EP0917438B1 - Tragbare endoskopische hand-kamera - Google Patents

Tragbare endoskopische hand-kamera Download PDF

Info

Publication number
EP0917438B1
EP0917438B1 EP97933222A EP97933222A EP0917438B1 EP 0917438 B1 EP0917438 B1 EP 0917438B1 EP 97933222 A EP97933222 A EP 97933222A EP 97933222 A EP97933222 A EP 97933222A EP 0917438 B1 EP0917438 B1 EP 0917438B1
Authority
EP
European Patent Office
Prior art keywords
lens
camera
housing
light source
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97933222A
Other languages
English (en)
French (fr)
Other versions
EP0917438A2 (de
Inventor
Don Yarush
Todd Devos
Martin Sosa
Gary Handelin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Giant Ltd
Original Assignee
East Giant Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/828,147 external-priority patent/US6432046B1/en
Application filed by East Giant Ltd filed Critical East Giant Ltd
Publication of EP0917438A2 publication Critical patent/EP0917438A2/de
Application granted granted Critical
Publication of EP0917438B1 publication Critical patent/EP0917438B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00039Operational features of endoscopes provided with input arrangements for the user
    • A61B1/00042Operational features of endoscopes provided with input arrangements for the user for mechanical operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/00052Display arrangement positioned at proximal end of the endoscope body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00087Tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00108Constructional details of the endoscope body characterised by self-sufficient functionality for stand-alone use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/042Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • A61B1/2733Oesophagoscopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/227Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for ears, i.e. otoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/24Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the mouth, i.e. stomatoscopes, e.g. with tongue depressors; Instruments for opening or keeping open the mouth
    • A61B1/247Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the mouth, i.e. stomatoscopes, e.g. with tongue depressors; Instruments for opening or keeping open the mouth with means for viewing areas outside the direct line of sight, e.g. dentists' mirrors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/32Devices for opening or enlarging the visual field, e.g. of a tube of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/372Details of monitor hardware
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0431Portable apparatus, e.g. comprising a handle or case

