EP0925155B1 - Drehmomentschlüssel - Google Patents

Drehmomentschlüssel Download PDF

Info

Publication number
EP0925155B1
EP0925155B1 EP97932810A EP97932810A EP0925155B1 EP 0925155 B1 EP0925155 B1 EP 0925155B1 EP 97932810 A EP97932810 A EP 97932810A EP 97932810 A EP97932810 A EP 97932810A EP 0925155 B1 EP0925155 B1 EP 0925155B1
Authority
EP
European Patent Office
Prior art keywords
torque
torque wrench
angle
rotation
evaluation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97932810A
Other languages
English (en)
French (fr)
Other versions
EP0925155A1 (de
Inventor
Heinz Schönberger
Frank Humme
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prosperas GmbH
Original Assignee
Saltus Werk Max Forst GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saltus Werk Max Forst GmbH filed Critical Saltus Werk Max Forst GmbH
Priority to DE29724239U priority Critical patent/DE29724239U1/de
Publication of EP0925155A1 publication Critical patent/EP0925155A1/de
Application granted granted Critical
Publication of EP0925155B1 publication Critical patent/EP0925155B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers

Definitions

  • the invention relates to a torque wrench the features of the preamble of claim 1.
  • the beginning of the Determination of the deflection angle is determined automatically.
  • the type of temporal integration of the measured values depends on the overall design of the evaluation device and especially from the issue of Accelerometer readings. So can the integration by means of differential amplifiers in a known manner Way if the evaluation of the measured values is analog he follows.
  • a microprocessor is provided, for example, an evaluation can also take place digitally and there are various numerical integration methods available with which the microprocessor then is programmable.
  • Suitable acceleration sensors are known and customary in the trade. Preferably used are such acceleration sensors, which in one defined distance to the swivel axis in the torque wrench are arranged and which the pivot axis of the torque wrench as a virtual fixed point serves.
  • the preferred arrangement has the advantage that here no measurement between fixed and key-fixed Components.
  • a deflection angle to understand the proportion of the angle of rotation, which is usually from defined initial conditions a zero angle position such as one spatial position of the torque wrench to a housing begins to count and with the end of the tightening process or control process also ends.
  • the acceleration sensor detects an angular acceleration in the tightening direction for example a screw both positive and can also be negative, but still with the screw is attracted to a positive torque.
  • an angular acceleration in the tightening direction for example a screw both positive and can also be negative, but still with the screw is attracted to a positive torque.
  • torque when using a ratchet or ratchet or the angular velocity negative, namely counter in returning the torque wrench tightening direction this may be from the torque wrench swept angular range not taken into account as it doesn't tighten the screw contributes.
  • measured values of the Acceleration sensor only in a definable direction of rotation be evaluated.
  • the evaluation device with each a lower and an upper torque limit and a deflection angle is preprogrammable and that the evaluation device between the respective Actual values lying within the limit values.
  • Fig. 1 shows the essential components of a torque wrench 1 according to the invention. To put one on Screw, a nut or the like about an axis of rotation 2, it has an insertion tool 3, which on the Torque wrench 1 via a conventional plug-in receptacle is held.
  • the torque wrench 1 is guided around the axis of rotation 2 over an angular range ⁇ .
  • a clockwise rotation angle ⁇ and a torque applied in this direction are counted positively.
  • the counting direction can be reversed, for example, for screws with a left-hand thread.
  • the angular velocity ⁇ ⁇ and the angular acceleration also count accordingly clockwise positive.
  • the torque wrench 1 has an electronic Evaluation device 5 for the evaluation of sensors delivered measured values for acquisition or calculation of the torque M and the angle of rotation ⁇ .
  • a keypad 6 is used to program one, for example Microprocessor of the evaluation device and in particular the entry of limit values for the rotation or Deflection angle ⁇ or the torque M. Reaching or exceeding such limit values is indicated by a LED line 7 is displayed.
  • Final values of the torque M or of the angle of rotation or deflection ⁇ , ⁇ are on one LCD display 8 reproduced.
  • the torque M is measured and evaluated after known methods.
  • an acceleration sensor 9 in the torque wrench 1 for detecting the angle of rotation acceleration provided, which is arranged within the torque wrench 1 at a defined distance s from the axis of rotation 2.
  • the pivot axis 2 serves the acceleration sensor 9 as a virtual fixed point about which it is then also pivoted. This distance s is essentially determined by the design of the acceleration sensor 9 used, which is customary in the trade.
  • the torque wrench can be connected via a connector 10 1 via a common interface, for example with a computer 11 and / or a printer 12 for Logging of measurements must be connected.
  • step 15 switching on is carried out in step 16 by the evaluation device 5 a self test and zeroing automatically carried out.
  • step 16 a self test and zeroing automatically carried out.
  • step 16 a self test and zeroing automatically carried out.
  • step 16 a calibration of the torque wrench 1 to provide.
  • a separate calibration for the rotation angle measurement can for example, that the torque wrench 1 is set and the memory for the Angle of rotation is manually set to zero. Then the torque wrench 1 to his Rotation axis 2 over a defined angular range pivoted, which is then also from the evaluation device is to be displayed.
  • step 16 the parameters for the measuring process are set in step 17. Regardless of the order, these are initially the starting torque M s .
  • the starting torque M s can of course also be set to zero, with which the angle of rotation ⁇ and the deflection angle ⁇ then coincide.
  • a starting torque M s greater than zero is selected here, which is predetermined by the application.
  • a lower and an upper limit value for the torque are to be set as minimum and maximum values M min , M max , which define the torque range in which the final torque value reached is to be found in order when a screw or the like is tightened.
  • minimum and maximum values ⁇ min , ⁇ max are to be specified in which angular range the deflection angle, counting starting with the starting torque M s , has to be at the end of the measurement.
  • This setpoint specification also includes the choice of the measurement itself. For example, switching off one or the other measuring device can measure the torque M or measure the angular acceleration also done.
  • step 17 the torque key is then, for example, controlled manually or by one of the sensors with the measurement of the torque M and the angular acceleration began. These measurements according to steps 18, 19 take place continuously over the entire tightening process, for example of a screw.
  • step 20 the measurement result of the torque is checked to determine whether it is greater than or equal to the starting torque M s . As long as the determined torque is less than this value, the torque measurement is continued as normal.
  • the result of the acceleration measurement is checked regularly in step 21, namely whether the direction of rotation coincides with the tightening direction of, for example, a nut.
  • the angular velocity ⁇ ⁇ must be greater than zero.
  • This query criterion can be seen here alternatively, since, for example, the occurrence of a negative torque would also indicate that the direction of rotation was reversed, for example when using a ratchet or ratchet. If there is such a return movement of the torque wrench 1, the measured acceleration value becomes not further processed and in particular not added to the angle of rotation ⁇ in the tightening direction. The acceleration measurement however, continues as normal.
  • step 21 If it is determined in step 21 that there is a pivoting movement of the torque wrench 1 in the tightening direction, ie here that the angular velocity ⁇ ⁇ is greater than zero, the angular acceleration is integrated twice over time.
  • Various methods are available for this. In the case of analog integration, for example via differential amplifiers, the measured values are continuously evaluated.
  • An alternative possibility is to program, for example, a microprocessor present in the evaluation circuit 5, which then uses individual measured values as support values for a numerical integration.
  • the microprocessor can save all measured values as base values and use them to calculate the angle of rotation ⁇ for the current, last measurement.
  • the determination of the deflection angle ⁇ begins, cf. also FIG. 4.
  • Alternative methods are also available here.
  • the current numerical value of ⁇ ie the rotation angle swept up to this point in time, can be set to zero in step 23. Since the acceleration measurement is continued continuously, stored intermediate values can be used, for example, and the acceleration measurement can also be determined by integrating the deflection angle ⁇ . Alternatively, it would be possible to save the value of ⁇ present when the starting torque M s is exceeded and then subtract it from the end value of the angle of rotation measurement in order to determine the deflection angle ⁇ .
  • the aim of tightening a screw or the like by means of a torque wrench 1 according to the invention is for the torque to ultimately lie between predetermined limit values M min , M max or the deflection angle between limit values ⁇ min , ⁇ max after tightening the screw.
  • M min , M max or the deflection angle between limit values ⁇ min , ⁇ max after tightening the screw This is explained further on the basis of the flow chart according to FIG. 3.
  • both the torque measurement 18 and the acceleration measurement 19 continue to be carried out unchanged.
  • the evaluation of the acceleration measurement likewise continues according to steps 21, 22, but in the current memory it is no longer a summation of the angle of rotation ⁇ , but rather a summation of the deflection angle ⁇ now after step 23, as explained above.
  • a query is then made as to whether the current values of the torque M or the deflection angle ⁇ are within the predetermined limit ranges according to FIG. 4. If this is not the case, as is initially not the case due to values for the torque M and the deflection angle ⁇ which are too small, a query is made in step 31 as to whether the upper limit values M max , ⁇ max have been exceeded by the current values. If the current values M, ⁇ are still below the predefined end range, this is naturally not the case and the torque measurement M and acceleration measurement will continue to run unchanged. As an alternative, step 31 can only be predicted at a later point in time, namely when the lower limit values M min , ⁇ min have been exceeded. This step 31 would then follow step 30 in the "Yes" branch. This could also save computing capacity if necessary.
  • step 30 If it is determined in step 30 that a current measured value M, ⁇ lies in the specified interval of the lower and upper limit values, then a signal is triggered in step 32, for example LED line 7, so that a measurement result lies in the desired range.
  • a signal triggering can be carried out individually for each step, or such a signal triggering can only take place if both criteria are met.
  • This last signal trigger indicates to the user that the tightening process has been successfully completed. In the case of a separate display, the user is signaled that, at the end of the tightening process, he must also pay close attention to reaching the other criterion. However, the torque measurement M and the acceleration measurement are still as before still made.
  • the user will generally relieve the torque wrench 1. Accordingly, the torque M, the angular acceleration and the angular velocity ⁇ ⁇ assume the value zero. If this is determined by the evaluation device 5 in step 33, it ensures that the end values are displayed, for example on the LCD display 8. These end values can also be stored by the evaluation device 5, for example up to 1,000 pieces. Alternatively, these end values can also be transferred to a computer 11 or printer 12 immediately or after storage, as explained at the beginning. If, however, the evaluation device 5 determines in step 33 that there is still a torque M and / or an angular velocity ⁇ ⁇ in the tightening direction, the torque measurement M and the acceleration measurement will also continue to be performed.
  • step 30 it can be determined in step 30 that the current values M, ⁇ are no longer within the predetermined interval, but instead according to step 31 the predetermined upper limits M max and / or ⁇ max have been exceeded. In this case, a "faulty" signal is triggered in step 35. In particular if the maximum limit values are exceeded incorrectly, it has also proven expedient to use an acoustic display, for example a buzzer.
  • step 33 in a step 36 determined whether the tightening process is finished and it then accordingly comes to a final value display 37 "faulty" or the measuring process is still continued.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)
  • Control Of Transmission Device (AREA)

