more preferably from about 10:1 to 2:1.
- Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. It is preferable for the above polymer solution to be pre-complexed with anionic surfactant such as LAS .
- Adjunct Detergent Ingredients can include, for example, the alkali metal, ammonium and substituted ammonium salts.
- the starting detergent material in the present process can include additional detergent ingredients and/or, any number of additional ingredients can be inco ⁇ orated in the detergent composition during subsequent steps of the present process.
- adjunct ingredients include other detergency builders, bleaches, bleach activators, suds boosters or suds suppressors, antitamish and anticorrosion agents, soil suspending agents, soil release agents, germicides, pH adjusting agents, non-builder alkalinity sources, chelating agents, smectite clays, enzymes, enzyme-stabilizing agents and perfumes. See U.S. Patent 3,936,537, issued February 3, 1976 to Baskerville, Jr. et al., inco ⁇ orated herein by reference.
- Other builders can be generally selected from the various water-soluble, alkali metal, ammonium or substituted ammonium phosphates, polyphosphates, phosphonates, polyphosphonates, carbonates, borates, polyhydroxy sulfonates, polyacetates, carboxylates, and polycarboxylates.
- alkali metal especially sodium, salts of the above.
- Preferred for use herein are the phosphates, carbonates, C ⁇ O-18 fatty acids, polycarboxylates, and mixtures thereof. More preferred are sodium tripolyphosphate, tetrasodium pyrophosphate, citrate, tartrate mono- and di-succinates, and mixtures thereof (see below).
- crystalline layered sodium silicates exhibit a clearly increased calcium and magnesium ion exchange capacity.
- the layered sodium silicates prefer magnesium ions over calcium ions, a feature necessary to insure that substantially ail of the "hardness" is removed from the wash water.
- These crystalline layered sodium silicates are generally more expensive than amo ⁇ hous silicates as well as other builders. Accordingly, in order to provide an economically feasible laundry detergent, the proportion of crystalline layered sodium silicates used must be determined judiciously. Such crystalline layered sodium silicates are discussed in Corkill et al, U.S. Patent No. 4,605,509, previously inco ⁇ orated herein by reference.
- inorganic phosphate builders are sodium and potassium tripolyphosphate, pyrophosphate, polymeric metaphosphate having a degree of polymerization of from about 6 to 21 , and orthophosphates.
- polyphosphonate builders are the sodium and potassium salts of ethylene diphosphonic acid, the sodium and potassium salts of ethane 1-hydroxy-1 , 1-diphosphonic acid and the sodium and potassium salts of ethane, 1,1,2-triphosphonic acid.
- Other phosphorus builder compounds are disclosed in U.S. Patents 3,159,581; 3,213,030; 3,422,021 ; 3,422,137; 3,400,176 and 3,400,148, all of which are incorporated herein by reference.
- nonphosphorus, inorganic builders are tetraborate decahydrate and silicates having a weight ratio of Si ⁇ 2 to alkali metal oxide of from about 0.5 to about 4.0, preferably from about 1.0 to about 2.4.
- Water-soluble, nonphosphorus organic builders useful herein include the various alkali metal, ammonium and substituted ammonium polyacetates, carboxylates, polycarboxylates and polyhydroxy sulfonates.
- polyacetate and polycarboxylate builders are the sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylene diamine tetraacetic acid, nitrilotriacetic acid, oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, and citric acid.
- Polymeric polycarboxylate builders are set forth in U.S. Patent 3,308,067, Diehl, issued March 7, 1967, the disclosure of which is inco ⁇ orated herein by reference.
- Such materials include the water-soluble salts of homo- and copolymers of aliphatic carboxylic acids such as maleic acid, itaconic acid, mesaconic acid, fumaric acid, aconitic acid, citraconic acid and methylene malonic acid.
- Some of these materials are useful as the water-soluble anionic polymer as hereinafter described, but only if in intimate admixture with the non-soap anionic surfactant.
