EP0929649A1 - Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren - Google Patents

Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren

Info

Publication number
EP0929649A1
EP0929649A1 EP97928872A EP97928872A EP0929649A1 EP 0929649 A1 EP0929649 A1 EP 0929649A1 EP 97928872 A EP97928872 A EP 97928872A EP 97928872 A EP97928872 A EP 97928872A EP 0929649 A1 EP0929649 A1 EP 0929649A1
Authority
EP
European Patent Office
Prior art keywords
surfactant
detergent
mixer
process according
mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97928872A
Other languages
English (en)
French (fr)
Other versions
EP0929649B1 (de
Inventor
Wayne Edward Beimesch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP0929649A1 publication Critical patent/EP0929649A1/de
Application granted granted Critical
Publication of EP0929649B1 publication Critical patent/EP0929649B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • C11D11/0088Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads the liquefied ingredients being sprayed or adsorbed onto solid particles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/02Preparation in the form of powder by spray drying
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers

Definitions

  • the present invention generally relates to a non-tower process for producing a particulate detergent composition. More particularly, the invention is directed to a continuous process during which detergent agglomerates are produced by feeding a surfactant and coating materials into a series of mixers. The process produces a free flowing, detergent composition whose density can be adjusted for wide range of consumer needs, and which can be commercially sold.
  • the first type of process involves spray- drying an aqueous detergent slurry in a spray-drying tower to produce highly porous detergent granules (e.g., tower process for low density detergent compositions).
  • the various detergent components are dry mixed after which they are agglomerated with a binder such as a nonionic or anionic surfactant, to produce high density detergent compositions (e.g., agglomeration process for high density detergent compositions).
  • This apparatus comprises a substantially horizontal, roughened, rotatable table positioned within and at the base of a substantially vertical, smooth walled cylinder.
  • This process is essentially a batch process and is therefore less suitable for the large scale production of detergent powders.
  • non-tower process for continuously producing a detergent composition having high density delivered directly from starting detergent ingredients, and preferably the density can be achieved by adjusting the process condition. Also, there remains a need for such a process which is more efficient, flexible and economical to facilitate large-scale production of detergents (1) for flexibility in the ultimate density of the final composition, and (2) for flexibility in terms of incorporating several different kinds of detergent ingredients, especially detergent ingredients in the form of liquid, into the process.
  • Laid Open No.WO96/04359 (Unilever).
  • Laid-open No.WO93/23,523 (Henkel) describes the process comprising pre-agglomeration by a low speed mixer and further agglomeration step by high speed mixer for obtaining high density detergent composition with less than 25 wt% of the granules having a diameter over 2 mm.
  • the U.S. Patent No. 4,427,417 (Korex) describes continuous process for agglomeration which reduces caking and oversized agglomerates.
  • the present invention meets the aforementioned needs in the art by providing a process which produces a high density granular detergent composition.
  • the present invention also meets the aforementioned needs in the art by providing a process which produces a granular detergent composition for flexibility in the ultimate density of the final composition from agglomeration (e.g., non-tower) process.
  • the process does not use the conventional spray drying towers currently which is limited in producing high surfactant loading compositions.
  • the process of the present invention is more efficient, economical and flexible with regard to the variety of detergent compositions which can be produced in the process.
  • the process is more amenable to environmental concerns in that it does not use spray drying towers which typically emit particulates and volatile organic compounds into the atmosphere.
  • agglomerates refers to particles formed by agglomerating raw materials with binder such as surfactants and or inorganic solutions / organic solvents and polymer solutions.
  • binder such as surfactants and or inorganic solutions / organic solvents and polymer solutions.
  • a process for preparing a granular detergent composition having a density at least about 600 g/1 is provided.
  • the process comprises the steps of:
  • the granular detergent compositions having a high density of at least about 600g/l produced by any one of the process embodiments described herein. Accordingly, it is an object of the invention to provide a process for continuously producing a detergent composition which has flexibility with respect to density of the final products by controlling energy input, residence time condition, and tip speed condition in the mixers. It is also an object of the invention to provide a process which is more efficient, flexible and economical to facilitate large-scale production.
  • the present invention is directed to a process which produces free flowing, granular detergent agglomerates having a density of at least about 600 g/1.