Description

Die Erfindung betrifft einen Drehmomentschlüssel nach den Merkmalen des Oberbegriffs des Anspruches 1.
Bei einem aus der EP 0 133 557 bekannten Drehmomentschlüssel ist ein Mikroprozessor mit Tastatur vorgesehen, über die jeweils gewünschte Daten wie Sollwerte, Grenzwerte, oder dergleichen für den Anziehvorgang als Vorgabe gewählt eingebbar sind. Entsprechend diesen Vorgaben wird der Anziehvorgang z. B. einer Schraube überwacht. Bei Erreichen bestimmter Grenzwerte erfolgt dabei eine automatische Abspeicherung dieser erreichten Werte. Als nachteilig hat sich dort die Geber-Technik für die Meßwerte der Drehwinkel-Meßeinrichtung herausgestellt, welche aus einem Impulsrad und einer Reflexsonde im wesentlichen besteht. Es ist diese Geber-Technik sehr aufwendig und beispielsweise hinsichtlich Verschmutzung sehr anfällig. Darüber hinaus wird durch die Anordnung Impulsrad/Reflexsonde die Geometrie des Schlüssels wesentlich bestimmt.
Weiter ist ein Drehmomentschlüssel aus der DE 43 43 110 A1 bekannt, bei welchem ein Sensor als Beschleunigungssensor zur Erfassung der Drehwinkelbeschleunigung ausgebildet ist, dessen Meßwerte die Auswertevorrichtung zur Ermittlung des Drehwinkels zweimal zeitlich integriert.
Ausgehend von dem zuletzt genannten Stand der Technik beschäftigt sich die Erfindung mit der technischen Problematik, den bekannten, vorbezeichneten Drehmomentschlüssel so auszugestalten und weiterzubilden, daß eine vereinfachte Bedienung gegeben ist.
Diese Problematik ist beim Gegenstand des Anspruches 1 gelöst. Der Beginn der Bestimmung des Auslenkwinkels wird automatisch festgelegt. Die Art der zeitlichen Integration der Meßwerte ist abhängig von der Gesamtgestaltung der Auswertevorrichtung und insbesondere auch von der Ausgabe der Meßwerte des Beschleunigungsensors. So kann die Integration mittels Differenzverstärkers in an sich bekannter Weise erfolgen, wenn die Auswertung der Meßwerte analog erfolgt. Ist ein Mikroprozessor beispielsweise vorgesehen, so kann eine Auswertung auch digital erfolgen und stehen hierfür verschiedene numerische Integrationsverfahren zur Verfügung, mit denen der Mikroprozessor dann programmierbar ist. Geeignete Beschleunigungssensoren sind bekannt und handelsüblich. Bevorzugt verwendet werden solche Beschleunigungssensoren, die in einem definierten Abstand zu der Schwenkachse in dem Drehmomentschlüssel angeordnet sind und denen die Schwenkachse des Drehmomentschlüssels als virtueller Festpunkt dient. Dieser Abstand ist abhängig von dem Typ des verwendeten Beschleunigungssensors und danach auch auszurichten. Im Gegensatz zu Beschleunigungssensoren für die Erfassung von Drehwinkelbeschleunigungen, welche ringförmig um eine Drehachse beispielsweise angeordnet sind, hat die bevorzugte Anordnung den Vorteil, daß hier keine Messung zwischen drehachsenfesten und schlüsselfesten Bauteilen erfolgt. Nachstehend ist unter einem Ablenkwinkel der Anteil des Drehwinkels zu verstehen, welcher üblicherweise von definierten Anfangsbedingungen einer Nullwinkellage wie beispielsweise einer räumlichen Lage des Drehmomentschlüssels zu einem Gehäuse zu zählen beginnt und mit der Beendigung des Anziehvorganges bzw. Kontrollvorganges gleichfalls dann endet.
Hierdurch wird neben der Messung des Drehoments auch durch den Auslenkwinkel der sichere Anzug beispielsweise einer Schraube festgestellt. Eine solche Nullwinkellage kann dem Drehmomentschlüssel beispielsweise manuell eingegeben werden. Zumeist wird jedoch ein Drehmomentschlüssel der eingangs genannten Art zur Kontrolle des Anzuges von beispielsweise Schrauben für eine Vielzahl gleichartiger Verschraubungen in einer Serienfertigung verwendet. Hierbei ist nach der Erfindung vorgesehen, daß die Auswertevorrichtung mit einem Start-Drehmoment vorprogrammierbar ist und ein Auslenkwinkel ab Erreichen des Start-Drehmoments bestimmt wird. Hierdurch wird zunächst die Erfassung des Drehmoments mit der Erfassung des Drehwinkels zur Bestimmung des Auslenkwinkels verknüpft. Hier mit dem Ergebnis, daß der Beginn der Bestimmung des Auslenkwinkels gleichsam automatisiert ist. Erfindungsgemäß erfaßt der Beschleunigungssensor eine Drehwinkelbeschleunigung, die in Anzugsrichtung beispielsweise einer Schraube sowohl positiv als auch negativ sein kann, wobei dennoch die Schraube mit einem positiven Drehmoment angezogen wird. Wird jedoch bei der Verwendung einer Ratsche oder Knarre das Drehmoment oder die Winkelgeschwindigkeit negativ, nämlich bei dem Zurückführen des Drehmomentschlüssels entgegen der Festziehrichtung, so darf dieser von dem Drehmomentschlüssel überstrichene Winkelbereich nicht berücksichtigt werden, da er zum Festziehen der Schraube nicht beiträgt. Von daher ist es zweckmäßig, daß Meßwerte des Beschleunigungssensors nur in einer vorgebbaren Drehrichtung ausgewertet werden. In weiterer Ausgestaltung ist vorgesehen, daß die Auswertevorrichtung mit jeweils einem unteren und einem oberen Grenzwert für das Drehmoment und einem Auslenkwinkel vorprogrammierbar ist und daß die