- polyacetal carboxylates for use herein are the polyacetal carboxylates described in U.S. Patent 4,144,226, issued March 13, 1979 to Crutchfield et al, and U.S. Patent 4,246,495, issued March 27, 1979 to Crutchfield et al, both of which are inco ⁇ orated herein by reference.
- These polyacetal carboxylates can be prepared by bringing together under polymerization condition an ester of glyoxylic acid and a polymerization initiator. The resulting polyacetal carboxylate ester is then attached to chemically stable end groups to stabilize the polyacetal carboxylate against rapid depolymerization in alkaline solution, converted to the corresponding salt, and added to a detergent composition.
- Particularly preferred polycarboxylate builders are the ether carboxylate builder compositions comprising a combination of tartrate monosuccinate and tartrate disuccinate described in U.S. Patent 4,663,071, Bush et al., issued May 5, 1987, the disclosure of which is inco ⁇ orated herein by reference. Bleaching agents and activators are described in U.S. Patent 4,412,934,
- Suitable smectite clays for use herein are described in U.S. Patent 4,762,645, Tucker et al, issued August 9, 1988, Column 6, line 3 through Column 7, line 24, incorporated herein by reference.
- Suitable additional detergency builders for use herein are enumerated in the Baskerville patent, Column 13, line 54 through Column 16, line 16, and in U.S. Patent 4,663,071, Bush et al, issued May 5, 1987, both incorporated herein by reference.
- the process can comprise the step of spraying an additional binder in one or more than one of the first, second and/or the third mixers for the present invention.
- a binder is added for pu ⁇ oses of enhancing agglomeration by providing a "binding" or "sticking" agent for the detergent components.
- the binder is preferably selected from the group consisting of water, anionic surfactants, nonionic surfactants, liquid silicates, polyethylene glycol, polyvinyl pyrrolidone polyacrylates, citric acid and mixtures thereof.
- suitable binder materials including those listed herein are described in Beerse et al, U.S. Patent No. 5,108,646 (Procter & Gamble Co.), the disclosure of which is inco ⁇ orated herein by reference.
- optional steps contemplated by the present process include screening the oversized detergent agglomerates in a screening apparatus which can take a variety of forms including but not limited to conventional screens chosen for the desired particle size of the finished detergent product.
- Other optional steps include conditioning of the detergent agglomerates by subjecting the agglomerates to additional drying by way of apparatus discussed previously.
- Another optional step of the instant process entails finishing the resulting detergent agglomerates by a variety of processes including spraying and/or admixing other conventional detergent ingredients.
- the finishing step encompasses spraying perfumes, brighteners and enzymes onto the finished agglomerates to provide a more complete detergent composition.
- Such techniques and ingredients are well known in the art.
- surfactant paste structuring process e.g., hardening an aqueous anionic surfactant paste by incorporating a paste-hardening material by using an extruder, prior to the process of the present invention.
- the details of the surfactant paste structuring process are disclosed co-application No. PCT/US96/15960 (filed October 4, 1996) . ln order to make the present invention more readily understood, reference is made to the following examples, which are intended to be illustrative only and not intended to be limiting in scope.
- Step 1 250 - 270 kg/hr of aqueous coconut fatty alcohol sulfate surfactant paste (C-j2-Ci8 > 71.5% active) is dispersed by the pin tools of a CB- 30 mixer along with 220 kg/hr of powdered STPP (mean particle size of 40 - 75 microns), 160 - 200 kg/hr of ground soda ash (mean particle size of 15 microns), 80- 120 kg/hr of ground sodium sulfate (mean particle size of 15 microns), and the 200 kg/hr of internal recycle stream of powder.
- the surfactant paste is fed at about 40 to 52°C, and the powders are fed at room temperature.
- the condition of the CB-30 mixer is as follows:
- Step 2 (i) The agglomerates from the CB-30 mixer are fed to the Schugi FX-160 mixer.