Definitions

  • This invention relates to endoscopic cameras and more particularly, to a portable, hand-held endoscopic camera and a kit for producing video images of an object.
  • Endoscopy has greatly enhanced a practitioner's ability to penetrate objects to view internal mechanisms and other features with minimal intrusion.
  • Endoscopes have broad reaching application in the field of diagnostic and therapeutic medicine, surgery, dentistry, computer inspection, customs inspection, plumbing, mining, automobile mechanics, veterinary medicine, aviation, remote control devices, safety equipment, monitoring devices, police investigations and in a variety of other settings in which detailed inspection is desired.
  • a major challenge facing the field of endoscopy is the vast amount of equipment typically required.
  • the equipment found in the prior art typically includes a large monitor, a light source, a power source and an endoscope.
  • fiber optic and power cables are required to connect the monitor, light source, and power source to the endoscope.
  • Typical such equipment is often permanently or semi-permanently installed in a tightly enclosed area, such as a dental office. Offices must typically be specially adapted to accommodate the cumbersome equipment, requiring expensive wiring of circuitry and the placement of plugs and cables within the room.
  • Each individual room in a clinic is required to maintain the equipment and wiring if endoscopic capability is desired in the room.
  • Fiber optic cable is a rather stiff and inflexible glass cable which can be easily broken during such procedures. As the cables are flexed, the fiber optics may be broken. As the glass is broken, the image received is distorted and distortions known as "ghosts" appear on the monitor.
  • Typical light sources require high voltages, preventing use of battery operated systems.
  • the power cables must typically be plugged into an electrical outlet mounted in the office.
  • the use of high intensity light sources also creates an inefficient use of space.
  • the light source employed in many endoscopic systems is a large bulb, such as a halogen bulb, which generates a considerable amount of heat typically in the range of about 50 to 150 watts.
  • the typical light source tends to heat the probe, which is uncomfortable or dangerous to sensitive body openings such as an ear.
  • many light sources consist of a separate component having a large enclosure for housing the light source.
  • a fan may be used to cool the light source or the connections thereto, creating an exhaust system, but also requiring additional energy and more space.
  • a heat sink to absorb the heat or a shield to buffer the heat, which also requires increased amounts of space.
  • a heat sink is typically comprised of a conductive material, such as metal, which absorbs heat.
  • the heat sink is typically located a certain distance away from the light bulb and the housing, drawing heat away from these areas which heat may adversely affect.
  • a fan is then used to cool the heat sink.
  • typical cord operated systems are not readily used in countries foreign to the United States.
  • typical endoscopic systems fail to readily convert to 220 volt, 50 cycle power sources which are commonly used in countries foreign to the United States, requiring the practitioner to employ a cumbersome transformer when travelling to countries foreign to the United States.
  • An additional drawback to typical high light intensity systems is the color distortion which often occurs when viewing a bodily orifice, for example. Because of the high intensity light employed, typical halogen systems often distort the color of bodily organs, such as the ear drum. Color distortion can result in a inisdiagnosis of the condition of the organ.
  • EP-A-0573 158 discloses a hand-held endoscope having an internal light source, a hand held housing, an arthroscope, and a camera assembly as defined in the preamble of claim 1.
  • U.S. Patent 5,527,261 discloses a hand-held remote diagnostic instrument having video capability and an internal light source.
  • the present invention provides a high resolution, hand-held, portable endoscopic camera as defined in claim 1.
  • the camera may be selectively operable in a cordless and a cord-operated mode.
  • the portable endoscopic camera is compatible with a variety of output systems, light requirements, adapters, and probes, but does not rely on bulky fiber optic cables connecting the endoscope to the other equipment.
  • the portable endoscopic camera features a light source which is capable of illuminating the endoscope, yet, at the same time is small enough that it does not rely on fans or heat sinks to prevent overheating.
  • the endoscopic camera contains all of the necessary equipment required to perform endoscopic procedures in a single, hand-held housing.
  • the hand-held, portable endoscopic camera includes a lens system having dual roles. First, the lens system illuminates an object under examination through a fiber bundle that couples light from the light source means to the object. Second, the lens system translates an image of the illuminated object into video imaging circuitry which includes a charge coupled device (“CCD") array. A coupler optically couples the lens system to the video imaging circuitry. The video imaging circuitry converts the image of the object into video signals. The video imaging circuitry then outputs the video signals to a monitor. The practitioner then views the illuminated object on the video monitor.
  • CCD charge coupled device
  • the lens system includes a fiber bundle that channels the light from the light source means to the object under examination.
  • a power supply supplies electrical power both to the light source and to the video imaging circuitry.
  • a housing houses the lens system, video imaging circuitry, light source and power supply. This self-contained unit allows the practitioner to inspect a variety of objects without using cumbersome cords and cables. As will be discussed in detail, a variety of additional components are connected to or mounted integrally within the hand-held housing.
  • a display monitor is integral with the hand-held, portable apparatus, allowing the practitioner to look in generally the same direction while orienting the camera and viewing the object under inspection.
  • the hand-held, portable endoscopic camera is capable of sending a signal to a monitor configured to receive signals as far as 300 feet away.
  • the endoscopic camera is adapted to receive a variety of adapters and probes, depending upon the desired procedure. Since a change in procedure is often accompanied by a variation in light intensity, the disclosed camera is capable of delivering a variable light intensity for different types of fiber optic probes which may be employed.
  • the hand-held, portable unit If battery use and rechargeability is not desired on a certain occasion, it is possible to plug the hand-held, portable unit into an electrical outlet. In addition, it is possible to connect the hand-held, portable apparatus into a separate monitor, such as a wall or shelf mounted monitor.
  • the hand-held unit is compatible with S-VHS and/or composite video output formats.
  • a low wattage light bulb is employed in order to accomplish the goal of providing good video resolution, yet avoiding the use of a heat sink or fan.
  • a sleeve is coupled to the lens means and light bulb and the light bulb is abutted against the lens means.
  • the present invention relates to a portable, self-contained endoscopic camera.
  • the camera is lightweight and is configured to rest comfortably in the hand of a medical professional or other user.
  • the camera contains all of the necessary components required to perform endoscopic procedures in a single, hand-held unit.
  • the camera features: (i) an on-board, light source for illuminating the objects to be viewed with the endoscopic camera; (ii) video camera circuitry for converting optical images into video signals; and (iii) a lens system that translates images to the optical input of the video camera.
  • the present invention converts optical images captured at the input end of the lens systems into video signals, which can then be recorded or viewed on either a video monitor that is integral to the hand-held unit or to an external video monitor or other output device.
  • the present invention may also include an RF transmitter so that the resulting video signals can be transmitted, via radio frequency signals, to a remote RF receiver coupled to a video monitor or other output device.
  • the endoscopic camera is adapted to receive a variety of adapters and probes, depending upon the desired procedure.
  • the hand-held portable endoscopic camera of the present invention includes a lens means for (i) emitting light translated from a light source means through a fiber bundle to illuminate an object positioned adjacent the lens means; and (ii) for translating an image of the object from the lens means to the video imaging means.
  • a coupling means optically couples the lens means to a video imaging means.
  • the video imaging means converts the image of the object into video signals.
  • the video imaging means then outputs the video signals to a display means where the practitioner views the illuminated object.
  • a power supply means supplies electrical power both to the light source means, the video imaging means, and optionally, to a display means, and a transmitter means.
  • a first hand-held housing means houses the lens means, video imaging means, light source means, power supply means, and optionally, additional components including the display means, and/or transmitter means, such that the camera is convenient to manipulate.
  • This first housing means allows the practitioner to inspect a variety of objects without using cumbersome cords and cables.
  • a variety of additional components are connected to or mounted integrally within the hand-held housing means.
  • a second housing means is employed to house a battery, for example, decreasing the weight of the first housing means.
  • the portable self-contained camera is comprised of (i) first and second housing means; (ii) components attached within or on the first housing means; (iii) components attached within or on the second housing means; and (iv) means for electrically coupling the components within or on the first and second housing means, such as at least one cable, cord or wire.
  • Examples of the lens means of the present invention will first be described in detail, after which examples of the light source means will be described. Examples of the video imaging means is then described, followed by examples of the power supply means. Various additional components will then be discussed, including the display means, transmitter means, sleeve means, housing means, adapter means, probe means and kit. An example of a wiring diagram for each of the embodiments disclosed herein is also disclosed.
  • one embodiment of the invention is the self contained, hand-held, portable endoscopic camera 10.
  • camera 10 contains all of the elements necessary for a practitioner, with a single hand, to orient a probe means in a patient's ear for example, and view the contents of the ear in a display means without cumbersome use of external cables. All of this is accomplished without having to look a significant distance away from the ear in order to view the display means and without being limited to a certain office or space.
  • the practitioner is free to move about the patient, or to a different office, and is able to use the practitioner's free hand to otherwise assist in the procedure.
  • the lens means of camera 10 is comprised of a lens fiber module 88 having a proximal end 89 and a distal end 106.
  • Module 88 is comprised of lens tube 32, lens tube 32 having a distal end 93, and a proximal portion 108.
  • Module 88 further includes a distal hub 115 and a proximal hub 117.
  • a fiber light input port 110 on proximal end 89 of module 88 houses a fiber bundle 112.
  • Fiber light input port 110 includes a proximally extending cylindrical collar 113 adjacent fiber bundle 112.
  • the inner diameter of collar 113 is the same or slightly larger than the outer diameter of fiber bundle 112.
  • Collar 113 includes a proximal edge 111, the proximal edge 111 of collar 113 defining a proximal input port face 114.
  • input port 110 is optically coupled to the light source means for translating light from the light source means to the distal end of the lens tube 32.
  • Light from the light source means travels into input port 110 and through the fibers in lens tube 32 to distal end 93 of lens tube 32 where the translated light is emitted from distal end 93, illuminating an object when distal end 32 is positioned adjacent the object.
  • proximal portion 108 of lens tube 32 is optically coupled to the video imaging means for translating an image of the illuminated object from the distal end 93 of the lens tube 32 to the video imaging means.
  • the lens fiber module 88 is the lens fiber module of endoscopic assembly M-150 manufactured by Cuda Products Corporation, Jacksonville Florida.
  • the efficiency of module 88 is improved by polishing the finish of fiber bundle 112.
  • Self-contained camera 510 of Figure 26 also includes a lens fiber module 512, as shown in Figure 27.
  • Lens fiber module 512 includes a proximal end 514, a distal end 516, a housing 518, a lens train 520, a series of optical glass fibers 522, and a fiber light input port 524.
  • Proximal end 514 of module 512 includes the proximal end 526 of the fiber light input port 524 and the proximal end 528 of lens train 520.
  • lens train 520 includes a lens tube 530 having a proximal end 528 and a distal end 516.
  • lens tube 530 is comprised of three finely threaded tubular components, a proximal tube 531, an intermediate tube 533, and a distal tube 535.
  • a lens tube guide 532 maintains distal end 516 of lens tube 530 in a desired, fixed position within lens train housing 518.
  • An orientation post 534 may be employed to assist in properly orienting lens tube guide 532.
  • a set screw 537a may be disposed through the lens tube guide 532 to secure distal tube 535 in a desired position.
  • lens train 520 is prefocused, such that the practitioner is not required to focus lens train.
  • a focusing means for focusing the translated image of the object is provided.
  • Lens train 520 includes a series of finely annealed, high grade optical lenses disposed therein.
  • the lenses include a distal objective lens assembly 538 disposed within distal tube 535.
  • objective lens assembly 538 may comprise a plurality of packed lenses.
  • An achromatic relay lens 540a is disposed within the proximal tube 531.
  • each of the objective and relay lenses are achromatic, such that they compensate for distortions in color.
  • the distal lens assembly comprises a projection lens while the proximal lens comprises a condenser lens.
  • fibers 522 include an epoxied fiber bundle 540 surrounded by an inner collar 542 which is surrounded by collar 544 of fiber light input port 524.
  • Bundle 540 may be polished to enhance light input.
  • Collar 544 extends proximally such that bulb 100 can be disposed within collar 544 and abutted against the proximal portion of the fiber bundle 540, as shown in Figure 27.
  • fiber bundle 540 travels through input port 524, then bifurcates within housing 518. Upon bifurcating, one portion of fibers 522 proceeds on one side of the lens train, while another portion proceeds on the other side of a lens train Each bifurcated portion of fiber bundle 540 then proceeds longitudinally along the shaft within lens fiber module 512 until extending through the distal end of lens tube guide 532, as shown in Figure 26b. The distal face 536 of each of the respective bundled fiber portions is shown in Figure 26A. Light from bulb 100 exits from the distal faces 536.
  • lens fiber assembly 512 is optically coupled at its proximal end 514 to the light source means for translating light from the light source means to the distal end 516 of the lens means and for emitting the translated light from the distal end 516 of the lens means so as to illuminate the object when the distal end 516 of the lens means is positioned adjacent the object.
  • the distal end of fibers 522 surrounds the entire periphery of the distal portion of the lens train in a circular fashion. In yet another embodiment, the distal end of the optical fibers surrounds the entire periphery of the distal portion of the lens train or is otherwise coupled to the distal portion of the lens tube, while the proximal end of the optical fibers is separate from the proximal end of the lens tube, rather than being coupled thereto.
  • an endoscopic camera wherein the light source is separate from both the proximal end 514 and distal end 516 of the lens tube 530.
  • an illumination tube 523 which is separate from the lens train, contains optical fibers for illuminating an object through a distal end 537 thereof
  • a light source means is coupled to the proximal end of illumination tube 523.
  • Tube 523 is pivotally coupled to the first housing of camera 515 through the use of a ball and socket joint 525, for example.
  • the lens means is optically coupled at its proximal end to the light source means.
  • the purpose of the light source means is for producing light for illumination of the object.
  • a variety of examples of light source means may be employed in the present invention.
  • the light source means is a low wattage light source means.
  • the low wattage light source means preferably comprises a low wattage light bulb.
  • the phrase "low wattage" as used throughout this specification and the appended claims relates to a wattage in the range of about 0.5 watts to about 5 watts, more preferably about 1 watt to about 5 watts, most preferably, about 1.4 watts.
  • the low wattage bulb allows the practitioner to introduce adequate light into the lens fiber module without employing a fan or a heat sink, thereby providing portability and a lightweight design.
  • a miniature incandescent lamp or other light source is disposed within the same first housing means in which the lens means is disposed.
  • the external light source means such as a halogen bulb or other light bulb, is enclosed within a secondary housing means, such as second housing 201 ( Figure 8) of camera 200 or second housing 608 ( Figure 30) of camera 510 coupled to the first housing means, as discussed below.
  • a high wattage bulb or in other words, a bulb having a wattage of more than about 30 watts, in a second housing means, such as second housing 608 or second housing 201, and direct the light through an optical fiber assembly into lens fiber module 88.
  • an incandescent lamp assembly 94 comprises a bulb 100 and a base 443 (see Figure 18) preferably disposed within a socket 102, socket 102 having feet 104.
  • a proximal portion of lamp assembly 94 comprises feet 104.
  • a distal portion of lamp assembly 94 such as bulb 100
  • the distal portion of lamp assembly 94 comprises bulb 100.
  • the distal portion of lamp assembly 94 comprises bulb 100 and a portion of socket 102 distal from feet 104.
  • socket 102 By disposing socket 102 within collar 113 along with bulb 100, additional light is concentrated into fiber bundle 112.
  • the portion of socket 102 distal to feet 104, yet proximal to bulb 100 is an intermediate portion.
  • the outer diameter of bulb 100 is approximately the same as the outer diameter of fiber bundle 112.
  • a bulb having a greater diameter is less efficient, concentrating less light into fiber bundle 112.
  • bulb 100 includes means for concentrating the illumination of the light emitted by bulb 100.
  • the concentrating means include a lens disposed on or within bulb 100, such as a focused end lens.
  • Light sources which are preferred in the present embodiment include krypton and incandescent bulbs.
  • one presently preferred light source means is a K-222 Krypton flashlight lamp having a focused end lens, an amperage of 0.6 amps, and a recommended voltage of approximately 2.33 volts.
  • the low wattage light source means developed herein, it is possible to achieve the resolution achieved by a video imaging means having a halogen bulb light source of 50 watts or more, while employing a light bulb which emits significantly less heat. Moreover, the color of the image is not distorted, as with certain high wattage systems.
  • the lens means is optically coupled to the video imaging means for translating an image of the illuminated object from the distal end of the lens means to the video imaging means.
  • the video imaging means is comprised of a (i) sensor array coupled to the lens means and (ii) conversion means, electrically coupled to the sensor array, for converting images translated by the lens means and impinging upon said sensor array into video signals, and for outputting the converted video signals.
  • a video imaging means is a camera assembly 67 as shown in Figures 2-4.
  • Camera assembly 67 has a plurality of vertically stacked printed circuit boards 66 attached by a ribbon cable 78 to a CCD array circuit board 80. By vertically stacking the printed circuit boards 66, camera assembly 67 is able to fit more readily in a hand-held housing means.
  • CCD printed circuit board 80 of camera assembly 67 includes a CCD sensor array 91 coupled to the proximal end of the lens means.
  • Camera assembly 67 further comprises a blue lens 400, shown in Figure 18, for enhanced color resolution.
  • An example of a preferred video imaging means is a camera assembly 67 comprised of a KST-90 CCD camera assembly, available from KOWA Optimed, Inc. Torrance, California.
  • the apparatus disclosed herein has the capability of digitally storing video images.
  • the invention further comprises a means for optically coupling the lens means to the video imaging means.
  • optical coupler 90 is provided to couple an image under examination from lens tube 32 into CCD array 91 on CCD array printed circuit board 80.
  • Coupler 90 includes a housing having a distal end 116 and a proximal end 118.
  • the housing of coupler 90 further has an interior surface 120 defining a passageway 121 and an exterior surface 122 defining a cylinder at distal end 116 and a square-shape at proximal end 118.
  • Square-shaped proximal end 118 of exterior surface 122 of coupler 90 includes opposing parallel side walls 124, each of which are perpendicular to a bottom wall 126. Attachment members 129 affix proximal end 118 of coupler 90 to CCD array circuit board 80, through the use of screws for example.
  • the proximal end (not shown) of passageway 121 surrounds CCD array 91 while the distal end 123 of passageway 121 slidably surrounds proximal portion 108 of lens tube 32. Coupler 90 thus completely encloses CCD array 91 and proximal end 108, preventing stray light from corrupting the image received by CCD array 91 from lens tube 32.