Auswertevorrichtung zwischen den jeweiligen Grenzwerten liegende Ist-Werte anzeigt. Hierdurch erfolgt eine doppelte Kontrolle des Anziehvorgangs hinsichtlich des Erreichens eines vorgegebenen Bereichs sowohl des Drehmoments als auch des Auslenkwinkels. Hierbei kann weiter vorgesehen sein, daß die Auswertevorrichtung das Überschreiten bereits des unteren Grenzwertes des Drehmoments und/oder des Auslenkwinkels anzeigt. Hierdurch wird dem Benutzer angezeigt, daß der Vorgang des Anziehens beispielsweise einer Schaube sich dem Ende nähert und er nunmehr auch die oberen Grenzwerte dahingehend zu überwachen hat, daß diese nicht überschritten werden. Das Überschreiten des oberen Grenzwertes des Drehmoments und/oder des Auslenkwinkels wird durch die Auswertevorrichtung gleichfalls angezeigt, wodurch signalisiert wird, daß dieser Anziehvorgang nicht ordnungsgemäß abgeschlossen wurde. Es hat sich als zweckmäßig herausgestellt, eine solche Anzeige vom Erreichen bzw. Überschreiten von Grenzwerten mittels wenigstens einer Leuchtdiode durchzuführen. Hierbei bietet sich eine Vielzahl von Anzeigemöglichkeiten an, beispielsweise kann durch ein Farbwechsel oder ein Blinken das Überschreiten der Grenzwerte des Drehmoments bzw. des Auslenkwinkels signalisiert werden. Erreichte Endwerte werden in üblicher Art auf einem LCD-Display gemeinsam angezeigt oder kann eine Umschaltung des Meßmodus auch erfolgen und eine umschaltbare, alternative Anzeige des End-Drehmoments bzw. des EndAuslenkwinkels erfolgen. Diese Endwerte können von dem Mikroprozessor abgespeichert, an einem Computer über eine entsprechende Schnittstelle übertragen oder unmittelbar an einen Drucker ausgegeben werden.
Die Erfindung wird anhand der Zeichnung näher erläutert, in der sie lediglich beispielhaft und prinzipiell dargestellt ist. In der Zeichnung zeigt:
Fig. 1
eine Darstellung des erfindungsgemäßen Drehmomentschlüssels und seiner wesentlichen Komponenten,
Fig. 2
ein Flußdiagramm, anhand dessen die erste Phase eines Anziehvorgangs nach Einschalten des Drehomentschlüssels erläutert wird,
Fig. 3
ein Flußdiagramm für die Bestimmung des Auslenkwinkels und
Fig. 4
über dem Drehmoment aufgetragen den Drehwinkel bzw. Auslenkwinkel.
Fig. 1 zeigt die wesentlichen Komponenten eines Drehmomentschlüssels 1 nach der Erfindung. Zum Anziehen einer Schraube, einer Mutter oder dergleichen um eine Drehachse 2 weist er ein Einsteckwerkzeug 3 auf, was an dem Drehmomentschlüssel 1 über eine übliche Steckaufnahme gehalten ist.
Gehalten an einem Handgriff 4 wird der Drehmomentschlüssel 1 um die Drehachse 2 über einen Winkelbereich α geführt. Mit Bezug auf das Anziehen beispielsweise einer Schraube wird hier ein im Uhrzeigersinn zählender Drehwinkel α und ein in dieser Richtung aufgebrachtes Drehmoment positiv gezählt. Es versteht sich, daß die Zählrichtung beispielsweise für Schrauben mit Linksgewinde umkehrbar ist. Entsprechend zählt auch die Winkelgeschwindigkeit α ˙ und die Winkelbeschleunigung
Figure 00060001
im Uhrzeigersinn positiv.
Der Drehmomentschlüssel 1 weist eine elektronische Auswertevorrichtung 5 für die Auswertung von von Sensoren gelieferten Meßwerten zur Erfassung bzw. Berechnung des Drehmoments M und des Drehwinkels α auf. Ein Tastenfeld 6 dient der Programmierung beispielsweise eines Mikroprozessors der Auswertevorrichtung und insbesondere der Eingabe von Grenzwerten bezüglich des Dreh oder Auslenkwinkels β bzw. des Drehmoments M. Das Erreichen bzw. Überschreiten solcher Grenzwerte wird durch eine LED-Zeile 7 angezeigt. Endwerte des Drehmoments M bzw. des Dreh- oder Auslenkwinkels α,β werden auf einem LCD-Display 8 wiedergegeben.
Messung und Auswertung des Drehmoments M erfolgt nach bekannten Verfahren.
Für die Erfassung des Drehwinkels α und Bestimmung des Auslenkwinkels β ist bei dem Drehmomentschlüssel 1 nach der Erfindung ein Beschleunigungssensor 9 zur Erfassung der Drehwinkelbeschleunigung vorgesehen, welcher innerhalb des Drehmomentschlüssels 1 in einem definierten Abstand s von der Drehachse 2 entfernt angeordnet ist. Die Schwenkachse 2 dient dem Beschleunigungssensor 9 als virtueller Festpunkt, um welchen er dann auch verschwenkt wird. Dieser Abstand s ist im wesentlichen bestimmt durch die Bauform des verwendeten Beschleunigungssensors 9, welcher handelsüblich ist.
Über eine Steckverbindung 10 kann der Drehmomentschlüssel 1 über eine übliche Schnittstelle beispielsweise mit einem Computer 11 und/oder einem Drucker 12 zur Protokollierung der Messungen angeschlossen sein.
Anhand der Flußdiagramme gemäß den Fig. 2 und 3 wird nachfolgend die Auswertung der Meßwerte durch die Auswertevorrichtung 5 näher erläutert. Nach dem Schritt 15 des Einschaltens wird im Schritt 16 durch die Auswertevorrichtung 5 ein Selbstest und ein Nullabgleich automatisch durchgeführt. Daran anschließend ist gegebenenfalls eine Kalibrierung des Drehmomentschlüssels 1 vorzusehen. Neben der bekannten Kalibrierung der Momenten-Meßvorrichtung ist hier eine gesonderte Kalibrierung für die Drehwinkelmessung vorzunehmen. Dies kann beispielsweise dadurch erfolgen, daß der Drehmomentschlüssel 1 angesetzt wird und der Speicher für den Drehwinkel manuell auf den Wert Null gesetzt wird. Anschließend wird der Drehmomentschlüssel 1 um seine Drehachse 2 über einen definierten Winkelbereich geschwenkt, welcher dann auch von der Auswerteeinrichtung anzuzeigen ist.
