EP0929649A1 - Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren - Google Patents
Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahrenInfo
- Publication number
- EP0929649A1 EP0929649A1 EP97928872A EP97928872A EP0929649A1 EP 0929649 A1 EP0929649 A1 EP 0929649A1 EP 97928872 A EP97928872 A EP 97928872A EP 97928872 A EP97928872 A EP 97928872A EP 0929649 A1 EP0929649 A1 EP 0929649A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- surfactant
- detergent
- mixer
- process according
- mixtures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003599 detergent Substances 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims abstract description 79
- 230000008569 process Effects 0.000 title claims abstract description 75
- 239000000203 mixture Substances 0.000 title claims abstract description 51
- 239000004094 surface-active agent Substances 0.000 claims abstract description 44
- 239000000843 powder Substances 0.000 claims abstract description 30
- 239000007788 liquid Substances 0.000 claims abstract description 29
- 239000011248 coating agent Substances 0.000 claims abstract description 12
- 238000000576 coating method Methods 0.000 claims abstract description 6
- 238000009736 wetting Methods 0.000 claims abstract description 3
- -1 alkyl alkoxy sulfates Chemical class 0.000 claims description 22
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 18
- 239000007921 spray Substances 0.000 claims description 15
- 229920000642 polymer Polymers 0.000 claims description 14
- 239000000243 solution Substances 0.000 claims description 14
- 239000003945 anionic surfactant Substances 0.000 claims description 13
- 235000019832 sodium triphosphate Nutrition 0.000 claims description 12
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical group [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 10
- 150000004760 silicates Chemical class 0.000 claims description 10
- PMZURENOXWZQFD-UHFFFAOYSA-L sodium sulphate Substances [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 7
- 239000003093 cationic surfactant Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 150000004996 alkyl benzenes Chemical class 0.000 claims description 5
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 5
- 239000002736 nonionic surfactant Substances 0.000 claims description 5
- 235000017550 sodium carbonate Nutrition 0.000 claims description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 5
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 5
- 235000011152 sodium sulphate Nutrition 0.000 claims description 5
- 229910019142 PO4 Inorganic materials 0.000 claims description 3
- 235000021317 phosphate Nutrition 0.000 claims description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 3
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 claims description 3
- 235000013162 Cocos nucifera Nutrition 0.000 claims description 2
- 244000060011 Cocos nucifera Species 0.000 claims description 2
- 150000008051 alkyl sulfates Chemical class 0.000 claims description 2
- 150000001860 citric acid derivatives Chemical class 0.000 claims description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical class OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 claims description 2
- 239000000463 material Substances 0.000 description 26
- 239000012530 fluid Substances 0.000 description 20
- 239000008187 granular material Substances 0.000 description 18
- 238000005054 agglomeration Methods 0.000 description 15
- 230000002776 aggregation Effects 0.000 description 15
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 15
- 238000005342 ion exchange Methods 0.000 description 15
- 239000002245 particle Substances 0.000 description 15
- 239000004615 ingredient Substances 0.000 description 14
- 229920005646 polycarboxylate Polymers 0.000 description 13
- 239000002253 acid Substances 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 11
- 238000001035 drying Methods 0.000 description 10
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 9
- 239000011734 sodium Substances 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical group [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 7
- 125000002947 alkylene group Chemical group 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 7
- 229910052708 sodium Inorganic materials 0.000 description 7
- 239000004115 Sodium Silicate Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 229920000768 polyamine Polymers 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 235000019351 sodium silicates Nutrition 0.000 description 6
- 238000001694 spray drying Methods 0.000 description 6
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 125000000129 anionic group Chemical group 0.000 description 5
- 229910001424 calcium ion Inorganic materials 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 150000007942 carboxylates Chemical class 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- 229930182556 Polyacetal Natural products 0.000 description 4
- 150000003863 ammonium salts Chemical class 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 125000001183 hydrocarbyl group Chemical group 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 4
- 229920006324 polyoxymethylene Polymers 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical class C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 229920002873 Polyethylenimine Polymers 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229940077388 benzenesulfonate Drugs 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010924 continuous production Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 238000011031 large-scale manufacturing process Methods 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 159000000001 potassium salts Chemical class 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000000344 soap Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 3
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- PSZAEHPBBUYICS-UHFFFAOYSA-N 2-methylidenepropanedioic acid Chemical compound OC(=O)C(=C)C(O)=O PSZAEHPBBUYICS-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical group [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 229940091181 aconitic acid Drugs 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 150000001335 aliphatic alkanes Chemical group 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 229960003237 betaine Drugs 0.000 description 2
- 239000007844 bleaching agent Substances 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 2
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 2
- 229940018557 citraconic acid Drugs 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 229910001425 magnesium ion Chemical group 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical class OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 229910021647 smectite Inorganic materials 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- FXTWIIBOJYNFAW-UHFFFAOYSA-N (2,2-dihydroxyethylamino) propane-1-sulfonate Chemical compound CCCS(=O)(=O)ONCC(O)O FXTWIIBOJYNFAW-UHFFFAOYSA-N 0.000 description 1
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical class OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- TYIOVYZMKITKRO-UHFFFAOYSA-N 2-[hexadecyl(dimethyl)azaniumyl]acetate Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)CC([O-])=O TYIOVYZMKITKRO-UHFFFAOYSA-N 0.000 description 1
- XYJLPCAKKYOLGU-UHFFFAOYSA-N 2-phosphonoethylphosphonic acid Chemical class OP(O)(=O)CCP(O)(O)=O XYJLPCAKKYOLGU-UHFFFAOYSA-N 0.000 description 1
- WCSAPKHLAQFSIW-UHFFFAOYSA-N 3-(dimethylamino)-2-hydroxypropane-1-sulfonic acid Chemical compound CN(C)CC(O)CS(O)(=O)=O WCSAPKHLAQFSIW-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 238000006677 Appel reaction Methods 0.000 description 1
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- GXGJIOMUZAGVEH-UHFFFAOYSA-N Chamazulene Chemical group CCC1=CC=C(C)C2=CC=C(C)C2=C1 GXGJIOMUZAGVEH-UHFFFAOYSA-N 0.000 description 1