  • the invention further includes focusing means, coupled to the sensor array, for focusing the translated image of the object onto the sensor array by adjusting the distance separating the sensor array and the proximal end of the lens means.
  • the focusing means is configured to receive the means for optically coupling the lens tube to the video imaging means.
  • An example of this embodiment of a focusing means includes focusing bridge 92.
  • Focus bridge 92 features a U-shaped member including a beam 130, beam 130 having a horizontal axis.
  • a pair of support members 132 extend vertically upward with respect to the horizontal axis of beam 130 from opposing ends of beam 130.
  • Beam 130 and support members 132 define a U-shaped channel 133.
  • Each support member 132 includes a flange 28 extending outwardly with respect to the U-shaped channel from the respective support member 132, each flange 28 parallel to the horizontal axis of beam 130.
  • U-shaped channel 133 of focus bridge 92 is thus configured to receive square-shaped proximal end 118 of exterior surface 122 of optical coupler 90.
  • Distal face 127 of beam 130 may be notched to allow it to mate with proximal cylindrical face 134 of optical coupler 90.
  • support members 132 of focus bridge 92 are disposed distal to attachment members 129 of optical coupler 90.
  • optical coupler 90 fits within U-shaped channel 133 of focus bridge 92 such that support members 132 are disposed snugly between attachment members 129 and face 134.
  • beam 130 of focus bridge 92 is disposed against bottom wall 126, focus bridge 92 cradling optical coupler 90, as shown in Figure 3. Focus bridge 92 thus assists in preventing movement laterally and in a vertical plane and in maintaining optical coupler 90 along the longitudinal axis of lens tube 32. It will also be appreciated from the foregoing description that, in an alternative embodiment, beam 130 of focus bridge is disposed against top wall 128, side walls 124 being perpendicular to top wall 128.
  • focus bridge 92 As focus bridge 92 is positioned back and forth, interior surface 120 of distal end 116 of optical coupler 90 slides back and forth on proximal portion 108 of lens tube 32.
  • CCD array circuit board 90 is affixed to proximal end 118 of optical coupler 90, while distal end 116 of interior surface 120 of optical coupler 90 slidably surrounds proximal portion 108 of lens tube 32.
  • selective positioning of focus bridge 92 selectively positions CCD array 91 with respect to lens tube 32.
  • coupler 90 further includes light reflecting means for reflecting light emanating from lens tube 32 into sensor array 91.
  • the light reflecting means includes interior surface 120, or at least a portion thereof, being comprised of a light reflective material, such as chrome, aluminum, ceramic, translucent elastomer, or another material having a reflective pigment, such as a light gray or white material.
  • the reflecting means comprises coupler 90, or at least a portion thereof, being comprised of a light reflective material, such as chrome, aluminum, ceramic, translucent elastomer, or another material having a reflective pigment, such as a light gray or white material.
  • a blue lens 400 is disposed distal to sensor array 91 within coupler 90, thereby enhancing color resolution.
  • the invention further comprises reflecting means disposed adjacent the blue lens for reflecting light into sensor array 91.
  • the reflecting means shown in Figure 18 is comprised of a first white washer 402 disposed against the blue lens, a second white washer 404 disposed against the first white washer 402.
  • a black washer 406 is disposed against the second white washer 404 to properly orient washer 404 within coupler 90.
  • Hollow washers 402, 404, 406 are disposed within the square shaped proximal portion 118 of coupler 90.
  • Washers 402, 404, and 406 may be square shaped, rectangular, or circular in shape, depending on the configuration of interior surface 120 of coupler 90. The placement of washers 402, 404 directly adjacent the blue lens reflects light into blue lens 400 and sensor array 91. Optionally washers 402, 404 are made from a translucent elastomeric material. Washers 402, 404 may be colorless, for example.
  • proximal end 118 of coupler 90 includes an aperture 408 for reception of sensor array 91, such that sensor array 91 is disposed directly against blue lens 400.
  • optical coupler 511 couples proximal end 514 lens of fiber module 512 to CCD board 80.
  • First and second pins may be inserted within coupler 511 and the proximal portion of housing 518 of lens-fiber module 512 to maintain the coupling between lens fiber module 512 and CCD board 80.
  • blue lens 566 is sandwiched by a proximal washer 568 and a distal washer 570.
  • the proximal washer 568 is disposed against the sensor array 91 on CCD board 80, cushioning the interface between the blue lens 566 and sensor array 91.
  • each washer features a hollow, rectangular shape and is formed from an elastomeric material, such as nylon.
  • the washers may exhibit a translucent appearance, such as a colorless appearance or may feature a white color. This dynamic of sandwiching blue lens 566 between washers 568 and 570 creates a cushioning effect for the blue lens 566 and a reflective dynamic, reflecting additional light into sensor array 91.
  • the video imaging means, light source means, transmitter means, and display means are electrically coupled to and receive electrical power from a power supply means.
  • a rechargeable battery pack 35 possibly including a Nicad cell, is disposed on the first housing means to act as a power supply means.
  • Battery pack 35 is similar to the battery pack of a cellular phone, for example.
  • Disposable batteries or a rechargeable acid lead cell are additional examples of power supply means.
  • the invention also includes a means for regulating the voltage produced by the power supply means, such as a voltage regulator printed circuit board 68.
  • Camera 10 is selectively operable in a cordless and cord-operated mode. It will be appreciated that the term "cordless” as used throughout this specification and the appended claims refers to a camera which does not have an external cord, cable or wire extending externally from the first housing for attachment to a power supply means, light source means, display means or other mechanism which is not contained within or disposed on the first housing. An example of camera 10 in the cordless mode is currently demonstrated in Figure 1.
  • cord-operated refers to a camera which employs at least one cord, cable or wire for attachment to a fixed mechanism.
  • a fixed mechanism include a monitor or light source permanently mounted to a wall, or a power outlet mounted to a wall or a floor.
  • a cord-operated power supply if battery use is not desired, it is possible to power camera 10 with power from a permanent, wall mounted electrical outlet by using a transformer, such as a 12 volt output wall plug transformer. Camera 10 is thus selectively operable in a cordless and a cord-operated mode.
  • Examples of a self-contained camera include (i) a camera which is cordless; and (ii) a camera having a first housing means and at least one portable component external to and not attached to the first housing means, wherein a cable, cord, or wire couples one or more component within or attached to the first housing means to the at least one portable component external to and not attached to the first housing means, and wherein the camera is operable without coupling any component of the camera to a fixed mechanism.
  • Examples of components which may be coupled to one or more component within or attached to the first housing means in the self contained camera include a transmitter means, display means, power supply means, and the light source means, which may be contained in a second housing means, such as second housing 201 or 608 discussed below, for instance.
  • Examples of self-contained cameras include cameras 10, 200, 220,. 414, 510, and 515 featured in Figures 1-32.
  • the video signal produced within the video imaging means is output through the conversion means to an integral display means mounted on or within the first or second housing means, the display means electrically coupled to the video imaging means for displaying video images of the object.
  • an integral display means mounted on or within the first or second housing means
  • the display means electrically coupled to the video imaging means for displaying video images of the object.
  • monitor 36 shown in Figure 1 mounted by hinge 38 on a first housing means. Monitor 36 may be demountably mounted on the first housing means such as with a dual pronged plug similar to a wall outlet plug.
  • a monitor is disposed integrally within a proximal end of the first housing means such that it can be viewed by viewing the proximal end.
  • Monitor 36 is preferably a liquid crystal display monitor, such as Citizen LCD monitor, M329-1A, available from CBM Corporation, Japan or a similar, smaller unit. Additional examples of display means include a video monitor mounted on a wall, desk, or in a container, as discussed below, a printer, and a variety of other display means within the art.
  • a liquid crystal display monitor such as Citizen LCD monitor, M329-1A, available from CBM Corporation, Japan or a similar, smaller unit.
  • Additional examples of display means include a video monitor mounted on a wall, desk, or in a container, as discussed below, a printer, and a variety of other display means within the art.
  • the video signal produced within the video imaging means is output through the conversion means to a separate display means, such as a wall mounted monitor, or a monitor disposed on a desk or a stand.
  • a separate display means such as a wall mounted monitor, or a monitor disposed on a desk or a stand.
  • S-VHS output port 40 and composite output port 42 allows portable endoscopic camera 10 to be selectively connected to one or more of such external monitors.
  • Ports 40, 42 are electrically coupled to the video imaging means.
  • S-VHS port 40 allows portable endoscopic camera 10 to output video signals to monitors in a variety of countries.
  • the video signal produced within the video imaging means is output through the conversion means to a monitor mounted on or within the first housing means and to a separate monitor
  • the video signal produced within the video imaging means is output through the conversion means to a means for recording the video images of the inspected object.
  • a means for recording the video images of the inspected object For example, the installation of a memory chip within the first housing means or within a second housing means, for example, allows the practitioner to digitally record video images within the chip, then download the recorded information at a later time.
  • free movement away from the monitor is possible without the cumbersome limitation of a cable leading to a non-portable, fixed object or mechanism.
  • the video signal produced within the video imaging means is output through the conversion means to a transmitter means, electrically coupled to the video imaging means, for transmitting video signals generated by the video imaging means.
  • a receiver means is designed for receiving the video signals transmitted by the transmitter means.
  • a display means examples of which have been previously discussed, is electrically coupled to the receiver means for displaying video images of the object.
  • signal unit 70 shown in Figure 2.
  • signal unit 70 is a video transmitter WVT-1, available from Pragmatic Communication Systems, Inc., Sunnyvale, California.
  • the receiver means comprises video receiver RCV915, of Pragmatic Communication Systems, Inc.
  • the use of the transmitter means, receiver means, and electrically coupled display means allows the operator to transmit video images from a remote location to a central monitor, for example.
  • a clinic having a variety of rooms is not required to wire each of the rooms for endoscopic capability.
  • an RF transmitter housing 572 is disposed within first housing 574 so as to be at an angle with respect to the camera assembly 67, thereby minimizing interference between camera assembly 67 and transmitter 572.
  • transmitter housing 572 of Figure 27 houses transmitter 70.
  • the wireless video transfer option is bypassed, allowing video transfer through the cable.
  • FIG. 7 demonstrates an example of a wiring diagram 174 for the camera embodiments disclosed herein.
  • Wiring diagram 174 discloses an on/off switch 176 electrically coupled to an outlet power source 178 which is electrically coupled to ground 180.
  • Battery power source 179 is also disclosed.
  • a power supply of 12 volts is employed in the presently preferred embodiment.
  • power is also directed to a voltage regulator 182 for converting the power to less than about 12 volts, such as approximately 2.33 volts.
  • a voltage regulator 182 for converting the power to less than about 12 volts, such as approximately 2.33 volts.
  • an optional potentiometer 186 which serves as an example of intensity adjustment means, electrically coupled to the light source means, for varying the intensity of the light produced by the light source means.
  • Optional potentiometer 186 is actuated, for example through the use of a set screw disposed in first housing 12.
  • Lamp assembly 94 receives the reduced voltage charge and illuminates lens-fiber module 88, which, in turn illuminates an object 184 under examination.
  • An image of object 184 is received within lens tube 32 and directed into camera assembly 67.
  • Camera assembly 67 directs the image into one or more output ports, represented collectively by output port 43, such as a composite video output port and/or an S-VHS video output port, and/or monitor 36, and/or signal unit 70.
  • Receiver 188 receives the video signals transmitted by signal unit 70 and is coupled to display 190, such as a wall mounted display for displaying video images of object 184.
  • a switch may be required to alternate between composite output and S-VHS output.
  • power wires 192 connecting lamp assembly 94 to voltage regulator 68 extend through internal passageway 56 of the housing body. It will be appreciated that a variety of wiring possibilities are available to accomplish the intent of wiring diagram 174 and that one skilled in the art will understand how to wire the various components of portable endoscopic camera 10 based on disclosures made herein.
  • the invention further includes sleeve means coupled to the proximal end of the lens means for concentrating light into the lens means.
  • sleeve means is sleeve 430 which is disposed about at least a portion of the lens means and at least a portion of the light source means, directing light from the light source means into the lens means, as will be discussed in detail below.
  • Sleeve 430 is an example of means for retaining the light source means in an abutting relationship with the lens means.
  • sleeve 430 captures additional light from bulb 100 and directs it in a longitudinal direction toward lens fiber bundle 112. Furthermore, sleeve 430 is preferably in a tight fitting relationship with at least a portion of lamp assembly 94 extending proximally from collar 113 and with the exterior surface of the collar 113, thereby retaining the bulb 100 in a fixed position with respect to the lens fiber module 88 As shown in the preferred embodiment, the distal center point 432 of the bulb 100 directly abuts the proximal center point 434 of fiber bundle 112.
  • Sleeve 430 retains bulb 100 in this concentrated, precise abutting relationship with bundle 112, intensely concentrating light from bulb 100 into bundle 112 despite any activity occurring in manufacturing or in moving or jostling the camera.
  • the low wattage light bulb of the present invention adequately illuminates the image to be viewed by the practitioner.
  • sleeve 430 includes reflecting means for reflecting light into the lens means.
  • the reflecting means is comprised of sleeve 430 being comprised of a high gloss material.
  • sleeve 430 may be comprised of a translucent or transparent high gloss elastomeric material, such as nylon.
  • the translucent sleeve 430 has a colorless, light pink or rose colored pigment.
  • the reflecting means further comprises a light reflective material 436 disposed about the transparent or translucent sleeve 430.
  • the reflective material 436 reflects light emanating from bulb 100 into fiber bundle 112.
  • the light reflective material 436 disposed about sleeve 430 may be in the form of aluminum, chrome, ceramic, plastic, for example, or another material having a reflective pigment such as a white pigment or a light gray pigment.
  • the reflecting means is comprised of sleeve 430 being comprised of a light reflective material such as aluminum, chrome, plastic, translucent elastomer, ceramic, or another material having a reflective pigment such as a white pigment or a light gray pigment.
  • the reflecting means is comprised of the sleeve 430 having a reflective interior surface, such as an aluminum, chrome, ceramic or plastic interior surface or another material having a reflective pigment such as a white pigment or a light gray pigment.
  • the sleeve is comprised of a ceramic material having a chrome surface on the interior thereof
  • the reflecting means is comprised of the sleeve 430 comprising ribs 438 extending longitudinally along the length of sleeve 430, as shown in Figure 19. Ribs 438 preferably extend along the interior and exterior surface of sleeve 438. It is believed that ribs 438 act to direct light longitudinally into the fiber bundle 112.
  • an insulator 440 about the reflective material 436 and/or sleeve 430.
  • Insulator 440 may also be employed in the form of an adhesive to retain reflective material 436 about sleeve 430.
  • insulation 442 is placed on CCD board 80. With reference to Figures 17 and 18, is possible to prevent interference with the CCD board 80 during movement of coupler by bending socket feet 104 of socket 102 at a right angle. In one embodiment, insulation 440 also covers feet 104 and the associated circuitry.
  • sleeve 444 is comprised of venting means for venting heat from the light source means, such as slots 446. Slots 446 extend between the exterior and interior surfaces of sleeve 444. In one embodiment, rear portion 441 of insulation 440 shown in Figures 17 and 18 is removed and heat from the lamp assembly 94 is vented proximally through slots 446. In one embodiment, slots 446 are disposed above socket 102 and any portion of base 443 protruding from socket 102, while the non-slotted portion of sleeve 444 is disposed above bulb 100.
  • a dual slotted sleeve arrangement is employed as shown in Figure 24.
  • a second sleeve 448 including venting means for venting heat from the light source means, such as slots 450 is disposed about the first sleeve 444 such that the first sleeve venting means are offset from the second sleeve venting means.
  • a sleeve effect is continuous throughout the length of the light assembly 94 even though the first and second sleeves are slotted.
  • the effects of increased heat can also be ameliorated without employing a heat sink or fan by moving the bulb 100 away from collar 113 and from the first housing, by perforating the area of the housing surrounding the light source means, employing a fiber glass housing or a housing comprising a plastic compound having fiberglass embedded therein, employing a housing comprising another insulative material, or by employing a means for retaining bulb in abutting relationship with the fiber bundle which does not surround the light bulb.
  • a sleeve having a diameter approximately the same size as the diameter of collar 113 surrounds a portion of lamp assembly 94 and abuts the proximal edge 111 of collar 113, thereby coupling the sleeve to collar 113.
  • first housing 12 of Figure 1 is an example of a first hand-held means for housing the light source means, video imaging means, lens means, and power supply means, such that the apparatus is self-contained and convenient to manipulate.
  • the light source means is internal within the first housing 12.
  • first housing 12 has an exterior surface 14, a distal end 16, a proximal end 18, a top surface 20, a bottom surface 22, and opposing sides 24.
  • Monitor 36 is hingeably mounted on proximal end 18 of first housing 12.
  • Battery pack 35 is disposed on top surface 20 of first housing 12.
  • a probe adapter 30 projects from distal end 16 and couples lens tube 32 of module 88 to a probe 34.
  • First housing 12 further includes stabilizing means for stabilizing camera 10, such as gripping groove 44 and gripping slot 46, which aid the user in securely grasping camera 10.
  • Gripping groove 44 is configured to approximate the contour of an adult hand between the thumb and forefinger
  • gripping slot 46 is configured for partial insertion of the third, fourth, and/or fifth fingers during use.
  • First housing 12 is balanced such that the practitioner can grip gripping groove 44 with the thumb and forefinger and rest a proximal portion of the bottom surface 22 on the practitioner's hand or wrist.
  • Slip proof tape is also preferably disposed on the surfaces where gripping is expected.
  • first housing 12 is comprised of a housing body 48 having an interior surface 50. Interior surface 50 defines a top cavity 52, a bottom cavity 54, and an internal passageway 56 linking top cavity 52 and bottom cavity 54.
  • a segmented hollow top lid 58 covers top cavity 52 while a segmented hollow bottom lid 60 covers bottom cavity 54.
  • Top cavity 52 and the interior surface 81 of corresponding top lid 58 define a top chamber 62, while bottom cavity 54 and the interior surface 86 of corresponding bottom lid 60 define a bottom chamber 64.
  • first housing 12 allows for an efficient use of space and weight distribution, which increases the practitioner's ability to hold and operate lightweight, hand-held portable endoscopic camera 10.
  • first housing 12 defines a collar 119 disposed about distal hub 115 for retaining lens fiber module 88 in a fixed position with respect to first housing 12.
  • a portion of collar 119 is defined by a recess 151 within distal end 152 of bottom lid 60 while a corresponding portion of collar 119 is defined by a recess (not shown) within the distal end 49 of housing body 48.
  • top chamber 62 houses the plurality of vertically stacked printed circuit boards 66, preferably three printed circuit boards of camera assembly 67.
  • the disposition of the vertically oriented boards 66 within top chamber 62 allows camera assembly 67 to be inserted into a thin housing.
  • Ribbon cable 78 of camera assembly 66 extends into internal passageway 56 and attaches to CCD array printed circuit board 80 of camera assembly 67 within bottom chamber 64 (shown in Figure 3).
  • top chamber 62 also houses voltage regulator circuit board 68, signal unit 70, power supply port 39, S-VHS outlet port 40, and composite outlet port 42.