- 30 kg/hr of HLAS an acid precursor of C11-C18 alkyl benzene sulfonate; 94 - 97% active
- HLAS an acid precursor of C11-C18 alkyl benzene sulfonate; 94 - 97% active
- soda ash an acid precursor of C11-C18 alkyl benzene sulfonate
- soda ash mean particle size of about 10 - 20 microns
- Step 2 (ii) The agglomerates from the Schugi mixer are fed to the KM- 600 mixer for further agglomeration, rounding and growth of agglomerates. 30 kg/hr of Zeolite is also added in the KM mixer. Choppers for the KM mixer can be used to reduce the amount of oversized agglomerates.
- the condition of the KM mixer is as follows:
- Step 3 The agglomerates from the KM mixer are fed to a fluid bed drying apparatus for drying, rounding and growth of agglomerates. 20 - 80 kg/hr of liquid silicate (43% solids, 2.0 R) can be also added in the fluid bed drying apparatus at 35°C.
- the condition of the fluid bed drying apparatus is as follows:
- Droplet spray size less than 50 micron Spray height: 175 - 250 mm (above distributor plate)
- the resulting granules from the step 3 has a density of about 700 g/l, and can be optionally subjected to the optional process of cooling, sizing and/or grinding.
- Example 2
- Step 1 15 kg/hr - 30kg/hr of HLAS (an acid precursor of C ⁇ n-C-
- HLAS an acid precursor of C ⁇ n-C-
- 71.5% active is dispersed by the pin tools of a CB-30 mixer along with 220 kg/hr of powdered STPP (mean particle size of 40 - 75 microns), 160 - 200 kg/hr of ground soda ash (mean particle size of 15 microns), 80- 120 kg/hr of ground sodium sulfate (mean particle size of 15 microns), and the 200 kg/hr of internal recycle stream of powder.
- the surfactant paste is fed at about 40 to 52°C, and the powders are fed at room temperature.
- the condition of the CB-30 mixer is as follows:
- Step 2 (i) The agglomerates from the CB-30 mixer are fed to the Schugi FX-160 mixer. 35 kg/hr of neutralized AE3S liquid (28% active) is dispersed as finely atomized liquid in the Schugi mixer at about 30-40°C. 20-80 kg/hr of soda ash is added in the Schugi mixer.
- the condition of the Schugi mixer is as follows:
- KM mixer KM mixer.
- Choppers for the KM mixer can be used to reduce the amount of oversized agglomerates.
- the condition of the KM mixer is as follows:
- Step 3 The agglomerates from the KM mixer are fed to a fluid bed drying apparatus for drying, rounding and growth of agglomerates. 20 - 80 kg/hr of liquid silicate (43% solids, 2.0 R) can be also added in the fluid bed drying apparatus at 35°C.
- the condition of the fluid bed drying apparatus is as follows:
- Spray height 175 - 250 mm (above distributor plate)
- Fluidizing velocity 0.4 - 0.8 m/s
- Bed temperature 40 - 70 °C
- the condition of the fluid bed cooling apparatus is as follows:
- the resulting granules from the step 3 has a density of about 700 g/l, and can be optionally subjected to the optional process of sizing an/or grinding.
- Step 1 250 - 270 kg/hr of aqueous coconut fatty alcohol sulfate surfactant paste (C12-C18. 71.5% active) is dispersed by the pin tools of a CB- 30 mixer along with 220 kg/hr of powdered STPP (mean particle size of 40 - 75 microns), 160 - 200 kg/hr of ground soda ash (mean particle size of 15 microns), 80- 120 kg/hr of ground sodium sulfate (mean particle size of 15 microns), and the 200 kg/hr of internal recycle stream of powder.
- the surfactant paste is fed at about 40 to 52°C, and the powders are fed at room temperature.
- the condition of the CB-30 mixer is as follows:
- Step 2 (i) The agglomerates from the CB-30 mixer are fed to the Schugi
- HLAS an acid precursor of C11-C18 alkyl benzene sulfonate; 94 - 97% active
- HLAS an acid precursor of C11-C18 alkyl benzene sulfonate; 94 - 97% active
- the condition of the Schugi mixer is as follows:
- Step 3 The agglomerates from the Schugi mixer are fed to a fluid bed drying apparatus for drying, rounding and growth of agglomerates. 20 - 80 kg/hr of liquid silicate (43% solids, 2.0 R) can be also added in the fluid bed drying apparatus at 35°C.