  • the process produces granular detergent agglomerates from an aqueous and/or non-aqueous surfactant which is then coated with fine powder having a diameter from 0.1 to 500 microns, in order to obtain low density granules.
  • aqueous and/or non- aqueous surfactant(s) which is/are in the form of powder, paste and/or liquid, and fine powder having a diameter from 0.1 to 500 microns, preferably from about 1 to about 100 microns are fed into a mixer, so as to make agglomerates.
  • surface of the surfactant which is coated by the fine powder is wet by finely atomized liquid so as to add more fine powder on the surface of the agglomerates.
  • an internal recycle stream of powder having a diameter of about 0.1 to about 300 microns generated in the fluidizing apparatus can be fed into the mixer in addition to the fine powder.
  • the amount of such internal recycle stream of powder can be 0 to about 60 wt% of final product.
  • the mean residence time of the mixer is in range from about 0.2 to about 5 seconds and tip speed of the mixer of the mixer is in range from about 10 m/s to about 30 m/s
  • the energy per unit mass of the mixer (energy condition) of the mixer is in range from about 0.15 kj/kg to about 5 kj/kg
  • the mean residence time of the mixer is in range from about 0.2 to about 5 seconds and tip speed of the mixer is in range from about 10 m/s to about 30 m/s
  • the energy per unit mass of the mixer (energy condition) is in range from about 0.15 kj/kg to about 5 kj/kg
  • the most preferably, the mean residence time of the mixer is in range from about 0.2 to about 5 seconds
  • tip speed of the mixer is in range from about 15 m/s to about 26 m/s
  • the energy per unit mass of the mixer (energy condition) is from about 0.2 kj/kg to about 3 kj/kg.
  • the examples of the mixer can be any types of
  • the agglomerates from the first step are fed into a fluidized apparatus, such as fluidized bed, in order to enhance granulation for producing free flowing high density granules.
  • the second step can proceed in one or more than one fluidized apparatus (e.g., combining different kinds of fluidized apparatus such as fluid bed dryer and fluid bed cooler).
  • the resultant product from the second step is fluidized thoroughly so that the granules from the second step have a round shape.
  • about 0 to about 10% , more preferably about 2-5% of powder detergent materials of the kind used in the first step and/or other detergent ingredients can be added to the second step.
  • condition of a fluidized apparatus can be; Mean residence time : from about 1 to about 10 minutes Depth of unfluidized bed : from about 100 to about 300 mm Droplet spray size : not more than about 50 micron Spray height: from about 175 to about 250 mm
  • Fluidizing velocity from about 0.2 to about 1.4 m/s Bed temperature : from about 12 to about 100 °C, more preferably; Mean residence time : from about 2 to about 6 minutes Depth of unfluidized bed : from about 100 to about 250 mm Droplet spray size : less than about 50 micron Spray height: from about 175 to about 200 mm Fluidizing velocity : from about 0.3 to about 1.0 m/s Bed temperature : from about 12 to about 80 °C. If two different kinds of fluidized apparatus would be used, mean residence time of the third step in total can be from about 2 to about 20 minutes, more preferably, from about 2 to 12 minutes.
  • a coating agent to improve flowability and/or minimize over agglomeration of the detergent composition can be added in one or more of the following locations of the instant process: (1) the coating agent can be added directly after fluid bed cooler or fluid bed dryer; (2) the coating agent may be added between fluid bed dryer and fluid bed cooler; and/or (3) the coating agent may be added directly to the fluid bed dryer.
  • the coating agent is preferably selected from the group consisting of aluminosilicates, silicates, carbonates and mixtures thereof.
  • the coating agent not only enhances the free flowability of the resulting detergent composition which is desirable by consumers in that it permits easy scooping for detergent during use, but also serves to control agglomeration by preventing or minimizing over agglomeration. As those skilled in the art are well aware, over agglomeration can lead to very undesirable flow properties and aesthetics of the final detergent product.
  • the total amount of the surfactants in products made by the present invention, which are included in the following detergent materials, finely atomized liquid and adjunct detergent ingredients is generally from about 5% to about
  • the surfactants which are included in the above can be from any part of the process of the present invention., e.g., from either one of the first step and/or the second step of the present invention.
  • the amount of the surfactant of the present process can be from about 5% to about 60%, more preferably from about 12% to about 40%, more preferably, from about 15 to about 35%, in total amount of the final product obtained by the process of the present invention.
  • the surfactant of the present process which is used as the above mentioned starting detergent materials in the first step, is in the form of powdered, pasted or liquid raw materials.
  • the surfactant itself is preferably selected from anionic, nonionic, zwittehonic, ampholytic and cationic classes and compatible mixtures thereof.
  • Detergent surfactants useful herein are described in U.S. Patent 3,664,961 , Norris, issued May 23, 1972, and in U.S. Patent 3,929,678, Laughlin et al., issued December 30, 1975, both of which are incorporated herein by reference.