  • Top cavity 52 includes a first proximal recess 72, a second proximal recess 74, and a third proximal recess 76 for disposition of power supply port 39, S-VHS outlet port 40, and composite outlet port 42 and their associated wiring therein, respectively.
  • the interior surface of top lid 58 is contoured to cover the vertically stacked circuit boards 66 of camera assembly 67 and is contoured to receive signal unit 70.
  • first housing 12 further includes a pair of opposing focus adjustment slots 26 disposed within sides 24.
  • Opposing focus adjustment flanges 28 of focus bridge 92 project from opposing adjustment slots 26 for adjusting the focus of portable endoscopic camera 10.
  • Each slot 26 is configured in a rectangular shape to allow each flange 28 to slide in a front to rear and rear to front direction.
  • beam 130 of focus bridge 92 is suspended within adjustment notch 136 of bottom lid 60.
  • Opposing adjustment flanges 28 are slidably suspended on the opposing edges 138 of bottom lid 60 within opposing adjustment slots 26 of housing body 48.
  • Focus bridge 92 thus serves as an example of means for focusing the translated image of the object onto the sensor array by adjusting the distance separating the sensor array and the proximal end of the lens means and for maintaining the longitudinal axis of the lens means. The performance of both of these functions is a significant contribution to the art.
  • the lens means and the light source means are closely aligned within bottom chamber 64, which is specifically designed to fit only certain components and is separate from a variety of the other components of portable endoscopic camera 10. As a result of applicant's chambering, light from the light source means is essentially retained within a single, relatively smaller chamber, and is concentrated into the lens means.
  • interior surface 86 of bottom lid 60 will now be described in detail with reference to Figures 5. It will be appreciated that two major goals of bottom chamber 64 are (1) to prevent the movement of the components associated closely with the light source; yet (2) permit the back and forth sliding movement of sensor array circuit board 80. In order to accomplish each of these objectives, interior surface 86 of bottom lid 60 includes a bottom lid floor 158, wide adjustment notch 136, a thinner, deeper, input port reception channel 140, bottom lid upper distal walls 141, and a lamp assembly reception channel 160.
  • Adjustment notch 136 is defined by an adjustment notch floor 142, a proximal wall 144, opposing side walls 146, opposing proximal ends 148 of opposing bottom lid upper distal walls 141, and the imaginary plane extending between and upwardly from the proximal faces of posts 150.
  • sensor array circuit board 80 is only allowed to move back and forth within a proximal portion of the adjustment notch 136.
  • Channel 160 is an example of a means for retaining the light source means in an abutting relationship with the lens means.
  • Channel 160 is formed in the floor 142 of adjustment notch 136 and is configured at a distal portion to receive collar 113 of fiber light input port 110.
  • Channel 160 is bordered at a distal end by an imaginary plane extending between the distal faces of opposing posts 150.
  • Socket feet notches 162 of channel 160 each receive a corresponding socket foot 104, each notch 162 having a surface below the floor of adjustment notch 136, yet above the surface of channel 160.
  • Input port reception channel 140 is designed for reception of fiber light input port 110 of fiber-lens module 88.
  • Channel 140 is defined by the distal end 153 of interior surface 86 of bottom lid 60, opposing input port channel side walls 154, opposing posts 150, a distal portion of lamp assembly reception channel 160 and the lower portion of the bottom lid upper distal walls 141.
  • Ridges 156 are located slightly lower than the upper edges 155 of input port 110 as input port 110 is received in channel 140.
  • a distal portion of channel 140 may be slightly wider than the upper edges 155, such that the upper edges 155 do not rest upon ridges 156.
  • channel 140 is configured such that upper edges 155 are disposed upon ridges 156.
  • Channel 140 is therefore another example of means for retaining the light source means in an abutting relationship with the lens means.
  • Opposing posts 150 extend upwardly from bottom lid floor 158.
  • Opposing proximal side walls 161 of channel 160 extend proximally with respect to a bottom portion 147 of opposing posts 150, the inner face 149 of each bottom portion 147 serving as a distal wall of channel 160.
  • Fiber light input port 110 is disposed within input port reception channel 140 such that a distal portion oflamp assembly 94 is disposed through face 114 of fiber light input port 110.
  • bulb 100 abuts fiber bundle 112 and collar 113 is disposed about the distal portion of lamp assembly 94.
  • the disposition of a distal portion of lamp assembly 94 through input port face 114 creates a light concentrating chamber within cylindrical collar 113 for concentrating light produced by the light source means into the lens means.
  • edge 111 of collar 113 is maintained between bottom portion 147 of posts 150. In another embodiment, edge 111, or alternatively, the entire collar 113 is disposed proximally such that it is maintained between opposing side walls 161. In both embodiments, collar 113 of input port 110 extends into channel 160.
  • Lamp assembly reception channel 160 and input port reception channel 140 thus combine to form a single illumination channel, which acts as a means for retaining the light source means in an abutting relationship with the lens means.
  • a harness 96 is disposed about lamp assembly 94 and, in one embodiment, is secured to floor 142 of adjustment notch 136
  • a curved end 164 of harness 96 is disposed about socket 102 of lamp assembly 94, maintaining lamp assembly 94 tightly within harness 96 such that lamp assembly 94 is suspended within channel 160.
  • flat end 166 of harness 96 is secured to floor 142 of adjustment notch.
  • T-shaped harness clamp 98 Another example of a means for retaining the light source means in an abutting relationship with the lens means is a T-shaped harness clamp 98, which is disposed over harness 96 and secured to adjustment notch floor 142 as shown in Figure 4, adding additional leverage to maintain lamp assembly 94 in a fixed position.
  • top portion 168 of T-shaped harness clamp 98 abuts outer surface 170 of harness 96 in mating relationship.
  • the bottom portion 172 of T-shaped clamp 98 is secured to floor 142.
  • a flat lamp assembly lid 171 as shown in Figures 5 and 6 is disposed over the lamp assembly 94, forming a light concentrating chamber.
  • Figure 6 is a cross-sectional view in the proximal direction of an assembled Figure 5 taken proximal to posts 150.
  • Lid 171 and strap 175 With Lid 171 and strap 175, light is further concentrated along the longitudinal axis of lamp assembly 94 into fiber bundle 112, rather than perpendicular to the longitudinal axis and away from fiber bundle 112.
  • lid 171 may cover lamp assembly reception channel 160, the entire floor 142 of adjustment notch 136 or both.
  • lid 171 is configured with a narrow neck 183, for example, which extends between posts 150. Preferably the lid is snapped in place.
  • the light concentrating chamber is comprised of lid 171 and a strap 175.
  • strap 175 is rectangular in shape.
  • strap 175 is square in shape.
  • Strap 175 is made from a variety of materials such as ABS plastic and is disposed between proximal opposing side walls 161 and under at least portions of both lamp assembly 94 and collar 113.
  • a first upper end 163 of strap 175 is preferably attached under flat end 166 of harness 96 on adjustment notch floor 142.
  • a second upper end 165 of strap 175 is disposed on an opposing side of floor 142 such that the distal face of opposing upper portions of strap 175 are adjacent or abut the proximal faces of posts 150.
  • An intermediate portion 177 of strap 175 extends between ends 163 and 165.
  • a distal portion, such as bulb 100, of lamp assembly 94 is surrounded by collar 113.
  • Collar 113, or at least a proximal portion thereof, such as edge 111, is maintained between opposing proximal side walls 161 in channel 160 such that a distal portion of strap 175 is disposed under collar 113, or at least a proximal portion thereof.
  • Strap 175 then also extends proximally under a portion of lamp assembly 94, such as an intermediate portion of lamp assembly 94 (e.g., the portion of socket 102 distal from feet 104).
  • Lid 171 is disposed above lamp assembly 94 and collar 113 as shown in Figure 6, such that light is concentrated by strap 175 and lid 171 into the lens means.
  • strap 175 abuts collar 113 and lamp assembly 94
  • strap 175 is disposed slightly below collar 113 and lamp assembly 94, allowing collar 113 to be disposed about the distal portion of lamp assembly 94 during manufacture.
  • top chamber 62 also employs space efficiently. While the majority of top chamber 62 is oriented proximal to bottom chamber 64, a significant portion of the top chamber 62 is oriented above a significant portion of bottom chamber 64, allowing a portion of the contents of top chamber 62 to be stacked above a portion of the contents of bottom chamber 64, or in an alternative embodiment, at least allowing ribbon cable 78 to be disposed within internal passageway 56.
  • This configuration of first housing 12 provides for a balanced orientation in the practitioner's hand. This use of space in a balanced, completely hand-held, portable endoscopic camera is a significant advance within the field.
  • first housing 12 includes a means for replacing the light source means.
  • the means for replacing the light source means comprises a door (not shown) on bottom lid 60 for the replacement of the light bulb.
  • the door may, for example, comprise a sliding door as typically seen in a variety of remote control devices for the replacement of batteries.
  • the means for replacing the contents of the bottom chamber comprises bottom lid 60 configured to snap off the housing body.
  • the bottom lid is spring loaded on the housing body.
  • Disposing lamp assembly 94 near proximal end 18 of first housing 12 within top cavity 52 behind voltage regulator circuit board 68, or near a comer recess such as 72, or 76, for example, may assist in providing access to lamp assembly 94 for maintenance thereof.
  • a door, such as described above could be conveniently located near the lamp assembly 94. In one embodiment, this requires an extension of input port 110 or another means for coupling lamp assembly 94 to input port 110, such as a cable or a fiber bundle extending from input port 110 to lamp assembly 94.
  • portable endoscopic camera 200 includes voltage regulator circuit board 68 electrically coupled to camera assembly 67, which is coupled through coupler 90 to lens fiber module 88.
  • bulb 100 of lamp assembly 94 directly abuts fiber bundle 112 of fiber light input port 110.
  • Socket 102 may be surrounded by a clip or harness maintaining bulb 100 within fiber light input port 110, or the first housing 202 may be configured to retain bulb 100 within fiber light input port 110.
  • lamp assembly 94 may be retained within a sleeve abutting proximal edge 111 of collar 113.
  • the wiring of endoscopic camera 200 is as previously disclosed in the wiring diagram of Figure 7.
  • thumbwheel 208 serves as another example of means for focusing the translated image of the object onto the sensor array by adjusting the distance separating the sensor array and the proximal end of the lens means and for maintaining the longitudinal axis of the lens means.
  • Thumb wheel 208 engages interlocking ridges 210 disposed on the exterior surface of optical coupler 90, sliding optical coupler 90 along proximal portion 108 of lens tube 32, thus allowing one to position the CCD array, thereby focusing the camera.
  • Thumb wheel 208 also assists in preventing lens-fiber module 88 from moving in a lateral direction toward the sides of first housing 202, thus maintaining the longitudinal axis of the lens means.
  • Mechanical stop 211 is provided proximal to CCD array circuit board 80 to prevent optical coupler 90 from sliding off the proximal portion 108 of lens tube 32.
  • portable endoscopic camera 200 may be adapted with a variety of features discussed previously with regard to portable endoscopic camera 10.
  • a variety of light source means as discussed previously are also available for use in camera 200, including external bulbs, bulbs within an external enclosure, and bulbs coupled through a cable, such as a fiber optic cable, to the lens means.
  • a power supply means such as battery pack 35 demonstrated in Figure 1, is mounted on first housing 202.
  • disposable batteries or a rechargeable acid lead cell are disposed within first housing 202.
  • a variety of other power supply means are also available, including cord-operated power.
  • various display means are electrically coupled to the camera assembly 67 within first housing 202.
  • the display means is a monitor, such as monitor 36 of Figure 1, mounted on first housing 202.
  • Cord-operated composite video output capability, S-VHS output capability may also be provided within first housing 202, as well as transmitter means.
  • first housing 202 is another example of hand-held means for housing the light source means, video imaging means, lens means, and power supply means, such that the apparatus is self-contained and convenient to manipulate.
  • single chambered first housing 202 includes a housing body 204 and a corresponding lid 206, the interior surfaces of housing body 204 and lid 206 defining a single chamber.
  • self-contained camera 200 is comprised of first housing 202, second housing 201, the components within first housing 202, the components within second housing 201, and means for electrically coupling the components of the first and second housings 202, 201, such as a cable, shown in Figure 8 extending from outlet port 203.
  • Second housing 201 is conveniently held in a practitioner's hand or mounted on the practitioner's belt, for example. It will also be appreciated that in yet another embodiment, the components of camera 10 of Figure 1 are electrically coupled to the contents of second housing 201.
  • second housing 201 contains a power supply means electrically coupled to, and for supplying electrical power to the light source means, video imaging means, transmitter means, and/or display means.
  • Second housing 201 (or second housing 608 shown in Figure 30) may also conveniently house a transmitter means, display means and/or light source means (such as a halogen bulb in the range of about 50 to about 100 watts, for example) connected through a cable to the lens means.
  • Outlet port 205 is typically employed for connection to optional cord-operated power supply means, or separate display means, such as a wall or desk mounted monitor.
  • Figure 10 demonstrates another embodiment of a portable endoscopic camera 220.
  • Camera 220 is similar to camera 200.
  • the longitudinal portion 222 (shown in Figure 4) of input port 110 parallel lens tube 32 is removed and lens fiber bundle 112 terminates in the angled portion 224 of input port 226 which is at an angle with respect to the longitudinal axis of lens tube 32.
  • fiber bundle 112 terminates immediately after entering fiber light input port 226 at an angle from lens tube 32.
  • Bulb 100 of lamp assembly 94 abuts the fiber bundle 112 directly after fiber bundle 112 exits lens tube 32 in this angled position, bringing bulb 100 closer to lens tube 32 and avoiding the travel of light through longitudinal portion 222.
  • Figure 11 is an example of portable endoscopic camera 220 of Figure 10 adjusted by thumbwheel 208 such that optical coupler 90 is directed proximally along the longitudinal axis of lens tube 32.
  • first housing 416 includes a top lid 418, a bottom lid 420, a housing body 422, and a stabilizing means for stabilizing camera 414.
  • the stabilizing means comprises distal grip 424, which is designed for placement of the practitioner's thumb or fingers thereon during use. Distal grip 424 acts as a safety means, stabilizing camera 414, such as when lens tube 32 (and/or a coupled probe means) is disposed within a sensitive bodily orifice, such as an ear.
  • the practitioner By holding the grip 424 with a thumb, finger or fingers, and by placing one or more fingers near the object to be illuminated, the practitioner is able to stabilize camera 414 while holding the distal end 93 of the lens tube 32 closely adjacent an object. For example, if the practitioner is viewing inside a patient's ear, the practitioner can hold grip 424 and simultaneously place one or more fingers on the side of a patient's head, thereby further stabilizing camera 414 and precisely orienting distal end 93.
  • Grip 424 comprises a contoured housing 426 with a cylindrical channel (not shown) extending therethrough for reception of the lens tube 32.
  • the distal end 93 of the lens tube 32 extends through the grip 424 and distally from the distal end 453 of probe adapter 454, such that the distal end 93 of the lens tube protrudes slightly through probe adapter 454.
  • the slight protrusion of distal end 93 distally from the distal end 453 of probe adapter 454 provides a clear resolution by camera 414.
  • the distal end 93 of the lens extends approximately 1/32 of an inch distally from the distal end 453 of probe adapter 454.
  • the battery pack 35 of figure 1 is not shown as included on camera 414 in Figure 16.
  • Employing a second housing means, such as second housing 201, for example, may be advantageous because of the weight associated with battery pack 35. A lighter weight device is more readily stabilized by the practitioner.
  • the battery pack 35 shown in Figure 1 is mounted on top lid 418 of first housing 416.
  • first housing 416 is another example of hand-held means for housing the light source means, video imaging means, lens means, and power supply means, such that the apparatus is self-contained and convenient to manipulate.
  • portable endoscopic camera 414 may be adapted with a variety of features discussed previously with regard to portable endoscopic camera 10.
  • the components of the top cavity (not shown) of camera 414 are the same or substantially similar to that of top cavity 52 camera 10 of Figure 1.
  • a rectangular copper ground plate is preferably provided above the transmitter in a compartment of top lid 418. A lead from the ground plate is soldered to the transmitter board.
  • the transmitter is an FM transmitter for sending signals to an FM receiver.
  • the bottom lid 420 of camera 414 includes an interior surface designed for reception of the lens fiber module 88 and to accommodate the sleeved lamp assembly 94 as well as the back and forth movement of CCD board 80.
  • a highly polished type of housing 202 may be used.
  • Each of the housings may be water proof or water resistant, such as by providing a sealed housing and disposing a rubber grommet or O-ring around the seals.
  • water tight electrical adapters may be employed in conditions where water damage is likely, such as surgery or underwater procedures. In these procedures, a rubber or plastic seal is placed about the adapters and/or probes. Focus wheel 208 or focus bridge 92 of Figures 3 and 9 are removed and the housing surrounding them, such as slots 26 may be filled in for increased water tight or water proof capability.
  • a set screw may be employed on the external surface of the housing to set the focus, the set screw communicating with a corresponding sprocket within the housing, the sprocket interlocking with tracks 210 on optical coupler 90 for sliding coupler 90.
  • first housing 574 comprises a single chambered housing 574 in which bulb 100, is disposed against proximal fiber bundle 540.
  • Sleeve 575 made from translucent elastomer (e.g., colorless and high gloss), such as nylon, or another suitable material, surrounds light bulb 100 and couples bulb 100 to collar 544.
  • Wireless video transfer may be achieved through the use of a transmitter 70 disposed in transmitter housing 572. It will be appreciated that it is possible to dispose power supply means within or on first housing 574. For example, battery pack 35 of Figure 1 may readily be placed on first housing 574. Also as shown in Figure 27, in one embodiment, ribbon cable 78 of the video imaging means is in a fixed position with respect to the CCD board 80, thereby preventing breakage or displacement of the ribbon 78 from CCD board 80 or the video imaging means.
  • camera 510 further comprises means for replacing the light source means, including set screw 640, which serves as a door for replacing the light source means.
  • Spring 642 presses against bulb, assisting in retaining bulb in an abutting relationship with fiber bundle and thereby serving as another example of means for retaining the light source means in an abutting relationship with the lens means.
  • a negative plate 644 and a positive plate 646 of the power supply means may be disposed within sleeve 575, the negative plate 644 contacting socket 513 and positive plate 646 contacting spring 642, which contacts socket 513, thereby supplying electrical power to bulb 100.
  • self-contained camera 510 is comprised of first housing 574, second housing 608, the components within first housing 574, the components within second housing 608, and means for electrically coupling the components of the first and second housings 574, 608 such as a cable 609.
  • the invention further comprises a variety of adapter means for optically coupling probe means to the distal end of the lens means.
  • Probe adapter 30 is one example of an adapter means, as discussed above and shown in Figures 1-3.
  • adapter 454 is comprised of a neck 456 having an interior surface 457 defining a passageway.
  • the passageway is configured for the placement of lens tube 32 therein.
  • the passageway is configured for the placement of washer 458 therein, as shown in Figure 17.
  • Inside surface 460 of washer 458 is configured to be press fit about distal end 93 of lens tube 32. Washer 458 thus couples lens tube 32 to probe adapter 454.
  • adapter body 462 integrally attached to adapter neck 456 extends inwardly and distally from adapter neck 456.
  • adapter body 462 has a hollow conical shape, as shown in Figure 23.
  • the exterior surface of adapter body 462 is designed to mate with the interior surface of a probe, such as the otoscope speculum 464 shown in Figure 23.
  • adapter body 462 includes a groove 466 for reception of a ridge 468 on the interior surface of the probe.
  • adapter 454 further includes aligning means for aligning adapter 454 with respect to lens tube 32.
  • Recess 470 and washer 458 are an example of aligning means.
  • a practitioner desiring to properly orient a probe in order place the probe within a patient's eye socket, for example, may press against the recessed portion 470, thereby rotating adapter 458 with respect to lens tube 32 until the probe is properly aligned.
