EP0925856A2 - Verfahren zur Herstellung eines Verdampferrohres - Google Patents

Verfahren zur Herstellung eines Verdampferrohres Download PDF

Info

Publication number
EP0925856A2
EP0925856A2 EP98122877A EP98122877A EP0925856A2 EP 0925856 A2 EP0925856 A2 EP 0925856A2 EP 98122877 A EP98122877 A EP 98122877A EP 98122877 A EP98122877 A EP 98122877A EP 0925856 A2 EP0925856 A2 EP 0925856A2
Authority
EP
European Patent Office
Prior art keywords
upsetting
ribs
tube
teeth
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98122877A
Other languages
English (en)
French (fr)
Other versions
EP0925856A3 (de
EP0925856B1 (de
Inventor
Gerhard Dr.-Ing. Schüz
Andreas Dipl.-Phys. Dr. Beutler
Karine Dipl.-Ing. Brand
Andreas Dipl.-Ing. Schwitalla
Manfred Dipl.-Ing. Knab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP0925856A2 publication Critical patent/EP0925856A2/de
Publication of EP0925856A3 publication Critical patent/EP0925856A3/de
Application granted granted Critical
Publication of EP0925856B1 publication Critical patent/EP0925856B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
    • B21C37/207Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls with helical guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means
    • Y10T29/49378Finned tube
    • Y10T29/49385Made from unitary workpiece, i.e., no assembly