- RKWGIWYCVPQPMF-UHFFFAOYSA-N Chloropropamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical class OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical class OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- SXKQTYJLWWQUKA-UHFFFAOYSA-N O.O.O.O.O.O.O.O.O.O.OB(O)O.OB(O)O.OB(O)O.OB(O)O Chemical compound O.O.O.O.O.O.O.O.O.O.OB(O)O.OB(O)O.OB(O)O.OB(O)O SXKQTYJLWWQUKA-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920000388 Polyphosphate Chemical class 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- ZUBJEHHGZYTRPH-KTKRTIGZSA-N [(z)-octadec-9-enyl] hydrogen sulfate Chemical compound CCCCCCCC\C=C/CCCCCCCCOS(O)(=O)=O ZUBJEHHGZYTRPH-KTKRTIGZSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- ZRIUUUJAJJNDSS-UHFFFAOYSA-N ammonium phosphates Chemical class [NH4+].[NH4+].[NH4+].[O-]P([O-])([O-])=O ZRIUUUJAJJNDSS-UHFFFAOYSA-N 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- CMFFZBGFNICZIS-UHFFFAOYSA-N butanedioic acid;2,3-dihydroxybutanedioic acid Chemical compound OC(=O)CCC(O)=O.OC(=O)CCC(O)=O.OC(=O)C(O)C(O)C(O)=O CMFFZBGFNICZIS-UHFFFAOYSA-N 0.000 description 1
- HXDRSFFFXJISME-UHFFFAOYSA-N butanedioic acid;2,3-dihydroxybutanedioic acid Chemical compound OC(=O)CCC(O)=O.OC(=O)C(O)C(O)C(O)=O HXDRSFFFXJISME-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- MRXJLUSSMZAJGV-UHFFFAOYSA-N dimethylamino hexane-1-sulfonate Chemical compound CCCCCCS(=O)(=O)ON(C)C MRXJLUSSMZAJGV-UHFFFAOYSA-N 0.000 description 1
- DUCCPNVOQJMMAN-UHFFFAOYSA-N dimethylamino hexanoate Chemical compound CCCCCC(=O)ON(C)C DUCCPNVOQJMMAN-UHFFFAOYSA-N 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- UZABCLFSICXBCM-UHFFFAOYSA-N ethoxy hydrogen sulfate Chemical class CCOOS(O)(=O)=O UZABCLFSICXBCM-UHFFFAOYSA-N 0.000 description 1
- 238000007046 ethoxylation reaction Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229960002598 fumaric acid Drugs 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical class CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000001205 polyphosphate Chemical class 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/0082—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
- C11D11/0088—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads the liquefied ingredients being sprayed or adsorbed onto solid particles
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/0082—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/02—Preparation in the form of powder by spray drying
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0039—Coated compositions or coated components in the compositions, (micro)capsules
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/06—Powder; Flakes; Free-flowing mixtures; Sheets
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/06—Powder; Flakes; Free-flowing mixtures; Sheets
- C11D17/065—High-density particulate detergent compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/146—Sulfuric acid esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/22—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/29—Sulfates of polyoxyalkylene ethers
Definitions
- the present invention generally relates to a non-tower process for producing a particulate detergent composition. More particularly, the invention is directed to a continuous process during which detergent agglomerates are produced by feeding a surfactant and coating materials into a series of mixers. The process produces a free flowing, detergent composition whose density can be adjusted for wide range of consumer needs, and which can be commercially sold.
- the first type of process involves spray- drying an aqueous detergent slurry in a spray-drying tower to produce highly porous detergent granules (e.g., tower process for low density detergent compositions).
- the various detergent components are dry mixed after which they are agglomerated with a binder such as a nonionic or anionic surfactant, to produce high density detergent compositions (e.g., agglomeration process for high density detergent compositions).
- This apparatus comprises a substantially horizontal, roughened, rotatable table positioned within and at the base of a substantially vertical, smooth walled cylinder.
- This process is essentially a batch process and is therefore less suitable for the large scale production of detergent powders.
- non-tower process for continuously producing a detergent composition having high density delivered directly from starting detergent ingredients, and preferably the density can be achieved by adjusting the process condition. Also, there remains a need for such a process which is more efficient, flexible and economical to facilitate large-scale production of detergents (1) for flexibility in the ultimate density of the final composition, and (2) for flexibility in terms of incorporating several different kinds of detergent ingredients, especially detergent ingredients in the form of liquid, into the process.
- Laid Open No.WO96/04359 (Unilever).
- Laid-open No.WO93/23,523 (Henkel) describes the process comprising pre-agglomeration by a low speed mixer and further agglomeration step by high speed mixer for obtaining high density detergent composition with less than 25 wt% of the granules having a diameter over 2 mm.
- the U.S. Patent No. 4,427,417 (Korex) describes continuous process for agglomeration which reduces caking and oversized agglomerates.
- the present invention meets the aforementioned needs in the art by providing a process which produces a high density granular detergent composition.
- the present invention also meets the aforementioned needs in the art by providing a process which produces a granular detergent composition for flexibility in the ultimate density of the final composition from agglomeration (e.g., non-tower) process.
- the process does not use the conventional spray drying towers currently which is limited in producing high surfactant loading compositions.
- the process of the present invention is more efficient, economical and flexible with regard to the variety of detergent compositions which can be produced in the process.
- the process is more amenable to environmental concerns in that it does not use spray drying towers which typically emit particulates and volatile organic compounds into the atmosphere.
- agglomerates refers to particles formed by agglomerating raw materials with binder such as surfactants and or inorganic solutions / organic solvents and polymer solutions.
- binder such as surfactants and or inorganic solutions / organic solvents and polymer solutions.
- a process for preparing a granular detergent composition having a density at least about 600 g/1 is provided.
- the process comprises the steps of:
- the granular detergent compositions having a high density of at least about 600g/l produced by any one of the process embodiments described herein. Accordingly, it is an object of the invention to provide a process for continuously producing a detergent composition which has flexibility with respect to density of the final products by controlling energy input, residence time condition, and tip speed condition in the mixers. It is also an object of the invention to provide a process which is more efficient, flexible and economical to facilitate large-scale production.
- the present invention is directed to a process which produces free flowing, granular detergent agglomerates having a density of at least about 600 g/1.
- the process produces granular detergent agglomerates from an aqueous and/or non-aqueous surfactant which is then coated with fine powder having a diameter from 0.1 to 500 microns, in order to obtain low density granules.
- aqueous and/or non- aqueous surfactant(s) which is/are in the form of powder, paste and/or liquid, and fine powder having a diameter from 0.1 to 500 microns, preferably from about 1 to about 100 microns are fed into a mixer, so as to make agglomerates.
- surface of the surfactant which is coated by the fine powder is wet by finely atomized liquid so as to add more fine powder on the surface of the agglomerates.
- an internal recycle stream of powder having a diameter of about 0.1 to about 300 microns generated in the fluidizing apparatus can be fed into the mixer in addition to the fine powder.