- the condition of the fluid bed drying apparatus is as follows: Mean residence time : 2- 4 minutes Depth of unfluidized bed : 200 mm
- Spray height 175 - 250 mm (above distributor plate)
- the resulting granules from the step 3 has a density of about 600 g/l and, can be optionally subjected to the optional process of cooling, sizing an/or grinding.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
WOPCT/US96/15881 | 1996-10-04 | ||
PCT/US1996/015881 WO1998014549A1 (en) | 1996-10-04 | 1996-10-04 | Process for making a low density detergent composition by non-tower process |
PCT/US1997/009796 WO1998014558A1 (en) | 1996-10-04 | 1997-06-05 | Process for making a detergent composition by non-tower process |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0929654A1 true EP0929654A1 (de) | 1999-07-21 |
Family
ID=22255901
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96936168A Withdrawn EP0929645A1 (de) | 1996-10-04 | 1996-10-04 | Verfahren zur herstellung einer waschmittelzusammensetzung mit niedrigem schüttgewicht durch prozess ohne turm |
EP97931057A Ceased EP0929652A1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
EP97928872A Expired - Lifetime EP0929649B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
EP97929815A Expired - Lifetime EP0929650B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
EP97931056A Expired - Lifetime EP0929651B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne turm-verfahren |
EP97932153A Ceased EP0929655A1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
EP97931059A Withdrawn EP0929654A1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne turm-verfahren |
EP97931058A Expired - Lifetime EP0929653B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
EP97928871A Expired - Lifetime EP0929648B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96936168A Withdrawn EP0929645A1 (de) | 1996-10-04 | 1996-10-04 | Verfahren zur herstellung einer waschmittelzusammensetzung mit niedrigem schüttgewicht durch prozess ohne turm |
EP97931057A Ceased EP0929652A1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
EP97928872A Expired - Lifetime EP0929649B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
EP97929815A Expired - Lifetime EP0929650B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
EP97931056A Expired - Lifetime EP0929651B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne turm-verfahren |
EP97932153A Ceased EP0929655A1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97931058A Expired - Lifetime EP0929653B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
EP97928871A Expired - Lifetime EP0929648B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
Country Status (12)
Country | Link |
---|---|
EP (9) | EP0929645A1 (de) |
JP (9) | JP3305327B2 (de) |
CN (8) | CN1133738C (de) |
AR (6) | AR010510A1 (de) |
AT (5) | ATE223476T1 (de) |
AU (9) | AU7388196A (de) |
BR (7) | BR9612732A (de) |
CA (9) | CA2267291C (de) |
DE (5) | DE69721287T2 (de) |
ES (5) | ES2193386T3 (de) |
MX (2) | MX219077B (de) |
WO (9) | WO1998014549A1 (de) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996031510A1 (en) * | 1995-04-03 | 1996-10-10 | Novartis Ag | Pyrazole derivatives and processes for the preparation thereof |
GB9526097D0 (en) * | 1995-12-20 | 1996-02-21 | Unilever Plc | Process |
GB9712580D0 (en) * | 1997-06-16 | 1997-08-20 | Unilever Plc | Production of detergent granulates |
GB9712583D0 (en) | 1997-06-16 | 1997-08-20 | Unilever Plc | Production of detergent granulates |
GB9713748D0 (en) * | 1997-06-27 | 1997-09-03 | Unilever Plc | Production of detergent granulates |
