EP0928365B1 - Turbine a vapeur, installation de turbine a vapeur et procede de refroidissement de turbine a vapeur - Google Patents

Turbine a vapeur, installation de turbine a vapeur et procede de refroidissement de turbine a vapeur Download PDF

Info

Publication number
EP0928365B1
EP0928365B1 EP97943771A EP97943771A EP0928365B1 EP 0928365 B1 EP0928365 B1 EP 0928365B1 EP 97943771 A EP97943771 A EP 97943771A EP 97943771 A EP97943771 A EP 97943771A EP 0928365 B1 EP0928365 B1 EP 0928365B1
Authority
EP
European Patent Office
Prior art keywords
turbine
steam
cooling
steam turbine
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97943771A
Other languages
German (de)
English (en)
Other versions
EP0928365A1 (fr
Inventor
Edwin Gobrecht
Michael Wechsung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0928365A1 publication Critical patent/EP0928365A1/fr
Application granted granted Critical
Publication of EP0928365B1 publication Critical patent/EP0928365B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • F01K13/025Cooling the interior by injection during idling or stand-by
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling

Definitions

  • the invention relates to a steam turbine with a steam inlet area, an exhaust area and one of a turbine housing surrounded blading area axially arranged therebetween.
  • the invention further relates to a method for cooling a steam turbine with a turbine housing.
  • DE-PS 324 204 describes a method and a device described for cooling an idling steam or gas turbine. To carry out this cooling is one with the Steam flow line specified via a valve-connected ejector. This ejector makes steam contrary to normal Sucked flow direction through the inflow line. At The extracted steam can be tapped or exhaust steam another turbine as well as wet or saturated Act live steam.
  • the US-PS 3,173,654 relates to a steam turbine with a High-pressure sub-turbine and a double-flow low-pressure sub-turbine, which is operated in stand-by mode.
  • a Cooling system provided, through which by a variety of Pipes both in the low pressure turbine and in the high-pressure sub-turbine water under high pressure from the Condenser is injected into the turbine. That water evaporates completely and becomes operational since the vacuum pumps are fed back into the condenser.
  • the amount of water injected is dependent on the temperature in the sub-turbines for each injection line separately regulated by an appropriate valve.
  • the two above-mentioned publications therefore relate to each the cooling idling or running in stand-by mode Steam turbines.
  • the cooling takes place exclusively via steam, which is either supplied directly, or created by evaporating water.
  • the two above Writings therefore relate to a steam turbine in one State in which externally generated heat is dissipated, whereby this heat by friction in an operating speed of for example, 3000 rpm running turbine. would the heat is not dissipated, the temperature would be in the steam turbine far above the operating temperature.
  • a steam turbine especially a high pressure turbine or a medium pressure turbine with upstream reheating
  • temperatures occur during power operation up to above 500 ° C.
  • the turbine housing as well as the turbine rotor and other turbine components, such as live steam valve, Quick-closing valve, turbine blade etc., on one high temperature heated.
  • the turbine runner can with each turbine reduced speed by means of a rotating device over a predetermined period of time and the steam atmosphere be evacuated via an evacuation device.
  • the object of the invention is a steam turbine and a Steam turbine plant to specify that via forced cooling cools down quickly. Another object of the invention is it to provide a method for cooling a steam turbine.
  • the turbine housing with a Cooling fluid inlet for the inflow of cooling fluid can be connected, wherein the cooling fluid inlet can be closed by a closure member and can be released and upstream of the evaporation area is arranged, and a suction device for suction of cooling fluid from the turbine housing is provided.
  • the Cooling fluid inlet is preferably during normal power operation the steam turbine, with the action steam in one Steam inlet area enters the turbine, a blading area flow through the turbine shaft and flows out of an exhaust steam area out of the steam turbine, locked. Arrived during power operation as a result, no cooling fluid into the steam turbine.
  • cooling fluid inlet through the Closure member released so that cooling fluid, in particular Air, from the air atmosphere surrounding the steam turbine, in the steam turbine flows in.
  • the incoming cooling fluid is via a suction device, for example an evacuation device, which creates a vacuum from the turbine housing aspirated.
  • a suction device for example an evacuation device, which creates a vacuum from the turbine housing aspirated.
