EP0907555B1 - Pulsierender rückstossantrieb für wasserfahrzeuge - Google Patents

Pulsierender rückstossantrieb für wasserfahrzeuge Download PDF

Info

Publication number
EP0907555B1
EP0907555B1 EP97929008A EP97929008A EP0907555B1 EP 0907555 B1 EP0907555 B1 EP 0907555B1 EP 97929008 A EP97929008 A EP 97929008A EP 97929008 A EP97929008 A EP 97929008A EP 0907555 B1 EP0907555 B1 EP 0907555B1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
chamber
pump chamber
engine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97929008A
Other languages
English (en)
French (fr)
Other versions
EP0907555A1 (de
Inventor
Edmund Nagel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HMS Artist Scheier OEG
Original Assignee
HMS Artist Scheier OEG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HMS Artist Scheier OEG filed Critical HMS Artist Scheier OEG
Publication of EP0907555A1 publication Critical patent/EP0907555A1/de
Application granted granted Critical
Publication of EP0907555B1 publication Critical patent/EP0907555B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/12Marine propulsion by water jets the propulsive medium being steam or other gas
    • B63H11/14Marine propulsion by water jets the propulsive medium being steam or other gas the gas being produced by combustion

Definitions

  • the invention relates to an internal combustion engine with a combustion chamber for burning of the working gas in an explosion stroke and one with the combustion chamber communicating pump chamber, which via an inlet opening with a Drive fluid can be filled and the drive fluid from its outlet opening under the influence of the combustion gas formed in the explosion stroke is ejectable.
  • Such an internal combustion engine is known for example from CH-PS 450 946 and is referred to there as a recoil motor, for example for driving can be used by watercraft.
  • the liquid in the pumping chamber is a kind of liquid piston, which through the Pressure of the combustion gas as a whole is expelled from the pump chamber shall be.
  • An internal combustion engine of the type mentioned in which in a combustion chamber combustion gases formed by combustion of a fuel in a separate pump chamber and a drive fluid from this eject is known from FR-A-1 044 839.
  • Disadvantages of the known internal combustion engines of this type include the relative low efficiency of the machine and the low achievable cycle rates.
  • the object of the invention is to provide an improved internal combustion engine to provide the type mentioned, and according to the invention this succeeds in one Internal combustion engine of the type mentioned in that a spray device is provided with the one following the explosion stroke A cooling medium can be sprayed into the pump chamber during the implosion cycle.
  • the hot combustion gas is produced by injecting cooling medium into the pumping chamber abruptly cooled and thereby greatly reduced its volume.
  • the resulting negative pressure now supports the delivery of the next liquid piston into the pumping chamber and favorably also the promotion of fresh working gas into the combustion chamber. This means the duration of the refill cycle greatly shortened and the efficiency of the internal combustion engine increased.
  • a first embodiment of the invention in which a plurality of pumping chambers 18 in a ring shape around a combustion chamber 8 are arranged.
  • the individual pumping chambers 18 are by radial partitions 35 differentiated from each other.
  • the combustion chamber 8 is via the combustion chamber check valve 6, the combustion chamber inlet valve 38 and the carburetor 3 an explosive Working gas supplied.
  • the waste gas is via the feed pump 2 driven by the drive motor 1 in the Combustion chamber 8 promoted.
  • this feed pump 2 inoperative, since the following charges of the combustion chamber 8 by the negative pressure in the pumping chambers 18 are conveyed, as will be described further below.
  • the feed pump 2 is preferably designed as an axial pump, because such an pump the required boost pressure even at relatively low speeds of the electric motor 1 for the first filling of the combustion chamber 8 and on the other hand inactive Condition, i.e. during normal engine operation, hardly any flow resistance builds up against the intake of combustion air.
  • the combustor check valve 6 must handle the high initial pressures withstand the explosion stroke and escape of the combustion gas prevent by the carburetor 3. Furthermore, the check valve 6 must be heat-resistant be and have a small mass of its moving parts to high clock frequencies without being able to follow disturbing time delays. As a check valve 6 A conventional valve with spring steel membranes is therefore suitable, for example.
  • the combustion chamber 8 has an elongated design, which results in the purging characteristic is improved and a mixture between combustion gas from the previous one Explosion cycle and fresh working gas is kept particularly low. Since that Working gas is ignited in the combustion chamber 8 at atmospheric pressure Burning speed of the gas relatively low. That would make the gas, for example ignite only on the burner head, this would result from the combustion of Fresh gas parts near the burner head resulting overpressure the remaining fresh gas charge drive into the pump tube 18 faster than the flame front spread could. For this reason, a multi-point ignition device in the form of an ignition rod 7 used.
  • Ignition rod 7 has a central electrode 28, at one end of which the connection 27 for the ignition cable and at the other end of the electrode foot 30.
  • the electrode 28 is from its connection 27 for the ignition cable of a tubular insulating body 29 surrounded.
  • This insulating body 29 is electrically non-conductive and heat-resistant.
  • electrode foot 33, outer tube 31 and screw thread 32 as well as within the outer tube 31, several interruptions 33 are provided, which serve as a spark gap connected in series. Of those on the spark gaps When sparks are formed, the working gas is emitted in several places ignited simultaneously in the combustion chamber 8, so that the burning time of the entire Gas charge is significantly reduced.
  • a heating device or a drying device be provided by means of an air flow.
  • the pressurized combustion gas formed in the explosion cycle flows through the head diffuser 37 and the inlet valve 16 into the pumping chambers 18 and drives the working fluid therein from the pump chamber outlet opening 182 out. It is important that the combustion gas in the pump chamber 18 liquid in a so-called cattail flow and not in drives out a so-called piston bubble flow.
  • cattail flows were characterized by Baker (in Dubbel, "Souther”, Springer), and the The difference between these two types of flow should be based on FIGS. 11a and b are briefly illustrated.
  • a tubular piston flow is shown in FIG of the drive fluid 40 located in the pump chamber 18 from in the Combustion chamber 8 formed combustion gas 41 as a whole or as "Liquid piston" is expelled.
  • the gas 41 breaks through the liquid surface through, which means that the liquid piston does not completely come out of the Pump chamber is expelled and there is strong turbulence.
  • a drastic one The result is a reduction in efficiency.
  • the The diameter of the pump chamber should not be less than a certain length.
  • Conventional internal combustion engines have only one pump chamber, which, therefore, in total in their effective length, i.e. over the length that the combustion gas acts on the drive fluid, must be relatively long. The result is that the times required to drive out the liquid piston are also relatively long and to reload a new liquid piston. It can therefore only relatively low engine cycle times can be achieved.
  • the combustion chamber 8 to divide formed combustion gas into a plurality of pumping chambers 18. Because of their smaller radius or their smaller cross-sectional area, they can be shorter while maintaining a cattail flow, thereby reducing the number of cycles of the engine can be increased.