- the amount of such internal recycle stream of powder can be 0 to about 60 wt% of final product.
- the mean residence time of the mixer is in range from about 0.2 to about 5 seconds and tip speed of the mixer of the mixer is in range from about 10 m/s to about 30 m/s
- the energy per unit mass of the mixer (energy condition) of the mixer is in range from about 0.15 kj/kg to about 5 kj/kg
- the mean residence time of the mixer is in range from about 0.2 to about 5 seconds and tip speed of the mixer is in range from about 10 m/s to about 30 m/s
- the energy per unit mass of the mixer (energy condition) is in range from about 0.15 kj/kg to about 5 kj/kg
- the most preferably, the mean residence time of the mixer is in range from about 0.2 to about 5 seconds
- tip speed of the mixer is in range from about 15 m/s to about 26 m/s
- the energy per unit mass of the mixer (energy condition) is from about 0.2 kj/kg to about 3 kj/kg.
- the examples of the mixer can be any types of
- the agglomerates from the first step are fed into a fluidized apparatus, such as fluidized bed, in order to enhance granulation for producing free flowing high density granules.
- the second step can proceed in one or more than one fluidized apparatus (e.g., combining different kinds of fluidized apparatus such as fluid bed dryer and fluid bed cooler).
- the resultant product from the second step is fluidized thoroughly so that the granules from the second step have a round shape.
- about 0 to about 10% , more preferably about 2-5% of powder detergent materials of the kind used in the first step and/or other detergent ingredients can be added to the second step.
- condition of a fluidized apparatus can be; Mean residence time : from about 1 to about 10 minutes Depth of unfluidized bed : from about 100 to about 300 mm Droplet spray size : not more than about 50 micron Spray height: from about 175 to about 250 mm
- Fluidizing velocity from about 0.2 to about 1.4 m/s Bed temperature : from about 12 to about 100 °C, more preferably; Mean residence time : from about 2 to about 6 minutes Depth of unfluidized bed : from about 100 to about 250 mm Droplet spray size : less than about 50 micron Spray height: from about 175 to about 200 mm Fluidizing velocity : from about 0.3 to about 1.0 m/s Bed temperature : from about 12 to about 80 °C. If two different kinds of fluidized apparatus would be used, mean residence time of the third step in total can be from about 2 to about 20 minutes, more preferably, from about 2 to 12 minutes.
- a coating agent to improve flowability and/or minimize over agglomeration of the detergent composition can be added in one or more of the following locations of the instant process: (1) the coating agent can be added directly after fluid bed cooler or fluid bed dryer; (2) the coating agent may be added between fluid bed dryer and fluid bed cooler; and/or (3) the coating agent may be added directly to the fluid bed dryer.
- the coating agent is preferably selected from the group consisting of aluminosilicates, silicates, carbonates and mixtures thereof.
- the coating agent not only enhances the free flowability of the resulting detergent composition which is desirable by consumers in that it permits easy scooping for detergent during use, but also serves to control agglomeration by preventing or minimizing over agglomeration. As those skilled in the art are well aware, over agglomeration can lead to very undesirable flow properties and aesthetics of the final detergent product.
- the total amount of the surfactants in products made by the present invention, which are included in the following detergent materials, finely atomized liquid and adjunct detergent ingredients is generally from about 5% to about
- the surfactants which are included in the above can be from any part of the process of the present invention., e.g., from either one of the first step and/or the second step of the present invention.
- the amount of the surfactant of the present process can be from about 5% to about 60%, more preferably from about 12% to about 40%, more preferably, from about 15 to about 35%, in total amount of the final product obtained by the process of the present invention.
- the surfactant of the present process which is used as the above mentioned starting detergent materials in the first step, is in the form of powdered, pasted or liquid raw materials.
- the surfactant itself is preferably selected from anionic, nonionic, zwittehonic, ampholytic and cationic classes and compatible mixtures thereof.
- Detergent surfactants useful herein are described in U.S. Patent 3,664,961 , Norris, issued May 23, 1972, and in U.S. Patent 3,929,678, Laughlin et al., issued December 30, 1975, both of which are incorporated herein by reference.
- Useful cationic surfactants also include those described in U.S. Patent 4,222,905, Cockrell, issued September 16, 1980, and in U.S. Patent 4,239,659, Murphy, issued December 16, 1980, both of which are also incorporated herein by reference.
- anionics and nonionics are preferred and anionics are most preferred.
- Nonlimiting examples of the preferred anionic surfactants useful in the present invention include the conventional C11-C18 alkyl benzene sulfonates ("LAS"), primary, branched-chain and random C10-C20 a ' k y' sulfates (“AS”), the C10-C18 secondary (2,3) alkyl sulfates of the formula CH3(CH2) x (CHOSO3 " M + ) CH3 and CH3 (CH2)y(CHOSO3 ' M + ) CH2CH3 where x and (y + 1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, and the C10- 18 alk y' a'koxy sulfates ("AE X S"; especially EO 1-7 ethoxy sulfates).
- LAS C11-C18 alkyl benzene s
- Useful anionic surfactants also include water-soluble salts of 2-acyloxy- alkane-1-sulfonic acids containing from about 2 to 9 carbon atoms in the acyl group and from about 9 to about 23 carbon atoms in the alkane moiety; water- soluble salts of olefin sulfonates containing from about 12 to 24 carbon atoms; and beta-alkyloxy alkane sulfonates containing from about 1 to 3 carbon atoms in the alkyl group and from about 8 to 20 carbon atoms in the alkane moiety .
- exemplary surfactants useful in the paste of the invention include C10-C18 a'kyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the glycerol ethers, the C ⁇
- the conventional nonionic and amphoteric surfactants such as the C-12-C18 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C6-C12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C-JQ-CI S amine oxides, and the like, can also be included in the overall compositions.
- AE C-12-C18 alkyl ethoxylates
- C6-C12 alkyl phenol alkoxylates especially ethoxylates and mixed ethoxy/propoxy
- C-JQ-CI S amine oxides and the like
- 8 N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C-12-C18 N-methylglucamides. See WO 9,206,154.
- sugar- derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C10-C 8 N-(3-methoxypropyl) glucamide.
- the N-propyl through N-hexyl C12- C18 glucamides can be used for low sudsing.