Nach dem Schritt 16, welcher gegebenenfalls auch übersprungen werden kann, erfolgt im Schritt 17 das Setzen der Parameter für den Meßvorgang. Unabhängig von der Reihenfolge sind dies zunächst das Start-Drehmoment Ms. Es kann das Start-Drehmoment Ms selbstverständlich auch gleich Null gesetzt werden, womit dann Drehwinkel α und Auslenkwinkel β zusammenfallen. Üblicherweise wird hier jedoch ein Start-Drehmoment Ms größer Null gewählt, welches durch den Anwendungsfall vorgegeben wird. Weiter sind ein unterer und ein oberer Grenzwert für das Drehmoment als Min- und Maximalwerte Mmin, Mmax zu setzen, welche den Drehmomentbereich definieren, in welchem bei Anzug einer Schraube oder dergleichen der erreichte Endwert des Drehmoments als in Ordnung zu befinden ist.
In gleicher Weise sind Min- und Maximalwerte βmin, βmax vorzugeben, in welchem Winkelbereich der Auslenkwinkel, zu zählen beginnend mit Erreichen des Start-Drehmomentes Ms, zu Ende der Messung zu liegen hat.
Zu dieser Sollwert-Vorgabe gehört gleichfalls die Wahl der Messung selbst. Durch beispielsweise Abschalten der einen oder anderen Meßvorrichtung kann ein Messen des Drehmoments M oder die Messung der Winkelbeschleunigung auch erfolgen.
Nach dem Setzen der Parameter im Schritt 17 wird dann nach Ansetzen des Drehmomentsschlüssels beispielsweise manuell oder durch einen der Sensoren gesteuert mit der Messung des Drehmoments M und der Winkelbeschleunigung gung begonnen. Diese Messungen gemäß der Schritte 18, 19 erfolgen kontinuierlich über den gesamten Anziehvorgang beispielsweise einer Schraube. Im Schritt 20 wird das Meßergebnis des Drehmoments dahingehnd überprüft, ob dieses größer oder gleich dem Start-Drehmoment Ms ist. Solange das festgestellte Drehmoment kleiner als dieser Wert ist, wird die Drehmomentenmessung ganz normal fortgeführt.
Auch das Ergebnis der Beschleunigungsmessung wird im Schritt 21 regelmäßig überprüft, nämlich dahingehend, ob die Drehrichtung mit der Anzugsrichtung beispielsweise einer Mutter übereinstimmt. Nach den hier getroffenen Vorgaben muß dann die Winkelgeschwindigkeit α ˙ größer Null sein. Dieses Abfragekriterium ist hier alternativ zu sehen, da beispielsweise das Auftreten eines negativen Drehmoments gleichfalls anzeigen würde, daß die Drehrichtung umgekehrt wurde, beispielsweise bei der Benutzung einer Ratsche oder Knarre. Liegt eine solche Rückbewegung des Drehmomentschlüssels 1 vor, wird der gemessene Beschleunigungswert nicht weiter bearbeitet und insbesondere nicht dem Drehwinkel α in Anzugsrichtung hinzugezählt. Die Beschleunigungsmessung wird jedoch ganz normal fortgesetzt.
Wird in Schritt 21 festgestellt, daß eine Schwenkbewegung des Drehmomentschlüssels 1 in Anzugsrichtung vorliegt, d. h. hier, daß die Winkelgeschwindigkeit α ˙ größer als Null ist, erfolgt die zweifache Integration der Winkelbeschleunigung über die Zeit. Hierzu stehen verschiedene Verfahren zur Verfügung. Bei einer analogen Integration beispielsweise über Differenzverstärker erfolgt eine kontinuierliche Auswertung der Meßwerte. Eine alternative Möglichkeit bietet die Programmierung beispielsweise eines in der Auswerteschaltung 5 vorhandenen Mikroprozessors, der dann einzelne Meßwerte als Stützwerte für eine numerische Integration benutzt. Auch hierbei sind verschiedene Verfahren wieder denkbar. So kann der Mikroprozessor sämtliche Meßwerte als Stützwerte beispielsweise speichern und hieraus den Drehwinkel α zu der aktuellen, letzten Messung berechnen. Alternative Verfahren lassen es zu, daß eine Integration lediglich über den letzten Zeitabschnitt Δt erfolgt, nämlich von einem vorangegangenen Zeitabschnitt t - Δt bis zum Zeitpunkt t, wobei t der aktuelle Zeitpunkt und Δt die Zeitspanne zur vorletzten Messung bedeutet. Das Ergebnis Δα dieser Integration wird dem vorangegangenen Integrationsergebnis hinzuaddiert. Auf ein solches numerisches Integrationsverfahren wird hier bei der nachfolgenden Beschreibung der Meßwertauswertung zurückgegriffen.
Wird im Schritt 20 das Überschreiten des Start-Drehmoments Ms festgestellt, beginnt die Bestimmung des Auslenkwinkels β, vergl. auch Fig. 4. Auch hier bieten sich alternative Verfahren an. So kann, wie hier bevorzugt, der aktuelle numerische Wert von α, d.h. der bis zu diesem Zeitpunkt überstrichene Drehwinkel, im Schritt 23 auf Null gesetzt werden. Da die Beschleunigungsmessung kontinuierlich fortgeführt wird, kann auf abgespeicherte Zwischenwerte beispielsweise weiter zurückgegriffen und aus der Beschleunigungsmessung weiterhin durch Integration der Auslenkwinkel β bestimmt werden. Alternativ wäre es möglich, den bei Überschreiten des Start-Drehmoments Ms vorliegenden Wert von α abzuspeichern und von dem Endwert der Drehwinkelmessung dann abzuziehen, um den Auslenkwinkel β zu bestimmen.