  • the cooling fluid inlet is preferred a separate opening, e.g. an air intake port on the turbine, with a flow cross-section that is sized is that sufficient cooling fluid for rapid cooling gets into the turbine.
  • Multiple cooling fluid inlets may also be used be provided.
  • the closure member can be a blind flange to be opened Valve or the like.
  • the closure member can, for example automatically via a first control unit, for example be motor driven, opened. It could too a manually opening closure member can be used.
  • the suction device for example an evacuation unit, which is used to generate negative pressure in a condenser, is preferably with a control unit to control it Suction power connected.
  • the control unit can also one automatic opening of a fluidic connection serve the suction device with the turbine housing.
  • Preferably is a fluidic in a high pressure steam turbine Connection between turbine housing and suction device prevented during normal power operation.
  • the cooling fluid inlet is preferably one in the steam inlet area mouth connected steam supply.
  • the cooling fluid inlet with a control valve for regulation the amount of live steam, which also causes a Cooling down of this control valve after power operation has ended the steam turbine is made possible.
  • the suction device is preferably in the evaporation area outlet pipe connected.
  • the discharge line can during the cooling process by a Non-return valve must be shut off, so that the entire through the steam turbine flowing amount of cooling fluid through the suction device to be led.
  • the suction device is preferably fluidly with a condenser, in particular the steam area of a condensate container. It is thus possible as a suction device already during the Power operated evacuation device also for the cooling of the steam turbine and other steam turbine components after switching off, like control valve, quick-closing valve etc. to use.
  • Such an evacuation device could, for example, evacuate the steam room in the condensate container, or the evacuation of the steam atmosphere in the steam turbine after power operation has ended serve.
  • the one on a steam turbine plant with a high-pressure sub-turbine and directed at least one medium pressure partial turbine The object is achieved in that the turbine housing Partial turbines are each connected to a cooling fluid inlet and a suction device is provided via a suction line with a capacitor and via a respective connecting line is connected to the sub-turbines and the cooling fluid inlets each upstream of a respective evaporation area are arranged.
  • each sub-turbine is cooled by using the respective cooling fluid inlet cooling fluid, in particular air, flows into the housing of the respective sub-turbine and through the suction device, which with both the partial turbine is also connected to a condenser, sucked out of the partial turbine becomes.
  • the suction device preferably generates one Vacuum through which a flow through the sub-turbines as well corresponding components, such as control valves and quick-closing valves, caused by the cooling fluid, the air becomes.
  • the air absorbs heat in each sub-turbine, which means the sub-turbine is cooled.
  • the suction device can be an evacuation unit that is already for evacuation the steam atmosphere in each turbine section immediately after switching off the steam turbine system is used.
  • the Cooling of the partial turbines of the steam turbine system is thus without additional units, for example compressed air storage or Compressed air pump possible, but only at desired locations Cooling fluid inlets with a respective shut-off device as well a limited number of lines for guiding the cooling fluid are to be provided.
  • the on a method of cooling a steam turbine with a Turbine housing task is solved by that after a load switch-off, a cooling fluid inlet in terms of flow technology connected to the turbine housing and through the cooling fluid inlet inflowing cooling fluid, in particular air, by means of a suction device with heat absorption through the turbine housing in the direction of normal power operation is led through the steam turbine_flowing action steam.
  • a cooling fluid inlet in terms of flow technology connected to the turbine housing and through the cooling fluid inlet inflowing cooling fluid, in particular air, by means of a suction device with heat absorption through the turbine housing in the direction of normal power operation is led through the steam turbine_flowing action steam.
  • the turbine is in a rotor turning mode after being switched off, with existing evacuation units in operation stay.
  • On the high pressure turbine and a medium pressure turbine become air inlets, in particular air inlet connectors open.
  • On the high-pressure turbine fresh steam side Spigot and a connecting line between the evaporation nozzle the high pressure turbine and a condenser opened become.