- C10-C20 conventional soaps may also be used. If high sudsing is desired, the branched-chain C ⁇ ⁇ o-C-
- Cationic surfactants can also be used as a detergent surfactant herein and suitable quaternary ammonium surfactants are selected from mono C6-C16. preferably C6-C10 N-alkyl or alkenyl ammonium surfactants wherein remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
- Ampholytic surfactants can also be used as a detergent surfactant herein, which include aliphatic derivatives of heterocyclic secondary and tertiary amines; zwitterionic surfactants which include derivatives of aliphatic quaternary ammonium, phosphonium and sulfonium compounds; water-soluble salts of esters of alpha-sulfonated fatty acids; alkyl ether sulfates; water-soluble salts of olefin sulfonates; beta-alkyloxy alkane sulfonates; betaines having the formula R(Rl)2N + R 2 COO ** , wherein R is a C6-C18 hydrocarbyl group, preferably a C10- C16 alkyl group or C10-CI6 acylamido alkyl group, each R 1 is typically C1-C3 alkyl, preferably methyl and R2 is a C1-C5 hydrocarbyl group, preferably a C
- betaines examples include coconut acylamidopropyldimethyl betaine; hexadecyl dimethyl betaine; C12-I4 acylamidopropylbetaine; C8-14 acylamidohexyldiethyl betaine; 4[C1 -16 acylmethylamidodiethylammonio]-1-carboxybutane; C16-I8 acylamidodimethylbetaine; C12-I6 acylamidopentanediethylbetaine; and [C12-16 acylmethylamidodimethylbetaine.
- Preferred betaines are C12-I8 dimethyl-ammonio hexanoate and the C10-I8 acylamidopropane (or ethane) dimethyl (or diethyl) betaines; and the sultaines having the formula (R(R 1 )2N + R2SO3 _ wherein R is a C6-C18 hydrocarbyl group, preferably a C10- C16 alkyl group, more preferably a C12-C13 alkyl group, each R 1 is typically C-
- Suitable sultaines include C12-C14 dimethylammonio-2-hydroxypropyl sulfonate, C12- C14 amido propyl ammonio-2-hydroxypropyl sultaine, C12-C14 dihydroxyethylammonio propane sulfonate, and C-J6-18 dimethylammonio hexane sulfonate, with C 12-14 amido propyl ammonio-2-hydroxypropyl sultaine being preferred. Fine Powder
- the aluminosilicate ion exchange materials used herein as a detergent builder preferably have both a high calcium ion exchange capacity and a high exchange rate. Without intending to be limited by theory, it is believed that such high calcium ion exchange rate and capacity are a function of several interrelated factors which derive from the method by which the aluminosilicate ion exchange material is produced. In that regard, the aluminosilicate ion exchange materials used herein are preferably produced in accordance with Corkill et al, U.S. Patent No. 4,605,509 (Procter & Gamble), the disclosure of which is incorporated herein by reference.
- the aluminosilicate ion exchange material has the formula Na z [(AIO 2 ) z .(SiO 2 )y]xH2 ⁇ wherein z and y are integers of at least 6, the molar ratio of z to y is from about 1 to about 5 and x is from about 10 to about 264. More preferably, the aluminosilicate has the formula Na 12 [(AIO 2 )i2.(Si0 2 )i2]xH2 ⁇ wherein x is from about 20 to about 30, preferably about 27.
- These preferred aluminosilicates are available commercially, for example under designations Zeolite A, Zeolite B and Zeolite X.
- aluminosilicate ion exchange materials suitable for use herein can be made as described in Krummel et al, U.S. Patent No. 3,985,669, the disclosure of which is incorporated herein by reference.
- the aluminosilicates used herein are further characterized by their ion exchange capacity which is at least about 200 mg equivalent of CaCO3 hardness/gram, calculated on an anhydrous basis, and which is preferably in a range from about 300 to 352 mg equivalent of CaCO3 hardness/gram.
- the instant aluminosilicate ion exchange materials are still further characterized by their calcium ion exchange rate which is at least about 2 grains Ca ++ /gallon/minute/-gram/gallon, and more preferably in a range from about 2 grains Ca ++ /gallon/minute/-gram/gallon to about 6 grains Ca ++ /gallon/minute/ -gram/gallon.
- the amount of the finely atomized liquid of the present process can be from about 1 % to about 10% (active basis), preferably from 2% to about 6% (active basis) in total amount of the final product obtained by the process of the present invention.
- the finely atomized liquid of the present process can be selected from the group consisting of liquid silicate, anionic or cationic surfactants which are in liquid form, aqueous or non-aqueous polymer solutions, water and mixtures thereof.
- Other optional examples for the finely atomized liquid of the present invention can be sodium carboxy methyl cellulose solution, polyethylene glycol (PEG), and solutions of dimethylene triamine pentamethyl phosphonic acid (DETMP),
- anionic surfactant solutions which can be used as the finely atomized liquid in the present inventions are about 88 - 97% active HLAS, about 30 - 50% active NaLAS, about 28% active AE3S solution, about 40-50% active liquid silicate, and so on.
- Cationic surfactants can also be used as finely atomized liquid herein and suitable quaternary ammonium surfactants are selected from mono C6-C16, preferably C6-C10 N-alkyl or alkenyl ammonium surfactants wherein remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
- aqueous or non-aqueous polymer solutions which can be used as the finely atomized liquid in the present inventions are modified polyamines which comprise a polyamine backbone corresponding to the formula: having a modified polyamine formula V( n+ ⁇ nW m Y n Z or a polyamine backbone corresponding to the formula:
- polyamine backbone prior to modification having a modified polyamine formula V( n _k+i)W m Y n Y'kZ, wherein k is less than or equal to n, said polyamine backbone prior to modification has a molecular weight greater than about 200 daltons, wherein
- V units are terminal units having the formula:
- W units are backbone units having the formula:
- Y units are branching units having the formula:
- Z units are terminal units having the formula: X "
- Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid.
- the presence in the polymeric polycarboxylates herein of monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight of the polymer.
- Homo-polymeric polycarboxylates which have molecular weights above
- Particularly suitable homo- polymeric polycarboxylates can be derived from acrylic acid.
- acrylic acid- based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid.
- the average molecular weight of such polymers in the acid form preferably ranges from above 4,000 to 10,000, preferably from above 4,000 to 7,000, and most preferably from above 4,000 to 5,000.
- Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts.
- the starting detergent material in the present process can include additional detergent ingredients and/or, any number of additional ingredients can be incorporated in the detergent composition during subsequent steps of the present process.
- adjunct ingredients include other detergency builders, bleaches, bleach activators, suds boosters or suds suppressors, antitarnish and anticorrosion agents, soil suspending agents, soil release agents, germicides, pH adjusting agents, non-builder alkalinity sources, chelating agents, smectite clays, enzymes, enzyme-stabilizing agents and perfumes. See U.S. Patent 3,936,537, issued February 3, 1976 to Baskerville, Jr. et al., incorporated herein by reference.