Es wird an dieser Stelle gleichfalls deutlich, daß die Beschleunigungsmessung mit der Drehmomentmessung bei der beschriebenen Ausführungsform beginnen muß. Würde die Beschleunigungsmessung erst mit Überschreiten des Start-Drehmoments Ms beginnen, so müßten dann die Anfangsbedingungen für die Integration durch Messung der Winkelgeschwindigkeit α ˙ noch zusätzlich bestimmt werden. Dies ist zwar grundsätzlich möglich, jedoch würde das für den Drehmomentschlüssel 1 einen weiteren Sensor bzw. eine weitere Messung oder Berechnung bedeuten.
Ziel des mittels eines Drehmomentschlüssels 1 nach der Erfindung vorgenommenen Anzuges einer Schraube oder dergleichen ist es, daß das Drehmoment zwischen vorgegebenen Grenzwerten Mmin, Mmax bzw. der Auslenkwinkel zwischen Grenzwerten βmin, βmax letzlich nach Anzug der Schraube zu liegen kommen. Dies wird im weiteren anhand des Ablaufplanes nach Fig. 3 erläutert. Nach Überschreiten des Start-Drehmomentes Ms wird sowohl die Drehmomentenmessung 18 wie auch die Beschleunigungsmessung 19 unverändert weiter durchgeführt. Die Auswertung der Beschleunigungsmessung erfolgt gleichfalls weiterhin gemäß der Schritte 21, 22, wobei im aktuellen Speicher jedoch nicht mehr eine Aufsummierung des Drehwinkels α, sondern nach Schritt 23 eine Aufsummierung des Auslenkwinkels β nunmehr erfolgt, wie vorstehend erläutert.
In einem Schritt 30 erfolgt dann eine Abfrage, ob die aktuellen Werte des Drehmoments M bzw. des Auslenkwinkels β in den vorgegebenen Grenzbereichen gemäß Fig. 4 liegen. Ist dies, wie zunächst durch zu kleine Werte für das Drehmoment M und den Auslenkwinkel β nicht gegeben, erfolgt im Schritt 31 die Abfrage, ob die oberen Grenzwerte Mmax, βmax von den aktuellen Werten überschritten wurden. Liegen die aktuellen Werte M, β noch unterhalb des vorgegebenen Endbereiches, so ist dies naturgemäß nicht der Fall und die Drehmomentenmessung M und Beschleunigungsmessung werden unverändert weiter ausgeführt. Der Schritt 31 ist alternativ zu einem späteren Zeitpunkt erst vorhersehbar, nämlich dann, wenn die unteren Grenzwerte Mmin, βmin überschritten wurden. Dieser Schritt 31 würde sich dann in dem "Ja" Zweig dem Schritt 30 anschließen. Hierdurch könnte gegebenenfalls Rechenkapazität auch eingespart werden.
Wird im Schritt 30 festgestellt, daß ein aktueller Meßwert M, β in dem angegebenen Intervall der unteren und oberen Grenzwerte liegt, so wird im Schritt 32 eine Signalauslösung beispielsweise der LED-Zeile 7 dahingehend vorgenommen, daß ein Meßergebnis in dem gewünschten Bereich liegt. Je nach der Verknüpfung der Abfragen im Schritt 30 kann eine solche Signalauslösung für jeden Schritt einzeln vorgenommen oder kann eine solche Signalauslösung auch nur dann erfolgen, wenn beide Kriterien erfüllt sind. Diese letzte Signalauslösung zeigt dem Benutzer an, daß der Anziehvorgang erfolgreich beendet ist. Bei einer getrennten Anzeige wird dem Benutzer signalisiert, daß er am Ende des Anzugvorganges mit erhöhter Aufmerksamkeit auch das Erreichen des anderen Kriteriums zu beachten hat. Nach wie vor wird dann aber auch die Drehmomentenmessung M sowie die Beschleunigungsmessung weiterhin vorgenommen.
Wird durch die Signalauslösung das korrekte Ende des Anzugvorganges signalisiert, wird der Benutzer in der Regel den Drehmomentschlüssel 1 entlasten. Demnach wird das Drehmoment M, die Winkelbeschleunigung und die Winkelgeschwindigkeit α ˙ den Wert Null annehmen. Wird solches durch die Auswertevorrichtung 5 im Schritt 33 festgestellt, sorgt sie für eine Anzeige der Endwerte beispielsweise auf dem LCD-Display 8. Diese Endwerte können gleichfalls von der Auswertevorrichtung 5 abgespeichert werden, beispielsweise bis zu 1.000 Stück. Alternativ können diese Endwerte auch sogleich oder nach Abspeicherung, wie eingangs erläutert, an einen Computer 11 oder Drucker 12 übertragen werden. Wird im Schritt 33 jedoch von der Auswertevorrichtung 5 festgestellt, daß nach wie vor ein Drehmoment M und/oder eine Winkelgeschwindigkeit α ˙ in Anzugsrichtung vorliegt, so wird nach wie vor auch die Drehmomentmessung M sowie die Beschleunigungsmessung vorgenommen. Es kann insbesondere in einem solchen Fall, wo der Benutzer unaufmerksam beispielsweise eine Schraube weiter anzieht, im Schritt 30 festgestellt werden, daß die aktuellen Werte M, β nicht mehr in dem vorgegebenen Intervall liegen, sondern gemäß Schritt 31 die vorgegebenen oberen Grenzen Mmax und/oder βmax überschritten worden sind. In diesem Fall kommt es zu einer Signalauslösung "fehlerhaft" im Schritt 35. Insbesondere bei einer fehlerhaften Überschreitung der maximalen Grenzwerte hat es sich auch als zweckmäßig erwiesen, eine akustische Anzeige zu verwenden, beispielsweise einen Summer.
Entsprechend dem Schritt 33 wird in einem Schritt 36 festgestellt, ob der Anzugvorgang beendet ist und es kommt dann entsprechend zu einer Endwertanzeige 37 "fehlerhaft" oder wird der Meßvorgang nach wie vor fortgesetzt.