  • the condenser is with the evacuation units connected so that sucked in through the air inlet port Air through the turbine blades and over the connecting line is sucked into the condenser. This causes a cooling down of the high pressure turbine.
  • At the medium pressure turbine can also support in the area of the steam inlet be opened.
  • the air flowing in through the nozzle can through the evacuation units via the medium pressure blading and optionally a downstream one Low pressure turbine to be sucked into the condenser.
  • the medium pressure wave and the Medium and / or medium pressure housing, the medium pressure blading, the control valve and the quick-closing valve the medium pressure turbine cooled. It is also possible the air via a corresponding connecting line from the Evaporating area of the medium pressure turbine bypassing one downstream low pressure turbine in the condenser conduct.
  • the high pressure turbine and the medium pressure turbine are preferably cooled to a temperature lower than 150 ° C.
  • the cooling process can be based on temperature measurements, which are determined within the steam turbine, for example through temperature measuring points already provided for power operation, to be controlled.
  • the cooling process can be the cooling process via the suction power the suction device can be accelerated or slowed down.
  • the Cooling process is carried out so that predetermined maximum Expansion differences, especially between the turbine runner and the inner and / or outer casing of the steam turbine, not be crossed, be exceeded, be passed.
  • By supplying the cooling fluid via different Air intakes can be cooling, for example of the turbine rotor of a high-pressure partial turbine is delayed and the cooling of the high pressure housing can be accelerated.
  • the figure shows partially schematic and not to scale Representation of a steam turbine plant 20 with a High-pressure turbine section 1a and a medium-pressure turbine section 1b in a longitudinal section. Other components of the steam turbine plant 20 are shown schematically for the sake of clarity.
  • the high-pressure turbine section 1a has a steam inlet area 2, an evaporation area 3 and an axially intermediate Blading area 4.
  • a live steam line 19 in the as a combination valve, a quick-closing valve 24 and a control valve 17 are arranged.
  • the control valve 17 has a cooling fluid inlet 7, into which an air line 18 opens.
  • In the air line 18 is a closure member 8, in particular a valve arranged with a first control unit 9 is connected.
  • the first control unit 9 is an opening or closing of the closure member 8 allows so that the cooling fluid inlet 7 for an inflow of cooling fluid 6, in particular air, can be released or closed is.
  • the high-pressure turbine section 1a is the closure member 8 closed and during a rapid cooling process opened so that during the latter cooling fluid 6 in the control valve 17 can flow.
  • the turbine runner 26a Inside the high pressure housing 5a, which is not a closer includes the specified inner and outer housing, is the turbine runner 26a arranged. Closes at the evaporation area 3 an outflow line 13 through an intermediate superheater 21 to the steam inlet area 2 of the medium-pressure turbine part 1b leads. Downstream of the evaporation area 3 is in the outflow line 13 a check valve 22 is arranged. Between Evaporation area 3 and backflow flap 22 opens into the outflow lines 13 a connecting line 16a leading to a Capacitor 14 leads. The connecting line 16a is during the normal power operation of the high pressure turbine section 16 closed by a closure member 8a.
  • the medium-pressure turbine section 1b is double-flow and has a medium-pressure housing 5b not including one specified inner and outer housing in which the turbine rotor 26b and a blading area 4 are arranged are.
  • the capacitor 14 is included Condensate container 25 on, via a suction line 15 with a Suction device 10, for example an evacuation unit, a jet pump or the like.
  • the Suction device 10 is in via a second control unit 11 their suction power controllable so that the cooling process Amount of air sucked in and thus the speed of the Cooling is adjustable.
  • the suction device 10 directly is connected to a connecting line 16a, 16b without a passage of the cooling fluid 6 through the condenser 14.
  • the invention is characterized by a forced cooling Steam turbine after completion of power operation, at after the load switch-off, a cooling fluid inlet and a suction line be opened. Via a connected to the suction line Suction device is air that passes through the cooling fluid inlet flows into the steam turbine, while absorbing heat this is brought out again.
  • Cooling fluid inlets e.g. air inlet ports
  • branches to be provided from existing steam discharge lines, to a forced air flow through the steam turbine guarantee.
  • the process enables rapid cooling, in particular a high pressure steam turbine, in which one Cooling down to 400 K can be achieved within 24 hours is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (11)