  • Useful cationic surfactants also include those described in U.S. Patent 4,222,905, Cockrell, issued September 16, 1980, and in U.S. Patent 4,239,659, Murphy, issued December 16, 1980, both of which are also incorporated herein by reference.
  • anionics and nonionics are preferred and anionics are most preferred.
  • Nonlimiting examples of the preferred anionic surfactants useful in the present invention include the conventional C11-C18 alkyl benzene sulfonates ("LAS"), primary, branched-chain and random C10-C20 a ' k y' sulfates (“AS”), the C10-C18 secondary (2,3) alkyl sulfates of the formula CH3(CH2) x (CHOSO3 " M + ) CH3 and CH3 (CH2)y(CHOSO3 ' M + ) CH2CH3 where x and (y + 1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, and the C10- 18 alk y' a'koxy sulfates ("AE X S"; especially EO 1-7 ethoxy sulfates).
  • LAS C11-C18 alkyl benzene s
  • Useful anionic surfactants also include water-soluble salts of 2-acyloxy- alkane-1-sulfonic acids containing from about 2 to 9 carbon atoms in the acyl group and from about 9 to about 23 carbon atoms in the alkane moiety; water- soluble salts of olefin sulfonates containing from about 12 to 24 carbon atoms; and beta-alkyloxy alkane sulfonates containing from about 1 to 3 carbon atoms in the alkyl group and from about 8 to 20 carbon atoms in the alkane moiety .
  • exemplary surfactants useful in the paste of the invention include C10-C18 a'kyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the glycerol ethers, the C ⁇
  • the conventional nonionic and amphoteric surfactants such as the C-12-C18 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C6-C12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C-JQ-CI S amine oxides, and the like, can also be included in the overall compositions.
  • AE C-12-C18 alkyl ethoxylates
  • C6-C12 alkyl phenol alkoxylates especially ethoxylates and mixed ethoxy/propoxy
  • C-JQ-CI S amine oxides and the like
  • 8 N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C-12-C18 N-methylglucamides. See WO 9,206,154.
  • sugar- derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C10-C 8 N-(3-methoxypropyl) glucamide.
  • the N-propyl through N-hexyl C12- C18 glucamides can be used for low sudsing.
  • C10-C20 conventional soaps may also be used. If high sudsing is desired, the branched-chain C ⁇ ⁇ o-C-
  • Cationic surfactants can also be used as a detergent surfactant herein and suitable quaternary ammonium surfactants are selected from mono C6-C16. preferably C6-C10 N-alkyl or alkenyl ammonium surfactants wherein remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
  • Ampholytic surfactants can also be used as a detergent surfactant herein, which include aliphatic derivatives of heterocyclic secondary and tertiary amines; zwitterionic surfactants which include derivatives of aliphatic quaternary ammonium, phosphonium and sulfonium compounds; water-soluble salts of esters of alpha-sulfonated fatty acids; alkyl ether sulfates; water-soluble salts of olefin sulfonates; beta-alkyloxy alkane sulfonates; betaines having the formula R(Rl)2N + R 2 COO ** , wherein R is a C6-C18 hydrocarbyl group, preferably a C10- C16 alkyl group or C10-CI6 acylamido alkyl group, each R 1 is typically C1-C3 alkyl, preferably methyl and R2 is a C1-C5 hydrocarbyl group, preferably a C
  • betaines examples include coconut acylamidopropyldimethyl betaine; hexadecyl dimethyl betaine; C12-I4 acylamidopropylbetaine; C8-14 acylamidohexyldiethyl betaine; 4[C1 -16 acylmethylamidodiethylammonio]-1-carboxybutane; C16-I8 acylamidodimethylbetaine; C12-I6 acylamidopentanediethylbetaine; and [C12-16 acylmethylamidodimethylbetaine.
  • Preferred betaines are C12-I8 dimethyl-ammonio hexanoate and the C10-I8 acylamidopropane (or ethane) dimethyl (or diethyl) betaines; and the sultaines having the formula (R(R 1 )2N + R2SO3 _ wherein R is a C6-C18 hydrocarbyl group, preferably a C10- C16 alkyl group, more preferably a C12-C13 alkyl group, each R 1 is typically C-
  • Suitable sultaines include C12-C14 dimethylammonio-2-hydroxypropyl sulfonate, C12- C14 amido propyl ammonio-2-hydroxypropyl sultaine, C12-C14 dihydroxyethylammonio propane sulfonate, and C-J6-18 dimethylammonio hexane sulfonate, with C 12-14 amido propyl ammonio-2-hydroxypropyl sultaine being preferred. Fine Powder
  • the aluminosilicate ion exchange materials used herein as a detergent builder preferably have both a high calcium ion exchange capacity and a high exchange rate. Without intending to be limited by theory, it is believed that such high calcium ion exchange rate and capacity are a function of several interrelated factors which derive from the method by which the aluminosilicate ion exchange material is produced. In that regard, the aluminosilicate ion exchange materials used herein are preferably produced in accordance with Corkill et al, U.S. Patent No. 4,605,509 (Procter & Gamble), the disclosure of which is incorporated herein by reference.
  • the aluminosilicate ion exchange material has the formula Na z [(AIO 2 ) z .(SiO 2 )y]xH2 ⁇ wherein z and y are integers of at least 6, the molar ratio of z to y is from about 1 to about 5 and x is from about 10 to about 264. More preferably, the aluminosilicate has the formula Na 12 [(AIO 2 )i2.(Si0 2 )i2]xH2 ⁇ wherein x is from about 20 to about 30, preferably about 27.
  • These preferred aluminosilicates are available commercially, for example under designations Zeolite A, Zeolite B and Zeolite X.
  • aluminosilicate ion exchange materials suitable for use herein can be made as described in Krummel et al, U.S. Patent No. 3,985,669, the disclosure of which is incorporated herein by reference.