  • the total volume of the pumping chambers 18 is chosen so that the sum of the volume of the combustion chamber and pump tubes corresponds approximately to the volume (in practice it is somewhat larger), which the combustion gas takes in after it draws the working fluid out of the pumping chambers 18 expelled and relaxed again to about atmospheric pressure Has. In this way, the working capacity of the combustion gas be implemented as completely as possible. From these considerations it follows that the number of pump tubes in the square must be increased to shorten them.
  • the volume of the combustion gas begins to decrease due to its cooling.
  • the resulting negative pressure in the Pump chamber 18 is already in the conventional internal combustion engines State of the art for conveying the next working gas charge into the combustion chamber 8 used.
  • the present invention goes one step further and it is one Spray device is provided with which a cooling medium at the end of the explosion cycle can be sprayed into the pump chamber 18.
  • This spray device can be independent be provided by the number of pumping chambers. By spraying cas of the cooling medium in the pumping chambers 18 reduces the volume of the combustion gas abruptly and an implosion stroke following the explosion stroke is running.
  • the spray device has a line of sprinters 19, which are in the individual Pumpkammem 18 mouth and connected to a cooling medium chamber 51 are.
  • This cooling medium chamber 51 is between the combustion chamber 8 and the pump chamber 18 arranged in a ring around the combustion chamber 8 and via a clock pump 50 with a Pressure can be applied.
  • bores 52 are between Cooling medium chamber 51 and pump chamber 18 are provided.
  • these bores 52 are connected by an annular V-groove 54, in which a sealing ring 53 is clamped in the form of an O-ring.
  • Cooling medium 51 is pressurized by the clock pump 50, so it is on the Spray nozzles 19 are sprayed into the pumping chambers 18 mainly in the longitudinal direction thereof.
  • a flat band can also be provided as a seal his.
  • the same liquid is preferably used as the cooling medium also forms the drive fluid, for example - especially when used of the internal combustion engine as a boat drive - water.
  • Negative pressure leads to the outlet valve being designed as a check valve 20 closes.
  • This outlet valve 20 is common to all pumping chambers 18 and consists of an elastic stub tube, one of which is an edge area 201 at an area adjacent to the outlet openings 182 of the pumping chambers 18 the wall of the pump chamber 18 is fastened and biased into the closed position is.
  • the size of this preload in the closed position is chosen such that the outlet valve 20 already closes when the water piston is completely out of the respective pump chamber 18 has been expelled and only combustion gas nachströmt.
  • the outlet valve 20 can therefore pump chambers 18 in which prematurely Gas arrives at the valve, lock it and therefore acts synchronizing and preventing a leading gas outlet. Since the membrane of the exhaust valve is very light, closes and opens the valve with only a slight time delay and is therefore also for suitable for a fast work cycle.
  • the combustion chamber inlet valve 38 which, for example, as Flap valve is formed, has been opened. Due to the negative pressure in the pumping chambers 18 During the implosion cycle, combustion gas is therefore also emitted the combustion chamber 8 promoted and fresh working gas flows after.
  • the valve flap 160 of the inlet valve 16 is thus in an intermediate position between the second closed position 162 and the first closed position 161 and a mixture of working fluid and combustion gas flows into the pumping chamber 18. Dignity the combustion gas formed in the next explosion stroke to such a mixture from drive fluid and combustion gas, so the combustion gas could penetrate into this gas piston and a clean one Ejection of the liquid piston would be prevented.
  • the vacuum prevailing in the pumping chambers 18 in the implosion cycle accelerates that is, the liquid piston is already in the ejection direction.
  • the one stored in the exhaust gas Thermal energy is therefore fully used, on the one hand for pre-acceleration and for reloading the liquid piston, on the other hand for rinsing the Combustion chamber 8.
  • the one prevailing in the pumping chambers 18 during the implosion cycle Negative pressure is compensated by the inflowing liquid piston, before the pumping chambers 18 are completely filled with drive fluid.
  • the last The phase of filling during which the exhaust valve 20 opens is determined by the kinetic Energy of the pre-accelerated liquid piston causes. If the engine is already in motion, i.e.
  • the special design of the inlet valve 16 prevents that in the explosion stroke Combustion gas flowing out of the combustion chamber 8 tangentially flows past a drive fluid surface, as this causes drive fluid from the Combustion gas would be carried away and into the combustion gas, so to speak would be sprayed. Such spraying of driving fluid into the combustion gas but would lead to a cooling and volume reduction of the combustion gas lead during the explosion cycle. A significant reduction the efficiency of the engine would be the consequence.
  • the intake valve 16 for the combustion gas is therefore seen on or in the flow direction of the combustion gas - Before that opposite the outlet openings 182 of the pumping chambers 18 Arranged end of the pumping chambers 18.
  • the intake valve 16 for the combustion gas is arranged and designed such that that from the combustion chamber 8 escaping combustion gas essentially only frontally on the drive fluid incident.
  • the inlet valve 16 for the combustion gas could be in the pumping chambers 18 and an inlet valve for the drive fluid into the pumping chambers 18 separately be trained.
  • the formation of a common inlet valve is preferred 16 for the combustion gas and for the drive fluid, as shown in the 1 to 3 is shown.
  • the valve flap 160 of this inlet valve 16 closes in one first closed position 161 the combustion chamber 8 and in a second closed position 162 the drive fluid inlet opening 17. This second closed position 162 becomes at an overpressure in the combustion chamber 8 or in the head diffuser 37.
  • the valve flap 160 is formed by an elastic hose stub, for example made of silicone.
  • One edge area 163 of this Hose stub is attached to the outer wall of the engine, while the other edge area in the first closing pitch 161 on the inside of the motor Wall of the head diffuser 37 and in the second closed position 162 on the on the Motor outside wall of the head diffuser 37 abuts. Due to the elasticity of the material, the tube stump is prestressed in the first closed position 161.
  • Support elements 164, 165 are provided, for example as a grid or as in the direction of flow strip-shaped elements aligned with the respective medium can be trained.
  • the sequence of the explosion and implosion cycles is controlled by the control device 36 controls, which can be designed for example as a cam control.
  • the ignition rod 7 is a signal from the control device 36 to the ignition coil control electronics 10 included.
  • the clock pump 50 is operated by the control device 36 set. The energy consumed by this clock pump 50 corresponds less than 1 percent of the total energy and is therefore not significant.
  • the combustion chamber inlet valve 38 opened and closed.
  • control device 36 controls slow speed by that slow pauses are inserted after the implosion cycle. While this pause cycles can drive fluid that flows to the engine, the Simply flow through the pump chamber 18.
  • connection between the combustion chamber 8 and 18 pump chamber Head diffuser 37, in which the inlet valve 16 and the drive fluid inlet opening 17 is located, extends conically from the combustion chamber and has the task, the speed of the working gas emerging from the combustion chamber to decrease.
  • the conical shape of the combustion chamber supports this Function, whereby the length of the head diffuser can be reduced.