Claims (9)

  1. Drehmomentschlüssel mit einer elektronischen Auswertevorrichtung für Meßwerte von Sensoren zur Erfassung des Drehmoments und eines Drehwinkels, wobei ein Sensor als Beschleunigungssensor (9) zur Erfassung der Drehwinkelbeschleunigung
    Figure 00140001
    ausgebildet ist, dessen Meßwerte die Auswertevorrichtung (5) zur Ermittlung des Drehwinkels (α) zweimal zeitlich integriert, dadurch gekennzeichnet, daß die Auswertevorrichtung (5) mit einem Start-Drehmoment (Ms) vorprogrammierbar ist und einen Auslenkwinkel (β) ab Erreichen des Startdrehmoments (Ms) bestimmt.
  2. Drehmomentschlüssel nach Anspruch 1, dadurch gekennzeichnet, daß der Beschleunigungssensor (9) in einem definierten Abstand (s) zu der Drehachse (2) in dem Drehmomentschlüssel (1) angeordnet ist und die Drehachse (2) dem Beschleunigungssensor (9) als virtueller Festpunkt dient.
  3. Drehmomentschlüssel nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Meßwerte des Beschleunigungssensors (9) nur in einer vorgebbaren Drehrichtung oder Zählrichtung der Winkelgeschwindigkeit (α ˙) ausgewertet werden.
  4. Drehmomentschlüssel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Auswertevorrichtung (5) mit jeweils einem unteren und einem oberen Grenzwert für das Drehmoment (Mmin, Mmax) und einem Auslenkwinkel (βmin, βmax) vorprogrammierbar ist und daß die Auswertevorrichtung zwischen den Grenzwerten liegende Ist-Werte (M, β) anzeigt.
  5. Drehmomentschlüssel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Auswertevorrichtung (5) das Überschreiten des unteren Grenzwertes des Drehmoments (Mmin) und/oder der Auslenkwinkels (βmin) anzeigt.
  6. Drehmomentschlüssel nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Auswertevorrichtung (5) das Überschreiten des oberen Grenzwertes des Drehmoments (Mmax) und/oder Auslenkwinkels (βmax) anzeigt.
  7. Drehmomentschlüssel nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß die Anzeige mittels wenigstens einer Leuchtdiode (7) erfolgt.
  8. Drehmomentschlüssel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Auswertung der Meßwerte analog erfolgt.
  9. Drehmomentschlüssel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Auswertung der Meßwerte digital erfolgt.
EP97932810A 1996-09-12 1997-07-11 Drehmomentschlüssel Expired - Lifetime EP0925155B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE29724239U DE29724239U1 (de) 1996-09-12 1997-07-11 Drehmomentschlüssel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19637067 1996-09-12
DE19637067A DE19637067A1 (de) 1996-09-12 1996-09-12 Drehmomentschlüssel
PCT/EP1997/003696 WO1998010901A1 (de) 1996-09-12 1997-07-11 Drehmomentschlüssel

Publications (2)

Publication Number Publication Date
EP0925155A1 EP0925155A1 (de) 1999-06-30
EP0925155B1 true EP0925155B1 (de) 2000-09-13

Family

ID=7805363

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97932810A Expired - Lifetime EP0925155B1 (de) 1996-09-12 1997-07-11 Drehmomentschlüssel

Country Status (6)