- Other builders can be generally selected from the various water-soluble, alkali metal, ammonium or substituted ammonium phosphates, polyphosphates, phosphonates, polyphosphonates, carbonates, borates, polyhydroxy sulfonates, polyacetates, carboxylates, and polycarboxylates.
- the alkali metal especially sodium, salts of the above.
- Preferred for use herein are the phosphates, carbonates, C- * rj-l8 f attv acids, polycarboxylates, and mixtures thereof. More preferred are sodium tripolyphosphate, tetrasodium pyrophosphate, citrate, tartrate mono- and di-succinates, and mixtures thereof (see below).
- polyacetate and polycarboxylate builders are the sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylene diamine tetraacetic acid, nitrilotriacetic acid, oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, and citric acid.
- Polymeric polycarboxylate builders are set forth in U.S. Patent 3,308,067, Diehl, issued March 7, 1967, the disclosure of which is incorporated herein by reference.
- Such materials include the water-soluble salts of homo- and copolymers of aliphatic carboxylic acids such as maleic acid, itaconic acid, mesaconic acid, fumaric acid, aconitic acid, citraconic acid and methylene malonic acid.
- Some of these materials are useful as the water-soluble anionic polymer as hereinafter described, but only if in intimate admixture with the non-soap anionic surfactant.
- polyacetal carboxylates for use herein are the polyacetal carboxylates described in U.S. Patent 4,144,226, issued March 13, 1979 to Crutchfield et al, and U.S. Patent 4,246,495, issued March 27, 1979 to Crutchfield et al, both of which are incorporated herein by reference.
- These polyacetal carboxylates can be prepared by bringing together under polymerization condition an ester of glyoxyiic acid and a polymerization initiator. The resulting polyacetal carboxylate ester is then attached to chemically stable end groups to stabilize the polyacetal carboxylate against rapid depolymerization in alkaline solution, converted to the corresponding salt, and added to a detergent composition.
- Particularly preferred polycarboxylate builders are the ether carboxylate builder compositions comprising a combination of tartrate monosuccinate and tartrate disuccinate described in U.S. Patent 4,663,071 , Bush et al., issued May 5, 1987, the disclosure of which is incorporated herein by reference.
- Bleaching agents and activators are described in U.S. Patent 4,412,934, Chung et al., issued November 1 , 1983, and in U.S. Patent 4,483,781 , Hartman, issued November 20, 1984, both of which are incorporated herein by reference.
- Chelating agents are also described in U.S. Patent 4,663,071 , Bush et al., from Column 17, line 54 through Column 18, line 68, incorporated herein by reference.
- Suds modifiers are also optional ingredients and are described in U.S. Patents 3,933,672, issued January 20, 1976 to Bartoletta et al., and 4,136,045, issued January 23, 1979 to Gault et al., both incorporated herein by reference.
- Suitable smectite clays for use herein are described in U.S. Patent 4,762,645, Tucker et al, issued August 9, 1988, Column 6, line 3 through Column 7, line 24, incorporated herein by reference.
- Suitable additional detergency builders for use herein are enumerated in the Baskerville patent, Column 13, line 54 through Column 16, line 16, and in U.S. Patent 4,663,071 , Bush et al, issued May 5, 1987, both incorporated herein by reference.
- the process can comprise the step of spraying an additional binder in one or more than one of the first, second and/or the third mixers for the present invention.
- a binder is added for purposes of enhancing agglomeration by providing a "binding" or "sticking" agent for the detergent components.
- the binder is preferably selected from the group consisting of water, anionic surfactants, nonionic surfactants, liquid silicates, polyethylene glycol, polyvinyl pyrrolidone polyacrylates, citric acid and mixtures thereof.
- suitable binder materials including those listed herein are described in Beerse et al, U.S. Patent No.
- Another optional step of the instant process entails finishing the resulting detergent agglomerates by a variety of processes including spraying and/or admixing other conventional detergent ingredients.
- the finishing step encompasses spraying perfumes, brighteners and enzymes onto the finished agglomerates to provide a more complete detergent composition.
- Such techniques and ingredients are well known in the art.
- surfactant paste structuring process e.g., hardening an aqueous anionic surfactant paste by incorporating a paste-hardening material by using an extruder, prior to the process of the present invention.
- surfactant paste structuring process e.g., hardening an aqueous anionic surfactant paste by incorporating a paste-hardening material by using an extruder.
- the details of the surfactant paste structuring process are disclosed co-application No. PCT/US96/15960 (filed October 4, 1996) .
- Step 1 120 - 160 kg/hr of HLAS (an acid precursor of C ⁇ ⁇
- the surfactant is fed at about 50 to 60 °C, and the powders are fed at room temperature.
- HLAS an acid precursor of C-
- HLAS an acid precursor of C-
- Step 2 The agglomerates from the Schugi mixer are fed to a fluid bed drying apparatus for drying, rounding and growth of agglomerates. 20 - 80 kg/hr of liquid silicate (43% solids, 2.0 R) can be also added in the fluid bed drying apparatus at 35°C.
- the condition of the fluid bed drying apparatus is as follows:
- Spray height 175 - 250 mm (above distributor plate)
- Bed temperature 40 - 70 °C
- the resultant from the step 2 has a density of about 600g/l, and can be optionally subjected to the optional process of cooling, sizing and/or grinding.
- Step 1 120 - 160 kg/hr of HLAS (an acid precursor of C «
- the condition of the Schugi mixer is as follows:
- Step 2 The agglomerates from the Schugi mixer are fed to a fluid bed drying apparatus for drying, rounding and growth of agglomerates. 20 - 80 kg/hr of liquid silicate (43% solids, 2.0 R) can be also added in the fluid bed drying apparatus at 35°C. The condition of the fluid bed drying apparatus is as follows: Mean residence time : 2- 4 minutes
- Spray height 175 - 250 mm (above distributor plate)
- Fluidizing velocity 0.4 - 0.8 m/s
- Bed temperature 40 - 70 °C
- Step 3 The resultant from the fluid bed drying apparatus is fed to a fluid bed cooling apparatus. 5 - 10 kg/hr of liquid silicate (43% solids, 2.0 R) is added to the apparatus.