  • the pumping chambers 18 also have a conical design, and are reduced their cross-sectional area extends from their inlet opening 181 to their outlet opening 182. As a result, the area of the inlet opening can be at a desired size of the outlet opening 182 can be increased, which maximizes the possible number of cycles, since the Water intake is faster and the length of the pump chamber can be shortened.
  • the mode of operation of the exemplary embodiment illustrated in FIGS. 4 to 9 is in principle, the same and analog parts were designated with the same reference numerals.
  • the motor is used as a boat drive in this exemplary embodiment therefore arranged on a boat bottom 9 below the water line 26.
  • the difference to the embodiment shown in FIGS. 1 to 3 are the pumping chambers 18 not arranged around the combustion chamber 8 but in series with it.
  • the combustion gas flowing out of the combustion chamber 8 is in one Gas manifold 14 divided into several gas manifold pipes 15.
  • inlet valves 16 are again provided, on the one hand, access to the gas distributor pipes 15 and, on the other hand, the drive fluid inlet openings 17 can shut off.
  • These intake valves 16 are in Fig. 6 is shown enlarged and are analogous in structure and function to the inlet valves of the embodiment shown in FIGS. 1 to 3, but for each pump chamber 18 is provided with a separate inlet valve 16.
  • Each of the pumping chambers 18 in turn has spray nozzles 19. But these will in contrast to the embodiment according to FIGS. 1 to 3 not of one Pump acted upon, but open at a low vacuum of, for example 0.1 to 0.5 bar in the pumping chambers automatically. Such a negative pressure is present Start of the implosion cycle by cooling the combustion gas and also by the kinetic energy of the ejected water piston. At the outlet end the Pumpkamrnem 18 are again provided exhaust valves 20, which at a Close negative pressure in the pumping chambers 18. These exhaust valves 20 that in this Embodiment for each pump tube 18 are formed separately, are in Fig. 7 shown open (a) and closed (b).
  • the outlet valve 20 has elastic Membrane 21 in the form of circular segments, which are in the closed state overlap like a central shutter of a camera.
  • Fig. 7 supports, not shown, at the end of the pump chamber 18, which preferably Radially spanning the outlet of the pump chamber 18 prevent this Membranes 21 thereon, reversed by a negative pressure in the pump chamber 18 the pump chamber 18 to be put over. Rather, the circle segments grow a disc shape in front of the outlet end of the pump chamber 18 and lock the water return.
  • the membranes 20 are also prestressed, so that it passes the water piston while it is passing the valve with the Relieve the closing pressure. At the same time as passing the end of the water piston closes the outlet valve 20 because of its low mass quickly.
  • the Injector pump 23 has a crown-like serrated inner tube 24 which is rolled up Representation in Fig. 9 is shown.
  • This inner tube 24 is made of a flexible and surrounding tensile outer hose 25, which is on the side of the inlet opening of the inner tube 24 is attached to it, while its other side is free is.
  • the outer tube 25 expediently widens slightly conically in the closing direction.
  • the outer hose 25 When the water piston emerges from the pump tubes 18, the outer hose 25 by a negative pressure in the tooth recesses of the inner tube 24 sucked in, which forms a conical jet pipe. Depending on the duration and training of the negative pressure or of negative pressure regions within the inner tube 24 the outer tube 25 is drawn in to a different length. In the breaks between the ejection of the individual water pistons from the pumping chambers 18, the outer tube 25 is released and can flutter freely and flow adapt to the running water. When shock waves occur the slightly conically widening outer tube 25 is inflated, which also a shock wave can be used to improve propulsion.
  • the chronological sequence of the ignition sparks and the starting of the drive engine 1 in the The starting phase is effected by the control electronics 10. To do this, it receives as input signals the signal of a speed controller 12 and the signal of a speedometer 13 because of the supportive effect of driving speed on the reloading of the liquid pistons into the pumping chambers 18 the maximum possible clock frequencies depend on the speed of travel.
  • the energy supply the control electronics 10 takes place via the battery 11.
  • the carburetor 3 is also shown somewhat more precisely. He has a usual one Float chamber 4 with fuel valve on. In addition, the float chamber 4 a pressure equalization line 5 is placed at the inlet opening of the carburetor 3, around the inlet pressure above atmospheric pressure in the start phase in to balance the chambers. This means that fuel remains the same even in the starting phase Mixing ratio added to the air.
  • FIG. 5a An ignition has just taken place in FIG. 5a. A variety of flames spread, the inlet valve 16 is inflated, i.e. open to the combustion chamber 8 and closed to the drive fluid inlet opening 17. The discharge valves 20 are open and the water pistons start from the pump tubes 18 to be expelled.
  • the pumping chambers 18 have completely with one new water charge and the combustion chamber is filled with a flammable mixture filled. The next cycle can be fired.
  • 5e shows the starting phase of the engine.
  • this fresh gas over the from Drive motor 1 driven axial pump 2 into the combustion chamber 8, wherein the gas (or the liquid contained in it) in the combustion chamber the pumping chambers 18 can emerge.
  • the drive device shown in Fig. 10 has a liquid swing circuit 80, which is driven by an internal combustion engine 81 according to the invention.
  • a flow turbine 82 preferably a Kaplan or Francis turbine, is located in the oscillating circuit arranged, the rotation of which drives a drive shaft 83.
  • the liquid swing circuit has a large and a small circuit.
  • the large circuit is indicated by the arrows 84 and leads through the motor 81.
  • In the liquid is accelerated and subsequently drives the turbine 82. is the inlet opening of the engine is closed, the liquid can short-circuit it and go through a small cycle according to arrows 85.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Silencers (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Physical Water Treatments (AREA)

Description

Die Erfindung betrifft einen Verbrennungsmotor mit einer Brennkammer zum Verbrennen des Arbeitsgases in einem Explosionstakt und einer mit der Brennkammer in Verbindung stehenden Pumpkammer, die über eine Einlaßöffnung mit einer Antriebsflüssigkeit befüllbar ist und aus deren Auslaßöffnung die Antriebsflüssigkeit unter Einwirkung des im Explosionstakt gebildeten Verbrennungsgases ausstoßbar ist.
Ein solcher Verbrennungsmotor ist beispielsweise aus der CH-PS 450 946 bekannt und wird dort als Rückstoßmotor bezeichnet, der beispielsweise zum Antrieb von Wasserfahrzeugen verwendet werden kann. Bei diesen Motoren stellt die Flüssigkeit in der Pumpkammer eine Art Flüssigkeitskolben dar, der durch den Druck des Verbrennungsgases als Ganzes aus der Pumpkammer ausgetrieben werden soll.
Ein Verbrennungsmotor der eingangs genannten Art, bei dem in einer Brennkammer durch Verbrennung eines Treibstoffs gebildete Verbrennungsgase in eine separate Pumpkammer geleitet werden und aus dieser eine Antriebsflüssigkeit ausstoßen, ist aus der FR-A-1 044 839 bekannt.