Definitions

  • the invention relates to a method for producing a Heat exchange tube, especially for the evaporation of liquids from pure substances or mixtures on the outside of the pipe, according to the preamble of claim 1.
  • the invention thus relates to a method for producing channel-like structures on the outside of pipes with Ribs formed on the outside from the tube wall. These structures serve to intensify the heat transfer during evaporation of liquids from pure substances and mixtures the outside of the pipe.
  • Evaporation occurs in many areas of refrigeration and air conditioning technology as well as in process and energy technology.
  • Tube heat exchangers are often used in technology which liquids of pure substances or mixtures on the Vaporizing the outside of the pipe and doing so on the inside of the pipe cool the flowing medium.
  • Such devices are considered flooded Called evaporator.
  • the present invention relates to a method for Manufacture of tubes with a textured outside, whereby the structure to enlarge the outer surface and the Heat transfer coefficients in the evaporation of liquids serves on the outside of the pipe.
  • To increase the heat transfer coefficient the process of evaporation of bubble boiling intensified.
  • education from bubbles to germ sites are germs mostly small gas or vapor inclusions on the surface.
  • the growing bubble has reached a certain size, it comes off the surface.
  • the germ site is flooded with flowing liquid will, may the inclusion of gas or vapor by liquid repressed. In this case the germ site is inactivated. This can be done by a suitable design of the Avoid germination. For this it is necessary that the opening the germ site is smaller than the cavity underneath, such as. with undercut structures.
  • integrally rolled finned tubes where the fins are formed from the tube wall by rolling.
  • integrally rolled finned tubes are understood to be finned tubes, where the ribs are made of a wall material Smooth tube were formed.
  • the outer diameter of the tube in the finned Area is not larger than the outside diameter of the non-ribbed End and intermediate pieces of the pipe.
  • the invention has for its object that between neighboring Ribs of an integrally rolled finned tube Channels with material from the top of the Ribs to close essentially, the closing of the channels take place with the least possible material expenditure should.
  • For transportation of liquid and vapor between the channel and the environment have pore-like or slit-like openings in the lids of the Channels are formed.
  • the goal is on the To create a structure with high porosity on the outside of the tube. A high porosity leads to a large specific Contact area between the pipe and the surrounding medium and increased thus the active heat transfer surface for the evaporation process.
  • the structure is also said to be of high uniformity Pore size or slot width along the tube axis exhibit. To ensure that the pipe can be easily inserted into the To ensure the tube sheet of a tube bundle heat exchanger, without changing the structure, the outside of the Pipe should be as smooth as possible.
  • the object is achieved in that the projections after the first upsetting step the first part of the Form manhole cover and that at least one further upsetting step carried out by means of a gearwheel-like swaging disk is so that the manhole cover is gradually joined together is formed by cantilevers.
  • the material of the rib is used for sectioned upsetting within limited, defined by the swage plate Areas from the upper region of the rib on both sides in the axial direction repressed.
  • the displaced material forms over the Channel cantilevers that are used to cover a lid to form.
  • the lid is only in the areas to the side of the machined sections of the Rib tip formed.
  • Sections of the rib tip partially or completely compressed expanding the covered areas of the canal.
  • Last can the outer surface of the tube through a smoothing disc constant diameter can be smoothed.
  • the first upsetting step produced cantilevers up to the middle of the Project channel so that cantilevers from adjacent ribs meet and form a bridge over the canal. Due to increasing material solidification, they are sufficient Overhangs formed in the subsequent upsetting steps become less far across the channel. In this way it is possible to create a surface structure in which the channels are connected to the environment via pores. Hit the cantilevers after the first machining step not together, one arises in the following steps Surface structure with slit-like openings.
  • the tool holder 4 can be adjusted radially. They are in turn arranged in a stationary roller head (not shown) (according to another variant, the tube is only advanced axially when the roller head is rotating).
  • the smooth pipe 1 ′ entering the device in the direction of the arrow is set in rotation by the driven rolling tools 5 arranged on the circumference, the axes of the rolling tools 5 running obliquely to the pipe axis in order to be able to produce helical ribs 2.
  • the rolling tools 5 consist, in a manner known per se, of a plurality of rolling disks 9 arranged side by side, the diameter of which increases in the direction of the arrow.
  • the centrally arranged rolling tools 5 form the helically surrounding ribs 2 from the tube wall of the smooth tube 1 ', the tube wall in the forming area under the roller tools 5 being supported here by a profiled rolling mandrel 10. This simultaneously creates helical ribs 11 on the inside of the tube 1.
  • a first upsetting step the ribs 2 are covered by the Teeth 6a of a first upsetting disk 6 in sections on the circumference compressed by the radial compression depth X (see Fig. 3a / 4a / 5a), the outer diameter of the first compression washer 6 smaller than the diameter of the last roller 9. Overhangs 12a are formed.
  • a second compression step those that have not yet been compressed are removed Sections 15a of the ribs 2 through the teeth 7a of the second compression plate 7 partially deformed (see Fig. 3b / 4b / 5b), the radial compression depth Y being at least as large is like the radial compression depth X in the first compression step. There are further overhangs 12b, and the cover 3a of the Channel 3 is enlarged.