  1. Turbine (1) à vapeur, comprenant une région (2) d'admission de vapeur, une région (3) d'échappement de la vapeur et une région (4) d'aubage entourée d'une enveloppe (5) de turbine et interposée axialement entre elles, ainsi qu'un dispositif (10) d'aspiration destiné à aspirer du fluide (6) de refroidissement hors de l'enveloppe (5) de la turbine,
       caractérisée en ce qu'il est prévu au moins une entrée (7) pour du fluide de refroidissement, qui peut être fermée par un organe (8) de fermeture et qui peut être dégagée, qui est disposée en amont de la région d'échappement de la vapeur, considéré dans le sens d'écoulement de la vapeur d'action passant en fonctionnement de puissance normale dans l'enveloppe (5) de turbine, et par laquelle du fluide (6) de refroidissement peut être introduit dans l'enveloppe (5) de turbine, pour le refroidissement après une interruption de charge, à une température nettement inférieure à la température de fonctionnement.
  2. Turbine (1) à vapeur suivant la revendication 1, dans laquelle il est prévu une première unité (9) de commande reliée à l'organe de fermeture et destinée à fermer automatiquement l'entrée (7) pour le fluide de refroidissement.
  3. Turbine (1) à vapeur suivant la revendication 1 ou 2, comprenant une deuxième unité (11) de commande destinée à commander la puissance d'aspiration du dispositif (10) d'aspiration et/ou à ouvrir automatiquement une liaison du point de vue de la technique des fluides du dispositif (10) d'aspiration avec l'enveloppe (5) de turbine.
  4. Turbine (1) à vapeur suivant l'une des revendications précédentes, dans laquelle l'entrée (7) pour du fluide de refroidissement communique avec une entrée (12) de vapeur débouchant dans la région (2) d'admission de la vapeur.
  5. Turbine (1) à vapeur suivant la revendication 4, dans laquelle l'entrée (7) pour du fluide de refroidissement est reliée à une vanne (17) de régulation.
  6. Turbine (1) à vapeur suivant l'une des revendications précédentes, dans laquelle le dispositif (10) d'aspiration communique avec un conduit (13) d'évacuation débouchant dans la région (2) d'échappement.
  7. Turbine (1) à vapeur suivant l'une des revendications précédentes, dans laquelle le dispositif (10) d'aspiration communique du point de vue de la technique des fluides avec un condenseur (14) par l'intermédiaire d'un conduit (15) d'aspiration.
  8. Turbine (1) à vapeur suivant la revendication 7, comprenant une partie de turbine (1a) haute pression, la partie de turbine (1a) haute pression communiquant du point de vue de la technique des fluides avec le condenseur (14) par un conduit (16a) de liaison.
  9. Turbine (1) à vapeur suivant l'une des revendications précédentes, dans laquelle l'entrée (7) pour du fluide de refroidissement est constituée en entrée pour de l'air entourant l'enveloppe (5) de turbine.
  10. Installation (20) à turbine à vapeur, comprenant une partie de turbine (1a) haute pression, qui comporte une enveloppe (5a) haute pression qui communique avec une entrée (7a) pour du fluide de refroidissement, une partie de turbine (1b) moyenne pression, qui comporte une enveloppe (5b) moyenne pression qui communique avec une entrée (7b) pour du fluide de refroidissement, un dispositif (10) d'aspiration qui communique par un conduit (15) d'aspiration avec un condenseur (14) et par respectivement un conduit (16a, 16b) de liaison avec la partie de turbine (1a) haute pression et avec la partie de turbine (1b) moyenne pression, le condenseur (14) étant disposé du point de vue de la technique des fluides entre chaque partie de turbine (1a, 1b) et le dispositif (10) d'aspiration et les entrées (7a, 7b) pour le fluide de refroidissement étant disposées respectivement en amont d'une région (3) respective d'échappement de la vapeur.
  11. Procédé de refroidissement d'une turbine (1) à vapeur ayant une enveloppe (5) de turbine, dans lequel, après l'interruption de charge, on met en communication du point de vue de la technique des fluides une entrée (7) pour du fluide de refroidissement avec l'enveloppe (5) de la turbine et, au moyen d'un dispositif (10) d'aspiration, on envoie, par l'entrée (7) pour du fluide de refroidissement, du fluide (6) de refroidissement affluent, notamment de l'air avec absorption de la chaleur dans l'enveloppe (5) de turbine, dans le sens de la vapeur d'action passant, lors du fonctionnement en puissance normale, dans la turbine (1) à vapeur.
EP97943771A 1996-09-26 1997-09-12 Turbine a vapeur, installation de turbine a vapeur et procede de refroidissement de turbine a vapeur Expired - Lifetime EP0928365B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19639714 1996-09-26
DE19639714 1996-09-26
PCT/DE1997/002058 WO1998013588A1 (fr) 1996-09-26 1997-09-12 Turbine a vapeur, installation de turbine a vapeur et procede de refroidissement de turbine a vapeur