- the condition of the fluid bed cooling apparatus is as follows: Mean residence time : 2- 4 minutes
- the resultant from the step 3 has a density of about 600 g/l, and can be optionally subjected to the optional process of sizing an/or grinding.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
WOPCT/US96/15881 | 1996-10-04 | ||
PCT/US1996/015881 WO1998014549A1 (en) | 1996-10-04 | 1996-10-04 | Process for making a low density detergent composition by non-tower process |
PCT/US1997/009790 WO1998014552A1 (en) | 1996-10-04 | 1997-06-05 | Process for making a detergent composition by non-tower process |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0929649A1 true EP0929649A1 (de) | 1999-07-21 |
EP0929649B1 EP0929649B1 (de) | 2003-11-26 |
Family
ID=22255901
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96936168A Withdrawn EP0929645A1 (de) | 1996-10-04 | 1996-10-04 | Verfahren zur herstellung einer waschmittelzusammensetzung mit niedrigem schüttgewicht durch prozess ohne turm |
EP97931057A Ceased EP0929652A1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
EP97928872A Expired - Lifetime EP0929649B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
EP97929815A Expired - Lifetime EP0929650B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
EP97931056A Expired - Lifetime EP0929651B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne turm-verfahren |
EP97932153A Ceased EP0929655A1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
EP97931059A Withdrawn EP0929654A1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne turm-verfahren |
EP97931058A Expired - Lifetime EP0929653B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
EP97928871A Expired - Lifetime EP0929648B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96936168A Withdrawn EP0929645A1 (de) | 1996-10-04 | 1996-10-04 | Verfahren zur herstellung einer waschmittelzusammensetzung mit niedrigem schüttgewicht durch prozess ohne turm |
EP97931057A Ceased EP0929652A1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97929815A Expired - Lifetime EP0929650B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
EP97931056A Expired - Lifetime EP0929651B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne turm-verfahren |
EP97932153A Ceased EP0929655A1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
EP97931059A Withdrawn EP0929654A1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne turm-verfahren |
EP97931058A Expired - Lifetime EP0929653B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
EP97928871A Expired - Lifetime EP0929648B1 (de) | 1996-10-04 | 1997-06-05 | Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren |
Country Status (12)
Country | Link |
---|---|
EP (9) | EP0929645A1 (de) |
JP (9) | JP3305327B2 (de) |
CN (8) | CN1133738C (de) |
AR (6) | AR010510A1 (de) |
AT (5) | ATE223476T1 (de) |
AU (9) | AU7388196A (de) |
BR (7) | BR9612732A (de) |
CA (9) | CA2267291C (de) |
DE (5) | DE69721287T2 (de) |
ES (5) | ES2193386T3 (de) |
MX (2) | MX219077B (de) |
WO (9) | WO1998014549A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019148071A1 (en) * | 2018-01-26 | 2019-08-01 | Ecolab Usa Inc. | Solidifying liquid anionic surfactants |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996031510A1 (en) * | 1995-04-03 | 1996-10-10 | Novartis Ag | Pyrazole derivatives and processes for the preparation thereof |
GB9526097D0 (en) * | 1995-12-20 | 1996-02-21 | Unilever Plc | Process |
GB9712580D0 (en) * | 1997-06-16 | 1997-08-20 | Unilever Plc | Production of detergent granulates |
GB9712583D0 (en) | 1997-06-16 | 1997-08-20 | Unilever Plc | Production of detergent granulates |
GB9713748D0 (en) * | 1997-06-27 | 1997-09-03 | Unilever Plc | Production of detergent granulates |
US6355606B1 (en) | 1997-07-14 | 2002-03-12 | The Procter & Gamble Company | Process for making a low density detergent composition by controlled agglomeration in a fluid bed dryer |
CN1192091C (zh) | 1997-07-14 | 2005-03-09 | 普罗格特-甘布尔公司 | 通过控制附聚颗粒大小制备低密度洗涤剂组合物的方法 |
EP1002044B1 (de) | 1997-07-15 | 2004-05-06 | The Procter & Gamble Company | Verfahren zur herstellung hochkonzentrierter waschmittelagglomerate durch mehrstufige einspritzung von tensidpasten |
US6440342B1 (en) | 1998-07-08 | 2002-08-27 | The Procter & Gamble Company | Process for making a low density detergent composition by controlling nozzle height in a fluid bed dryer |
US6492319B1 (en) | 1998-08-20 | 2002-12-10 | The Procter & Gamble Company | High density detergent-making process involving a moderate speed mixer/densifier |
US6794354B1 (en) * | 1998-09-18 | 2004-09-21 | The Procter & Gamble Company | Continuous process for making detergent composition |
CA2346926A1 (en) * | 1998-10-26 | 2000-05-04 | Christopher Andrew Morrison | Processes for making granular detergent composition having improved appearance and solubility |
GB9825558D0 (en) * | 1998-11-20 | 1999-01-13 | Unilever Plc | Granular detergent components and particulate detergent compositions containing them |
GB9913546D0 (en) | 1999-06-10 | 1999-08-11 | Unilever Plc | Granular detergent component containing zeolite map and laundry detergent compositions containing it |
EP1187904B1 (de) * | 1999-06-21 | 2004-08-11 | The Procter & Gamble Company | Verfahren zur herstellung granularer waschmittelzusammensetzungen |
US6894018B1 (en) | 1999-06-21 | 2005-05-17 | The Procter & Gamble Company | Process for making granular detergent in a fluidized bed granulator having recycling of improperly sized particles |
GB0009877D0 (en) † | 2000-04-20 | 2000-06-07 | Unilever Plc | Granular detergent component and process for its preparation |
EP2123742A1 (de) | 2008-05-14 | 2009-11-25 | The Procter and Gamble Company | Feste Waschmittelzusammensetzung mit Silikatsalz mit geringer Dichte |
WO2011061045A1 (en) | 2009-11-20 | 2011-05-26 | Unilever Nv | Detergent granule and its manufacture |
CN114774206A (zh) | 2014-04-10 | 2022-07-22 | 宝洁公司 | 复合洗涤剂颗粒和包含复合洗涤剂颗粒的衣物洗涤组合物 |
WO2019148090A1 (en) | 2018-01-26 | 2019-08-01 | Ecolab Usa Inc. | Solidifying liquid amine oxide, betaine, and/or sultaine surfactants with a carrier |