  • the aluminosilicates used herein are further characterized by their ion exchange capacity which is at least about 200 mg equivalent of CaCO3 hardness/gram, calculated on an anhydrous basis, and which is preferably in a range from about 300 to 352 mg equivalent of CaCO3 hardness/gram.
  • the instant aluminosilicate ion exchange materials are still further characterized by their calcium ion exchange rate which is at least about 2 grains Ca ++ /gallon/minute/-gram/gallon, and more preferably in a range from about 2 grains Ca ++ /gallon/minute/-gram/gallon to about 6 grains Ca ++ /gallon/minute/ -gram/gallon.
  • the amount of the finely atomized liquid of the present process can be from about 1 % to about 10% (active basis), preferably from 2% to about 6% (active basis) in total amount of the final product obtained by the process of the present invention.
  • the finely atomized liquid of the present process can be selected from the group consisting of liquid silicate, anionic or cationic surfactants which are in liquid form, aqueous or non-aqueous polymer solutions, water and mixtures thereof.
  • Other optional examples for the finely atomized liquid of the present invention can be sodium carboxy methyl cellulose solution, polyethylene glycol (PEG), and solutions of dimethylene triamine pentamethyl phosphonic acid (DETMP),
  • anionic surfactant solutions which can be used as the finely atomized liquid in the present inventions are about 88 - 97% active HLAS, about 30 - 50% active NaLAS, about 28% active AE3S solution, about 40-50% active liquid silicate, and so on.
  • Cationic surfactants can also be used as finely atomized liquid herein and suitable quaternary ammonium surfactants are selected from mono C6-C16, preferably C6-C10 N-alkyl or alkenyl ammonium surfactants wherein remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
  • aqueous or non-aqueous polymer solutions which can be used as the finely atomized liquid in the present inventions are modified polyamines which comprise a polyamine backbone corresponding to the formula: having a modified polyamine formula V( n+ ⁇ nW m Y n Z or a polyamine backbone corresponding to the formula:
  • polyamine backbone prior to modification having a modified polyamine formula V( n _k+i)W m Y n Y'kZ, wherein k is less than or equal to n, said polyamine backbone prior to modification has a molecular weight greater than about 200 daltons, wherein
  • V units are terminal units having the formula:
  • W units are backbone units having the formula:
  • Y units are branching units having the formula:
  • Z units are terminal units having the formula: X "
  • Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid.
  • the presence in the polymeric polycarboxylates herein of monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight of the polymer.
  • Homo-polymeric polycarboxylates which have molecular weights above
  • Particularly suitable homo- polymeric polycarboxylates can be derived from acrylic acid.
  • acrylic acid- based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid.
  • the average molecular weight of such polymers in the acid form preferably ranges from above 4,000 to 10,000, preferably from above 4,000 to 7,000, and most preferably from above 4,000 to 5,000.
  • Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts.
  • the starting detergent material in the present process can include additional detergent ingredients and/or, any number of additional ingredients can be incorporated in the detergent composition during subsequent steps of the present process.
  • adjunct ingredients include other detergency builders, bleaches, bleach activators, suds boosters or suds suppressors, antitarnish and anticorrosion agents, soil suspending agents, soil release agents, germicides, pH adjusting agents, non-builder alkalinity sources, chelating agents, smectite clays, enzymes, enzyme-stabilizing agents and perfumes. See U.S. Patent 3,936,537, issued February 3, 1976 to Baskerville, Jr. et al., incorporated herein by reference.
  • Other builders can be generally selected from the various water-soluble, alkali metal, ammonium or substituted ammonium phosphates, polyphosphates, phosphonates, polyphosphonates, carbonates, borates, polyhydroxy sulfonates, polyacetates, carboxylates, and polycarboxylates.
  • the alkali metal especially sodium, salts of the above.
  • Preferred for use herein are the phosphates, carbonates, C- * rj-l8 f attv acids, polycarboxylates, and mixtures thereof. More preferred are sodium tripolyphosphate, tetrasodium pyrophosphate, citrate, tartrate mono- and di-succinates, and mixtures thereof (see below).
  • polyacetate and polycarboxylate builders are the sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylene diamine tetraacetic acid, nitrilotriacetic acid, oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, and citric acid.
  • Polymeric polycarboxylate builders are set forth in U.S. Patent 3,308,067, Diehl, issued March 7, 1967, the disclosure of which is incorporated herein by reference.
  • Such materials include the water-soluble salts of homo- and copolymers of aliphatic carboxylic acids such as maleic acid, itaconic acid, mesaconic acid, fumaric acid, aconitic acid, citraconic acid and methylene malonic acid.
  • Some of these materials are useful as the water-soluble anionic polymer as hereinafter described, but only if in intimate admixture with the non-soap anionic surfactant.
  • polyacetal carboxylates for use herein are the polyacetal carboxylates described in U.S. Patent 4,144,226, issued March 13, 1979 to Crutchfield et al, and U.S. Patent 4,246,495, issued March 27, 1979 to Crutchfield et al, both of which are incorporated herein by reference.