  • washer 458 may be rotated many times without unscrewing from distal end 32.
  • This aligning feature of probe recess 470 will be discussed in additional detail below with reference to Figures 24 and 25. It will be appreciated that as an alternative to employing a washer, the aligning function could be achieved by the adapter 454 having a smooth interior surface such as surface 460 which is adapted to be disposed about lens tube 32.
  • the probe adapter 454 is designed to couple a variety of different probes to lens tube 32.
  • Probe adapter 454 may also be adapted to a variety of different washers having different inner diameters which can be used to mount adapter 454 on different lens tubes.
  • an adapter 551 includes a handle 582 for placement of the fingers during use of apparatus 510.
  • a variety of probes, such as probe 584 may be coupled onto the distal portion 586 of adapter 551.
  • an insert 588 within probe 584 is inserted within a slot 590 in adapter 551.
  • slot 590 is shallow, such that insert 588 compresses against the inside surface of slot 590, thereby forming a tight fit, maintaining the insert 588 tightly within slot 590.
  • Adapter 551 is preferably autoclavable.
  • an insert 550 on the lens fiber module 512 mates with a first or second peripheral slot 552, 554 on adapter 551, shown in Figure 28, thereby maintaining adapter 551 securely on housing 518.
  • an O-ring 548 is disposed about housing 518 to seal the securement between the exterior surface of housing 518 and adapter 551.
  • either slot of adapter 551 may be mounted on insert 550.
  • a probe such as mirror speculum 292 discussed below may be coupled to adapter 551 with mirror 300 facing upwardly or downwardly, depending on the orientation of adapter 551, without twisting apparatus 510 upside down.
  • Mirror speculum 292 can thus be used to view upper or lower molars without twisting camera 510 upside down.
  • the slot of adapter 551 though which insert 550 is disposed is merely alternated, thereby switching the position of mirror 300.
  • Slots 552, 554 serve as additional examples of aligning means for aligning adapters 551 with respect to the lens tube.
  • portable endoscopic camera in each embodiment herein disclosed is highly versatile in that a variety of probe.
  • means may be optically coupled to the lens means, either directly to the distal end of the lens tube 32 or through an adapter means disposed on lens tube 32, such as discussed above.
  • the probe means disclosed in Figure 12 are specifically designed to fit directly on lens tube 32.
  • lens tube 32 has a universal design which mates with a variety of probes. When a different probe is needed, a new adapter or camera is not required.
  • a probe adapter such as adapter 454 or adapter 551 is disposed between the lens tube 32 and the probe, the adapter having a design universal to a variety of probes.
  • Probes may be secured to lens tube 32 or an adapter in a variety of ways.
  • the lens tube 32 has external threads which mates with internal threads within the necks of the probes.
  • a single ridge on the probe mates with a single groove on lens tube 32 or a single groove on the probe mates with a single ridge on lens tube 32.
  • the probes may be made from stainless steel, plastic, aluminum or a variety of other materials known by those skilled in the art.
  • each of the probes employed in combination with the endoscope embodiments described herein includes reflecting means for reflecting light in a desired direction.
  • the reflecting means is comprised of a reflective material, such as a white or light gray plastic material on the interior and exterior surfaces of the probe. It is believed that the light color fosters reflection of the light onto the object, whereas a black material absorbs the light.
  • Figure 12a demonstrates a fiber optic cable probe 270 for use in inspecting a variety of objects.
  • Fiber optic cable probe 270 is designed for wrapping around a wall, for example, to view objects on the other side or for disposition into structures such as computer equipment, anatomical orifices, or in a variety of other places.
  • Fiber optic cable probe 270 is comprised of a neck 272 having an interior surface defining a passageway for placement of lens tube 32 or an adapter therein.
  • a fiber optic cable 274 extends distally from neck 272, a proximal end of fiber optic cable 274 preferably disposed against the distal end 93 of tens tube 32.
  • a distal lens 278 is disposed at the distal end 280 of fiber optic cable 274.
  • fiber optic cable 274 may be designed to have varying lengths, it is preferably designed to be approximately three feet long, to reach around various objects.
  • Figure 12b demonstrates one embodiment of an eye speculum 250 for use in inspecting a variety of objects, such as the eye and related anatomy.
  • eye speculum 250 may be employed in photographing stages of cataract maturation and for use in plastic surgery relating to the eyelids.
  • Eye speculum 250 is contoured similar to an eye wash cup for rinsing the eye.
  • Eye speculum 250 is comprised of a neck 252 having an interior surface defining a passageway for placement of lens tube 32 or an adapter therein.
  • a speculum body 254 integrally attached to speculum neck 252 extends outwardly and distally from neck 252.
  • Speculum body 254 is contoured at a distal end 256 in an approximate oval shape, having a rounded first side edge 258, a rounded second side edge 260 and opposing upper and lower edges 262 which recess proximally with respect to first side edge 258 and second side edge 260 such that the speculum 250 is placed within the eye socket for inspection of the eye when coupled to lens tube 32.
  • the distance between first side edge 258 and second edge 260 is greater than the distance between opposing upper and lower edges 262.
  • Figures 24 and 25 demonstrate another embodiment of an eye speculum 472 for use in inspecting a variety of objects, such as the eye and related anatomy.
  • eye speculum 472 may be used in photographing stages of cataract maturation and in plastic surgery relating to eyelids.
  • Eye speculum 472 is comprised of a neck 474 having an interior surface 476 defining a passageway for placement of lens tube 32 or, as shown in Figure 25, probe adapter 454 therein. Also as shown in Figure 25, an internal ridge 478 on the interior surface 476 of speculum fits within groove 466 on probe adapter 454, maintaining probe adapter 454 and speculum 472 in a secure relationship.
  • Neck 474 further comprises an exterior surface 480 having a proximal end 482, a distal end 484, and an intermediate portion 486.
  • a body 488 configured to fit about the eye socket extends outwardly and distally from intermediate portion 486 of exterior surface 480 of neck 474.
  • Body 488 has an exterior surface 490 and an interior surface 492 defining a distal speculum cavity 494.
  • Body 488 is contoured at a distal end 496 thereof in an approximate oval shape having a rounded first side edge 498, a rounded second side edge 500 and opposing upper and lower edges 502 which recess proximally with respect to first side edge 498 and second side edge 500 such that speculum 472 is placed within the eye socket for inspection of the eye when coupled to lens tube 32.
  • the distance between first side edge 498 and second side edge 500 is greater than the distance between opposing upper and lower edges 502.
  • a distal portion 484 of neck 474 extends into the cavity 494 defined by the interior surface 492 of body 488, thereby positioning distal end 93 of lens tube 32 at a predetermined distance from the eye.
  • the neck 474 allows lens tube 32 to be positioned close to the eye, a significant advantage within the art.
  • recess 470 of probe adapter 454 allows the practitioner to rotate speculum 472 such that speculum 472 fits into the eye socket without rotating the endoscopic camera housing 416.
  • the practitioner can rotate probe adapter 454 until speculum 472 is aligned, rather than rotating housing 416 and maintaining housing 416 in an awkward position in order to align speculum 472 with the eye socket.
  • FIG 12c demonstrates an otoscope speculum 282 for use in inspecting a variety of objects.
  • Otoscope speculum 282 is comprised of a neck 284 having an interior surface defining a passageway for placement of lens tube 32 or an adapter therein.
  • a speculum body 286 integrally attached to speculum neck 266 extends inwardly and distally from neck 284.
  • otoscope speculum 282 it is possible to flush an ear or other cavity while looking into the cavity, employing a means for flushing, the flushing means attached to housing 12, lens tube 32 or otoscope 282.
  • flushing means includes, for example, a tube which is parallel lens tube 32 and the longitudinal axis of otoscope speculum 282.
  • a syringe disposed at a proximal end of the tube releases flushing fluid into the tube.
  • the tube has an opening at a distal end near the distal end of otoscope 282 for the release of fluid into the cavity during the observation.
  • speculum 282 is made from a light reflective material, such as a light gray plastic material, thereby reflecting the light produced by the light source means onto an object.
  • Figures 12d and 12g demonstrate in a perspective view and in cross section, respectively, a mirror speculum 292 for use in inspecting a variety of objects, such as a tooth.
  • mirror speculum 292 can be employed to inspect cracks in teeth or gum disease.
  • Mirror speculum 292 is comprised of a tubular housing 293 having an interior surface 301 defining a passageway Tubular housing 293 is configured for placement of lens tube 32 or an adapter therein.
  • a distal end 296 is closed.
  • Tubular housing 293 includes an aperture 298 proximal to distal end 296.
  • Aperture 298 is configured for reception of an object such as a tooth.
  • a mirror 300 is disposed in the passageway within housing 293 adjacent aperture 298 and is oriented to reflect the image of the received object into lens tube 32.
  • lens tube 32 is disposed within housing 293 such that distal end 93 of lens tube 32 is approximately 1/2 inch from mirror 300.
  • Figure 12e demonstrates a first biopsy speculum 302 for use in inspecting a variety of objects and for taking a biopsy of an inspected object without making an incision.
  • First biopsy speculum 302 is comprised of a neck 304 having an interior surface defining a passageway for placement of lens tube 32 or an adapter therein.
  • a speculum body 306 integrally attached to speculum neck 304 extends inwardly and distally from neck 304.
  • Speculum body 306 is in the shape of a needle and contains a fiber optic cable, preferably a single fiber optic strand.
  • a proximal portion of the fiber optic cable is preferably disposed against the distal end 93 of lens tube 32.
  • the fiber optic cable includes a lens at distal end 308 for viewing the area to be biopsied.
  • a spoon 310 having a serrated distal face 312 is disposed near distal tip 308 for taking a biopsy sample while biopsy speculum body 306 is disposed within the area to be biopsied.
  • biopsy speculum body 306 is disposed within the area to be biopsied.
  • spoon 310 scrapes biopsied material
  • the material accumulates in groove 340.
  • At least one side 311 of spoon 310 is sharpened such that upon twisting speculum 302 the sharpened side 311 makes an incision.
  • Spoon 310 is then employed to scrape and retrieve the incised portion.
  • Figure 12f demonstrates a second biopsy speculum 314 for use in inspecting a variety of objects and for taking a biopsy of an inspected object without making an incision.
  • Second biopsy speculum 314 is comprised of a neck 316 having an interior surface defining a passageway for placement of lens tube 32 or an adapter therein.
  • a speculum body 318 integrally attached to speculum neck 316 extends inwardly and distally from neck 316.
  • Speculum body 318 is in the shape of a needle and contains a fiber optic cable, preferably a single fiber optic strand.
  • a proximal portion of the fiber optic cable is preferably disposed against the distal end 93 of lens tube 32.
  • the fiber optic cable includes a lens at distal end 320 for viewing the area to be biopsied.
  • a spoon 32 possibly having a serrated distal end 320, is pivotally mounted on a pivot pin, for example, within speculum body 318 near distal end 320, for taking a biopsy sample while biopsy speculum body 318 is disposed within the area to be biopsied.
  • a pivot pin for example, within speculum body 318 near distal end 320, for taking a biopsy sample while biopsy speculum body 318 is disposed within the area to be biopsied.
  • spoon 321 scrapes biopsied material
  • the material accumulates in groove 342.
  • At least one side 344 of spoon 321 is sharpened such that upon twisting speculum 314 the sharpened side 344 makes an incision.
  • Spoon 321 is then employed to scrape and retrieve the incised portion.
  • Second biopsy speculum body 318 further comprises a tube 390 disposed parallel to the fiber optic cable for disposition of a wire 346 therethrough.
  • Wire 346 or other means for directing spoon 321 is disposed within tube 390.
  • Wire 346 exits a distal end 392 of the tube 390 and at a distal end of wire 346 attaches to spoon 321 for pivoting spoon 321 in a proximal or distal direction.
  • Spoon 321 is preferably pushed distally against body 318 as speculum 314 is disposed into the body or other cavity, minimizing the interference of spoon 321 against the skin.
  • Wire 346 exits a proximal end 394 of tube 390 and is attached at a proximal end of wire 346 to a lever 348 mounted on neck 316, lens tube 32, or on a distal portion of the camera housing. Wire 346 assists in orienting spoon 321 in a desired position.
  • Figure 12h demonstrates a memory probe 322.
  • Memory probe 322 is selectively shaped and retains its selective shape for use in inspecting a variety of objects.
  • Memory probe 322 is designed for bending into a particular shape and for retaining the shape Thus, the probe 322 can be wrapped around a wall or other structure and used in its originally selected shape.
  • Memory probe 322 is comprised of a neck 324 having an interior surface defining a passageway for placement of lens tube 32 or an adapter therein.
  • a fiber optic cable 326 extends distally from neck 324, a proximal end of fiber optic cable 326 preferably disposed against the distal end 93 of lens tube 32.
  • a distal lens 328 is disposed at the distal end 330 of memory probe 322.
  • Fiber optic cable 326 is preferably approximately one foot in length
  • a non-ABS plastic is employed.
  • Coupler 352 is an example of a means for coupling the lens means to a funnel-shaped probe 350. Funnel shaped probes are particularly useful for the inspection of the ear.
  • Coupler 352 includes a neck 354 having an interior surface defining a passageway for placement of lens tube 32 or an adapter therein.
  • a coupler body 356 integrally attached to neck 354 extends outwardly and distally from neck 354 in a funnel shape.
  • Coupler body 356 is contoured at a distal end 358 in a circular shape.
  • a clamp such as a circular-shaped clamp or a C-shaped "C"clamp 360 made offlexible plastic or rubber extends from the distal end 358 of coupler body 356 and is disposed about funnel probe 350 for retaining the distal end 358 of coupler 352 in an abutting relationship with the proximal end 359 of funnel probe 350.
  • distal end 93 of lens tube 32 is disposed against the proximal end of a fiber optic cable disposed within funnel-shaped probe 350 in an abutting relationship.
  • Microscope coupler 361 is an example of a means coupled to a microscope 362 for translating an image within the microscope 362 into the lens means of portable endoscopic camera 10.
  • Microscope coupler 361 includes a neck 364 having an interior surface defining a passageway for placement of lens tube 32 or an adapter therein.
  • a coupler body 366 integrally attached to neck 364 extends outwardly and distally from neck 364.
  • Coupler body 368 includes dual ring shaped ports 370 configured to receive the microscopic eye-pieces 372.
  • a C-clamp 378 is used, for example, to retain eye-pieces 372 within ports 370.
  • each microscopic eye-piece 372 is projected to a corresponding side mirror 374 within microscope coupler 361.
  • Each side mirror 374 reflects the image onto a central mirror 376, which reflects the combined image to lens tube 32.
  • microscope coupler 361 allows a practitioner to add additional magnification to a microscoped image.
  • the practitioner is able to transmit the image through signal unit 70, for example, to a wall mounted monitor for viewing of the image by a larger number of practitioners.
  • lens fiber module 88 it is possible to remove lens fiber module 88 and place the apparatus in a remote control activated device, such as model air plane or model car.
  • a full size lens is mounted on the camera, for example.
  • a monitor such as a liquid display monitor, is then mounted on a remote control operating device.
  • the operator could view the flight path of the airplane, for example in the display monitor.
  • the battery operated device as a security camera, with or without lens fiber module 88.
  • kit 600 for producing video images of an object.
  • kit 600 comprises (i) the portable, hand-held apparatus for producing video images of an object described in any of the foregoing embodiments, such as camera 510, camera 510 including second housing 608; (ii) display means for displaying video images of the object, including for example, a monitor 190 and/or a printer 614; (iii) accessory containers 602 for containing probes, couplers, adapters and other accessories; (iv) a receiver 188 for receiving video signals transmitted by the transmitter means; (v) a variety of different supplies, such as paper 604 for printer 614 or other miscellaneous supplies; (vi) a portable container 606 for portably containing a variety of components of the invention; (vii) a remote control unit 616 for controlling monitor 190 and/or printer 614; and (viii) power supply means disposed within the container 606 for supplying electrical power to the display means, such as monitor 190
  • Kit 600 is uniquely well suited for traveling to a remote location in which electricity is not readily available, and in which the practitioner is required to move freely with respect to container 606.
  • a practitioner may from a location remote from container 606 and make a video image of an object, such as a patients' ear, which is sent to monitor 190 within container 606.
  • a first practitioner may perform an endoscopic examination in a room remote from another room in a clinic or the practitioner's automobile in which the container 606 has been placed. While the first practitioner performs the examination, a second practitioner may view monitor 190 from the separate room or automobile. Even if container 606 is in the same room with the first practitioner, the practitioner is not required to drag annoying cables around the room to view images on monitor 190.
  • Accessory containers 602 such as cylinders 602 may be attached by hook and pile, such as VELCRO, to container 606, the cylinders 602 containing probes, couplers, or other accessories to be employed in conjunction with kit 600.
  • hook and pile such as VELCRO
  • kit 600 includes second housing 608 of camera 510 which, in one embodiment, contains a rechargeable battery pack to provide electrical power to the components within or otherwise attached to first housing 574, through the use of a means for coupling the components of the first and second housings 574, 608, such as a cable 609.
  • a clip 610 is provided for mounting the second housing 608 to the individual's belt, for example.
  • Belt mounted second housing 608 also includes an on/off button 626 and a jack 620 for coupling the components of first housing 574 to the components of second housing 608.
  • camera 510 may be operated as a self-contained unit.
  • receiver 188 is coupled to monitor 190 and/or printer 614.
  • wireless video transfer may occur between endoscopic camera 510 and the components of container 606, such as monitor 190.
  • Container 606 also includes an integral power supply means, such as a battery (not shown) coupled to receiver 188, monitor 190 and printer 614, for supplying electrical power to receiver 188, monitor 190 and printer 614.
  • a light emitting diode 624 indicates that the power has been turned on.
  • the integral battery is disposed within a compartment within container 606 beneath on/off switch 622.
  • the battery is preferably rechargeable through jack 618. It is also possible to power camera 510 by providing camera 510 with power from the battery in container 606, such as by plugging cable 609 into jack 618 of container 606.
  • Container 606 thus serves as another example of a second housing means.
  • the power supply means disposed within the container 606 comprises a battery having an output of approximately 12 volts of electrical power. While 12 volts may be suitable for a typical portable monitor, typically, portable printers, such as printer 614 require more voltage than portable monitors.
  • kit 600 further comprises means for converting the voltage of the power supply means to a voltage sufficient to provide electrical power to the printer.
  • the converting means comprises a power converter 632, which converts approximately 12 volts of electrical power to the approximately 22 volts of electrical power required to power printer 614.
  • a twelve volt battery 630 is employed to power a wireless receiver 188, a monitor 190 coupled to receiver 188, and a printer 614 coupled to the monitor 190, and an "on" indicator 624, such as a light emitting diode.
  • power converter 632 converts the approximately twelve volt current to the approximately twenty two volts required by printer 614.
  • a medical practitioner desired to visit a series of clinics in a remote area having no electricity. While riding in a vehicle in between clinics, a practitioner can recharge container 606 and/or apparatus 510 from the cigarette lighter port of the vehicle. Even though the clinic lacks electricity, upon reaching the clinic the practitioner can perform an endoscopic examination, view the results within the monitor, and print a copy of the results. Because of the wireless video transfer capability, it is possible for the practitioner to perform the examination without dragging cables around the patient examined.
  • the practitioner may place each of the components back into the container 606, then readily transport the entire kit 600 to another location, recharging the battery within the container 606 and or the battery within second housing 608 using the cigarette light port as the practitioner travels to the other location.
  • portable kit 600 Another advantage to portable kit 600 is that the practitioner is able to readily adjust the location of monitor 190 such that the practitioner can more readily view the monitor while performing an endoscopic examination, for example.