Weitere Verbrennungsmotoren mit einer Brennkammer und einer Pumpkammer, in die unter Druck stehendes Verbrennungsgas zum Ausstoß einer Antriebsflüssigkeit geleitet wird, sind beispielsweise aus der FR-A-1 206 530 und der CH-A-398 352 bekannt.
Nachteilig an den bekannten Verbrennungsmotoren dieser Art sind u.a. der relativ niedrige Wirkungsgrad der Maschine sowie die niedrigen erreichbaren Taktzahlen.
Aufgabe der Erfindung ist es, einen verbesserten Verbrennungsmotor der eingangs genannten Art bereitzustellen, und erfindungsgemäß gelingt dies bei einem Verbrennungsmotor der eingangs genannten Art dadurch, daß eine Sprüheinrichtung vorgesehen ist, mit der in einem an den Explosionstakt anschließenden Implosionstakt ein Kühlmedium in die Pumpkammer einsprühbar ist.
Durch ein Einspritzen von Kühlmedium in die Pumpkammer wird das heiße Verbrennungsgas schlagartig abgekühlt und verringert dadurch sein Volumen stark. Der entstehende Unterdruck unterstützt nun die Förderung des nächsten Flüssigkeitskolbens in die Pumpkammer und günstigerweise auch die Förderung von frischem Arbeitsgas in die Brennkammer. Dadurch wird die Dauer des Nachfülltaktes stark verkürzt und der Wirkungsgrad des Verbrennungsmotors erhöht.
Eine gewisse Implosion tritt nach dem Explosionstakt auch bei herkömmlichen Verbrennungsmotoren auf, doch läuft diese wesentlich langsamer ab und ist schwächer ausgeprägt, da der Wärmeaustausch des Verbrennungsgases nur langsam und unvollständig stattfindet.
Weitere Vorteile und Einzelheiten der Erfindung werden im folgenden anhand der beiliegenden Zeichnung erläutert.
In dieser zeigt
  • Fig. 1 ein erstes Ausführungsbeispiel der Erfindung, teilweise als Längsschnitt und teilweise als schematische Darstellung;
  • Fig. 2 einen Querschnitt nach der Linie A-A von Fig. 1;
  • Fig. 3 einen Querschnitt nach der Linie B-B von Fig. 2;
  • Fig. 4 einen Längsschnitt eines zweiten Ausführungsbeispiels der Erfindung als Bootsantrieb;
  • Fig. 5a-5e die Ablaufdarstellung eines Taktzylinders;
  • Fig. 6 eine Detailansicht eines Einlaßventils im Längsschnitt;
  • Fig. 7 eine Detailansicht eines Auslaßventiles in Seitenansicht (a) und Hinteransicht (b);
  • Fig. 8 eine Detailansicht einer Zündstange im Längsschnitt;
  • Fig. 9 eine Detailansicht des Innenrohres der Injektorpumpe in aufgerollter Darstellung;
  • Fig. 10 eine schematische Darstellung eines Flüssigkeitsschwungkreises mit einem erfindungsgemäßen Verbrennungsmotor und die
  • Fig. 11a und b schematische Darstellungen einer Rohrkolben- und einer Kolbenblasenströmung.
  • In den Fig. 1 bis 3 ist eine erste Ausführungsform der Erfindung dargestellt, bei der eine Mehrzahl von Pumpkammem 18 insgesamt ringförmig um eine Brennkammer 8 angeordnet sind. Die einzelnen Pumpkammem 18 sind dabei durch radiale Trennwände 35 voneinander abgegrenzt. Der Brennkammer 8 wird über das Brennkammer-Rückschlagventil 6, das Brennkammer-Einlaßventil 38 und den Vergaser 3 ein explosionsfähiges Arbeitsgas zugeführt. Für die erste Zündung beim Anlassen des Motors wird das Abeitsgas über die vom Antriebsmotor 1 angetriebene Förderpumpe 2 in die Brennkammer 8 gefördert. Sofort nach der ersten Zündung wird diese Förderpumpe 2 funktionslos, da die folgenden Ladungen der Brennkammer 8 durch den Unterdruck in den Pumpkammem 18 gefördert werden, wie weiter unten beschrieben wird. Die Förderpumpe 2 ist vorzugsweise als Axialpumpe ausgebildet, da eine solche einerseits schon bei relativ geringen Drehzahlen des Elektromotors 1 den erforderlichen Ladedruck für die erste Füllung der Brennkammer 8 erbringt und andererseits im inaktiven Zustand, also während des Normalbetriebes des Motors, kaum einen Strömungswiderstand gegen die eingesaugte Verbrennungsluft aufbaut.
    Das Brennkammer-Rückschlagventil 6 muß den hohen anfänglichen Drücken während des Explosionstaktes standhalten und ein Entweichen des Verbrennungsgases durch den Vergaser 3 verhindern. Weiters muß das Rückschlagventil 6 hitzebeständig sein und eine geringe Masse seiner beweglichen Teile aufweisen, um hohen Taktfrequenzen ohne störende Zeitverzögerung folgen zu können. Als Rückschlagventil 6 eignet sich daher beispielsweise ein herkömmliches Ventil mit Federstahlmembranen.
    Die Brennkammer 8 weist eine längliche Bauform auf, wodurch die Spülcharakteristik verbessert wird und eine Vermischung zwischen Verbrennungsgas aus dem vorherigen Explosionstakt und frischem Arbeitsgas besonders gering gehalten wird. Da das Arbeitsgas in der Brennkammer 8 bei atmosphänschem Druck gezündet wird, ist die Brenngeschwindigkeit des Gases relativ niedrig. Würde man daher das Gas beispielsweise nur am Brennerkopf zünden, so würde der aus der Verbrennung von Frischgasteilen in Brennerkopfnähe resultierende Überdruck die restliche Frischgasladung schneller in die Pumprohre 18 austreiben als die Flammenfront sich ausbreiten könnte. Aus diesem Grund wird eine Mehrpunktzündeinrichtung in Form einer Zündstange 7 verwendet.
    Eine solche Zündstange ist beispielsweise in der Fig. 8 dargestellt. Die Zündstange 7 weist eine zentrale Elektrode 28 auf, an der sich an einem Ende der Anschluß 27 für das Zündkabel und am anderen Ende der Elektrodenfuß 30 befindet. Die Elektrode 28 ist ab ihrem Anschluß 27 für das Zündkabel von einem rohrförmigen Isolierkörper 29 umgeben. Dieser Isolierkörper 29 ist elektrisch nichtleitend und hitzebeständig. Zwischen Elektrodenfuß 30 und Einschraubgewinde 32 der Zündstange, das den Isolierkörper in der Nähe des Anschlusses 27 für das Zündkabel umgibt und als elektrischer Gegenpol dient, ist ein den Isolierkörper umgebendes metallenes Außenrohr 31 vorgesehen. Zwischen Elektrodenfuß 33, Außenrohr 31 und Einschraubgewinde 32 sowie innerhalb des Außenrohres 31 sind mehrere Unterbrechungen 33 vorgesehen, die als in Serie geschaltete Funkenstrecke dienen. Von den an den Funkenstrecken bei der Zündung sich ausbildenden Funken wird das Arbeitsgas an mehreren Stellen in der Brennkammer 8 gleichzeitig gezündet, sodaß die Abbrenndauer der gesamten Gasladung wesentlich verringert wird.