  • These polyacetal carboxylates can be prepared by bringing together under polymerization condition an ester of glyoxyiic acid and a polymerization initiator. The resulting polyacetal carboxylate ester is then attached to chemically stable end groups to stabilize the polyacetal carboxylate against rapid depolymerization in alkaline solution, converted to the corresponding salt, and added to a detergent composition.
  • Particularly preferred polycarboxylate builders are the ether carboxylate builder compositions comprising a combination of tartrate monosuccinate and tartrate disuccinate described in U.S. Patent 4,663,071 , Bush et al., issued May 5, 1987, the disclosure of which is incorporated herein by reference.
  • Bleaching agents and activators are described in U.S. Patent 4,412,934, Chung et al., issued November 1 , 1983, and in U.S. Patent 4,483,781 , Hartman, issued November 20, 1984, both of which are incorporated herein by reference.
  • Chelating agents are also described in U.S. Patent 4,663,071 , Bush et al., from Column 17, line 54 through Column 18, line 68, incorporated herein by reference.
  • Suds modifiers are also optional ingredients and are described in U.S. Patents 3,933,672, issued January 20, 1976 to Bartoletta et al., and 4,136,045, issued January 23, 1979 to Gault et al., both incorporated herein by reference.
  • Suitable smectite clays for use herein are described in U.S. Patent 4,762,645, Tucker et al, issued August 9, 1988, Column 6, line 3 through Column 7, line 24, incorporated herein by reference.
  • Suitable additional detergency builders for use herein are enumerated in the Baskerville patent, Column 13, line 54 through Column 16, line 16, and in U.S. Patent 4,663,071 , Bush et al, issued May 5, 1987, both incorporated herein by reference.
  • the process can comprise the step of spraying an additional binder in one or more than one of the first, second and/or the third mixers for the present invention.
  • a binder is added for purposes of enhancing agglomeration by providing a "binding" or "sticking" agent for the detergent components.
  • the binder is preferably selected from the group consisting of water, anionic surfactants, nonionic surfactants, liquid silicates, polyethylene glycol, polyvinyl pyrrolidone polyacrylates, citric acid and mixtures thereof.
  • suitable binder materials including those listed herein are described in Beerse et al, U.S. Patent No.
  • Another optional step of the instant process entails finishing the resulting detergent agglomerates by a variety of processes including spraying and/or admixing other conventional detergent ingredients.
  • the finishing step encompasses spraying perfumes, brighteners and enzymes onto the finished agglomerates to provide a more complete detergent composition.
  • Such techniques and ingredients are well known in the art.
  • surfactant paste structuring process e.g., hardening an aqueous anionic surfactant paste by incorporating a paste-hardening material by using an extruder, prior to the process of the present invention.
  • surfactant paste structuring process e.g., hardening an aqueous anionic surfactant paste by incorporating a paste-hardening material by using an extruder.
  • the details of the surfactant paste structuring process are disclosed co-application No. PCT/US96/15960 (filed October 4, 1996) .
  • Step 1 120 - 160 kg/hr of HLAS (an acid precursor of C ⁇ ⁇
  • the surfactant is fed at about 50 to 60 °C, and the powders are fed at room temperature.
  • HLAS an acid precursor of C-
  • HLAS an acid precursor of C-
  • Step 2 The agglomerates from the Schugi mixer are fed to a fluid bed drying apparatus for drying, rounding and growth of agglomerates. 20 - 80 kg/hr of liquid silicate (43% solids, 2.0 R) can be also added in the fluid bed drying apparatus at 35°C.
  • the condition of the fluid bed drying apparatus is as follows:
  • Spray height 175 - 250 mm (above distributor plate)
  • Bed temperature 40 - 70 °C
  • the resultant from the step 2 has a density of about 600g/l, and can be optionally subjected to the optional process of cooling, sizing and/or grinding.
  • Step 1 120 - 160 kg/hr of HLAS (an acid precursor of C «
  • the condition of the Schugi mixer is as follows:
  • Step 2 The agglomerates from the Schugi mixer are fed to a fluid bed drying apparatus for drying, rounding and growth of agglomerates. 20 - 80 kg/hr of liquid silicate (43% solids, 2.0 R) can be also added in the fluid bed drying apparatus at 35°C. The condition of the fluid bed drying apparatus is as follows: Mean residence time : 2- 4 minutes
  • Spray height 175 - 250 mm (above distributor plate)
  • Fluidizing velocity 0.4 - 0.8 m/s
  • Bed temperature 40 - 70 °C
  • Step 3 The resultant from the fluid bed drying apparatus is fed to a fluid bed cooling apparatus. 5 - 10 kg/hr of liquid silicate (43% solids, 2.0 R) is added to the apparatus.
  • the condition of the fluid bed cooling apparatus is as follows: Mean residence time : 2- 4 minutes
  • the resultant from the step 3 has a density of about 600 g/l, and can be optionally subjected to the optional process of sizing an/or grinding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
EP97928872A 1996-10-04 1997-06-05 Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren Expired - Lifetime EP0929649B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
WOPCT/US96/15881 1996-10-04
PCT/US1996/015881 WO1998014549A1 (en) 1996-10-04 1996-10-04 Process for making a low density detergent composition by non-tower process
PCT/US1997/009790 WO1998014552A1 (en) 1996-10-04 1997-06-05 Process for making a detergent composition by non-tower process