  • the upsetting disks 6, 7 preferably have 10 to 30 teeth 6a, 7a per cm circumference, in particular 14 to 25 teeth 6a, 7a per cm circumference.
  • the teeth 6a, 7a run parallel or obliquely at the angle ⁇ or ⁇ (as shown in Fig. 2) to the respective disc axis.
  • the 255 teeth 6a arranged uniformly on the circumference of the upsetting disk 6 run at an angle ⁇ of 40 ° obliquely to the disk axis.
  • the second upsetting disk 7 has the same diameter D as the first upsetting disk 6 and the same number Z of teeth 7a.
  • the teeth 7a of the second upsetting disk 7 also run obliquely to the disk axis, but their orientation is opposite to the orientation of the teeth 6a of the first upsetting disk 6, so that the impressions of the teeth 6a and 7a cross on the tube (see FIGS. 1 / 4b / 5b).
  • heat exchanger tubes can with a highly porous surface structure become.
  • an evaporator tube was used such a surface based on integrally rolled Ribs with a thickness of the order of 0.1 mm.
  • the channels were successful between the ribs with thin lids emerging from the top Area of the rib were shaped to essentially occlude without the ribs buckling to the side or in itself slumped together.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Metal Extraction Processes (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Wärmeaustauschrohres (1) mit einer hochporösen Oberflächenstruktur, insbesondere zur Verdampfung von Flüssigkeiten aus Reinstoffen oder Gemischen auf der Rohraußenseite. Das Verfahren geht aus von einem Walzvorgang, durch den auf der Rohraußenseite schraubenlinienförmige Rippen (2) erzeugt werden, die ihrerseits in mehreren Stauchschritten mittels zahnradartiger Stauchscheiben (7, 8) derart verformt werden, daß die gebildeten Auskragungen (12a, 12b) jeweils einen Deckel (3a) für die zwischen den Rippen (2) befindlichen Kanäle (3) formen. Die hohe Porosität wird durch die verbleibenden Poren (13) und/oder Schlitze (14) erreicht. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Wärmeaustauschrohres, insbesondere zur Verdampfung von Flüssigkeiten aus Reinstoffen oder Gemischen auf der Rohraußenseite, nach dem Oberbegriff des Anspruchs 1.
Die Erfindung betrifft also ein Verfahren zur Erzeugung von kanalartigen Strukturen auf der Außenseite von Rohren mit außenseitig aus der Rohrwand geformten Rippen. Diese Strukturen dienen der Intensivierung des Wärmeübergangs beim Verdampfen von Flüssigkeiten aus Reinstoffen und Gemischen auf der Rohraußenseite.
Verdampfung tritt in vielen Bereichen der Kälte- und Klimatechnik sowie in der Prozeß- und Energietechnik auf. In der Technik werden häufig Rohrbündelwärmeaustauscher verwendet, in denen Flüssigkeiten von Reinstoffen oder Mischungen auf der Rohraußenseite verdampfen und dabei ein auf der Rohrinnenseite strömendes Medium abkühlen. Solche Apparate werden als überflutete Verdampfer bezeichnet.
Durch die Intensivierung des Wärmeübergangs auf der Rohraußenseite und der Rohrinnenseite läßt sich die Größe der Verdampfer stark reduzieren. Hierdurch nehmen die Herstellungskosten solcher Apparate ab. Außerdem sinkt die notwendige Füllmenge an Kältemittel, die bei den heute überwiegend verwendeten chlorfreien Sicherheitskältemitteln einen nicht zu vernachlässigenden Kostenanteil an den gesamten Anlagenkosten ausmachen kann. Bei toxischen oder brennbaren Kältemitteln läßt sich durch die Reduktion der Füllmenge das Gefahrenpotential herabsetzen. Die heute üblichen Rohre mit kanalartigen Strukturen auf der Rohraußenseite sind etwa um den Faktor drei leistungsfähiger als glatte Rohre gleichen Durchmessers.
Stand der Technik:
Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Herstellung von Rohren mit strukturierter Außenseite, wobei die Struktur zur Vergrößerung der Außenoberfläche und des Wärmeübergangskoeffizienten bei der Verdampfung von Flüssigkeiten auf der Rohraußenseite dient. Zur Erhöhung des Wärmeübergangskoeffizienten bei der Verdampfung wird der Vorgang des Blasensiedens intensiviert. Es ist bekannt, daß die Bildung von Blasen an Keimstellen beginnt. Diese Keimstellen sind meist kleine Gas- oder Dampfeinschlüsse an der Oberfläche. Wenn die anwachsende Blase eine bestimmte Größe erreicht hat, löst sie sich von der Oberfläche ab. Wenn im Zuge der Blasenablösung die Keimstelle durch nachströmende Flüssigkeit geflutet wird, wird u.U. der Gas- bzw. Dampfeinschluß durch Flüssigkeit verdrängt. In diesem Fall wird die Keimstelle inaktiviert. Dies läßt sich durch eine geeignete Gestaltung der Keimstelle vermeiden. Hierzu ist es notwendig, daß die Öffnung der Keimstelle kleiner ist als die darunterliegende Kavität, wie z.B. bei hinterschnittenen Strukturen.
Es ist Stand der Technik, derartige Strukturen auf der Basis von integral gewalzten Rippenrohren herzustellen, bei denen die Rippen aus der Rohrwand durch Walzen geformt werden. Unter integral gewalzten Rippenrohren werden berippte Rohre verstanden, bei denen die Rippen aus dem Wandungsmaterial eines Glattrohres geformt wurden. Für die Verwendung solcher Rippenrohre in Rohrbündelwärmeaustauschern ist es in vielne Fällen notwendig, daß der äußere Durchmesser des Rohres im berippten Bereich nicht größer ist als der Außendurchmeser der unberippten End- und Zwischenstücke des Rohres.
Es sind verschiedene Verfahren bekannt, mit denen die zwischen benachbarten Rippen befindlichen Kanäle derart verschlossen werden, daß Verbindungen zwischen Kanälen und Umgebung in Form von Poren oder Schlitzen bleiben. Durch diese kann der Transport von Flüssigkeit und Dampf erfolgen. Insbesondere werden solche im wesentlichen geschlossene Kanäle durch Umbiegen oder Umlegen der Rippen (US-PS 3.696.861, US-PS 5.054.548), durch Spalten und Stauchen der Rippen (DE-PS 2.758.526, US-PS 4.577.381), durch Kerben und vollständiges Stauchen der Rippen (US-PS 4.660.630, EP-PS 0.713.072) oder durch Kerben und einseitig versetztes Stauchen der Rippen (US-PS 4.216.826) erzeugt.