    Falls die Möglichkeit bestehen kann, daß die Zündstange 7 in der Startphase feucht ist, können verschiedene Maßnahmen vorgesehen sein, um diese Feuchtigkeit zu beseitigen. Beispielsweise können eine Heizeinrichtung oder eine Trockeneinrichtung mittels eines Luftstromes vorgesehen sein.
    Das im Explosionstakt gebildete unter Überdruck stehende Verbrennungsgas strömt durch den Kopfdiffusor 37 und das Einlaßventil 16 in die Pumpkammem 18 und treibt die in diesen befindliche Arbeitsflüssigkeit aus der Pumpkammerauslaßöffnung 182 aus. Dabei ist es wichtig, daß das Verbrennungsgas die in den Pumpkammem 18 sich befindende Flüssigkeit in einer sogenannten Rohrkolbenströmung und nicht etwa in einer sogenannten Kolbenblasenströmung austreibt. Solche Rohrkolbenströmungen wurden von Baker (in Dubbel, "Maschinenbau", Springer) charakterisiert, und der Unterschied zwischen diesen beiden Strömungsarten soll anhand der Fig. 11a und b kurz veranschaulicht werden. In Fig. 11a ist eine Rohrkolbenströmung dargestellt, bei der die in der Pumpkammer 18 sich befindende Antriebsflüssigkeit 40 vom in der Brennkammer 8 gebildeten Verbrennungsgas 41 als Ganzes bzw. als "Flüssigkeitskolben" ausgetrieben wird. In Fig. 11b bricht das Gas 41 durch die Flüssigkeitsoberfläche durch, wodurch der Flüssigkeitskolben nicht vollständig aus der Pumpkammer ausgetrieben wird und es zu starken Turbulenzen kommt. Eine drastische Verringerung des Wirkungsgrades ist die Folge.
    Welche der beiden Strömungsarten sich ausbildet, hängt insbesondere vom Durchmesser der Pumpkammer, von ihrer Länge und von der Viskosität der Flüssigkeit ab. Um sicherzustellen, daß sich eine Rohrkolbenströmung ausbildet, darf bei vorgegebenem Durchmesser der Pumpkammer diese eine bestimmte Länge nicht unterschreiten. Herkömmliche Verbrennungsmotoren weisen nur eine Pumpkammer auf, die daher insgesamt in ihrer wirksamen Länge, d.h. über die Länge, die das Verbrennungsgas auf die Antriebsflüssigkeit wirkt, relativ lang sein muß. Die Folge ist, daß auch die Zeiten relativ lang sind, die benötigt werden, um den Flüssigkeitskolben auszutreiben und um einen neuen Flüssigkeitskolben nachzuladen. Es können daher nur relativ niedrige Taktzahlen des Motors erreicht werden.
    Gemäß dem gezeigten Ausführungsbeispiel der Erfindung ist vorgesehen, das in der Brennkammer 8 gebildete Verbrennungsgas auf eine Mehrzahl von Pumpkammem 18 aufzuteilen. Aufgrund ihres kleineren Radius bzw. ihrer kleineren Querschnittsfläche können diese unter Erhaltung einer Rohrkolbenströmung kürzer ausgebildet sein, wodurch die Taktzahl des Motors erhöht werden kann. Das Gesamtvolumen der Pumpkammem 18 wird dabei so gewählt, daß die Summe des Volumens aus Brennkammer und Pumprohren ungefähr dem Volumen entspncht (in der Praxis ist es etwas größer), welches das Verbrennungsgas einnimmt, nachdem es die Arbeitsflüssigkeit aus den Pumpkammem 18 ausgetrieben hat und sich wieder auf etwa atmosphärischen Druck entspannt hat. Auf diese Weise kann das Arbeitsvermögen des Verbrennungsgases möglichst vollstandig umgesetzt werden. Aus diesen Überlegungen ergibt sich, daß die Anzahl der Pumprohre im Quadrat zu ihrer Verkürzung erhöht werden muß.
    Nach Ende des Explosionstaktes beginnt eine Volumensverminderung des Verbrennungsgases infolge seiner Abkühlung. Der daraus resultierende Unterdruck in der Pumpkammer 18 wird bereits bei den herkömmlichen Verbrennungsmotoren des Standes der Technik zur Förderung der nächsten Arbeitsgasladung in die Brennkammer 8 verwendet. Ein weiterer Faktor, der auch bei den herkömmlichen Flüssigkeitskolben-Verbrennungsmotoren zu einem Unterdruck in den Pumpkammem zu oder nach Ende des Explosionstaktes führt, ist die Bewegungsenergie des flüchtenden Wasserkolbens.
    Die vorliegende Erfindung geht demgegenüber einen Schritt weiter und es ist eine Sprüheinrichtung vorgesehen, mit der am Ende des Explosionstaktes ein Kühlmedium in die Pumpkammer 18 einsprühbar ist. Diese Sprüheinrichtung kann dabei unabhängig von der Anzahl der Pumpkammern vorgesehen werden. Durch cas Einsprühen des Kühlmediums in die Pumpkammern 18 verringert sich das Volumen des Verbrennungsgases schlagartig und ein an den Explosionstakt anschließender Implosionstakt wird ausgeführt.
    Die Sprüheinrichtung weist eine Reine von Spründusen 19 auf, welche in die einzelnen Pumpkammem 18 munden und die mit einer Kühlmediumkammer 51 verbunden sind. Diese Kühlmediumkammer 51 ist zwischen Brennraum 8 und Pumpkammem 18 ringförmig um den Brennraum 8 angeordnet und über eine Taktpumpe 50 mit einem Druck beaufschlagbar. Zur Ausbildung der Sprühdüsen 19 sind Bohrungen 52 zwischen Kühlmediumkammer 51 und Pumpkammem 18 vorgesehen. Auf der Seite der Pumpkammem 18 sind diese Bohrungen 52 durch eine ringförmige V-Nut 54 verbunden, in der ein Dichtungsring 53 in Form eines O-Ringes eingespannt ist. Wird das Kühlmedium 51 von der Taktpumpe 50 unter Druck gesetzt, so wird es über die Sprühdüsen 19 in die Pumpkammem 18 hauptsächlich in deren Längsrichtung eingesprüht. Anstelle eines O-Ringes kann auch ein Flachband als Dichtungsnng vorgesehen sein. Als Kühlmedium wird vorzugsweise die gleiche Flüssigkeit verwendet, die auch die Antriebsflüssigkeit bildet, beispielsweise - insbesondere bei der Verwendung des Verbrennungsmotors als Bootsantrieb - Wasser.