Claims (14)

  1. Tragbare endoskopische Hand-Kamera (510) zur Erstellung von Videobildern eines Objekts, wobei die tragbare endoskopische Hand-Kamera (510) umfasst:
    Lichtquellenmittel zur Erzeugung von Licht zur Beleuchtung des Objekts, wobei die Lichtquellenmittel eine Lampe (100) umfassen;
    Video-Bilderzeugungsmittel (67) zur Erzeugung eines Videosignals von dem Objekt;
    Linsenmittel (512), welche ein proximales Ende (514) und ein distales Ende (516) aufweisen, wobei die Linsenmittel (512) zur Übertragung von Licht von den Lichtquellenmitteln zu dem distalen Ende (516) der Linsenmittel (512) und zur Ausstrahlung des übertragenen Lichts, um das Objekt zu beleuchten, wenn das distale Ende (516) der Linsenmittel (512) benachbart zu dem Objekt positioniert ist, optisch mit der Lampe (100) gekoppelt sind, wobei die Linsenmittel (512) an ihrem proximalen Ende (514) optisch mit den Video-Bilderzeugungsmitteln (67) gekoppelt sind, um ein Bild des Objekts von dem distalen Ende (516) der Linsenmittel (512) an die Video-Bilderzeugungsmittel (67) zu übertragen, wobei die Linsenmittel beinhalten:
    eine Reihe von Lichtleitfasern (522) zur Übertragung von Licht von den Lichtquellenmitteln zu dem distalen Ende (516) der Linsenmittel (512), wobei die Lichtleitfasern an dem proximalen Ende der Reihe von Lichtleitfasern als Faserbündel (540) ausgestaltet sind; und
    einen Linsenzug (520), der ein proximales Ende (528) und ein distales Ende (516) aufweist, wobei der Linsenzug (520) ein Bild des Objekts von dem distalen Ende (516) des Linsenzugs (520) zu dem proximalen Ende (528) des Linsenzuges (520) überträgt; und
    Energieversorgungsmittel (608) zur Versorgung der elektrisch angeschlossenen Lichtquellenmittel und der Video-Bilderzeugungsmittel (67) mit elektrischer Energie;
    dadurch gekennzeichnet, dass die Lampe (100) der Lichtquellenmittel an dem Faserbündel (540) der Linsenmittel (512) anliegt, und dass die Wattleistung der Lichtquellenmittel in dem Bereich von ungefähr 0,5 Watt bis 5 Watt liegt.
  2. Kamera (510) gemäß Anspruch 1, wobei die Lampe (100) eine fokussierte Endlinse aufweist.
  3. Kamera (510) gemäß Anspruch 1, wobei die Linsenmittel einen Ring (544) umfassen, der um das Faserbündel (540) und einen distalen Abschnitt der Lichtquellenmittel angeordnet ist.
  4. Kamera (510) gemäß Anspruch 3, wobei eine Manschette (575) mit der Lampe (100) und dem Ring (544) gekoppelt ist.
  5. Kamera (510) gemäß Anspruch 4, wobei die Manschette (575) eine aus elastischem Kunststoff bestehende Manschette ist.
  6. Kamera (510) gemäß Anspruch 4, wobei die Manschette (575) eine distale Mitte der Lampe (100) in einer anliegenden Beziehung mit einer proximalen Mitte des Faserbündels (540) hält.
  7. Kamera (510) gemäß Anspruch 1, wobei die Kamera (510) eine in sich geschlossene Einheit bildet.
  8. Kamera (510) gemäß Anspruch 7, darüber hinaus Darstellungsmittel umfassend, die elektrisch mit den Video-Bilderzeugungsmittel (67) gekoppelt sind, zur Darstellung von Videobildern des Objekts.
  9. Kamera (510) gemäß Anspruch 7, darüber hinaus umfassend:
    Übertragungsmittel, die elektrisch mit den Video-Bilderzeugungsmitteln gekoppelt sind, zur Übertragung von durch die Video-Bilderzeugungsmittel (67) erzeugten Videosignalen; Empfangsmittel zum Empfang der durch die Übertragungsmittel übertragenen Videosignale; und Darstellungsmittel, die elektrisch mit den Empfangsmitteln gekoppelt sind, zur Darstellung von Videobildern des Objekts.
  10. Kamera (510) gemäß Anspruch 7, darüber hinaus handtragbare Mittel zur Unterbringung der Lichtquellenmittel, der Video-Bilderzeugungsmittel, der Linsenmittel und der Energieversorgungsmittel umfassend.
  11. Kamera (510) gemäß Anspruch 1, wobei die Lampe eine Wattleistung in dem Bereich von ungefähr 1 Watt bis 5 Watt ausstrahlt.
  12. Kamera (510) gemäß Anspruch 1, wobei die Energieversorgungsmittel eine Batterie umfassen.
  13. Kamera (510) gemäß Anspruch 1, wobei die Energieversorgungsmittel weniger als ungefähr 12 Volt elektrische Spannung an die Lichtquellenmittel bereitstellen.
  14. Kamera (510) gemäß Anspruch 1, wobei der Linsenzug (520) ein Linsenrohr (32) umfasst, das mindestens eine darin angeordnete Linse aufweist.
EP97933222A 1996-07-15 1997-07-01 Tragbare endoskopische hand-kamera Expired - Lifetime EP0917438B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US08/680,174 US5879289A (en) 1996-07-15 1996-07-15 Hand-held portable endoscopic camera
US680174 1996-07-15
US08/828,147 US6432046B1 (en) 1996-07-15 1997-03-24 Hand-held, portable camera for producing video images of an object
US828147 1997-03-24
PCT/US1997/011384 WO1998002085A2 (en) 1996-07-15 1997-07-01 Hand-held, portable endoscopic camera and kit