Zur weiteren Steigerung der Wärmeübertragungsleistung ist es notwendig, die äußere Rohroberfläche und Anzahl der Kanäle durch die Zahl der Rippen pro Rohrlänge zu erhöhen. Um bei kleinem Rippenabstand gleichzeitig eine Struktur mit hoher Porosität (= relativer volumetrischer Hohlraumanteil der Kanäle) zu erzeugen, ist eine Reduktion der Rippendicke erforderlich. Damit stoßen die oben genannten Verfahren an die Grenze der Fertigungsstabilität:
Mit kleiner werdenden Abständen zwischen benachbarten Rippen müssen die Werkzeuge zum Umlegen bzw. Umbiegen der Rippe (US-PS 3.696.861, US-PS 5.054.548) immer filigraner gestaltet werden. Aufgrund von unvermeidbaren, innerhalb technischer Toleranzgrenzen liegender Schwankungen in den Abmessungen des Glattrohres (z.B. in der Wanddicke) treten entlang des Rohres Änderungen der beim Berippungsprozeß wirksamen Kräfte auf, die beim asymmetrischen Bearbeiten der Rippe (Umbiegen oder Umlegen) zu unerwünschten Unregelmäßigkeiten in der Schlitzbreite bzw. im Porenbild führen. Mit feiner werdender Struktur werden diese Unregelmäßigkeiten immer gravierender.
Bei dünnen Rippen ist ein mittiges Spalten der Rippe, wie in der DE-PS 2.758.526 und US-PS 4.577.381 vorgeschlagen wird, unter Fertigungsbedingungen nicht mehr wirtschaftlich realisierbar.
Die Erfahrung zeigt, daß dünne Rippen beim Stauchvorgang umknicken oder in sich zusammensinken, wenn der Vorgang wie in der US-PS 4.660.630 und EP-PS 0.713.072 beschrieben ausgeführt wird). Es kann damit keine Struktur hoher Porosität erzeugt werden.
Beim versetzten Stauchen gemäß der US-PS 4.216.826 neigen dünne Rippen dazu, nach einer Seite auszuweichen. Damit ist dieses Verfahren bei dünnen Rippen nur äußerst schwer kontrollierbar und somit für eine Großserienfertigung ungeeignet.
Der Erfindung liegt die Aufgabe zugrunde, die zwischen benachbarten Rippen eines integral gewalzten Rippenrohres befindlichen Kanäle mit Material aus dem oberen Bereich der Rippen im wesentlichen zu verschließen, wobei das Verschließen der Kanäle mit möglichst geringem Materialaufwand erfolgen soll. Je dünner die Deckel der Kanäle sind, desto geringer sind Gewicht und damit Materialkosten des Rohres. Zum Transport von Flüssigkeit und Dampf zwischen Kanal und Umgebung müssen poren- oder schlitzartige Öffnungen in den Deckeln der Kanäle gebildet werden. Gleichzeitig ist es Ziel, auf der Rohraußenseite eine Struktur mit hoher Porosität zu erzeugen. Durch eine hohe Porosität erreicht man eine große spezifische Kontaktfläche zwischen Rohr und umgebendem Medium und erhöht damit die aktive Wärmeübertragungsfläche für den Verdampfungsprozeß. Dieser Flächengewinn trägt zur Erhöhung des effektiven, auf die Hüllfläche bezogenen Wärmeübergangskoeffizienten bei. Die Struktur soll ferner eine hohe Gleichmäßigkeit bezüglich Porengröße bzw. Schlitzweite entlang der Rohrachse aufweisen. Um ein problemloses Einschieben des Rohres in den Rohrboden eines Rohrbündelwärmeaustauschers zu gewährleisten, ohne die Struktur dabei zu verändern, muß die Außenseite des Rohres möglichst glatt sein.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Auskragungen nach dem ersten Stauchschritt den ersten Teil des Kanaldeckels bilden und daß mindestens ein weiterer Stauchschritt mittels einer zahnradartigen Stauchscheibe durchgeführt wird, so daß der Kanaldeckel schrittweise durch Aneinanderfügen von Auskragungen gebildet wird.
Beim abschnittsweisen Stauchen wird das Material der Rippe innerhalb begrenzter, durch die Stauchscheibe definierter Gebiete aus dem oberen Bereich der Rippe beidseitig in Axialrichtung verdrängt. Das verdrängte Material bildet über dem Kanal Auskragungen, die dazu benutzt werden, einen Deckel zu formen. Nach dem ersten Bearbeitungsschritt ist der Deckel nur in den Bereichen seitlich der bearbeiteten Abschnitte der Rippenspitze ausgebildet. In den nachfolgenden Bearbeitungsschritten werden die im ersten Stauchschritt nicht gestauchten Abschnitte der Rippenspitze teilweise oder komplett gestaucht und so die überdeckten Bereiche des Kanals ausgeweitet. Zuletzt kann die Außenfläche des Rohres durch eine Glättscheibe konstanten Durchmessers eingeglättet werden.
Mit feiner werdender Außenstruktur, d.h. mit dünner werdenden Rippen, stellt die Reduktion der Stabilität der Rippe zunehmend die größte Schwierigkeit der Aufgabenstellung dar. Die Rippe sackt bei gleichzeitiger Verformung des gesamten oberen Rippenbereichs unter der Druckbelastung durch das Werkzeug in sich zusammen, statt einen Deckel über dem Kanal zu bilden. Es ist günstiger, die Verformung in Teilschritte zu zerlegen. Hierauf weist bereits DE-PS 2.808.080 hin. In dem genannten Schutzrecht wird vorgeschlagen, nicht die gesamte Rippe in einem Arbeitsgang zu verformen, sondern das Werkzeug zur Verformung so anzuordnen, daß nur eine Seite der Rippe bei einem Arbeitsgang verformt wird (siehe Fig. 2 der DE-PS 2.808.080). Mit diesem Verfahren wird die Rippe jedoch derart verformt, daß die oberen Bereiche der Rippe verdickt werden, wie in Fig. 17 der DE-PS 2.808.080 dargestellt ist. Es werden also keine dünnen Deckel über dem Kanal gebildet und die angestrebte hohe Porosität kann nicht realisiert werden.
Ferner wird in DE-PS 2.808.080 vorgeschlagen, die Rippen durch ein einziges, geeignetes Werkzeug zahnradartig zu verformen, so daß nach weiteren Bearbeitungsschritten Nuten in Axialrichtung des Rohres gebildet werden. Das bei der zahnradartigen Verformung verdrängte Material dient also nicht dazu, Deckel über den Kanälen zwischen den Rippen zu bilden.
Weitere vorteilhafte Varianten des erfindungsgemäßen Verfahrens sind Gegenstand der Ansprüche 2 bis 11.
Bei geeigneter Werkzeuggestaltung können insbesondere die im ersten Stauchschritt erzeugten Auskragungen bis zur Mitte des Kanales vorspringen, so daß Auskragungen von benachbarten Rippen zusammentreffen und quasi eine Brücke über den Kanal bilden. Aufgrund zunehmender Materialverfestigung reichen die Auskragungen, die in den nachfolgenden Stauchschritten gebildet werden, weniger weit über den Kanal. Auf diese Weise ist es möglich, eine Oberflächenstruktur zu erzeugen, bei der die Kanäle über Poren mit der Umgebung in Verbindung stehen. Treffen die Auskragungen nach dem ersten Bearbeitungsschritt nicht zusammen, entsteht in den nachfolgenden Schritten eine Oberflächenstruktur mit schlitzartigen Öffnungen.
Die Erfindung wird anhand der folgenden Ausführungsbeispiele näher erläutert. Es zeigt:
Fig. 1
eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens,
Fig. 2
schematisch zwei Stauchscheiben mit schräg zur Scheibenachse verlaufenden Zähnen,
Fig. 3a - 3c
schematisch die Durchführung der einzelnen Stauchschritte,
Fig. 4a - 4c
eine Draufsicht auf die Rohroberfläche bei beabstandeten Auskragungen und
Fig. 5a - 5c
eine Draufsicht auf die Rohroberfläche bei sich berührenden Auskragungen.
Die Herstellung eines integral gewalzten Rippenrohres 1 mit auf der Rohraußenseite schraubenlinienförmig umlaufenden Rippen 2 der Rippenteilung t, die unter Ausbildung von Kanälen 3 mit Kanaldeckel 3a verformt werden, erfolgt durch einen Walzvorgang (vgl. US-PS 1.865.575 und US-PS 3.327.512) mittels der in Fig. 1 dargestellten Vorrichtung.
Es wird eine Vorrichtung verwendet, die aus n = 3 Werkzeughaltern 4 besteht, in die jeweils ein Walzwerkzeug 5 und zwei zahnradartige Stauchscheiben 6/7 sowie eine Glättscheibe 8 konstanten Durchmessers integriert sind (in Fig. 1 ist nur ein Werkzeughalter 4 dargestellt. Es können aber beispielsweise vier oder mehr Werkzeughalter 4 verwendet werden). Die Werkzeughalter 4 sind jeweils um α = 360°/n versetzt am Umfang des Rippenrohres angeordnet. Die Werkzeughalter 4 sind radial zustellbar. Sie sind ihrerseits in einem ortsfesten (nicht dargestellten) Walzkopf angeordnet (nach einer anderen Variante wird das Rohr bei sich drehendem Walzkopf lediglich axial vorgeschoben).
Das in Pfeilrichtung in die Vorrichtung einlaufende Glattrohr 1' wird durch die am Umfang angeordneten, angetriebenen Walzwerkzeuge 5 in Drehung versetzt, wobei die Achsen der Walzwerkzeuge 5 schräg zur Rohrachse verlaufen, um schraubenlinienförmige Rippen 2 erzeugen zu können. Die Walzwerkzeuge 5 bestehen in an sich bekannter Weise aus mehreren nebeneinander angeordneten Walzscheiben 9, deren Durchmesser in Pfeilrichtung ansteigt. Die zentrisch angeordneten Walzwerkzeuge 5 formen die schraubenlinienförmig umlaufenden Rippen 2 aus der Rohrwandung des Glattrohres 1', wobei die Rohrwandung im Umformbereich unter den Walzwerkzeugen 5 hier durch einen profilierten Walzdorn 10 abgestützt wird. Hierdurch entstehen gleichzeitig schraubenlinienförmig umlaufende Rippen 11 auf der Innenseite des Rohres 1.
Nach dem Herausformen der Rippen 2 mit der Rippenhöhe H werden teilweise offene Kanäle 3 durch folgende drei Stauchschritte erzeugt:
In einem ersten Stauchschritt werden die Rippen 2 durch die Zähne 6a einer ersten Stauchscheibe 6 am Umfang abschnittsweise um die radiale Stauchtiefe X gestaucht (vgl. Fig. 3a/4a/5a), dabei ist der Außendurchmesser der ersten Stauchscheibe 6 kleiner als der Durchmesser der letzten Walzscheibe 9. Es bilden sich Auskragungen 12a.
In einem zweiten Stauchschritt werden die noch nicht gestauchten Abschnitte 15a der Rippen 2 durch die Zähne 7a der zweiten Stauchscheibe 7 teilweise verformt (vgl. Fig. 3b/4b/5b), wobei die radiale Stauchtiefe Y mindestens so groß ist wie die radiale Stauchtiefe X beim ersten Stauchschritt. Es entstehen weitere Auskragungen 12b, und der Deckel 3a des Kanals 3 wird vergrößert.
Die Stauchscheiben 6, 7 weisen vorzugsweise 10 bis 30 Zähne 6a, 7a pro cm Umfang, insbesondere 14 bis 25 Zähne 6a, 7a pro cm Umfang, auf. Die Zähne 6a, 7a verlaufen parallel oder schräg unter dem Winkel α bzw. β (wie in Fig. 2 dargestellt) zur jeweiligen Scheibenachse.
Abschließend erfolgt eine Glättung der Rohroberfläche durch eine Glättscheibe 8, wobei die nach dem zweiten Stauchschritt noch nicht gestauchten Abschnitte 15b der Rippen 2 eingeglättet werden und sich die endgültigen Poren 13 bzw. Schlitz 14 ausbilden, durch welche die Kanäle 3 mit der Umgebung in Verbindung stehen. Nach dem Glättvorgang weist die Außenseite des Rohres 16 keine Erhebungen mehr auf, wie in Fig. 3c/4c/5c dargestellt ist.
Die Fig. 4a/4b/4c zeigen den Fall, daß sich die Auskragungen 12a/12b benachbarter Rippen 2 nicht berühren, also ein Schlitz 14 der Breite B' zwischen ihnen verbleibt. Diese Schlitzbreite B' kann bis zu 20 % der offenen Kanalbreite B betragen.
Die Fig. 5a/5b/5c schließlich betreffen den Fall, daß sich die Auskragungen 12a benachbarter Rippen 2 berühren.
Zahlenbeispiel:
Aus einem glatten Kupferrohr 1' werden durch einen Walzvorgang schraubenlinienartig umlaufende Rippen 2 herausgeformt, wobei die Rippenteilung t = 0,41 mm beträgt. Im nächsten Bearbeitungsschritt wird die Rippenspitze durch die erste Stauchscheibe 6 mit Durchmesser D = 35,0 mm abschnittsweise gestaucht.
Die auf dem Umfang der Stauchscheibe 6 gleichmäßig angeordneten 255 Zähne 6a verlaufen unter einem Winkel α von 40° schräg zur Scheibenachse. Die zweite Stauchscheibe 7 hat den gleichen Durchmesser D wie die erste Stauchscheibe 6 sowie die gleiche Anzahl Z von Zähnen 7a. Die Zähne 7a der zweiten Stauchscheibe 7 verlaufen ebenfalls schräg zur Scheibenachse, ihre Orientierung ist jedoch der Orientierung der Zähne 6a der ersten Stauchscheibe 6 entgegengesetzt, so daß sich die Abdrücke der Zähne 6a und 7a auf dem Rohr kreuzen (siehe Fig. 1/4b/5b). Um ein regelmäßiges Bild auf der Rohroberfläche zu erzeugen, muß der Winkel β, den die Zähne 7a mit der Scheibenachse einschließen, nach folgender Formel berechnet werden: β = arctan (π . D/(Z . t)- tan α). Im vorliegenden Fall ergibt sich β zu 12,0°.
Vorteile des Herstellungsverfahrens:
Mit dem genannten Herstellungsverfahren können Wärmeaustauscherrohre mit einer hochporösen Oberflächenstruktur gefertigt werden. Im vorliegenden Fall wurde ein Verdampferrohr mit einer derartigen Oberfläche basierend auf integral gewalzten Rippen mit einer Dicke in der Größenordnung von 0,1 mm gefertigt. Trotz der geringen Rippendicke gelang es, die Kanäle zwischen den Rippen mit dünnen Deckeln, die aus dem oberen Bereich der Rippe geformt wurden, im wesentlichen zu verschließen, ohne daß die Rippen zur Seite knickten oder in sich zusammen sackten.
Als vorteilhaft erweist sich ferner, daß mit dem vorgeschlagenen Herstellungsverfahren Porenform und Porengröße durch die relative Anordnung der beiden Stauchscheiben 6 und 7 zueinander gezielt verändert werden können. Damit ist es möglich, die Struktur der Rohroberfläche den Einsatzbedingungen (verwendetes Medium, Drucklage, Leistungsdichte, etc.) optimal anzupassen.