Publications (2)

Publication Number Publication Date
EP0929649A1 true EP0929649A1 (de) 1999-07-21
EP0929649B1 EP0929649B1 (de) 2003-11-26

Family

ID=22255901

Family Applications (9)

Application Number Title Priority Date Filing Date
EP96936168A Withdrawn EP0929645A1 (de) 1996-10-04 1996-10-04 Verfahren zur herstellung einer waschmittelzusammensetzung mit niedrigem schüttgewicht durch prozess ohne turm
EP97931057A Ceased EP0929652A1 (de) 1996-10-04 1997-06-05 Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren
EP97928872A Expired - Lifetime EP0929649B1 (de) 1996-10-04 1997-06-05 Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren
EP97929815A Expired - Lifetime EP0929650B1 (de) 1996-10-04 1997-06-05 Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren
EP97931056A Expired - Lifetime EP0929651B1 (de) 1996-10-04 1997-06-05 Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne turm-verfahren
EP97932153A Ceased EP0929655A1 (de) 1996-10-04 1997-06-05 Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren
EP97931059A Withdrawn EP0929654A1 (de) 1996-10-04 1997-06-05 Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne turm-verfahren
EP97931058A Expired - Lifetime EP0929653B1 (de) 1996-10-04 1997-06-05 Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren
EP97928871A Expired - Lifetime EP0929648B1 (de) 1996-10-04 1997-06-05 Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP96936168A Withdrawn EP0929645A1 (de) 1996-10-04 1996-10-04 Verfahren zur herstellung einer waschmittelzusammensetzung mit niedrigem schüttgewicht durch prozess ohne turm
EP97931057A Ceased EP0929652A1 (de) 1996-10-04 1997-06-05 Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren

Family Applications After (6)

Application Number Title Priority Date Filing Date
EP97929815A Expired - Lifetime EP0929650B1 (de) 1996-10-04 1997-06-05 Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren
EP97931056A Expired - Lifetime EP0929651B1 (de) 1996-10-04 1997-06-05 Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne turm-verfahren
EP97932153A Ceased EP0929655A1 (de) 1996-10-04 1997-06-05 Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren
EP97931059A Withdrawn EP0929654A1 (de) 1996-10-04 1997-06-05 Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne turm-verfahren
EP97931058A Expired - Lifetime EP0929653B1 (de) 1996-10-04 1997-06-05 Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren
EP97928871A Expired - Lifetime EP0929648B1 (de) 1996-10-04 1997-06-05 Verfahren zur herstellung von einer waschmittelzusammensetzung nach ohne-turm-verfahren

Country Status (12)

Country Link
EP (9) EP0929645A1 (de)
JP (9) JP3305327B2 (de)
CN (8) CN1133738C (de)
AR (6) AR010510A1 (de)
AT (5) ATE223476T1 (de)
AU (9) AU7388196A (de)
BR (7) BR9612732A (de)
CA (9) CA2267291C (de)
DE (5) DE69721287T2 (de)
ES (5) ES2193386T3 (de)
MX (2) MX219077B (de)
WO (9) WO1998014549A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019148071A1 (en) * 2018-01-26 2019-08-01 Ecolab Usa Inc. Solidifying liquid anionic surfactants

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996031510A1 (en) * 1995-04-03 1996-10-10 Novartis Ag Pyrazole derivatives and processes for the preparation thereof
GB9526097D0 (en) * 1995-12-20 1996-02-21 Unilever Plc Process
GB9712580D0 (en) * 1997-06-16 1997-08-20 Unilever Plc Production of detergent granulates
GB9712583D0 (en) 1997-06-16 1997-08-20 Unilever Plc Production of detergent granulates
GB9713748D0 (en) * 1997-06-27 1997-09-03 Unilever Plc Production of detergent granulates
US6355606B1 (en) 1997-07-14 2002-03-12 The Procter & Gamble Company Process for making a low density detergent composition by controlled agglomeration in a fluid bed dryer
CN1192091C (zh) 1997-07-14 2005-03-09 普罗格特-甘布尔公司 通过控制附聚颗粒大小制备低密度洗涤剂组合物的方法
EP1002044B1 (de) 1997-07-15 2004-05-06 The Procter & Gamble Company Verfahren zur herstellung hochkonzentrierter waschmittelagglomerate durch mehrstufige einspritzung von tensidpasten
US6440342B1 (en) 1998-07-08 2002-08-27 The Procter & Gamble Company Process for making a low density detergent composition by controlling nozzle height in a fluid bed dryer
US6492319B1 (en) 1998-08-20 2002-12-10 The Procter & Gamble Company High density detergent-making process involving a moderate speed mixer/densifier
US6794354B1 (en) * 1998-09-18 2004-09-21 The Procter & Gamble Company Continuous process for making detergent composition
CA2346926A1 (en) * 1998-10-26 2000-05-04 Christopher Andrew Morrison Processes for making granular detergent composition having improved appearance and solubility
GB9825558D0 (en) * 1998-11-20 1999-01-13 Unilever Plc Granular detergent components and particulate detergent compositions containing them
GB9913546D0 (en) 1999-06-10 1999-08-11 Unilever Plc Granular detergent component containing zeolite map and laundry detergent compositions containing it
EP1187904B1 (de) * 1999-06-21 2004-08-11 The Procter & Gamble Company Verfahren zur herstellung granularer waschmittelzusammensetzungen
US6894018B1 (en) 1999-06-21 2005-05-17 The Procter & Gamble Company Process for making granular detergent in a fluidized bed granulator having recycling of improperly sized particles
GB0009877D0 (en) 2000-04-20 2000-06-07 Unilever Plc Granular detergent component and process for its preparation
EP2123742A1 (de) 2008-05-14 2009-11-25 The Procter and Gamble Company Feste Waschmittelzusammensetzung mit Silikatsalz mit geringer Dichte
WO2011061045A1 (en) 2009-11-20 2011-05-26 Unilever Nv Detergent granule and its manufacture
CN114774206A (zh) 2014-04-10 2022-07-22 宝洁公司 复合洗涤剂颗粒和包含复合洗涤剂颗粒的衣物洗涤组合物
WO2019148090A1 (en) 2018-01-26 2019-08-01 Ecolab Usa Inc. Solidifying liquid amine oxide, betaine, and/or sultaine surfactants with a carrier
EP3743494A1 (de) 2018-01-26 2020-12-02 Ecolab Usa Inc. Verfestigendes flüssiges aminoxid, betain, und/oder sultaintenside mit einem bindemittel und einem optionalen träger