US6355606B1 (en) | 1997-07-14 | 2002-03-12 | The Procter & Gamble Company | Process for making a low density detergent composition by controlled agglomeration in a fluid bed dryer |
CN1192091C (zh) | 1997-07-14 | 2005-03-09 | 普罗格特-甘布尔公司 | 通过控制附聚颗粒大小制备低密度洗涤剂组合物的方法 |
EP1002044B1 (de) | 1997-07-15 | 2004-05-06 | The Procter & Gamble Company | Verfahren zur herstellung hochkonzentrierter waschmittelagglomerate durch mehrstufige einspritzung von tensidpasten |
US6440342B1 (en) | 1998-07-08 | 2002-08-27 | The Procter & Gamble Company | Process for making a low density detergent composition by controlling nozzle height in a fluid bed dryer |
US6492319B1 (en) | 1998-08-20 | 2002-12-10 | The Procter & Gamble Company | High density detergent-making process involving a moderate speed mixer/densifier |
US6794354B1 (en) * | 1998-09-18 | 2004-09-21 | The Procter & Gamble Company | Continuous process for making detergent composition |
CA2346926A1 (en) * | 1998-10-26 | 2000-05-04 | Christopher Andrew Morrison | Processes for making granular detergent composition having improved appearance and solubility |
GB9825558D0 (en) * | 1998-11-20 | 1999-01-13 | Unilever Plc | Granular detergent components and particulate detergent compositions containing them |
GB9913546D0 (en) | 1999-06-10 | 1999-08-11 | Unilever Plc | Granular detergent component containing zeolite map and laundry detergent compositions containing it |
EP1187904B1 (de) * | 1999-06-21 | 2004-08-11 | The Procter & Gamble Company | Verfahren zur herstellung granularer waschmittelzusammensetzungen |
US6894018B1 (en) | 1999-06-21 | 2005-05-17 | The Procter & Gamble Company | Process for making granular detergent in a fluidized bed granulator having recycling of improperly sized particles |
GB0009877D0 (en) † | 2000-04-20 | 2000-06-07 | Unilever Plc | Granular detergent component and process for its preparation |
EP2123742A1 (de) | 2008-05-14 | 2009-11-25 | The Procter and Gamble Company | Feste Waschmittelzusammensetzung mit Silikatsalz mit geringer Dichte |
WO2011061045A1 (en) | 2009-11-20 | 2011-05-26 | Unilever Nv | Detergent granule and its manufacture |
CN114774206A (zh) | 2014-04-10 | 2022-07-22 | 宝洁公司 | 复合洗涤剂颗粒和包含复合洗涤剂颗粒的衣物洗涤组合物 |
WO2019148090A1 (en) | 2018-01-26 | 2019-08-01 | Ecolab Usa Inc. | Solidifying liquid amine oxide, betaine, and/or sultaine surfactants with a carrier |
JP7485606B2 (ja) * | 2018-01-26 | 2024-05-16 | エコラボ ユーエスエー インコーポレイティド | 液体アニオン性界面活性剤の固化 |
EP3743494A1 (de) | 2018-01-26 | 2020-12-02 | Ecolab Usa Inc. | Verfestigendes flüssiges aminoxid, betain, und/oder sultaintenside mit einem bindemittel und einem optionalen träger |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2209172A (en) * | 1987-08-28 | 1989-05-04 | Unilever Plc | Preparation of solid particulate components for detergents |
US5489392A (en) * | 1994-09-20 | 1996-02-06 | The Procter & Gamble Company | Process for making a high density detergent composition in a single mixer/densifier with selected recycle streams for improved agglomerate properties |
WO1996009370A1 (en) * | 1994-09-20 | 1996-03-28 | The Procter & Gamble Company | Process for making a high density detergent composition which includes selected recycle streams |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3625902A (en) * | 1968-10-11 | 1971-12-07 | Stauffer Chemical Co | Method of preparing agglomerated detergent composition |
US4169806A (en) * | 1978-08-09 | 1979-10-02 | The Procter & Gamble Company | Agglomeration process for making granular detergents |