Claims (12)

  1. Verfahren zur Herstellung eines Wärmeaustauschrohres (1), insbesondere zur Verdampfung von Flüssigkeiten aus Reinstoffen oder Gemischen auf der Rohraußenseite, mit auf der Rohraußenseite schraubenlinienförmig umlaufenden, integralen, d. h. aus der Rohrwand herausgearbeiteten Rippen (2), die unter Ausbildung von zwischen den Rippen (2) befindlichen Kanälen (3) verformt sind, bei dem folgende Verfahrensschritte durchgeführt werden:
    a) Auf der Außenseite eines Glattrohres (1') werden schraubenlinienförmig verlaufende Rippen (2) geformt, indem das Rippenmaterial durch Verdrängen von Material aus der Rohrwandung mittels eines Walzvorgangs gewonnen wird und das entstehende Rippenrohr (1) durch die Walzkräfte in Drehung versetzt und/oder entsprechend den entstehenden schraubenlinienförmigen Rippen (2) vorgeschoben wird, wobei die Rippen (2) mit ansteigender Höhe aus dem sonst unverformten Glattrohr (1') ausgeformt werden,
    b) die Rohrwandung wird im Umformbereich durch einen im Rohr liegenden Walzdorn (10) abgestützt,
    c) nach dem Herausformen werden die Rippen (2) zur Ausbildung dazwischenliegender, teilweise offener Kanäle (3) einem Stauchvorgang unterworfen, wobei die Rippen (2) in einem ersten Stauchschritt in Umfangsrichtung abschnittsweise mittels einer zahnradartigen Stauchscheibe (6) um die radiale Stauchtiefe X gestaucht werden, so daß Rippenmaterial beidseitig in Axialrichtung unter Ausbildung von Auskragungen (12a) verlagert wird,
    dadurch gekennzeichnet,
    daß die Auskragungen (12a) nach dem ersten Stauchschritt den ersten Teil des Kanaldeckels (3a) bilden und
    daß mindestens ein weiterer Stauchschritt mittels einer zahnradartigen Stauchscheibe (7) durchgeführt wird, so daß der Kanaldeckel (3a) schrittweise durch Aneinanderfügen von Auskragungen (12a, 12b) gebildet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
    daß die radiale Stauchtiefe Y im zweiten Stauchschritt mindestens so groß ist wie die radiale Stauchtiefe X im ersten Stauchschritt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet,
    daß als weiterer und letzter Stauchschritt jeweils ein durchgehendes Glätten des Rohres (1) mittels einer Glättscheibe (8) konstanten Durchmessers erfolgt.
  4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet,
    daß die radiale Stauchtiefe X im ersten Stauchschritt 10 bis 50 % der Rippenhöhe H beträgt.
  5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet,
    daß die Rippen (2) im ersten Stauchschritt derart gestaucht werden, daß zwischen den Auskragungen (12a) benachbarter Rippen (2) ein Schlitz (14) der Breite B' verbleibt.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet,
    daß die Schlitzbreite B' bis zu 20 % der offenen Kanalbreite B beträgt.
  7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet,
    daß die Rippen (2) im ersten Stauchschritt derart gestaucht werden, daß sich die Auskragungen (12a) benachbarter Rippen (2) berühren.
  8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet,
    daß eine Stauchscheibe (6, 7) mit 10 bis 30 Zähnen (6a, 7a) pro cm Stauchscheibenumfang verwendet wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet,
    daß eine Stauchscheibe (6, 7) mit 14 bis 25 Zähnen (6a, 7a) pro cm Stauchscheibenumfang verwendet wird.
  10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet,
    daß die Zähne (6a, 7a) der verwendeten Stauchscheiben (6, 7) parallel zur Scheibenachse verlaufen.
  11. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet,
    daß die Zähne (6a, 7a) der verwendeten Stauchscheiben (6, 7) schräg unter einem Winkel α bzw. unter einem Winkel β zur Scheibenachse verlaufen.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet,
    daß bei Verwendung von Stauchscheiben (6, 7) desselben Durchmessers D und derselben Anzahl Z der Zähne (6a, 7a) die Winkel α und β nach folgender Formel: β = arctan (π . D/(Z . t)- tan α) aufeinander abgestimmt werden, wobei t die Teilung der Rippen (2) bedeutet.
EP98122877A 1997-12-23 1998-12-02 Verfahren zur Herstellung eines Verdampferrohres Expired - Lifetime EP0925856B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19757526 1997-12-23
DE19757526A DE19757526C1 (de) 1997-12-23 1997-12-23 Verfahren zur Herstellung eines Wärmeaustauschrohres, insbesondere zur Verdampfung von Flüssigkeiten aus Reinstoffen oder Gemischen auf der Rohraußenseite