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625902A (en) * 1968-10-11 1971-12-07 Stauffer Chemical Co Method of preparing agglomerated detergent composition
US4169806A (en) * 1978-08-09 1979-10-02 The Procter & Gamble Company Agglomeration process for making granular detergents
US4992079A (en) * 1986-11-07 1991-02-12 Fmc Corporation Process for preparing a nonphosphate laundry detergent
GB2209172A (en) * 1987-08-28 1989-05-04 Unilever Plc Preparation of solid particulate components for detergents
KR0170424B1 (ko) * 1990-07-05 1999-01-15 호르스트 헤를레,요한 글라슬 세제 및 청정제용 표면 활성제 과립의 제조방법
CA2096255C (en) * 1990-11-14 1998-01-20 Jeffrey D. Painter Nonphosphated automatic dishwashing compositions with oxygen bleach systems and process for their preparation
EP0555622B1 (de) * 1992-02-14 1997-07-09 The Procter & Gamble Company Verfahren zur Herstellung von Detergenskörnchen durch Neutralisation von Sulfonsäuren
DE69332270T3 (de) * 1992-06-15 2006-08-17 The Procter & Gamble Company, Cincinnati Verfahren zum herstellen von kompakten waschmittelzusammensetzungen
DE69227311T2 (de) * 1992-07-15 1999-06-02 The Procter & Gamble Co., Cincinnati, Ohio Waschmittelzusammensetzungen
CA2173108A1 (en) * 1993-10-15 1995-04-20 Scott William Capeci Continuous process for making high density detergent granules
GB9322530D0 (en) * 1993-11-02 1993-12-22 Unilever Plc Process for the production of a detergent composition
PT663439E (pt) * 1994-01-17 2000-12-29 Procter & Gamble Processo para a preparacao de granulos de detergente
US5489392A (en) * 1994-09-20 1996-02-06 The Procter & Gamble Company Process for making a high density detergent composition in a single mixer/densifier with selected recycle streams for improved agglomerate properties
US5516448A (en) * 1994-09-20 1996-05-14 The Procter & Gamble Company Process for making a high density detergent composition which includes selected recycle streams for improved agglomerate
US5554587A (en) * 1995-08-15 1996-09-10 The Procter & Gamble Company Process for making high density detergent composition using conditioned air

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9814552A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019148071A1 (en) * 2018-01-26 2019-08-01 Ecolab Usa Inc. Solidifying liquid anionic surfactants
AU2019212823B2 (en) * 2018-01-26 2021-09-23 Ecolab Usa Inc. Solidifying liquid anionic surfactants
AU2021221918B2 (en) * 2018-01-26 2023-08-31 Ecolab Usa Inc. Solidifying liquid anionic surfactants
EP4421156A1 (de) * 2018-01-26 2024-08-28 Ecolab USA Inc. Verfestigende flüssige anionische tenside