EP3743494A1 (de) | 2018-01-26 | 2020-12-02 | Ecolab Usa Inc. | Verfestigendes flüssiges aminoxid, betain, und/oder sultaintenside mit einem bindemittel und einem optionalen träger |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3625902A (en) * | 1968-10-11 | 1971-12-07 | Stauffer Chemical Co | Method of preparing agglomerated detergent composition |
US4169806A (en) * | 1978-08-09 | 1979-10-02 | The Procter & Gamble Company | Agglomeration process for making granular detergents |
US4992079A (en) * | 1986-11-07 | 1991-02-12 | Fmc Corporation | Process for preparing a nonphosphate laundry detergent |
GB2209172A (en) * | 1987-08-28 | 1989-05-04 | Unilever Plc | Preparation of solid particulate components for detergents |
KR0170424B1 (ko) * | 1990-07-05 | 1999-01-15 | 호르스트 헤를레,요한 글라슬 | 세제 및 청정제용 표면 활성제 과립의 제조방법 |
CA2096255C (en) * | 1990-11-14 | 1998-01-20 | Jeffrey D. Painter | Nonphosphated automatic dishwashing compositions with oxygen bleach systems and process for their preparation |
EP0555622B1 (de) * | 1992-02-14 | 1997-07-09 | The Procter & Gamble Company | Verfahren zur Herstellung von Detergenskörnchen durch Neutralisation von Sulfonsäuren |
DE69332270T3 (de) * | 1992-06-15 | 2006-08-17 | The Procter & Gamble Company, Cincinnati | Verfahren zum herstellen von kompakten waschmittelzusammensetzungen |
DE69227311T2 (de) * | 1992-07-15 | 1999-06-02 | The Procter & Gamble Co., Cincinnati, Ohio | Waschmittelzusammensetzungen |
CA2173108A1 (en) * | 1993-10-15 | 1995-04-20 | Scott William Capeci | Continuous process for making high density detergent granules |
GB9322530D0 (en) * | 1993-11-02 | 1993-12-22 | Unilever Plc | Process for the production of a detergent composition |
PT663439E (pt) * | 1994-01-17 | 2000-12-29 | Procter & Gamble | Processo para a preparacao de granulos de detergente |
US5489392A (en) * | 1994-09-20 | 1996-02-06 | The Procter & Gamble Company | Process for making a high density detergent composition in a single mixer/densifier with selected recycle streams for improved agglomerate properties |
US5516448A (en) * | 1994-09-20 | 1996-05-14 | The Procter & Gamble Company | Process for making a high density detergent composition which includes selected recycle streams for improved agglomerate |
US5554587A (en) * | 1995-08-15 | 1996-09-10 | The Procter & Gamble Company | Process for making high density detergent composition using conditioned air |
-
1996
- 1996-10-04 MX MX9903195A patent/MX219077B/es not_active IP Right Cessation
- 1996-10-04 MX MX9903193A patent/MX219076B/es not_active IP Right Cessation
- 1996-10-04 AU AU73881/96A patent/AU7388196A/en not_active Abandoned
- 1996-10-04 EP EP96936168A patent/EP0929645A1/de not_active Withdrawn
- 1996-10-04 WO PCT/US1996/015881 patent/WO1998014549A1/en not_active Application Discontinuation
- 1996-10-04 JP JP53523397A patent/JP3305327B2/ja not_active Expired - Fee Related
- 1996-10-04 CA CA002267291A patent/CA2267291C/en not_active Expired - Fee Related
- 1996-10-04 BR BR9612732A patent/BR9612732A/pt not_active IP Right Cessation
-
1997
- 1997-06-05 JP JP51648998A patent/JP3299981B2/ja not_active Expired - Fee Related
- 1997-06-05 ES ES97931058T patent/ES2193386T3/es not_active Expired - Lifetime
- 1997-06-05 BR BR9712490-7A patent/BR9712490A/pt not_active IP Right Cessation
- 1997-06-05 CA CA002268062A patent/CA2268062C/en not_active Expired - Fee Related
- 1997-06-05 CA CA002268060A patent/CA2268060C/en not_active Expired - Fee Related
- 1997-06-05 DE DE69721287T patent/DE69721287T2/de not_active Expired - Fee Related
- 1997-06-05 ES ES97929815T patent/ES2201305T3/es not_active Expired - Lifetime
- 1997-06-05 CA CA002268068A patent/CA2268068C/en not_active Expired - Fee Related
- 1997-06-05 EP EP97931057A patent/EP0929652A1/de not_active Ceased
- 1997-06-05 DE DE69726439T patent/DE69726439T2/de not_active Expired - Fee Related
- 1997-06-05 EP EP97928872A patent/EP0929649B1/de not_active Expired - Lifetime
- 1997-06-05 AT AT97928871T patent/ATE223476T1/de not_active IP Right Cessation
- 1997-06-05 AT AT97929815T patent/ATE246726T1/de not_active IP Right Cessation
- 1997-06-05 CA CA002268063A patent/CA2268063C/en not_active Expired - Fee Related
- 1997-06-05 JP JP51649598A patent/JP3299986B2/ja not_active Expired - Fee Related
- 1997-06-05 JP JP51649298A patent/JP3345022B2/ja not_active Expired - Fee Related
- 1997-06-05 WO PCT/US1997/009790 patent/WO1998014552A1/en active IP Right Grant
- 1997-06-05 CN CNB971802785A patent/CN1133738C/zh not_active Expired - Fee Related
- 1997-06-05 AU AU34782/97A patent/AU3478297A/en not_active Abandoned
- 1997-06-05 WO PCT/US1997/009793 patent/WO1998014555A1/en not_active Application Discontinuation
- 1997-06-05 DE DE69726440T patent/DE69726440T2/de not_active Expired - Fee Related
- 1997-06-05 DE DE69723986T patent/DE69723986T2/de not_active Expired - Fee Related
- 1997-06-05 JP JP51649098A patent/JP3299982B2/ja not_active Expired - Fee Related
- 1997-06-05 WO PCT/US1997/009794 patent/WO1998014556A1/en active IP Right Grant
- 1997-06-05 AT AT97928872T patent/ATE255159T1/de not_active IP Right Cessation
- 1997-06-05 BR BR9712492-3A patent/BR9712492A/pt not_active IP Right Cessation
- 1997-06-05 BR BR9713249-7A patent/BR9713249A/pt not_active Application Discontinuation
- 1997-06-05 EP EP97929815A patent/EP0929650B1/de not_active Expired - Lifetime
- 1997-06-05 JP JP51649198A patent/JP3299983B2/ja not_active Expired - Fee Related
- 1997-06-05 JP JP51649398A patent/JP3299984B2/ja not_active Expired - Fee Related
- 1997-06-05 CA CA002268067A patent/CA2268067C/en not_active Expired - Fee Related
- 1997-06-05 CN CNB971802939A patent/CN1133739C/zh not_active Expired - Fee Related
- 1997-06-05 EP EP97931056A patent/EP0929651B1/de not_active Expired - Lifetime
- 1997-06-05 WO PCT/US1997/009796 patent/WO1998014558A1/en active Application Filing
- 1997-06-05 CA CA002268055A patent/CA2268055C/en not_active Expired - Fee Related
- 1997-06-05 AU AU33030/97A patent/AU3303097A/en not_active Abandoned
- 1997-06-05 BR BR9711861A patent/BR9711861A/pt not_active Application Discontinuation
- 1997-06-05 ES ES97928871T patent/ES2178778T3/es not_active Expired - Lifetime
- 1997-06-05 AU AU34785/97A patent/AU3478597A/en not_active Abandoned
- 1997-06-05 JP JP51649698A patent/JP3299987B2/ja not_active Expired - Fee Related
- 1997-06-05 BR BR9711865A patent/BR9711865A/pt not_active IP Right Cessation