Publications (3)

Publication Number Publication Date
EP0925856A2 true EP0925856A2 (de) 1999-06-30
EP0925856A3 EP0925856A3 (de) 2000-04-05
EP0925856B1 EP0925856B1 (de) 2002-01-16

Family

ID=7853177

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98122877A Expired - Lifetime EP0925856B1 (de) 1997-12-23 1998-12-02 Verfahren zur Herstellung eines Verdampferrohres

Country Status (3)

Country Link
US (1) US6067832A (de)
EP (1) EP0925856B1 (de)
DE (2) DE19757526C1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117834A (zh) * 2014-07-11 2014-10-29 航天海鹰(哈尔滨)钛业有限公司 钛或钛合金翅片管的制造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19963353B4 (de) 1999-12-28 2004-05-27 Wieland-Werke Ag Beidseitig strukturiertes Wärmeaustauscherrohr und Verfahren zu dessen Herstellung
DE10101589C1 (de) * 2001-01-16 2002-08-08 Wieland Werke Ag Wärmeaustauscherrohr und Verfahren zu dessen Herstellung
DE10159860C2 (de) * 2001-12-06 2003-12-04 Sdk Technik Gmbh Wärmeübertragungsfläche mit einer aufgalvanisierten Mikrostruktur von Vorsprüngen
US7197808B2 (en) * 2002-10-28 2007-04-03 Borgwarner Inc. Process for forming a groove in a friction layer
CN100498187C (zh) * 2007-01-15 2009-06-10 高克联管件(上海)有限公司 一种蒸发冷凝兼备型传热管
CN101338987B (zh) * 2007-07-06 2011-05-04 高克联管件(上海)有限公司 一种冷凝用传热管
DE102008013929B3 (de) 2008-03-12 2009-04-09 Wieland-Werke Ag Verdampferrohr mit optimierten Hinterschneidungen am Nutengrund
US9844807B2 (en) * 2008-04-16 2017-12-19 Wieland-Werke Ag Tube with fins having wings
DE202008005887U1 (de) 2008-04-29 2008-09-04 Hellwig, Udo, Prof. Dr. Behälter zum Aufnehmen und Erwärmen von Fluiden
DE202008005886U1 (de) 2008-04-29 2008-09-04 Hellwig, Udo, Prof. Dr. Einrichtung zum Erwärmen eines Fluides
DE202008007183U1 (de) 2008-05-28 2008-10-02 Hellwig, Udo, Prof. Dr. Erwärmungseinrichtung
DE102011121733A1 (de) 2011-12-21 2013-06-27 Wieland-Werke Ag Verdampferrohr mit optimierter Außenstruktur
DE102014002829A1 (de) 2014-02-27 2015-08-27 Wieland-Werke Ag Metallisches Wärmeaustauscherrohr
DE102016006914B4 (de) 2016-06-01 2019-01-24 Wieland-Werke Ag Wärmeübertragerrohr
US9945618B1 (en) * 2017-01-04 2018-04-17 Wieland Copper Products, Llc Heat transfer surface
DE102018004701A1 (de) 2018-06-12 2019-12-12 Wieland-Werke Ag Metallisches Wärmeaustauscherrohr
CN111707122B (zh) * 2020-05-07 2022-03-25 华南理工大学 一种具有表面混合润湿性的外翅片管及其制备方法
WO2022089772A1 (de) 2020-10-31 2022-05-05 Wieland-Werke Ag Metallisches wärmeaustauscherrohr
DE202020005625U1 (de) 2020-10-31 2021-11-10 Wieland-Werke Aktiengesellschaft Metallisches Wärmeaustauscherrohr
EP4237782A1 (de) 2020-10-31 2023-09-06 Wieland-Werke AG Metallisches wärmeaustauscherrohr
DE202020005628U1 (de) 2020-10-31 2021-11-11 Wieland-Werke Aktiengesellschaft Metallisches Wärmeaustauscherrohr