Country Link
US (1) US6167788B1 (de)
EP (1) EP0925155B1 (de)
AU (1) AU3622497A (de)
DE (2) DE19637067A1 (de)
ES (1) ES2150784T3 (de)
WO (1) WO1998010901A1 (de)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6119562A (en) * 1999-07-08 2000-09-19 Jenkins; Bradley G. Electromechanical releasing torque wrench
ITMI991523A1 (it) * 1999-07-12 2001-01-12 Blm S A S Di L Bareggi & C Utensile di serraggio e stazione di monitoraggio con comunicazione reciproca senza fili
US6467355B1 (en) 2001-04-16 2002-10-22 Irving Leong Most accurate method of tensioning threaded fasteners in assembled units
DE10137896A1 (de) * 2001-08-02 2003-02-20 Paul-Heinz Wagner Verfahren zur Steuerung eines intermittierend arbeitenden Schraubwerkzeugs
US6965835B2 (en) * 2001-09-28 2005-11-15 Spx Corporation Torque angle sensing system and method with angle indication
WO2003041914A2 (en) * 2001-11-14 2003-05-22 Snap-On Technologies, Inc. Electronic torque wrench
GB2383282B (en) * 2002-04-02 2004-06-16 Crane Electronics Torque sensing tool
DE10217416C1 (de) * 2002-04-18 2003-07-31 Ivo Geilenbruegge Drehmomentmessvorrichtung
US7090030B2 (en) * 2002-09-03 2006-08-15 Microtorq L.L.C. Tranducerized torque wrench
CA2502695C (en) 2002-10-16 2012-01-10 Snap-On Incorporated Ratcheting torque-angle wrench and method
FR2852879B1 (fr) * 2003-03-26 2007-04-06 Snecma Moteurs Cle a serrage controle
US7082865B2 (en) * 2003-05-01 2006-08-01 Ryeson Corporation Digital torque wrench
US20050223856A1 (en) * 2004-04-07 2005-10-13 John Reynertson Torque wrench with fastener indicator and system and method employing same
US7089834B2 (en) * 2004-04-07 2006-08-15 Ryeson Corporation Torque wrench with torque range indicator and system and method employing the same
US20050092143A1 (en) * 2004-07-30 2005-05-05 Lehnert Mark W. Position sensing electronic torque wrench
US20060027058A1 (en) * 2004-08-04 2006-02-09 Chih-Ching Hsien Electronic torque wrench
US7562589B2 (en) * 2005-07-18 2009-07-21 Easco Hand Tools, Inc. Display device for an electronic torque wrench
US7469619B2 (en) * 2005-07-18 2008-12-30 Easco Hand Tools, Inc. Electronic torque wrench with a torque compensation device
US7370539B2 (en) * 2005-07-18 2008-05-13 Easco Hand Tools, Inc. Electronic torque wrench with a rotatable indexable display device
US7331246B2 (en) * 2005-07-18 2008-02-19 Easco Hand Tools, Inc. Mechanical torque wrench with an electronic sensor and display device
TWI259122B (en) * 2005-08-22 2006-08-01 Proxene Tools Co Ltd Switch type ratchet wrench
FR2893270B1 (fr) * 2005-11-15 2010-01-15 Renault Georges Ets Cle a serrage discontinu comprenant des moyens de mesure de phenomenes dynamiques induits par ledit serrage sur le carter de la cle
US7565844B2 (en) * 2005-11-28 2009-07-28 Snap-On Incorporated Torque-angle instrument
US20070186734A1 (en) * 2006-02-13 2007-08-16 Chih-Ching Hsieh Hand tool with illumination display screen
KR100729672B1 (ko) 2006-02-21 2007-07-03 (주)엔피엔 수직 이중평행판식 구조의 토크센서를 구비한 디지털토크렌치 및 이를 이용한 토크측정 데이타처리자동화시스템
DE102006013147B4 (de) * 2006-03-20 2014-02-27 Eduard Wille Gmbh & Co. Kg Drehmomentwerkzeug mit Untersetzungsmechanismus
DE102006013159B4 (de) 2006-03-20 2018-07-19 STAHLWILLE Eduard Wille GmbH & Co. KG Drehmomentwerkzeug mit Rolle
DE102006013148A1 (de) 2006-03-20 2007-09-27 Eduard Wille Gmbh & Co. Kg Drehmomentwerkzeug mit Leistungsverstärker
US7347735B2 (en) * 2006-03-24 2008-03-25 The Stanley Works Controller with information conveying backlight module and cable for connecting the controller to an automated tool
TW200800786A (en) * 2006-06-30 2008-01-01 qing-feng Xie A puller with tension display apparatus
US7493830B2 (en) * 2006-07-14 2009-02-24 Easco Hand Tools, Inc. Mechanical torque wrench with an electronic sensor and display device
DE202007002793U1 (de) * 2007-02-22 2007-05-10 Eduard Wille Gmbh & Co. Kg Winkelmesseinrichtung
KR100768330B1 (ko) 2007-05-21 2007-10-18 (주)엔피엔 디지털 토크렌치 교정 시스템
US7721631B2 (en) * 2007-11-05 2010-05-25 The Boeing Company Combined wrench and marking system
US20090241743A1 (en) * 2008-03-27 2009-10-01 Chih-Ching Hsieh Electronic torque spanner with expansion member
US7828077B1 (en) 2008-05-27 2010-11-09 Jergens, Inc. Rotary angle tool
US7900524B2 (en) * 2008-09-09 2011-03-08 Intersense, Inc. Monitoring tools
IT1391249B1 (it) * 2008-09-23 2011-12-01 Atlas Copco Blm Srl Attrezzo di serraggio con inserti intercambiabili programmabili
US20100199782A1 (en) * 2009-02-06 2010-08-12 Chih-Ching Hsieh Torque-Angle Alarm Method and Wrench thereof
US8844381B2 (en) * 2009-04-03 2014-09-30 Apex Brands, Inc. Electronic torque wrench with dual tension beam
US8171828B2 (en) * 2009-12-09 2012-05-08 Digitool Solutions LLC Electromechanical wrench
JP5012928B2 (ja) * 2010-02-12 2012-08-29 智慶 謝 重力センサを備えるトルクレンチ及びその回転角度を正確に計算する方法
TWM392713U (en) * 2010-07-12 2010-11-21 Legend Lifestyle Products Corp Wireless torque wrench with angle correction feature
DE102010040217B4 (de) * 2010-09-03 2012-07-19 Eduard Wille Gmbh & Co. Kg Betätigungsvorrichtung zum Kalibrieren von Drehmoment-Drehwinkelschlüsseln
DE102011084008A1 (de) * 2011-10-05 2013-04-11 Robert Bosch Gmbh Vorrichtung und Verfahren zur Überprüfung eines Montageschlüssels
US20130112049A1 (en) * 2011-11-04 2013-05-09 Christopher Lawton Torque Tool Cycle Counter
US9283663B2 (en) * 2012-12-24 2016-03-15 Kabo Tool Company Electronic torque tool having discontinuous torque warning values with an interval therebetween
US9664583B2 (en) * 2014-11-02 2017-05-30 Matatakitoyo Tool Co., Ltd. Device for calibrating a torque wrench
US9839998B2 (en) * 2015-04-07 2017-12-12 General Electric Company Control system and apparatus for power wrench
DE102015109448A1 (de) * 2015-06-12 2016-12-15 Dürr Assembly Products GmbH Verfahren zur Bewertung eines Signals
US10987785B2 (en) * 2016-08-15 2021-04-27 Gauthier Biomedical, Inc. Electronic torque wrench with transducer check function
EP3554761B1 (de) * 2016-12-15 2021-02-03 Atlas Copco Industrial Technique AB Verfahren, überwachungsknoten und computerprogramm zur überwachung des energieflusses in einem spannwerkzeug
SE542516C2 (en) * 2018-03-27 2020-06-02 Atlas Copco Ind Technique Ab TORQUE WRENCH EVALUATION SYSTEM AND METHOD
US11524395B2 (en) * 2018-04-10 2022-12-13 Panasonic Intellectual Property Management Co., Ltd. Signal processing apparatus and electric tool
US11752604B2 (en) 2018-04-13 2023-09-12 Snap-On Incorporated System and method for measuring torque and angle
WO2024045125A1 (en) * 2022-09-01 2024-03-07 Apex Brands, Inc. Electronic torque wrench with automatic moment arm length determination