Also Published As

Publication number Publication date
ES2178778T3 (es) 2003-01-01
CA2268055A1 (en) 1998-04-09
ES2201305T3 (es) 2004-03-16
AU3478397A (en) 1998-04-24
JP3299984B2 (ja) 2002-07-08
CN1156562C (zh) 2004-07-07
CN1133738C (zh) 2004-01-07
DE69726440D1 (de) 2004-01-08
WO1998014558A1 (en) 1998-04-09
CA2268063A1 (en) 1998-04-09
AR010507A1 (es) 2000-06-28
CN1239991A (zh) 1999-12-29
JP2000503721A (ja) 2000-03-28
BR9713249A (pt) 1999-11-03
AU3478297A (en) 1998-04-24
AR010509A1 (es) 2000-06-28
DE69721287D1 (de) 2003-05-28
JP2000503719A (ja) 2000-03-28
WO1998014557A1 (en) 1998-04-09
WO1998014554A1 (en) 1998-04-09
CN1239994A (zh) 1999-12-29
DE69721287T2 (de) 2004-03-11
DE69726440T2 (de) 2004-09-09
EP0929648A1 (de) 1999-07-21
AR010511A1 (es) 2000-06-28
DE69726439D1 (de) 2004-01-08
JP2000504062A (ja) 2000-04-04
EP0929655A1 (de) 1999-07-21
JP3345022B2 (ja) 2002-11-18
MX219077B (en) 2004-02-10
AU3303197A (en) 1998-04-24
CN1239506A (zh) 1999-12-22
CN1133739C (zh) 2004-01-07
JP3299985B2 (ja) 2002-07-08
BR9712492A (pt) 1999-10-19
CA2268052A1 (en) 1998-04-09
BR9712490A (pt) 1999-10-19
EP0929648B1 (de) 2002-09-04
CA2268062C (en) 2002-11-12
AU3478497A (en) 1998-04-24
EP0929652A1 (de) 1999-07-21
BR9711861A (pt) 1999-08-24
CA2268060A1 (en) 1998-04-09
ATE223476T1 (de) 2002-09-15
JP3299982B2 (ja) 2002-07-08
WO1998014549A1 (en) 1998-04-09
BR9612732A (pt) 1999-08-24
CA2268052C (en) 2003-12-30
CA2268067A1 (en) 1998-04-09
JP2000507632A (ja) 2000-06-20
AU3568397A (en) 1998-04-24
ATE255159T1 (de) 2003-12-15
EP0929654A1 (de) 1999-07-21
JP2000503715A (ja) 2000-03-28
CN1156561C (zh) 2004-07-07
CA2268063C (en) 2002-10-29
JP3299981B2 (ja) 2002-07-08
AU3378597A (en) 1998-04-24
CA2267424A1 (en) 1998-04-09
CN1239507A (zh) 1999-12-22
AR010510A1 (es) 2000-06-28
CA2268068A1 (en) 1998-04-09
EP0929653A1 (de) 1999-07-21
CA2267424C (en) 2004-01-06
DE69723986T2 (de) 2004-06-03
BR9711865A (pt) 1999-08-24
CA2268062A1 (en) 1998-04-09
ES2193386T3 (es) 2003-11-01
CN1239508A (zh) 1999-12-22
JP2000503720A (ja) 2000-03-28
JP3299987B2 (ja) 2002-07-08
AR010508A1 (es) 2000-06-28
CA2268068C (en) 2003-06-03
ES2210544T3 (es) 2004-07-01
JP2000503717A (ja) 2000-03-28
CA2268067C (en) 2004-01-06
CN1239993A (zh) 1999-12-29
CN1239995A (zh) 1999-12-29
DE69726439T2 (de) 2004-09-09
WO1998014553A1 (en) 1998-04-09
ATE255160T1 (de) 2003-12-15
JP3299986B2 (ja) 2002-07-08
WO1998014552A1 (en) 1998-04-09
EP0929649B1 (de) 2003-11-26
EP0929645A1 (de) 1999-07-21
ATE246726T1 (de) 2003-08-15
EP0929650A1 (de) 1999-07-21
CA2268055C (en) 2004-02-03
MX9903193A (en) 2000-01-31
AR010729A1 (es) 2000-07-12
CN1156563C (zh) 2004-07-07
AU3478597A (en) 1998-04-24
DE69723986D1 (de) 2003-09-11
ATE238409T1 (de) 2003-05-15
WO1998014556A1 (en) 1998-04-09
CA2267291A1 (en) 1998-04-09
CA2268060C (en) 2003-04-22
ES2212109T3 (es) 2004-07-16
JP2000503716A (ja) 2000-03-28
MX9903195A (en) 1999-09-30
AU7388196A (en) 1998-04-24
BR9713246A (pt) 1999-11-03
EP0929653B1 (de) 2003-04-23
DE69715224T2 (de) 2003-08-07
EP0929650B1 (de) 2003-08-06
JP3305327B2 (ja) 2002-07-22
AU3303097A (en) 1998-04-24
CN1156560C (zh) 2004-07-07
MX219076B (en) 2004-02-10
JP2000503718A (ja) 2000-03-28
DE69715224D1 (de) 2002-10-10
CA2267291C (en) 2002-12-10
WO1998014551A1 (en) 1998-04-09
EP0929651A1 (de) 1999-07-21
WO1998014555A1 (en) 1998-04-09
JP3299983B2 (ja) 2002-07-08
CN1239992A (zh) 1999-12-29
EP0929651B1 (de) 2003-11-26

Similar Documents

Publication Publication Date Title
CA2268068C (en) Process for making a detergent composition by non-tower process
MXPA99003195A (en) Process for making a detergent composition by non-tower process
CA2268057C (en) Process for making a low density detergent composition
US6143711A (en) Process for making a detergent composition by non-tower process
US6211138B1 (en) Process for making a detergent composition by non-tower process
US6391844B1 (en) Process for making a detergent composition by non-tower process
US6211137B1 (en) Process for making a detergent composition by non-tower process
US6136777A (en) Process for making a detergent composition by non-tower process
US6150323A (en) Process for making a detergent composition by non-tower process
US6281188B1 (en) Process for making a low density detergent composition
US6121229A (en) Process for making a detergent composition by non-tower process
US6172034B1 (en) Process for making a detergent composition by non-tower process
US6156719A (en) Process for making a low density detergent composition by non-tower process
EP1025196A1 (de) Verfahren zur herstellung einer waschmittelzusammensetzung durch zugabe von cotensiden
MXPA99003201A (en) Process for making a detergent composition by non-tower process
MXPA99003197A (en) Process for making a detergent composition by non-tower process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990407

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20000110

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031126

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031126

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031126

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031126

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031126

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69726439

Country of ref document: DE

Date of ref document: 20040108

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040226

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040607

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2212109

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040827

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060505

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060508

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060605

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060613

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060630

Year of fee payment: 10

Ref country code: IT

Payment date: 20060630

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040426

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070605

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070605

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070605