    Der durch das Einsprühen des Kühlmediums in den Pumpkammern hervorgerufene Unterdruck führt dazu, daß sich das als Rückschlagventil ausgebildete Auslaßventil 20 schließt. Dieses Auslaßventil 20 ist für alle Pumpkammern 18 gemeinsam ausgebildet und besteht aus einem elastischen Schlauchstumpf, dessen einer Randbereich 201 an einem den Auslaßöffnungen 182 der Pumpkammern 18 benachbarten Bereich der Wand der Pumpkammem 18 befestigt ist und der in die Schließstellung vorgespannt ist. Die Größe dieser Vorspannung in die Schließstellung ist derart gewählt, daß das Auslaßventil 20 bereits schließt, wenn der Wasserkolben vollständig aus der jeweiligen Pumpkammer 18 ausgestoßen worden ist und nur noch Verbrennungsgas nachströmt. Das Auslaßventil 20 kann daher Pumpkammern 18, in denen vorzeitig Gas am Ventil ankommt, abschließen und wirkt daher synchronisierend und verhindert einen voreilenden Gasaustritt. Da die Membrane des Auslaßventils sehr leicht ist, schließt und öffnet das Ventil mit nur geringer Zeitverzögerung und ist somit auch für einen schnellen Arbeitstakt geeignet.
    Durch den Unterdruck in den Purripkammem 18 öffnet weiters das Einlaßventil 16 die Antriebsflüssigkeit-Einlaßöffnung 17, d.h. die Ventilklappe 160 bewegt sich von ihrer zweiten Schließstellung 162 in Richtung der ersten Schließstellung 161. Dadurch kann Antnebsflüssigkeit, beispielsweise Wasser, durch die Antriebsflüssigkeit-Einlaßöffnung 17 in den hinteren Teil des Kopfdiffusors 37 und weiter durch die Einlaßöffnungen 181 der Pumpkammem 18 in die Pumpkammern 18 strömen.
    Während des Explosionstaktes oder zu Beginn des Implosionstaktes ist von der Steuereinrichtung 36 das Brennkammer-Einlaßventil 38, welches beispielsweise als Klappenventil ausgebildet ist, geöffnet worden. Durch den Unterdruck in den Pumpkammem 18 während des Implosionstaktes wird daher auch Verbrennungsgas aus der Brennkammer 8 gefördert und frisches Arbeitsgas strömt nach. Die Ventilklappe 160 des Einlaßventils 16 befindet sich somit in einer Zwischenstellung zwischen der zweiten Schließstellung 162 und der ersten Schließstellung 161 und eine Mischung aus Arbeitsflüssigkeit und Verbrennungsgas strömt in die Pumpkammem 18. Würde das im nächsten Explosionstakt gebildete Verbrennungsgas auf eine solche Mischung aus Antriebsflüssigkeit und Verbrennungsgas treffen, so könnte das Verbrennungsgas in diesen mit Gas durchsetzten Flüssigkeitskolben eindringen und ein sauberes Ausstoßen des Flüssigkeitskolbens würde verhindert. Um dem zu begegnen, wird das Brennkammer-Einlaßventil 38 vor Ende des Wasserkolbennachlaufs geschlossen, sodaß das Nachströmen von Gas aus der Brennkammer 8 gestoppt wird, wodurch sich das weiter unten beschriebene Einlaßventil 16 in die erste Schließstellung 161 bewegt und dem Kopf des Wasserkolbens kein Gas beigemischt wird. Zu dem Zeitpunkt, zu dem das Ventil 38 geschlossen wird, soll die Spülung der Brennkammer 8 mit Frischgas möglichst gerade abgeschlossen sein. Im nächsten Explosionstakt trifft das gebildele Verbrennungsgas somit auf reine Antriebsflüssigkeit auf und der Kopf des Flüssigkeitskolbens in der jeweiligen Pumpkammer 18 ist gegenüber dem Verbrennungsgas dicht.
    Der im Implosionstakt in den Pumpkammern 18 herrschende Unterdruck beschleunigt also den Flüssigkeitskolben bereits in die Ausstoßrichtung vor. Die im Abgas gespeicherte Wärrneernergie wird daher vollständig genützt, einerseits zur Vorbeschleunigung und zum Nachladen des Flüssigkeitskolbens, andererseits zum Spülen der Brennkammer 8. Der in den Pumpkammern 18 während des Implosionstaktes herrschende Unterdruck wird von dem einströmenden Flüssigkeitskolben ausgeglichen, bevor die Pumpkammem 18 vollständig mit Antriebsflüssigkeit gefüllt sind. Die letzte Phase der Füllung, während der sich das Auslaßventil 20 öffnet, wird durch die kinetische Energie des vorbeschleunigten Flüssigkeitskolbens bewirkt. Wenn der Motor bereits in Fahrt ist, d.h. entweder er sich gegenüber der Antriebsflüssigkeit bewegt oder - im geschlossenen Flüssigkeitskreislauf - die Antriebsflüssigkeit den Motor anströmt, wirkt auch dieses Anstromen der Antriebsflüssigkeit auf die Antriebsflüssigkeit-Einlaßöffnung 17 unterstützend auf das Nachladen der Pumpkammern mit Antriebsflüssigkeit sowie auf die Spülung der Brennkammer 8.
    Durch die besondere Ausbildung des Einlaßventils 16 wird verhindert, daß das im Explosionstakt aus der Brennkammer 8 ausströmende Verbrennungsgas tangential an einer Antriebsflüssigkeitsoberfläche vorbeiströmt, da dadurch Antriebsflüssigkeit vom Verbrennungsgas mitgerissen würde und diese sozusagen in das Verbrennungsgas eingesprüht würde. Ein solches Einsprühen von Antriebsflüssigkeit in das Verbrennungsgas würde aber zu einer Abkühlung und Volumensverringerung des Verbrennungsgases noch während des Explosionstaktes führen. Eine wesentliche Verringerung des Wirkungsgrades des Motors wäre die Folge. Das Einlaßventil 16 für das Verbrennungsgas ist daher am bzw. - in Strömungsrichtung des Verbrennungsgases gesehen - vor dem den Auslaßöffnungen 182 der Pumpkammern 18 gegenüberliegenden Ende der Pumpkammern 18 angeordnet. Das Einlaßventil 16 für das Verbrennungsgas ist dabei derart angeordnet und ausgebildet, daß das aus der Brennkammer 8 ausströmende Verbrennungsgas im wesentlichen nur frontal auf die Antriebsflüssigkeit auftrifft.