Publications (2)

Publication Number Publication Date
EP0917438A2 EP0917438A2 (de) 1999-05-26
EP0917438B1 true EP0917438B1 (de) 2004-02-11

Family

ID=24730004

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97933222A Expired - Lifetime EP0917438B1 (de) 1996-07-15 1997-07-01 Tragbare endoskopische hand-kamera

Country Status (7)

Country Link
US (2) US5879289A (de)
EP (1) EP0917438B1 (de)
AT (1) ATE259186T1 (de)
AU (1) AU3646197A (de)
DE (1) DE69727577T2 (de)
NZ (1) NZ333624A (de)
WO (1) WO1998002085A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016014247A1 (de) 2016-11-30 2018-05-30 Karl Storz Se & Co. Kg Videoendoskop sowie Verfahren zum Betreiben eines Videoendoskops

Families Citing this family (220)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561377A (en) * 1995-04-14 1996-10-01 Cascade Microtech, Inc. System for evaluating probing networks
US6007484A (en) 1995-09-15 1999-12-28 Image Technologies Corporation Endoscope having elevation and azimuth control of camera
US6413209B1 (en) * 1995-09-15 2002-07-02 Med Images, Inc. Imaging system with condensation control
US6428470B1 (en) 1995-09-15 2002-08-06 Pinotage, Llc Imaging system and components thereof
US6221007B1 (en) * 1996-05-03 2001-04-24 Philip S. Green System and method for endoscopic imaging and endosurgery
US7302288B1 (en) * 1996-11-25 2007-11-27 Z-Kat, Inc. Tool position indicator
DE19715510C2 (de) * 1997-04-14 2000-05-18 Storz Karl Gmbh & Co Kg Endoskop mit einem Kameramodul und einer Kupplung
US6324418B1 (en) * 1997-09-29 2001-11-27 Boston Scientific Corporation Portable tissue spectroscopy apparatus and method
IL121450A0 (en) * 1997-08-01 1998-02-08 Smollett Neil Ophthalmic surgical equipment
US7030904B2 (en) * 1997-10-06 2006-04-18 Micro-Medical Devices, Inc. Reduced area imaging device incorporated within wireless endoscopic devices
US20110034769A1 (en) 1997-10-06 2011-02-10 Micro-Imaging Solutions Llc Reduced area imaging device incorporated within wireless endoscopic devices
US6019721A (en) * 1998-06-09 2000-02-01 Integra Medical Camera with improved focus mechanism
EP1109483A4 (de) * 1998-08-06 2003-05-07 Univ Johns Hopkins Video-optische diagnosevorrichtung mit einmal-brennweitenjustierung
FR2785132B1 (fr) * 1998-10-27 2000-12-22 Tokendo Sarl Sonde videoendoscopique a capteur ccd couleur distal
US6626825B2 (en) 1998-11-25 2003-09-30 Jory Tsai Medical inspection device
US6361489B1 (en) * 1998-11-25 2002-03-26 Jory Tsai Medical inspection device
US7137948B2 (en) * 1998-11-25 2006-11-21 Jory Tsai Medical inspection device
US7419467B2 (en) * 1998-11-25 2008-09-02 M3 Electronics, Inc. Medical inspection device
US6186944B1 (en) * 1998-11-25 2001-02-13 Jory Tsai Medical inspection device
JP3986698B2 (ja) * 1999-03-02 2007-10-03 富士フイルム株式会社 デジタルカメラ及びそのリサイクル方法
WO2000071018A1 (de) 1999-05-21 2000-11-30 Karl Storz Gmbh & Co. Kg Laryngoskop
US6445202B1 (en) * 1999-06-30 2002-09-03 Cascade Microtech, Inc. Probe station thermal chuck with shielding for capacitive current
US6683641B1 (en) * 1999-09-01 2004-01-27 United Technologies Corporation Apparatus for inspecting the interior of hollow articles
US8317689B1 (en) * 1999-09-13 2012-11-27 Visionscope Technologies Llc Miniature endoscope system
US20050192481A1 (en) * 1999-10-14 2005-09-01 George Berci Laryngoscope and camera coupling
US6890298B2 (en) * 1999-10-14 2005-05-10 Karl Storz Gmbh & Co. Kg Video laryngoscope with detachable light and image guides
US20060004260A1 (en) * 1999-10-14 2006-01-05 Ben Boedeker Endotracheal video device
US6383133B1 (en) * 1999-11-09 2002-05-07 Dwight T. Jones Otoscope kit
US6589162B2 (en) * 2000-02-21 2003-07-08 Pentax Corporation Endoscope system and video camera for endoscope
US20050197533A1 (en) * 2000-03-16 2005-09-08 Medivision, Inc. Endoscope and camera mount
US6398724B1 (en) * 2000-03-16 2002-06-04 Medivision, Inc. Focusable optical instrument with a sealed optical system having no internal optical moving parts
US6855106B2 (en) 2000-03-16 2005-02-15 Medivision, Inc. Endoscope and camera mount
US6958766B2 (en) 2000-04-06 2005-10-25 Gendex Corporation Dental video imaging system
US6712760B2 (en) * 2000-04-10 2004-03-30 Pentax Corporation Television device of portable endoscope
US6914423B2 (en) 2000-09-05 2005-07-05 Cascade Microtech, Inc. Probe station
US6965226B2 (en) 2000-09-05 2005-11-15 Cascade Microtech, Inc. Chuck for holding a device under test
US20030215128A1 (en) * 2001-09-12 2003-11-20 Pinotage Llc System and method for obtaining and utilizing maintenance information
WO2002023403A2 (en) * 2000-09-11 2002-03-21 Pinotage, Llc. System and method for obtaining and utilizing maintenance information
US6730019B2 (en) 2000-10-24 2004-05-04 Karl Storz Gmbh & Co. Kg Endoscope with LED illumination
DE50000366D1 (de) * 2000-10-24 2002-09-12 Storz Karl Gmbh & Co Kg Weisslichtquelle mit Leuchtdioden (LED) für Endoskop
DE20114544U1 (de) 2000-12-04 2002-02-21 Cascade Microtech Inc Wafersonde
DE10062737C1 (de) 2000-12-15 2002-10-31 Sirona Dental Systems Gmbh Handinstrument zur medizinischen, insbesondere zahnmedizinischen Diagnose
AUPR224100A0 (en) * 2000-12-21 2001-01-25 Silverbrook Research Pty. Ltd. An apparatus (ap31)
AUPR256601A0 (en) * 2001-01-17 2001-02-08 Silverbrook Research Pty. Ltd. An apparatus (AP29)
US6830347B2 (en) * 2001-02-14 2004-12-14 Welch Allyn, Inc Eye viewing device comprising eye cup
AU2002311571A1 (en) 2001-04-11 2002-12-16 Cynovad, Inc. Methods and systems for management of information related to the appearance of an object
ES2307745T3 (es) * 2001-04-20 2008-12-01 Power Medical Interventions, Inc. Dispositivo de formacion de imagen.
US6970634B2 (en) * 2001-05-04 2005-11-29 Cascade Microtech, Inc. Fiber optic wafer probe
WO2002090911A1 (en) 2001-05-07 2002-11-14 Flir Systems Ab Handheld infrared camera
AU2002345329A1 (en) 2001-06-28 2003-03-03 Given Imaging Ltd. In vivo imaging device with a small cross sectional area
US6929600B2 (en) * 2001-07-24 2005-08-16 Stephen D. Hill Apparatus for intubation
KR200251499Y1 (ko) * 2001-08-07 2001-11-22 주식회사메디아나 인체 부위 확대 표시장치
US7130898B2 (en) * 2001-08-27 2006-10-31 Sun Microsystems, Inc. Mechanism for facilitating invocation of a service
US20040218089A1 (en) * 2001-08-28 2004-11-04 Heusinkveld Rigby J. Ruggedized remote monitoring system and method
US6971987B1 (en) * 2001-09-21 2005-12-06 The Chinese University Of Hong Kong Apparatuses for securing medical devices to humans and methods for facilitating the manipulation of secured medical devices
US7239345B1 (en) * 2001-10-12 2007-07-03 Worldscape, Inc. Camera arrangements with backlighting detection and methods of using same
US7466992B1 (en) 2001-10-18 2008-12-16 Iwao Fujisaki Communication device
US8038602B2 (en) * 2001-10-19 2011-10-18 Visionscope Llc Portable imaging system employing a miniature endoscope
US20070167681A1 (en) * 2001-10-19 2007-07-19 Gill Thomas J Portable imaging system employing a miniature endoscope
US10595710B2 (en) * 2001-10-19 2020-03-24 Visionscope Technologies Llc Portable imaging system employing a miniature endoscope
US6863651B2 (en) 2001-10-19 2005-03-08 Visionscope, Llc Miniature endoscope with imaging fiber system
US7101334B2 (en) * 2001-10-31 2006-09-05 Olympus Corporation Optical observation device and 3-D image input optical system therefor
US6777964B2 (en) 2002-01-25 2004-08-17 Cascade Microtech, Inc. Probe station
KR200277875Y1 (ko) * 2002-03-11 2002-06-14 이스턴 마스텍 주식회사 자동차의 후방용 감시카메라의 좌우반전 스위칭 장치
US8599250B2 (en) * 2002-03-12 2013-12-03 Karl Storz Imaging, Inc. Wireless camera coupling
US6809499B2 (en) * 2002-04-10 2004-10-26 Karl Storz Gmbh & Co. Kg Apparatus and method for powering portable battery operated light sources
US20030216622A1 (en) * 2002-04-25 2003-11-20 Gavriel Meron Device and method for orienting a device in vivo
US6761561B2 (en) 2002-06-07 2004-07-13 Schick Technologies Wireless dental camera
US6860611B2 (en) * 2002-07-01 2005-03-01 Robert Gentz Camera and light apparatus
US6753899B2 (en) 2002-09-03 2004-06-22 Audisoft Method and apparatus for telepresence
US6972411B2 (en) * 2002-10-03 2005-12-06 Schick Technologies, Inc. Method of event detection for intraoral image sensor
US7072443B2 (en) * 2002-10-03 2006-07-04 Schick Technologies, Inc. Intraoral image sensor
US7946979B2 (en) * 2002-12-26 2011-05-24 Given Imaging, Ltd. Immobilizable in vivo sensing device
US20050129108A1 (en) * 2003-01-29 2005-06-16 Everest Vit, Inc. Remote video inspection system
US6908307B2 (en) 2003-02-03 2005-06-21 Schick Technologies Dental camera utilizing multiple lenses
EP2505125A1 (de) * 2003-04-29 2012-10-03 Aircraft Medical Limited Laryngoskop mit Kameraaufsatz
TW572526U (en) * 2003-05-08 2004-01-11 Guo-Liang You Standard module of visual image sensing with a universal connecting function
US7057404B2 (en) 2003-05-23 2006-06-06 Sharp Laboratories Of America, Inc. Shielded probe for testing a device under test
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test
US7250626B2 (en) 2003-10-22 2007-07-31 Cascade Microtech, Inc. Probe testing structure
US7946981B1 (en) * 2003-10-23 2011-05-24 Anthony Cubb Two-piece video laryngoscope
US6980417B2 (en) * 2003-11-13 2005-12-27 Ken-Chao Chang Meter with concealed probe receiving deck
DE202004021093U1 (de) 2003-12-24 2006-09-28 Cascade Microtech, Inc., Beaverton Aktiver Halbleiterscheibenmessfühler
US7187188B2 (en) 2003-12-24 2007-03-06 Cascade Microtech, Inc. Chuck with integrated wafer support
US8702597B2 (en) * 2003-12-31 2014-04-22 Given Imaging Ltd. Immobilizable in-vivo imager with moveable focusing mechanism
US20050165275A1 (en) * 2004-01-22 2005-07-28 Kenneth Von Felten Inspection device insertion tube
EP1719445A4 (de) * 2004-02-16 2012-01-11 Olympus Corp Endoskopvorrichtung
US20050209618A1 (en) * 2004-03-05 2005-09-22 Auld Michael D Rigid shafted instrumentation for vitreoretinal surgery
WO2005099560A1 (ja) * 2004-04-12 2005-10-27 Olympus Corporation 内視鏡装置
JP4426909B2 (ja) 2004-06-16 2010-03-03 オリンパス株式会社 内視鏡用カメラヘッド、内視鏡用カメラシステム、及び内視鏡システム
US7041054B2 (en) * 2004-08-17 2006-05-09 Jack Klootz LED illumination for surgical endoscopes and industrial rigid boroscopes
US7420381B2 (en) 2004-09-13 2008-09-02 Cascade Microtech, Inc. Double sided probing structures
WO2006031773A1 (en) * 2004-09-13 2006-03-23 Ams Research Corporation Portable cystoscope
US20060122460A1 (en) * 2004-12-07 2006-06-08 Henry Kamali Airway management
JP4937136B2 (ja) 2004-12-28 2012-05-23 パトリック・シー・メルダー 内視鏡画像システム
WO2006070356A2 (en) * 2004-12-30 2006-07-06 Given Imaging Ltd. Device, system, and method for adaptive imaging
US7584534B2 (en) * 2005-01-10 2009-09-08 Perceptron, Inc. Remote inspection device
US7758495B2 (en) * 2005-01-10 2010-07-20 Perceptron, Inc. Remote inspection device
US7656172B2 (en) 2005-01-31 2010-02-02 Cascade Microtech, Inc. System for testing semiconductors
US7535247B2 (en) 2005-01-31 2009-05-19 Cascade Microtech, Inc. Interface for testing semiconductors
US10154792B2 (en) 2005-03-01 2018-12-18 Checkpoint Surgical, Inc. Stimulation device adapter
US7896815B2 (en) * 2005-03-01 2011-03-01 Checkpoint Surgical, Llc Systems and methods for intra-operative stimulation
US20110054346A1 (en) * 2005-03-01 2011-03-03 Checkpoint Surgical, Llc Systems and methods for Intra-operative semi-quantitative threshold neural response testing related applications
US20110060242A1 (en) * 2005-03-01 2011-03-10 Checkpoint Surgical, Llc Systems and methods for intra-operative stimulation within a surgical field
US20110060243A1 (en) * 2005-03-01 2011-03-10 Checkpoint Surgical, Llc Systems and methods for intra-operative regional neural stimulation
US7878981B2 (en) * 2005-03-01 2011-02-01 Checkpoint Surgical, Llc Systems and methods for intra-operative stimulation
US20060200219A1 (en) * 2005-03-01 2006-09-07 Ndi Medical, Llc Systems and methods for differentiating and/or identifying tissue regions innervated by targeted nerves for diagnostic and/or therapeutic purposes
US20110060238A1 (en) * 2005-03-01 2011-03-10 Checkpoint Surgical, Llc Systems and methods for intra-operative physiological functional stimulation
US7914446B2 (en) * 2005-03-03 2011-03-29 General Electric Company Video inspection system
AU2006232534B2 (en) * 2005-04-01 2011-10-06 Welch Allyn, Inc. Vaginal speculum
CA2509590A1 (en) * 2005-06-06 2006-12-06 Solar International Products Inc. Portable imaging apparatus
US7983560B2 (en) * 2005-10-11 2011-07-19 Dynamic Method Enterprises Limited Modular WSS-based communications system with colorless add/drop interfaces
US7646973B2 (en) * 2005-10-31 2010-01-12 Lynk3 Technologies, Inc Combination flashlight and camera system
US7824330B2 (en) * 2005-11-28 2010-11-02 Karl Storz Endovision, Inc. Ceramic fiber optic taper housing for medical devices
JP4813898B2 (ja) * 2005-12-26 2011-11-09 株式会社カナガワファニチュア 口腔内撮影用デジタルカメラ
US20100145146A1 (en) * 2005-12-28 2010-06-10 Envisionier Medical Technologies, Inc. Endoscopic digital recording system with removable screen and storage device
US20070225556A1 (en) * 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Disposable endoscope devices
US20070270651A1 (en) * 2006-05-19 2007-11-22 Zvika Gilad Device and method for illuminating an in vivo site
US7723999B2 (en) 2006-06-12 2010-05-25 Cascade Microtech, Inc. Calibration structures for differential signal probing
US7764072B2 (en) 2006-06-12 2010-07-27 Cascade Microtech, Inc. Differential signal probing system
US7403028B2 (en) 2006-06-12 2008-07-22 Cascade Microtech, Inc. Test structure and probe for differential signals
US8114121B2 (en) * 2006-06-22 2012-02-14 Tyco Healthcare Group Lp Tissue vitality comparator with light pipe with fiber optic imaging bundle
JP2008011992A (ja) * 2006-07-04 2008-01-24 Olympus Medical Systems Corp 内視鏡
DE102006041959A1 (de) * 2006-08-30 2008-03-06 Karl Storz Gmbh & Co. Kg Beleuchtungssystem zum Erzeugen von Licht und zum Einkoppeln des Lichts in ein proximales Ende eines Lichtleitkabels einer Beobachtungsvorrichtung für die Endoskopie oder Mikroskopie
BRPI0807525A2 (pt) * 2007-02-09 2014-06-10 Skeletal Dynamics Llc Dispositivo endo-cirúrgico e método
US8495999B2 (en) 2007-08-04 2013-07-30 John Adam Law Airway intubation device
US7876114B2 (en) 2007-08-08 2011-01-25 Cascade Microtech, Inc. Differential waveguide probe
US8152715B2 (en) * 2007-09-14 2012-04-10 Optim, Incorporated Endoscope with internal light source and power supply
US8767060B2 (en) * 2007-10-26 2014-07-01 Ge Inspection Technologies, Lp Inspection apparatus having heat sink assembly
US8310604B2 (en) * 2007-10-26 2012-11-13 GE Sensing & Inspection Technologies, LP Visual inspection apparatus having light source bank
JP5145587B2 (ja) * 2007-12-27 2013-02-20 晃一 角田 口腔挿入具および口腔咽頭鏡装置
CN101711118B (zh) * 2008-01-18 2012-07-04 强生有限公司 便携式成像装置
DE102008007131A1 (de) * 2008-01-31 2009-08-06 Rwe Power Ag Detektoreinrichtungen sowie Verfahren zur Detektion von Flächendefekten
US8251157B2 (en) * 2008-03-07 2012-08-28 Milwaukee Electric Tool Corporation Battery pack for use with a power tool and a non-motorized sensing tool
GB2470327B (en) 2008-03-07 2012-03-21 Milwaukee Electric Tool Corp Visual inspection device
US8512231B2 (en) * 2008-06-17 2013-08-20 Fujifilm Corporation Electronic endoscope including lens holder and objective mirror
IT1391274B1 (it) * 2008-08-08 2011-12-01 Medica S R L Ab Sistema di irrigazione ed aspirazione, in particolare per chirurgia laparoscopica
US8758223B1 (en) * 2008-10-02 2014-06-24 Integrated Medical Systems International, Inc. Test equipment for endoscopes
US20100121139A1 (en) 2008-11-12 2010-05-13 Ouyang Xiaolong Minimally Invasive Imaging Systems
US8319503B2 (en) 2008-11-24 2012-11-27 Cascade Microtech, Inc. Test apparatus for measuring a characteristic of a device under test
US20100186234A1 (en) 2009-01-28 2010-07-29 Yehuda Binder Electric shaver with imaging capability
FR2941120B1 (fr) * 2009-01-15 2012-05-25 Tokendo Systeme de videoendoscopie modulaire
TWI578949B (zh) * 2009-07-15 2017-04-21 Medical Intubation Tech Corp Endoscopic device and its image processing method
US8363097B2 (en) 2009-07-23 2013-01-29 Smith & Nephew, Inc. Endoscopic imaging system
JP5519211B2 (ja) * 2009-08-10 2014-06-11 オリンパス株式会社 内視鏡装置
US8648932B2 (en) * 2009-08-13 2014-02-11 Olive Medical Corporation System, apparatus and methods for providing a single use imaging device for sterile environments
US8206290B2 (en) * 2009-10-08 2012-06-26 Apple Biomedical, Inc. Medical inspection device
US9854962B2 (en) * 2009-11-30 2018-01-02 King Systems Corporation Visualization instrument
DE102009055137A1 (de) * 2009-12-22 2011-06-30 Osram Gesellschaft mit beschränkter Haftung, 81543 Hochdruckentladungslampe
US9610133B2 (en) * 2010-03-16 2017-04-04 Covidien Lp Wireless laparoscopic camera
EP2550799A4 (de) 2010-03-25 2014-09-17 Olive Medical Corp System und verfahren zur bereitstellung einer einweg-bildgebungsvorrichtung für medizinische umgebungen
US8876707B2 (en) 2010-09-03 2014-11-04 Alexander Wellen Hand-held ear vacuum with camera and video display
EP2613687B1 (de) 2010-09-08 2016-11-02 Covidien LP Katheter mit bildgebungsanordnung
WO2012060932A2 (en) 2010-10-25 2012-05-10 Endosee Corporation Method and apparatus for hysteroscopy and endometrial biopsy
US20120116368A1 (en) * 2010-11-10 2012-05-10 Viola Frank J Surgical instrument with add-on power adapter for accessory
US8633980B2 (en) * 2011-03-18 2014-01-21 Da-Ming Liu Monitoring apparatus having a detachable display and a power failure protection
WO2012134469A1 (en) * 2011-03-31 2012-10-04 Ingersoll-Rand Company Display assemblies having integrated display covers and light pipes and handheld power tools and methods including same
BR112013028428A2 (pt) 2011-05-03 2019-09-24 Endosee Corp método e aparelho para histeroscopia e biópsia do endométrio
AU2012253254B2 (en) 2011-05-12 2016-12-15 DePuy Synthes Products, Inc. Image sensor with tolerance optimizing interconnects
TWI432167B (zh) * 2011-10-04 2014-04-01 Medimaging Integrated Solution Inc 主機、光學鏡頭模組以及其組成之數位診斷系統
US9004071B2 (en) * 2011-10-18 2015-04-14 Ian Joseph Alexander Nasal guide and method of use thereof
US10029079B2 (en) 2011-10-18 2018-07-24 Treble Innovations Endoscopic peripheral
US9119531B2 (en) * 2011-10-27 2015-09-01 Cook Medical Technologies Llc Visualization catheter periscope
US9622651B2 (en) * 2012-01-27 2017-04-18 Kbport Llc Wireless laryngoscope simulator with onboard event recording adapted for laryngoscopy training
US10143358B2 (en) 2012-02-07 2018-12-04 Treble Innovations, Llc System and method for a magnetic endoscope
DE102012005037A1 (de) * 2012-03-15 2013-09-19 Olympus Winter & Ibe Gmbh Endoskop mit einem langgestreckten Schaft und einer Schaltung
US20130271589A1 (en) * 2012-04-16 2013-10-17 Tzai-Kun HUANG Medical inspection device and method for assembling the same
US9468367B2 (en) 2012-05-14 2016-10-18 Endosee Corporation Method and apparatus for hysteroscopy and combined hysteroscopy and endometrial biopsy
US9622646B2 (en) 2012-06-25 2017-04-18 Coopersurgical, Inc. Low-cost instrument for endoscopically guided operative procedures
AU2013295565B2 (en) 2012-07-26 2017-06-22 DePuy Synthes Products, Inc. Camera system with minimal area monolithic CMOS image sensor
CN103654697A (zh) * 2012-09-06 2014-03-26 广州南北电子科技有限公司 一种手持视频设备
US9198835B2 (en) 2012-09-07 2015-12-01 Covidien Lp Catheter with imaging assembly with placement aid and related methods therefor
US9517184B2 (en) 2012-09-07 2016-12-13 Covidien Lp Feeding tube with insufflation device and related methods therefor
USD717340S1 (en) 2012-09-07 2014-11-11 Covidien Lp Display screen with enteral feeding icon
USD735343S1 (en) 2012-09-07 2015-07-28 Covidien Lp Console
USD716841S1 (en) 2012-09-07 2014-11-04 Covidien Lp Display screen with annotate file icon
US10842357B2 (en) * 2012-10-10 2020-11-24 Moskowitz Family Llc Endoscopic surgical system
US20140128732A1 (en) 2012-11-06 2014-05-08 Cross Bay Medical, Inc. Biopsy and sonography method and apparatus for assessing bodily cavities
EP2943112B1 (de) * 2013-01-09 2021-05-12 Inspectron Inc. Fernprüfvorrichtung
AU2014236561B2 (en) * 2013-03-14 2018-08-16 Lumicell, Inc. Medical imaging device and methods of use
CN105228503B (zh) 2013-03-15 2017-11-07 德普伊新特斯产品公司 最小化内窥镜应用中图像传感器输入/输出和导体的数量
BR112015023206A2 (pt) 2013-03-15 2017-08-22 Olive Medical Corp Sincronização de sensor de imagem sem temporizador de entrada e temporizador de transmissão de dados
US20140275763A1 (en) * 2013-03-15 2014-09-18 Lucent Medical Systems, Inc. Partially disposable endoscopic device
CN104252012B (zh) * 2013-06-28 2018-04-13 深圳众赢时代科技有限公司 光学耦合透镜、光学通讯装置及其组装方法
CN105813537B (zh) * 2013-12-26 2018-04-10 奥林巴斯株式会社 气腹装置
US11547446B2 (en) 2014-01-13 2023-01-10 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US10342579B2 (en) 2014-01-13 2019-07-09 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US9370295B2 (en) 2014-01-13 2016-06-21 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US20150223669A1 (en) * 2014-02-13 2015-08-13 Welch Allyn, Inc. Multi-modal medical examining instrument and related method for enabling multiple examination modes
KR102248085B1 (ko) 2014-10-17 2021-05-04 엘지이노텍 주식회사 자동차용 카메라 모듈
US10617284B2 (en) 2015-05-27 2020-04-14 Ambu A/S Endoscope
CN107809940B (zh) 2015-05-27 2021-08-27 安布股份有限公司 内窥镜
US10624531B2 (en) 2015-05-27 2020-04-21 Ambu A/S Endoscope
EP3302222A1 (de) 2015-05-27 2018-04-11 Ambu A/S Endoskop mit einem werkzeug
US10779710B2 (en) 2015-05-27 2020-09-22 Ambu A/S Endoscope
WO2016188538A1 (en) 2015-05-27 2016-12-01 Ambu A/S An endoscope comprising a chassis having a shell structure
US10624617B2 (en) 2015-05-27 2020-04-21 Ambu A/S Endoscope
EP3560412B1 (de) 2015-08-11 2020-11-18 Trice Medical, Inc. Vollintegrierte einwegvorrichtung zur visualisierung von verfügbarem gewebe
WO2017031138A1 (en) 2015-08-17 2017-02-23 Infinite Arthroscopy Inc, Limited Light source
US11330963B2 (en) 2015-11-16 2022-05-17 Lazurite Holdings Llc Wireless medical imaging system
US10702305B2 (en) 2016-03-23 2020-07-07 Coopersurgical, Inc. Operative cannulas and related methods
US10499792B2 (en) 2016-03-25 2019-12-10 University Of Washington Phone adapter for flexible laryngoscope and rigid endoscopes
US11166629B2 (en) * 2016-09-29 2021-11-09 Nanosurgery Technology Corporation Video needle syringe
CN110831488B (zh) 2017-02-15 2022-03-11 青金石控股有限责任公司 包括头单元和包含集成光源的光缆的无线医学成像系统
JP6212833B1 (ja) * 2017-03-10 2017-10-18 株式会社エム・ピー・アイ 診察視界確保式ビデオスコープ
US10334687B2 (en) * 2017-04-20 2019-06-25 Ngok Wing Jimmy Kwok Multispectral switch fiber optic lighting laryngoscope
US20200275831A1 (en) * 2017-09-11 2020-09-03 Progressive Innovations, Llc Lighted specula, related kits, and methods for using the same
EP3513706A1 (de) 2018-01-19 2019-07-24 Ambu A/S Verfahren zur befestigung eines drahtteils eines endoskops sowie endoskop
EP3517017B1 (de) 2018-01-26 2023-01-18 Ambu A/S Verfahren zur fixierung eines drahtabschnitts eines endoskops sowie ein endoskop
US11622753B2 (en) 2018-03-29 2023-04-11 Trice Medical, Inc. Fully integrated endoscope with biopsy capabilities and methods of use
EP3613327A1 (de) 2018-08-24 2020-02-26 Ambu A/S Spitzenteil für eine sichtvorrichtung
US11311184B2 (en) 2018-08-24 2022-04-26 Ambu A/S Tip part for a vision device
EP3613326B1 (de) 2018-08-24 2023-09-20 Ambu A/S Spitzenteil für eine sichtvorrichtung
EP3843607A1 (de) * 2018-08-30 2021-07-07 Deeksha Pandey Vorrichtung zur endoskopischen untersuchung einer spermienprobensammlung und verfahren dafür
WO2020068899A1 (en) * 2018-09-25 2020-04-02 Yoojeong Kim Multimodal endoscope and methods of use
USD938584S1 (en) 2020-03-30 2021-12-14 Lazurite Holdings Llc Hand piece
USD972176S1 (en) 2020-08-06 2022-12-06 Lazurite Holdings Llc Light source
EP4012507A1 (de) * 2020-12-11 2022-06-15 The Swatch Group Research and Development Ltd Phosphoreszierende uhrenkomponente
US11627243B2 (en) * 2021-07-23 2023-04-11 Phaox LLC Handheld wireless endoscope image streaming apparatus
WO2023141619A1 (en) * 2022-01-24 2023-07-27 Lazurite Holdings Llc Wireless imaging system