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4660630A (en) * 1985-06-12 1987-04-28 Wolverine Tube, Inc. Heat transfer tube having internal ridges, and method of making same
DE4420756C1 (de) * 1994-06-15 1995-11-30 Wieland Werke Ag Mehrgängiges Rippenrohr und Verfahren zu dessen Herstellung
EP0713072A2 (de) * 1994-11-17 1996-05-22 Carrier Corporation Wärmetaustauschrohr

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1865575A (en) * 1928-11-30 1932-07-05 Wolverine Tube Company Apparatus for manufacturing integral finned tubing
BE669560A (de) * 1964-12-28
US3696861A (en) * 1970-05-18 1972-10-10 Trane Co Heat transfer surface having a high boiling heat transfer coefficient
DE2808080C2 (de) * 1977-02-25 1982-12-30 Furukawa Metals Co., Ltd., Tokyo Wärmeübertragungs-Rohr für Siedewärmetauscher und Verfahren zu seiner Herstellung
DE2758526C2 (de) * 1977-12-28 1986-03-06 Wieland-Werke Ag, 7900 Ulm Verfahren und Vorrichtung zur Herstellung eines Rippenrohres
US4577381A (en) * 1983-04-01 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho Boiling heat transfer pipes
AU4316185A (en) * 1984-06-18 1986-01-02 Borg-Warner Corporation Heat transfer tube and manufacture thereof
US5054548A (en) * 1990-10-24 1991-10-08 Carrier Corporation High performance heat transfer surface for high pressure refrigerants
US5697430A (en) * 1995-04-04 1997-12-16 Wolverine Tube, Inc. Heat transfer tubes and methods of fabrication thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4660630A (en) * 1985-06-12 1987-04-28 Wolverine Tube, Inc. Heat transfer tube having internal ridges, and method of making same
DE4420756C1 (de) * 1994-06-15 1995-11-30 Wieland Werke Ag Mehrgängiges Rippenrohr und Verfahren zu dessen Herstellung
EP0713072A2 (de) * 1994-11-17 1996-05-22 Carrier Corporation Wärmetaustauschrohr

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117834A (zh) * 2014-07-11 2014-10-29 航天海鹰(哈尔滨)钛业有限公司 钛或钛合金翅片管的制造方法

Also Published As

Publication number Publication date
DE19757526C1 (de) 1999-04-29
US6067832A (en) 2000-05-30
EP0925856A3 (de) 2000-04-05
DE59802629D1 (de) 2002-02-21
EP0925856B1 (de) 2002-01-16

Similar Documents

Publication Publication Date Title
EP0925856B1 (de) Verfahren zur Herstellung eines Verdampferrohres
DE4404357C1 (de) Wärmeaustauschrohr zum Kondensieren von Dampf
EP1223400B1 (de) Wärmeaustauscherrohr und Verfahren zu dessen Herstellung
DE69814904T2 (de) Rippe für einstückigen wärmetauscher und verfahren zu deren herstellung
DE3332282C2 (de) Wärmetauschrohr
DE10156374C1 (de) Beidseitig strukturiertes Wärmeaustauscherrohr und Verfahren zu dessen Herstellung
DE19628280C2 (de) Wärmeübertragungsrohr mit einer gerillten Innenfläche
DE4420756C1 (de) Mehrgängiges Rippenrohr und Verfahren zu dessen Herstellung
DE19963353B4 (de) Beidseitig strukturiertes Wärmeaustauscherrohr und Verfahren zu dessen Herstellung
DE102009007446B4 (de) Wärmeübertragerrohr und Verfahren zu dessen Herstellung
EP2339283B1 (de) Wärmeübertragerrohr und Verfahren zur Herstellung eines Wärmeübertragerrohrs
DE10024682C2 (de) Wärmeaustauscherrohr zur Verdampfung mit unterschiedlichen Porengrößen
WO1998009745A1 (de) Verfahren und vorrichtungen zum herstellen eines metallbleches mit einer wellung und einer quer dazu liegenden mikrostruktur
EP0672882A1 (de) Rippe für Wärmetauscher
EP3111153B1 (de) Metallisches wärmeaustauscherrohr
DE2303192A1 (de) Rippenrohr sowie verfahren und vorrichtung zu seiner herstellung
DE2758527C2 (de) Verfahren und Vorrichtung zur Herstellung eines Rippenrohres
EP0186130B1 (de) Verfahren zur Herstellung zylindrische Wärmetauschersammelrohrstrukturen bildender ringscheibenartiger Bauteile
EP0144460A1 (de) Verfahren zur Herstellung eines Wärmeübertragungsrohres
CH626986A5 (en) Heat exchange tube for a heat exchanger, and method for producing it
EP4237782A1 (de) Metallisches wärmeaustauscherrohr
DE202020005628U1 (de) Metallisches Wärmeaustauscherrohr
DE2335306C3 (de) Rippenrohr für Wärmetauscher und Verfahren zu seiner Herstellung
DE202020005625U1 (de) Metallisches Wärmeaustauscherrohr
WO2022089772A1 (de) Metallisches wärmeaustauscherrohr

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981202

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7B 21C 37/20 A, 7F 28F 1/36 B

AKX Designation fees paid

Free format text: DE FR GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010427

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59802629

Country of ref document: DE

Date of ref document: 20020221

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020410

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151202

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171012

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171231

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59802629

Country of ref document: DE