Publications (2)

Publication Number Publication Date
EP0928365A1 EP0928365A1 (fr) 1999-07-14
EP0928365B1 true EP0928365B1 (fr) 2001-12-19

Family

ID=7807055

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97943771A Expired - Lifetime EP0928365B1 (fr) 1996-09-26 1997-09-12 Turbine a vapeur, installation de turbine a vapeur et procede de refroidissement de turbine a vapeur

Country Status (7)

Country Link
US (1) US6145317A (fr)
EP (1) EP0928365B1 (fr)
JP (1) JP4127854B2 (fr)
KR (1) KR20000048655A (fr)
CN (1) CN1091210C (fr)
DE (1) DE59705905D1 (fr)
WO (1) WO1998013588A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2332128A1 (fr) * 1998-06-26 2000-01-06 Chugai Seiyaku Kabushiki Kaisha Agent therapeutique contre des crises d'hypercalcemie
KR20010072708A (ko) * 1998-08-18 2001-07-31 칼 하인쯔 호르닝어 터빈 하우징
US20060135259A1 (en) * 2004-12-17 2006-06-22 Nokia Corporation System, game server, terminal, and method for game event notification in a multiplayer game
ITTO20050281A1 (it) * 2005-04-27 2006-10-28 Ansaldo Energia Spa Impianto a turbina provvisto di un prelievo di vapore e di un sistema per raffreddare una sezione di turbina disposta a valle di tale prelievo
US8424281B2 (en) * 2007-08-29 2013-04-23 General Electric Company Method and apparatus for facilitating cooling of a steam turbine component
EP2620604A1 (fr) 2012-01-25 2013-07-31 Siemens Aktiengesellschaft Procédé pour contrôler un processus de refroidissement de composants de turbine
CN103089346B (zh) * 2012-12-28 2015-02-18 东方电气集团东方汽轮机有限公司 汽轮机组强迫冷却系统
CN103195508B (zh) * 2013-04-11 2015-08-19 上海电气电站设备有限公司 汽轮机快速冷却系统及冷却方法
JP6208548B2 (ja) 2013-11-06 2017-10-04 三菱日立パワーシステムズ株式会社 蒸気タービン強制冷却装置およびそれを備えた蒸気タービン装置ならびに蒸気タービン強制冷却方法
EP2918788A1 (fr) 2014-03-12 2015-09-16 Siemens Aktiengesellschaft Procédé de refroidissement d'une turbine à vapeur
EP3109419A1 (fr) * 2015-06-25 2016-12-28 Siemens Aktiengesellschaft Procédé de refroidissement d'une turbomachine
EP3109420A1 (fr) * 2015-06-25 2016-12-28 Siemens Aktiengesellschaft Procédé de refroidissement d'une turbomachine
CN104989467B (zh) * 2015-08-06 2017-01-25 阳江核电有限公司 汽轮机停机冷却控制方法
JP6637064B2 (ja) * 2015-10-23 2020-01-29 東芝エネルギーシステムズ株式会社 軸流タービン
CN106948886B (zh) * 2017-03-24 2018-08-10 广西防城港核电有限公司 汽轮机快速冷却方法
CN109826675A (zh) * 2019-03-21 2019-05-31 上海电气电站设备有限公司 汽轮机冷却系统及方法
CN110259527A (zh) * 2019-07-24 2019-09-20 哈尔滨汽轮机厂有限责任公司 一种超高压200mw低压缸零出力灵活性改造汽轮机
CN110441011B (zh) * 2019-07-30 2020-11-17 辽宁科技大学 一种燃气轮机空气冷却系统tca冷却器快速查漏方法
CN110513163A (zh) * 2019-09-17 2019-11-29 西安西热节能技术有限公司 一种可降低冷源损失的主机低压缸零出力冷却蒸汽系统及方法
CN111365084B (zh) * 2020-02-24 2022-08-19 东方电气集团东方汽轮机有限公司 一种带快速冷却功能的电站汽轮机保养系统及方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE324204C (de) 1917-12-27 1920-08-18 Ljungstroms Angturbin Ab Verfahren und Einrichtung zur Kuehlung leerlaufender Dampf- oder Gasturbinen
DE324402C (de) * 1919-03-30 1920-08-25 Fritz Tscheike Verfahren zur Herstellung hochglaenzender Papiere auf Glaettkalandern
US2438998A (en) * 1942-09-15 1948-04-06 Dehavilland Aircraft Means for controlling the temperature of gases
US2874537A (en) * 1955-01-07 1959-02-24 Martin Co Turbojet engine arrangement utilizing evaporative cooling
US3173654A (en) 1962-03-14 1965-03-16 Burns & Roe Inc Temperature control of turbine blades on spinning reserve turbines
CH554486A (de) * 1973-01-29 1974-09-30 Bbc Brown Boveri & Cie Verfahren zum kuehlen einer stroemungsmaschine.
JPS58220907A (ja) * 1982-06-15 1983-12-22 Hitachi Ltd 蒸気タービンの冷却方法及び冷却装置並びに蒸気タービン装置
JPH0281905A (ja) * 1988-09-19 1990-03-22 Hitachi Ltd 蒸気タービンの強制冷却方法、及び同冷却装置
JPH08218811A (ja) * 1995-02-16 1996-08-27 Hitachi Ltd 蒸気タービンの冷却方法及びその装置
DE19547803C1 (de) * 1995-12-20 1997-04-10 Siemens Ag Dampfturbinenanlage