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970155A (en) * 1974-01-14 1976-07-20 Jo-Line Tools, Inc. Electronic torque wrench
US4006629A (en) * 1975-07-17 1977-02-08 Gse, Inc. Torque measuring apparatus
DE2547815C3 (de) * 1975-10-25 1978-12-14 Fa. C. Plath, 2000 Hamburg Vorrichtung zum Messen des Anzugswinkels an einem Schraubenschlüssel
US4176436A (en) * 1978-09-12 1979-12-04 Baker International Corporation Method and apparatus for counting turns when making threaded joints
DE3128557A1 (de) 1981-07-18 1983-03-03 Dr. Staiger, Mohilo + Co GmbH, 7060 Schorndorf Verfahren zum ueberwachen von schraubvorgaengen
EP0133557B1 (de) 1983-08-09 1988-01-07 Dr. Staiger, Mohilo + Co GmbH Ratschenhandschlüssel zum Anziehen von Schrauben
DE3429950C2 (de) 1984-08-10 1986-07-24 Freiherr von Wolf Ulrich 1000 Berlin Maltzan Drehmomentschlüssel
JP2526075Y2 (ja) * 1990-10-13 1997-02-12 ティアツク株式会社 トルクレンチ
DE4039794A1 (de) * 1990-12-13 1992-06-17 Forst Saltus Werk Drehmomentschluessel
GB2273574B (en) * 1992-12-21 1995-11-29 Daimler Benz Ag Process and a device for the rotation-angle-monitored tightening or loosening of screw connections
DE4243317A1 (en) 1992-12-21 1993-06-09 Edgar Von Dipl.-Ing. 6602 Dudweiler De Hinueber Angle control method for automatic screwdriver - using inertial angular rate sensor built into rotating shaft of insertion tool, and e.g. Sagnac effect rotation pick=up
US5589644A (en) * 1994-12-01 1996-12-31 Snap-On Technologies, Inc. Torque-angle wrench
DE19637540A1 (de) 1996-09-14 1998-03-19 Soft Und Hardware Konstruktion Vorrichtung zur Prüfung von Drehmomentschlüsseln

Also Published As

Publication number Publication date
AU3622497A (en) 1998-05-11
DE19637067A1 (de) 1998-03-19
WO1998010901A1 (de) 1998-03-19
US6167788B1 (en) 2001-01-02
EP0925155A1 (de) 1999-06-30
ES2150784T3 (es) 2000-12-01
DE59702356D1 (de) 2000-10-19

Similar Documents

Publication Publication Date Title
EP0925155B1 (de) Drehmomentschlüssel
DE3639521C2 (de) Elektrische Waage
DE2817910C2 (de) Verfahren und Vorrichtung zur Verschraubung von zwei Elementen
DE2932044C2 (de)
DE3840684A1 (de) Drehmomentschluessel und vorrichtung zu seinem einstellen und/oder eichen
EP1866123B1 (de) Hydraulische gewindebolzenspannvorrichtung und verfahren zum anziehen von grossen schrauben mittels der hydraulischen gewindebolzenspannvorrichtung
EP0325903B1 (de) Ladungsverstärkerschaltung
DE102005002240A1 (de) Radsensor zum Erkennen einer Fahrzeugbewegung
DE102015008098A1 (de) Messgerät mit gespreizter Messwertausgabe
EP1995021B1 (de) Verfahren zum Fügen eines Befestigungsmittels sowie Vorrichtung zur Durchführung des Verfahrens
EP3047730B1 (de) Landwirtschaftliche feldspritze mit füllstandsbestimmung
DE3146506A1 (de) Verfahren und pruefgeraet zum pruefen des fuellungsgrades von zigarettenenden
DE29724239U1 (de) Drehmomentschlüssel
DE4228112C1 (en) Object detection arrangement - contains light source and receiver, comparator with comparison voltages controlled by micro-controller
DE3807492C1 (de)
DE102004028558A1 (de) Verfahren und Messanordnung zur Spielmessung an einem Achsgelenk
DE3525864C1 (de) Tragbare Bremsdruckprüfvorrichtung
EP0723839A1 (de) Drehmomentschlüssel
EP3150048B1 (de) Verfahren zur kalibrierung bei einer landwirtschaftlichen erntemaschine
DE4404419C2 (de) Verfahren und Vorrichtung zum gesteuerten Festziehen von Schraubverbindungen
EP0423494B1 (de) Verfahren und Vorrichtung zum Überprüfen der Funktionsfähigkeit von Sensoren in einem Fahrzeug
DE19818315C1 (de) Einrichtung zum ratiometrischen Messen von Sensorsignalen
EP3025823A1 (de) Drehmoment- und drehwinkelwerkzeug
DE19728909B4 (de) Verfahren und Vorrichtung zum Herstellen von Schraubverbindungen
DE3441376C1 (de) Verfahren zur apparativen Diagnose des Betriebszustandes einer Feuerungsanlage sowie Geraet hierzu

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19991228

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000914

REF Corresponds to:

Ref document number: 59702356

Country of ref document: DE

Date of ref document: 20001019

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2150784

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030604

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030609

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030610

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030611

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030701

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040712

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050711

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040712