    Prinziprell könnten das Einlaßventil 16 für das Verbrennungsgas in die Pumpkammem 18 und ein Einlaßventil für die Antriebsflüssigkeit in die Pumpkammern 18 separat ausgebildet sein. Bevorzugt wird aber die Ausbildung eines gemeinsamen Einlaßvenutiles 16 für das Verbrennungsgas und für die Antriebsflüssigkeit, wie dies in den Fig. 1 bis 3 gezeigt ist. Die Ventilklappe 160 dieses Einlaßventils 16 schließt in einer ersten Schließstellung 161 den Brennraum 8 ab und in einer zweiten Schließstellung 162 die Antriebsflüssigkeit-Einlaßöffnung 17. Diese zweite Schließstellung 162 wird bei einem Überdruck in der Brennkammer 8 bzw. im Kopfdiffusor 37 eingenommen. Die Ventilklappe 160 wird von einem elastischen Schlauchstumpf gebildet, der beisoielsweise aus Silikon bestenen kann. Der eine Randbereich 163 dieses Schlauchstumpfes ist an der Motoraußenwand befestigt, wahrend der angere Randbereich in der ersten Schließsteilung 161 an der auf der Motorinnenseite gelegenen Wand des Kopfdiffusors 37 und in der zweiten Schließstellung 162 an der auf der Motoraußenseite gelegenen Wand des Kopfdiffusors 37 anliegt. Durch die Elastizität des Materials ist der Schlauchstumpf in der ersten Schließstellung 161 vorgespannt.
    Zum Abstützen des Schlauchstumpfes in den beiden Schließstellungen 161, 162 sind Stützelemente 164, 165 vorgesehen, die beispielsweise als Gitter oder als in Strömungsrichtung des jeweiligen Mediums ausgerichtete streifenförmige Elemente ausgebildet sein können.
    Die Abfolge der Explosions- und Implosionstakte wird von der Steuereinrichtung 36 kontrolliert, die beispielsweise als Nockensteuerung ausgebildet sein kann. Zur Zündung der Zündstange 7 wird von der Steuereinrichtung 36 ein Signal an die die Zündspule enthaltende Steuerelektrik 10 abgegeben. Zum Einsprühen von Kühlmedium in die Pumpkammem wird die Taktpumpe 50 von der Steuereinrichtung 36 in Betrieb gesetzt. Die von dieser Taktpumpe 50 verbrauchte Energie entspricht dabei weniger als 1 Prozent der Gesamtenergie und fällt daher nicht ins Gewicht. Weiters wird von der Steuereinrichtung 36 das Brennkammer-Einlaßventil 38 geöffnet und geschlossen.
    Da auch im Langsamlauf der Maschine der Implosionstakt unmittelbar auf den Explosionstakt folgen muß, steuert die Steuereinrichtung 36 einen Langsamlauf dadurch, daß im Langsamlauf Pausetakte nach dem Implosionstakt eingelegt werden. Während dieser Pausetakte kann Antriebsflüssigkeit, welche den Motor anströmt, die Pumpkammem 18 einfach durchströmen.
    Der die Verbindung zwischen Brennkammer 8 und Pumpkammem 18 herstellende Kopfdiffusor 37, in dem sich das Einlaßventil 16 und die Antriebsflüssigkeit-Einlaßöffnung 17 befindet, erweitert sich ausgehend von der Brennkammer konisch und hat die Aufgabe, die Geschwindigkeit des aus der Brennkammer austretenden Arbeitsgases zu verringem. Die konische Form der Brennkammer unterstützt dabei diese Funktion, wodurch die Länge des Kopfdiffusors verringert werden kann.
    Auch die Pumpkammern 18 weisen eine konische Bauform auf, und zwar verringert sich ihre Querschnittsfläche von ihrer Einlaßöffnung 181 zu ihrer Auslaßöffnung 182. Dadurch kann bei einer Sollgröße der Ausiaßöffnung 182 die Fläche der Einlaßöffnung vergrößert werden, wodurch die mögliche Taktzahl maximiert wird, da der Wasserzulauf rascher erfolgt und die Pumpkammeriänge verkürzt werden kann.
    Durch Lösen der Verbindungsbolzen 60 kann die Frontplatte 61 der Brennkammer 8 abgenommen werden und ein Zugang zur Brennkammer 8 geschaffen werden.
    Die Funktionsweise des in den Fig. 4 bis 9 dargestellten Ausführungsbeispiels ist prinzipiell gleich und analoge Teile wurden mit den gleichen Bezugszeichen bezeichnet. Der Motor wird in diesem Ausführungsbeispiel als Bootsantrieb verwendet und ist daher an einem Bootsboden 9 unterhalb der Wasserlinie 26 angeordnet. Im Unterschied zu dem in den Fig. 1 bis 3 gezeigten Ausführungsbeispiel sind die Pumpkammem 18 nicht um die Brennkammer 8 herum angeordnet sondern in Serie zu dieser. Dazu wird das aus der Brennkammer 8 ausströmende Verbrennungsgas in einem Gasverzweiger 14 auf mehrere Gasverzweigerrohre 15 aufgeteilt. Zwischen Gasverzweigerrohren 15 und Pumpkammern 18 sind wiederum Einlaßventile 16 vorgesehen, die einerseits den Zugang zu den Gasverzweigerrohren 15 und andererseits die Antriebsflüssigkeit-Einlaßöffnungen 17 absperren können. Diese Einlaßventile 16 sind in Fig. 6 vergrößert dargestellt und sind in ihrem Aufbau und ihrer Funktion analog zu den Einlaßventilen des Ausführungsbeispiels gemäß der Fig. 1 bis 3, wobei aber für jede Pumpkammer 18 ein separates Einlaßventil 16 vorgesehen ist.
    Jede der Pumpkammern 18 weist wiederum Sprühdüsen 19 auf. Diese werden aber im Gegensatz zu dem Ausführungsbeispiel gemäß den Fig. 1 bis 3 nicht von einer Pumpe beaufschlagt, sondern öffnen bei einem geringen Unterdruck von beispielsweise 0,1 bis 0,5 bar in den Pumpkammem selbsttätig. Ein solcher Unterdruck liegt zu Beginn des Implosionstaktes durch das Auskühlen des Verbrennungsgases und auch durch die kinetische Energie des ausgestoßenen Wasserkolbens vor. Am Auslaßende der Pumpkamrnem 18 sind wiederum Auslaßventile 20 vorgesehen, welche bei einem Unterdruck in den Pumpkammern 18 schließen. Diese Auslaßventile 20, die in diesem Ausführungsbeispiel für jedes Pumprohr 18 separat ausgebildet sind, sind in der Fig. 7 offen (a) und geschlossen (b) dargestellt. Das Auslaßventil 20 weist elastische Membrane 21 in der Form von Kreissegmenten auf, die sich im geschlossenen Zustand ähnlich einem Zentralverschluß einer Kamera schindelartig überlappen. In der Fig. 7 nicht dargestellte Stützen am Ende der Pumpkammer 18, welche vorzugsweise stemförmig den Auslaß der Pumpkammer 18 radial überspannen, hindern diese Membranen 21 daran, durch einen Unterdruck in der Pumpkammer 18 umgekehrt in die Pumpkammer 18 gestülpt zu werden. Vielmehr legen sich die Kreissegmente zu einer Scheibenform vor dem Auslaßende der Pumpkammer 18 zusammen und sperren den Wasserrücklauf. In dieser Form sind die Membranen 20 auch vorgespannt, sodaß sie den Wasserkolben während seines Passierens des Ventils mit dem Schließdruck auflasten. Zugleich mit dem Passieren des Endes des Wasserkolbens schließt das Auslaßventil 20, und zwar aufgrund seiner geringen Masse außerordentlich rasch.