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB273473A (en) * 1926-06-17 1927-07-07 Francis Wallace Osborne Improvements in surgical examination lamps
US3638643A (en) * 1967-10-17 1972-02-01 Hotchkiss Instr Inc Endoscope for photographic recording
US3581140A (en) 1968-06-11 1971-05-25 Varo High intensity light source with integral radiant-energy-coupling apparatus
US3582637A (en) 1969-01-29 1971-06-01 Welch Allyn Inc Mounting arrangement for a fiber optic reader and lamp assembly
US3681592A (en) 1969-07-14 1972-08-01 Ernie & Co Fa Luminous energizer for fiber-optical cables
US3597647A (en) 1969-10-23 1971-08-03 Dyonics Inc Filament radiation source
US3721815A (en) 1970-04-09 1973-03-20 Poly Optics Acylindrical ornamental illumination device and adapter
US3770338A (en) 1971-08-19 1973-11-06 Chadwick Elect Inc H Fiber optics light source
US4241382A (en) 1979-03-23 1980-12-23 Maurice Daniel Fiber optics illuminator
US4413278A (en) 1981-10-05 1983-11-01 Designs For Vision, Inc. Optical coupling apparatus for coupling an arthoscope to a camera
JPS6048011A (ja) * 1983-08-27 1985-03-15 Olympus Optical Co Ltd 内視鏡装置
JPS6055924A (ja) * 1983-09-05 1985-04-01 オリンパス光学工業株式会社 内視鏡の撮像用自動調光装置
DE3414730A1 (de) * 1984-04-18 1985-10-31 Rudolf Riester Gmbh & Co Kg, Fabrik Med. Apparate, 7455 Jungingen Otoskop und verfahren zu seiner herstellung
JPS60182001U (ja) * 1984-05-16 1985-12-03 富士写真光機株式会社 観察面像映出、記録装置付き内視鏡
JPS60243625A (ja) 1984-05-18 1985-12-03 Fuji Photo Optical Co Ltd 内視鏡の接続システム
US4580198A (en) * 1984-12-04 1986-04-01 Zinnanti Jr Anthony Illuminator for medical examination telescope
JPH0644105B2 (ja) * 1985-01-14 1994-06-08 オリンパス光学工業株式会社 内視鏡
JPH0658458B2 (ja) * 1985-07-12 1994-08-03 オリンパス光学工業株式会社 内視鏡装置
US5010876A (en) 1986-06-02 1991-04-30 Smith & Nephew Dyonics, Inc. Arthroscopic surgical practice
US4756304A (en) * 1986-10-08 1988-07-12 Watanabe Robert S Arthroscopic video camera system
US4727859A (en) * 1986-12-29 1988-03-01 Welch Allyn, Inc. Right angle detachable prism assembly for borescope
JP2610256B2 (ja) * 1987-01-26 1997-05-14 株式会社東芝 内視鏡の光源装置
US4742819A (en) * 1987-03-23 1988-05-10 George Gordon P Intubating scope with camera and screen
US4858001A (en) 1987-10-08 1989-08-15 High-Tech Medical Instrumentation, Inc. Modular endoscopic apparatus with image rotation
US4807594A (en) * 1988-01-15 1989-02-28 Medical Concepts, Incorporated Adapter assembly for endoscopic video camera
US4823244A (en) * 1988-01-29 1989-04-18 Niagara Medical Innovations Inc. Light source assembly
US4883061A (en) * 1988-02-29 1989-11-28 The Board Of Trustees Of The University Of Illinois Method and apparatus for measuring the thickness of eye components
US4844071A (en) * 1988-03-31 1989-07-04 Baxter Travenol Laboratories, Inc. Endoscope coupler device
US4851866A (en) * 1988-07-01 1989-07-25 Welch Allyn, Inc. Air vent for camera adaptor
US4905670A (en) * 1988-12-28 1990-03-06 Adair Edwin Lloyd Apparatus for cervical videoscopy
FR2646227B1 (fr) 1989-04-20 1993-04-30 Soc Et Dev Prod Electron Dispositif d'illumination d'un faisceau de fibres optiques
US4941456A (en) * 1989-10-05 1990-07-17 Welch Allyn, Inc. Portable color imager borescope
US4979498A (en) * 1989-10-30 1990-12-25 Machida Incorporated Video cervicoscope system
US5144201A (en) * 1990-02-23 1992-09-01 Welch Allyn, Inc. Low watt metal halide lamp
US5086378A (en) 1990-08-20 1992-02-04 Prince Mark W Fiber optic finger light
US5125394A (en) * 1990-12-03 1992-06-30 Medical Concepts, Inc. Endoscopic adapter with lamina interface
US5205280A (en) 1990-12-21 1993-04-27 Mp Video, Inc. Quick-release endoscopic coupling assembly
US5138228A (en) * 1990-12-31 1992-08-11 Welch Allyn, Inc. Bulb geometry for low power metal halide lamp
US5117154A (en) * 1990-12-31 1992-05-26 Welch Allyn, Inc. Metal halide discharge lamp with improved shank loading factor
US5083059A (en) * 1990-12-31 1992-01-21 Welch Allyn, Inc. Electrode for metal halide discharge lamp
US5229841A (en) 1991-07-10 1993-07-20 Eaton Corporation Color sensor employing optical fiber bundles with varied diameters
AU3610693A (en) * 1992-02-07 1993-09-03 Nakao, Naomi Endoscope with disposable insertion member
US5241170A (en) 1992-02-19 1993-08-31 Itt Corporation Fiber optic imaging device and methods
CA2094633A1 (en) * 1992-06-01 1993-12-02 John Bradley Clayton Endoscope with internal light source
US5408268A (en) * 1992-06-26 1995-04-18 Apollo Camera, L.L.C. Video imaging system and method using a single full frame sensor and sequential color object illumination
US5311859A (en) 1992-09-11 1994-05-17 Welch Allyn, Inc. Add-on video camera arrangement for optical laparoscope
FR2695785A1 (fr) * 1992-09-16 1994-03-18 Vancheri Patrice Mallette d'équipement audio-vidéo autonome.
US5363839A (en) * 1992-09-21 1994-11-15 Jedmed Instrument Company Video otoscope
US5575757A (en) * 1992-10-09 1996-11-19 Smith & Nephew Endoscopy Inc. Endoscope with focusing mechanism
US5363838B1 (en) * 1992-12-09 2000-03-28 Gordon P George Fiberoptic intubating scope with camera and lightweight portable screen and method of using same
US5314070A (en) * 1992-12-16 1994-05-24 Welch Allyn, Inc. Case for flexible borescope and endoscope insertion tubes
US5487661A (en) * 1993-10-08 1996-01-30 Dentsply International, Inc. Portable dental camera and system
US5412749A (en) 1993-10-26 1995-05-02 W. L. Gore & Associates, Inc. Dual fiber optic illumination bundle
US5523786A (en) * 1993-12-22 1996-06-04 Eastman Kodak Company Color sequential camera in which chrominance components are captured at a lower temporal rate than luminance components
IL108352A (en) * 1994-01-17 2000-02-29 Given Imaging Ltd In vivo video camera system
CA2145232A1 (en) * 1994-03-24 1995-09-25 Arie Avny Viewing method and apparatus particularly useful for viewing the interior of the large intestine
DE9405345U1 (de) * 1994-03-30 1994-09-01 Micromed Ges Fuer Medizinische Endoskopievorrichtung
US6001058A (en) 1994-07-11 1999-12-14 Asahi Kogaku Kogyo Kabushiki Kaisha Portable endoscope system
US5527261A (en) * 1994-08-18 1996-06-18 Welch Allyn, Inc. Remote hand-held diagnostic instrument with video imaging
US6152588A (en) 1994-09-28 2000-11-28 Sdl, Inc. Addressable vehicular lighting system
US5591119A (en) 1994-12-07 1997-01-07 Adair; Edwin L. Sterile surgical coupler and drape
US5498230A (en) * 1994-10-03 1996-03-12 Adair; Edwin L. Sterile connector and video camera cover for sterile endoscope
US5805945A (en) * 1994-12-22 1998-09-08 Asahi Kogaku Kogyo Kabushiki Kaisha Electronic still video camera having electro-developing recording medium
US5717806A (en) * 1994-12-28 1998-02-10 Welch Allyn, Inc. Bifurcated randomized fiber bundle light cable for directing light from multiple light sources to single light output
JP3249026B2 (ja) 1995-04-19 2002-01-21 旭光学工業株式会社 簡易型内視鏡装置
JPH08332170A (ja) * 1995-06-08 1996-12-17 Matsushita Electric Ind Co Ltd ビデオスコープ
WO1997015144A1 (en) 1995-10-20 1997-04-24 Urohealth Systems, Inc. Hand-held imaging apparatus for use with endoscopes
JP3872852B2 (ja) 1996-02-26 2007-01-24 オリンパス株式会社 内視鏡tv観察システム、内視鏡tv観察システムに使用される光源ユニット、及び内視鏡用小型光源ユニット
US6004263A (en) 1996-03-13 1999-12-21 Hihon Kohden Corporation Endoscope with detachable operation unit and insertion unit
GB9703156D0 (en) 1997-02-15 1997-04-02 Univ Strathclyde Optical element
US5908294A (en) 1997-06-12 1999-06-01 Schick Technologies, Inc Dental imaging system with lamps and method
US5984861A (en) 1997-09-29 1999-11-16 Boston Scientific Corporation Endofluorescence imaging module for an endoscope
JPH1176147A (ja) 1997-09-11 1999-03-23 Asahi Optical Co Ltd 簡易型内視鏡装置
EP1038199A4 (de) 1997-12-10 2002-01-23 Transamerican Technologies Int Universeller endoskopvideoadapter mit zoom
US5984860A (en) 1998-03-25 1999-11-16 Shan; Yansong Pass-through duodenal enteroscopic device
JP2986773B2 (ja) 1998-04-01 1999-12-06 嶋田プレシジョン株式会社 点光源用の導光板
US6080101A (en) 1998-08-26 2000-06-27 Olympus Optical Co. Ltd. Endoscope video camera head which can be autoclaved

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016014247A1 (de) 2016-11-30 2018-05-30 Karl Storz Se & Co. Kg Videoendoskop sowie Verfahren zum Betreiben eines Videoendoskops

Also Published As

Publication number Publication date
DE69727577D1 (de) 2004-03-18
NZ333624A (en) 2000-11-24
US5879289A (en) 1999-03-09
US6692432B1 (en) 2004-02-17
AU3646197A (en) 1998-02-09
EP0917438A2 (de) 1999-05-26
WO1998002085A3 (en) 1998-05-28
ATE259186T1 (de) 2004-02-15
WO1998002085A2 (en) 1998-01-22
DE69727577T2 (de) 2004-12-23

Similar Documents

Publication Publication Date Title
EP0917438B1 (de) Tragbare endoskopische hand-kamera
US6432046B1 (en) Hand-held, portable camera for producing video images of an object
US6554765B1 (en) Hand held, portable camera with adaptable lens system
US5527261A (en) Remote hand-held diagnostic instrument with video imaging
US6361489B1 (en) Medical inspection device
US6626825B2 (en) Medical inspection device
US6186944B1 (en) Medical inspection device
US7137948B2 (en) Medical inspection device
US6761561B2 (en) Wireless dental camera
US5662586A (en) Hand held diagnostic instrument with video imaging
US7419467B2 (en) Medical inspection device
US5527262A (en) Hand-held diagnostic dental probe with video imaging
US6908307B2 (en) Dental camera utilizing multiple lenses
JPH11155815A (ja) 小型イメージング器具
US8206290B2 (en) Medical inspection device
US20030187331A1 (en) Ergonomic otoscope with efficient light
US20030107652A1 (en) Dental video camera
EP0941691A1 (de) Kompakt-aufgebaute Anordnung zur Erzeugung von Video-Bildern
US20020028986A1 (en) Light source for use with scopes
EP0813795B1 (de) Bildaufnahmevorrichtung
CA2260099C (en) Hand-held, portable endoscopic camera and kit
AU770838B2 (en) Hand-held, portable endoscopic camera and kit
JPH1156777A (ja) 簡易型内視鏡
US20060057535A1 (en) Cordless intraoral dental examination instrument having non-plano mirror
CA2175951A1 (en) Hand-held diagnostic instrument with video imaging

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990105

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EAST GIANT LIMITED

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: HANDHELD, PORTABLE ENDOSCOPIC CAMERA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040211

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040211

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040211

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040211

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040211

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69727577

Country of ref document: DE

Date of ref document: 20040318

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040511

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040522

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: DAS PATENT IST AUF GRUND DES WEITERBEHANDLUNGSANTRAGS VOM 07.06.2004 REAKTIVIERT WORDEN.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RIEDERER HASLER & PARTNER PATENTANWAELTE AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EN Fr: translation not filed
26N No opposition filed

Effective date: 20041112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20060726

Year of fee payment: 10

Ref country code: GB

Payment date: 20060726

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060727

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060831

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040711

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070702