US4992079A (en) * | 1986-11-07 | 1991-02-12 | Fmc Corporation | Process for preparing a nonphosphate laundry detergent |
KR0170424B1 (ko) * | 1990-07-05 | 1999-01-15 | 호르스트 헤를레,요한 글라슬 | 세제 및 청정제용 표면 활성제 과립의 제조방법 |
CA2096255C (en) * | 1990-11-14 | 1998-01-20 | Jeffrey D. Painter | Nonphosphated automatic dishwashing compositions with oxygen bleach systems and process for their preparation |
EP0555622B1 (de) * | 1992-02-14 | 1997-07-09 | The Procter & Gamble Company | Verfahren zur Herstellung von Detergenskörnchen durch Neutralisation von Sulfonsäuren |
DE69332270T3 (de) * | 1992-06-15 | 2006-08-17 | The Procter & Gamble Company, Cincinnati | Verfahren zum herstellen von kompakten waschmittelzusammensetzungen |
DE69227311T2 (de) * | 1992-07-15 | 1999-06-02 | The Procter & Gamble Co., Cincinnati, Ohio | Waschmittelzusammensetzungen |
CA2173108A1 (en) * | 1993-10-15 | 1995-04-20 | Scott William Capeci | Continuous process for making high density detergent granules |
GB9322530D0 (en) * | 1993-11-02 | 1993-12-22 | Unilever Plc | Process for the production of a detergent composition |
PT663439E (pt) * | 1994-01-17 | 2000-12-29 | Procter & Gamble | Processo para a preparacao de granulos de detergente |
US5554587A (en) * | 1995-08-15 | 1996-09-10 | The Procter & Gamble Company | Process for making high density detergent composition using conditioned air |
-
1996
- 1996-10-04 MX MX9903195A patent/MX219077B/es not_active IP Right Cessation
- 1996-10-04 MX MX9903193A patent/MX219076B/es not_active IP Right Cessation
- 1996-10-04 AU AU73881/96A patent/AU7388196A/en not_active Abandoned
- 1996-10-04 EP EP96936168A patent/EP0929645A1/de not_active Withdrawn
- 1996-10-04 WO PCT/US1996/015881 patent/WO1998014549A1/en not_active Application Discontinuation
- 1996-10-04 JP JP53523397A patent/JP3305327B2/ja not_active Expired - Fee Related
- 1996-10-04 CA CA002267291A patent/CA2267291C/en not_active Expired - Fee Related
- 1996-10-04 BR BR9612732A patent/BR9612732A/pt not_active IP Right Cessation
-
1997
- 1997-06-05 JP JP51648998A patent/JP3299981B2/ja not_active Expired - Fee Related
- 1997-06-05 ES ES97931058T patent/ES2193386T3/es not_active Expired - Lifetime
- 1997-06-05 BR BR9712490-7A patent/BR9712490A/pt not_active IP Right Cessation
- 1997-06-05 CA CA002268062A patent/CA2268062C/en not_active Expired - Fee Related
- 1997-06-05 CA CA002268060A patent/CA2268060C/en not_active Expired - Fee Related
- 1997-06-05 DE DE69721287T patent/DE69721287T2/de not_active Expired - Fee Related
- 1997-06-05 ES ES97929815T patent/ES2201305T3/es not_active Expired - Lifetime
- 1997-06-05 CA CA002268068A patent/CA2268068C/en not_active Expired - Fee Related
- 1997-06-05 EP EP97931057A patent/EP0929652A1/de not_active Ceased
- 1997-06-05 DE DE69726439T patent/DE69726439T2/de not_active Expired - Fee Related
- 1997-06-05 EP EP97928872A patent/EP0929649B1/de not_active Expired - Lifetime
- 1997-06-05 AT AT97928871T patent/ATE223476T1/de not_active IP Right Cessation
- 1997-06-05 AT AT97929815T patent/ATE246726T1/de not_active IP Right Cessation
- 1997-06-05 CA CA002268063A patent/CA2268063C/en not_active Expired - Fee Related
- 1997-06-05 JP JP51649598A patent/JP3299986B2/ja not_active Expired - Fee Related
- 1997-06-05 JP JP51649298A patent/JP3345022B2/ja not_active Expired - Fee Related
- 1997-06-05 WO PCT/US1997/009790 patent/WO1998014552A1/en active IP Right Grant
- 1997-06-05 CN CNB971802785A patent/CN1133738C/zh not_active Expired - Fee Related
- 1997-06-05 AU AU34782/97A patent/AU3478297A/en not_active Abandoned
- 1997-06-05 WO PCT/US1997/009793 patent/WO1998014555A1/en not_active Application Discontinuation