- 1997-06-05 BR BR9713246-2A patent/BR9713246A/pt not_active IP Right Cessation
- 1997-06-05 JP JP51649498A patent/JP3299985B2/ja not_active Expired - Fee Related
- 1997-06-05 WO PCT/US1997/009795 patent/WO1998014557A1/en active IP Right Grant
- 1997-06-05 EP EP97932153A patent/EP0929655A1/de not_active Ceased
- 1997-06-05 AU AU33785/97A patent/AU3378597A/en not_active Abandoned
- 1997-06-05 CN CN97180298.XA patent/CN1239995A/zh active Pending
- 1997-06-05 EP EP97931059A patent/EP0929654A1/de not_active Withdrawn
- 1997-06-05 CN CNB971802793A patent/CN1156560C/zh not_active Expired - Fee Related
- 1997-06-05 CN CNB971802963A patent/CN1156562C/zh not_active Expired - Fee Related
- 1997-06-05 WO PCT/US1997/009791 patent/WO1998014553A1/en active IP Right Grant
- 1997-06-05 ES ES97931056T patent/ES2210544T3/es not_active Expired - Lifetime
- 1997-06-05 AT AT97931056T patent/ATE255160T1/de not_active IP Right Cessation
- 1997-06-05 CA CA002267424A patent/CA2267424C/en not_active Expired - Fee Related
- 1997-06-05 CN CNB971802807A patent/CN1156561C/zh not_active Expired - Fee Related
- 1997-06-05 AU AU35683/97A patent/AU3568397A/en not_active Abandoned
- 1997-06-05 AT AT97931058T patent/ATE238409T1/de not_active IP Right Cessation
- 1997-06-05 WO PCT/US1997/009792 patent/WO1998014554A1/en not_active Application Discontinuation
- 1997-06-05 AU AU34783/97A patent/AU3478397A/en not_active Abandoned
- 1997-06-05 AU AU33031/97A patent/AU3303197A/en not_active Abandoned
- 1997-06-05 WO PCT/US1997/009789 patent/WO1998014551A1/en active IP Right Grant
- 1997-06-05 CA CA002268052A patent/CA2268052C/en not_active Expired - Fee Related
- 1997-06-05 CN CN97180294.7A patent/CN1239992A/zh active Pending
- 1997-06-05 EP EP97931058A patent/EP0929653B1/de not_active Expired - Lifetime
- 1997-06-05 EP EP97928871A patent/EP0929648B1/de not_active Expired - Lifetime
- 1997-06-05 AU AU34784/97A patent/AU3478497A/en not_active Abandoned
- 1997-06-05 DE DE69715224T patent/DE69715224T2/de not_active Expired - Fee Related
- 1997-06-05 ES ES97928872T patent/ES2212109T3/es not_active Expired - Lifetime
- 1997-06-05 CN CNB971802971A patent/CN1156563C/zh not_active Expired - Fee Related
- 1997-10-03 AR ARP970104578A patent/AR010510A1/es unknown
- 1997-10-03 AR ARP970104574A patent/AR010507A1/es unknown
- 1997-10-03 AR ARP970104579A patent/AR010511A1/es unknown
- 1997-10-03 AR ARP970104576A patent/AR010509A1/es unknown
- 1997-10-03 AR ARP970104577A patent/AR010729A1/es unknown
- 1997-10-03 AR ARP970104575A patent/AR010508A1/es unknown
Non-Patent Citations (1)
Title |
---|
See references of WO9814552A1 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019148071A1 (en) * | 2018-01-26 | 2019-08-01 | Ecolab Usa Inc. | Solidifying liquid anionic surfactants |
AU2019212823B2 (en) * | 2018-01-26 | 2021-09-23 | Ecolab Usa Inc. | Solidifying liquid anionic surfactants |
AU2021221918B2 (en) * | 2018-01-26 | 2023-08-31 | Ecolab Usa Inc. | Solidifying liquid anionic surfactants |
EP4421156A1 (de) * | 2018-01-26 | 2024-08-28 | Ecolab USA Inc. | Verfestigende flüssige anionische tenside |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2268068C (en) | Process for making a detergent composition by non-tower process | |
MXPA99003195A (en) | Process for making a detergent composition by non-tower process | |
CA2268057C (en) | Process for making a low density detergent composition | |
US6143711A (en) | Process for making a detergent composition by non-tower process | |
US6211138B1 (en) | Process for making a detergent composition by non-tower process | |
US6391844B1 (en) | Process for making a detergent composition by non-tower process | |
US6211137B1 (en) | Process for making a detergent composition by non-tower process | |
US6136777A (en) | Process for making a detergent composition by non-tower process | |
US6150323A (en) | Process for making a detergent composition by non-tower process | |
US6281188B1 (en) | Process for making a low density detergent composition | |
US6121229A (en) | Process for making a detergent composition by non-tower process | |
US6172034B1 (en) | Process for making a detergent composition by non-tower process | |
US6156719A (en) | Process for making a low density detergent composition by non-tower process | |
EP1025196A1 (de) | Verfahren zur herstellung einer waschmittelzusammensetzung durch zugabe von cotensiden | |
MXPA99003201A (en) | Process for making a detergent composition by non-tower process | |
MXPA99003197A (en) | Process for making a detergent composition by non-tower process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19990407 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20000110 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031126 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031126 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031126 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031126 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031126 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69726439 Country of ref document: DE Date of ref document: 20040108 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040226 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040226 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040607 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2212109 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040827 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20060505 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20060508 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060605 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20060613 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060630 Year of fee payment: 10 Ref country code: IT Payment date: 20060630 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040426 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20070605 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20080101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20080229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080101 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070605 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20070606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070605 |