Also Published As

Publication number Publication date
KR20000048655A (ko) 2000-07-25
CN1091210C (zh) 2002-09-18
EP0928365A1 (fr) 1999-07-14
DE59705905D1 (de) 2002-01-31
JP2001500943A (ja) 2001-01-23
US6145317A (en) 2000-11-14
JP4127854B2 (ja) 2008-07-30
WO1998013588A1 (fr) 1998-04-02
CN1231714A (zh) 1999-10-13

Similar Documents

Publication Publication Date Title
EP0928365B1 (fr) Turbine a vapeur, installation de turbine a vapeur et procede de refroidissement de turbine a vapeur
DE69832740T2 (de) Gasturbinenanlage
DE60032042T2 (de) Kühlsystem für Gasturbinen
DE60126721T2 (de) Kombiniertes Kreislaufsystem mit Gasturbine
EP1440223B1 (fr) Ensemble turbine a gaz
EP1173664B1 (fr) Systeme d'air de refroidissement
EP2067940B2 (fr) Procédé de fonctionnement d'ne centrale à cycle combiné, et centrale à cycle combiné pour la mise en oeuvre dudit procédé
DE112009004531B4 (de) System zum Versorgen von Maschinendichtungen mit Trockengas und Verfahren zum Bereitstellen sauberen Trockengases für Gasdichtungen in Maschinen
DE60029510T2 (de) Dampfkühlungssystem für den Ausgleichkolben einer Dampfturbine und dazugehörige Methode
CH653743A5 (de) Dampfsteueranordnung fuer eine dampfturbine sowie ein verfahren zum betreiben derselben.
WO1999063204A1 (fr) Turbine a gaz ainsi que procede pour le refroidissement d'un etage de turbine
DE102011052244A1 (de) System und Verfahren zur Steuerung des Leckdampfs zu dem Sperrdampfsammler/-verteiler zur Verbesserung der Dampfturbinenleistung
EP1957759B1 (fr) Procédé de démarrage d'une installation de turbines à vapeur
DE10392154T5 (de) Turbinenanlage und Kombikraftwerk sowie Turbinenbetriebsverfahren
CH229280A (de) Gasturbinen-Anlage.
EP2067933B1 (fr) Concept de sécurité pour une turbine à vapeur
EP1167721B1 (fr) Procédé et dispositif de refroidissement d'une turbine a gaz
EP1510676B1 (fr) Installation de turbine à gaz
WO2017133873A1 (fr) Turbine à gaz équipée d'un piston à poussée axiale et d'un palier radial
DE112017005972B4 (de) Wärmetauschsystem, kühlsystem und kühlverfahren einer gasturbine und gasturbinensystem
WO2015135681A2 (fr) Procédé de refroidissement d'une turbine à vapeur
DE19547803C1 (de) Dampfturbinenanlage
DE102012021327A1 (de) Förderanlage für Öl oder Gas
WO1994019584A1 (fr) Refroidissement d'une turbine a rapport de compression reduit en mode ventilation
EP3109420A1 (fr) Procédé de refroidissement d'une turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990319

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010605

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WECHSUNG, MICHAEL

Inventor name: GOBRECHT, EDWIN

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WECHSUNG, MICHAEL

Inventor name: GOBRECHT, EDWIN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 59705905

Country of ref document: DE

Date of ref document: 20020131

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020320

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151120

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160914

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160914

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59705905

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170911