- 1997-06-05 DE DE69726440T patent/DE69726440T2/de not_active Expired - Fee Related
- 1997-06-05 DE DE69723986T patent/DE69723986T2/de not_active Expired - Fee Related
- 1997-06-05 JP JP51649098A patent/JP3299982B2/ja not_active Expired - Fee Related
- 1997-06-05 WO PCT/US1997/009794 patent/WO1998014556A1/en active IP Right Grant
- 1997-06-05 AT AT97928872T patent/ATE255159T1/de not_active IP Right Cessation
- 1997-06-05 BR BR9712492-3A patent/BR9712492A/pt not_active IP Right Cessation
- 1997-06-05 BR BR9713249-7A patent/BR9713249A/pt not_active Application Discontinuation
- 1997-06-05 EP EP97929815A patent/EP0929650B1/de not_active Expired - Lifetime
- 1997-06-05 JP JP51649198A patent/JP3299983B2/ja not_active Expired - Fee Related
- 1997-06-05 JP JP51649398A patent/JP3299984B2/ja not_active Expired - Fee Related
- 1997-06-05 CA CA002268067A patent/CA2268067C/en not_active Expired - Fee Related
- 1997-06-05 CN CNB971802939A patent/CN1133739C/zh not_active Expired - Fee Related
- 1997-06-05 EP EP97931056A patent/EP0929651B1/de not_active Expired - Lifetime
- 1997-06-05 WO PCT/US1997/009796 patent/WO1998014558A1/en active Application Filing
- 1997-06-05 CA CA002268055A patent/CA2268055C/en not_active Expired - Fee Related
- 1997-06-05 AU AU33030/97A patent/AU3303097A/en not_active Abandoned
- 1997-06-05 BR BR9711861A patent/BR9711861A/pt not_active Application Discontinuation
- 1997-06-05 ES ES97928871T patent/ES2178778T3/es not_active Expired - Lifetime
- 1997-06-05 AU AU34785/97A patent/AU3478597A/en not_active Abandoned
- 1997-06-05 JP JP51649698A patent/JP3299987B2/ja not_active Expired - Fee Related
- 1997-06-05 BR BR9711865A patent/BR9711865A/pt not_active IP Right Cessation
- 1997-06-05 BR BR9713246-2A patent/BR9713246A/pt not_active IP Right Cessation
- 1997-06-05 JP JP51649498A patent/JP3299985B2/ja not_active Expired - Fee Related
- 1997-06-05 WO PCT/US1997/009795 patent/WO1998014557A1/en active IP Right Grant
- 1997-06-05 EP EP97932153A patent/EP0929655A1/de not_active Ceased
- 1997-06-05 AU AU33785/97A patent/AU3378597A/en not_active Abandoned
- 1997-06-05 CN CN97180298.XA patent/CN1239995A/zh active Pending
- 1997-06-05 EP EP97931059A patent/EP0929654A1/de not_active Withdrawn
- 1997-06-05 CN CNB971802793A patent/CN1156560C/zh not_active Expired - Fee Related
- 1997-06-05 CN CNB971802963A patent/CN1156562C/zh not_active Expired - Fee Related
- 1997-06-05 WO PCT/US1997/009791 patent/WO1998014553A1/en active IP Right Grant
- 1997-06-05 ES ES97931056T patent/ES2210544T3/es not_active Expired - Lifetime
- 1997-06-05 AT AT97931056T patent/ATE255160T1/de not_active IP Right Cessation
- 1997-06-05 CA CA002267424A patent/CA2267424C/en not_active Expired - Fee Related
- 1997-06-05 CN CNB971802807A patent/CN1156561C/zh not_active Expired - Fee Related
- 1997-06-05 AU AU35683/97A patent/AU3568397A/en not_active Abandoned
- 1997-06-05 AT AT97931058T patent/ATE238409T1/de not_active IP Right Cessation
- 1997-06-05 WO PCT/US1997/009792 patent/WO1998014554A1/en not_active Application Discontinuation
- 1997-06-05 AU AU34783/97A patent/AU3478397A/en not_active Abandoned
- 1997-06-05 AU AU33031/97A patent/AU3303197A/en not_active Abandoned
- 1997-06-05 WO PCT/US1997/009789 patent/WO1998014551A1/en active IP Right Grant
- 1997-06-05 CA CA002268052A patent/CA2268052C/en not_active Expired - Fee Related
- 1997-06-05 CN CN97180294.7A patent/CN1239992A/zh active Pending
- 1997-06-05 EP EP97931058A patent/EP0929653B1/de not_active Expired - Lifetime
- 1997-06-05 EP EP97928871A patent/EP0929648B1/de not_active Expired - Lifetime
- 1997-06-05 AU AU34784/97A patent/AU3478497A/en not_active Abandoned
- 1997-06-05 DE DE69715224T patent/DE69715224T2/de not_active Expired - Fee Related
- 1997-06-05 ES ES97928872T patent/ES2212109T3/es not_active Expired - Lifetime
- 1997-06-05 CN CNB971802971A patent/CN1156563C/zh not_active Expired - Fee Related
- 1997-10-03 AR ARP970104578A patent/AR010510A1/es unknown
- 1997-10-03 AR ARP970104574A patent/AR010507A1/es unknown
- 1997-10-03 AR ARP970104579A patent/AR010511A1/es unknown
- 1997-10-03 AR ARP970104576A patent/AR010509A1/es unknown
- 1997-10-03 AR ARP970104577A patent/AR010729A1/es unknown
- 1997-10-03 AR ARP970104575A patent/AR010508A1/es unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2209172A (en) * | 1987-08-28 | 1989-05-04 | Unilever Plc | Preparation of solid particulate components for detergents |
US5489392A (en) * | 1994-09-20 | 1996-02-06 | The Procter & Gamble Company | Process for making a high density detergent composition in a single mixer/densifier with selected recycle streams for improved agglomerate properties |
WO1996009370A1 (en) * | 1994-09-20 | 1996-03-28 | The Procter & Gamble Company | Process for making a high density detergent composition which includes selected recycle streams |
Non-Patent Citations (1)
Title |
---|
See also references of WO9814558A1 * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2268052C (en) | Process for making a detergent composition by non-tower process | |
MXPA99003195A (en) | Process for making a detergent composition by non-tower process | |
CA2268057C (en) | Process for making a low density detergent composition | |
US6143711A (en) | Process for making a detergent composition by non-tower process | |
US6211138B1 (en) | Process for making a detergent composition by non-tower process | |
US6391844B1 (en) | Process for making a detergent composition by non-tower process | |
US6136777A (en) | Process for making a detergent composition by non-tower process | |
US6211137B1 (en) | Process for making a detergent composition by non-tower process | |
US6150323A (en) | Process for making a detergent composition by non-tower process | |
US6172034B1 (en) | Process for making a detergent composition by non-tower process | |
US6281188B1 (en) | Process for making a low density detergent composition | |
US6121229A (en) | Process for making a detergent composition by non-tower process | |
US6156719A (en) | Process for making a low density detergent composition by non-tower process | |
MXPA99003200A (en) | Process for making a detergent composition by non-tower process | |
MXPA99003201A (en) | Process for making a detergent composition by non-tower process | |
MXPA99003194A (en) | Process for making a detergent composition by non-tower process | |
MXPA99003197A (en) | Process for making a detergent composition by non-tower process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19990407 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20000110 |
|
APAB | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPE |
|
APBH | Information on receipt of observation in appeal deleted |
Free format text: ORIGINAL CODE: EPIDOSDOBA4E |
|
APBX | Invitation to file observations in appeal sent |
Free format text: ORIGINAL CODE: EPIDOSNOBA2E |
|
APBZ | Receipt of observations in appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNOBA4E |
|
APBT | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9E |
|
APAA | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOS REFN |
|
APAF | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20061024 |