    Da die Ausstoßgeschwindigkeit des Wasserkolbens aus der Pumpkammer 18 wesentlich höher als die Geschwindigkeit des Bootes ist, würde diese Geschwindigkeitsdifferenz bei der direkten Verwendung des Verbrennungsmotors als Bootsantrieb den Wirkungsgrad deutlich verringern. Es ist daher den Pumpkammem 18 eine Injektorpumpe 23 nachgeschaltet, die eine Verringerung der Geschwindigkeit unter gleichzeitiger Vergrößerung des Volumens des ausgestoßenen Wasserstrahls bewirkt. Die Injektorpumipe 23 weist ein kronenartig gezacktes Innenrohr 24 auf, das in aufgerollter Darstellung in der Fig. 9 abgebildet ist. Dieses Innenrohr 24 wird von einem biegsamen und zugfesten Außenschlauch 25 umgeben, der auf der Seite der Einlaßöffnung des Innenrohrs 24 an diesem befestigt ist, während seine andere Seite frei ist. Günstigerweise erweitert sich der Außenschlauch 25 in Schließrichtung leicht konisch. Beim Austreten vom Wasserkolben aus den Pumprohren 18 wird der Außenschlauch 25 durch einen Unterdruck in die Zackenausnehmungen des Innenrohres 24 eingesogen, wodurch sich ein konisches Strahlrohr bildet. Je nach Dauer und Ausbildung des Unterdruckes oder von Unterdruckregionen innerhalb des Innenrohres 24 wird der Außenschlauch 25 auf eine unterschiedliche Länge eingesogen. In den Pausen zwischen dem Ausstoßen der einzelnen Wasserkolben aus den Pumpkammem 18 wird der Außenschlauch 25 losgelassen und kann sich frei flatternd und strömungsgünstig an das Fließwasser anpassen. Bei einem Auftreten von Stoßwellen wird der sich leicht konisch erweitemde Außenschlauch 25 aufgebläht, wodurch auch eine Stoßwelle zur Vortriebsverbesserung ausgenützt werden kann.
    Die zeitliche Abfolge der Zündfunken sowie das Anlassen des Antriebsmotors 1 in der Startphase wird von der Steuerelektrik 10 bewirkt. Dazu erhält sie als Eingangssignale das Signal eines Geschwindigkeitsreglers 12 sowie das Signal eines Fahrtgeschwindigkeitsmessers 13, da aufgrund der unterstützenden Wirkung der Fahrtgeschwindigkeit auf das Nachladen der Flüssigkeitskolben in die Pumpkammem 18 die maximal möglichen Taktfrequenzen von der Fahrtgeschwindigkeit abhängen. Die Energieversorgung der Steuerelektrik 10 erfolgt über die Batterie 11.
    In der Fig. 4 ist weiters der Vergaser 3 etwas genauer dargestellt. Er weist eine übliche Schwimmerkammer 4 mit Treibstoffventil auf. Außerdem wird von der Schwimmerkammer 4 zur Einlaßöffnung des Vergasers 3 eine Druckausgleichsleitung 5 gelegt, um den über atmosphärischen Druck liegenden Einlaßdruck in der Startphase in den Kammern auszugleichen. So wird Treibstoff auch in der Startphase in gleichbleibendem Mischungsverhältnis der Luft beigemischt.
    In den Fig. 5a bis e ist ein Maschinenzyklus dargestellt, wobei frisches Arbeitsgas 42, Verbrennungsgas 41 und Antriebsflüssigkeit 40 unterschiedlich gekennzeichnet sind.
    In der Fig. 5a ist gerade eine Zündung erfolgt. Eine Vielzahl von Flammenherden breiten sich aus, das Einlaßventil 16 ist aufgeblasen, d.h. zur Brennkammer 8 hin geöffnet und zur Antriebsflüssigkeit-Einlaßöffnung 17 hin geschlossen. Die Abströmventile 20 sind geöffnet und die Wasserkolben beginnen aus den Pumprohren 18 ausgestoßen zu werden.
    In der Fig. 5b hat der Explosionsdruck die Wasserkolben fast vollständig ausgetrieben. Ab jetzt zeigen die flüchtenden Wasserkolben einen Initialunterdruck in die Pumprohre. Das brennbare Gemisch ist restlos verbrannt.
    Im Zustand des Motors nach der Fig. 5c ist der Explosionstakt bereits abgeschlossen und der Implosionstakt hat begonnen. Der Initialunterdruck hat die Sprühdüsen 19 aktiviert und diese verstärken den Untergrund, indem sie das Restgas in den Pumprohren vollständig abkühlen. Die Auslaßventile 20 sind geschlossen und die Einlaßventile 16 haben die Antriebsflüssigkeit-Einlaßöffnung 17 geöffnet. Neue Wasserkolben werden in die Pumprohre eingesaugt und in die Brennkammer 8 wird eine neue Ladung brennbaren Arbeitsgases eingesaugt.
    Im Zustand gemäß Fig. 5d haben sich die Pumpkammem 18 vollständig mit einer neuen Wasseriadung gefüllt und ebenso ist die Brennkammer mit brennbarem Gemisch gefüllt. Der nächste Zyklus kann gezündet werden.
    Fig. 5e zeigt noch die Startphase des Motors. In dieser wird Frischgas über die vom Antriebsmotor 1 angetriebene Axialpumpe 2 in die Brennkammer 8 gefördert, wobei das in der Brennkammer befindliche Gas (oder die darin befindliche Flüssigkeit) durch die Pumpkammem 18 austreten kann.
    Die in Fig. 10 dargestellte Antriebseinrichtung weist einen Flüssigkeitsschwungkreis 80 auf, der von einem erfindungsgemäßen Verbrennungsmotor 81 angetrieben wird. Im Schwunkreis ist eine Strömungsturbine 82, vorzugsweise Kaplan- oder Francisturbine angeordnet, deren Rotation eine Antriebswelle 83 antreibt.
    Der Flüssigkeitsschwungkreis weist einen großen und einen kleinen Kreislauf auf. Der große Kreislauf ist durch die Pfeile 84 angedeutet und führt durch den Motor 81. In diesem wird die Flüssigkeit beschleunigt und treibt in der Folge die Turbine 82 an. Ist die Einlaßöffnung des Motors geschlossen, so kann die Flüssigkeit diesen kurzschließen und entsprechend den Pfeilen 85 einen kleinen Kreislauf durchlaufen.
    Auf einer Kurveninnenseite des Flüssigkeitsschwungkreises ist eine Abgassammelkammer 86 angeordnet, durch deren Einlaßöffnungen 87 das sich in der Unterdruckregion auf der Kurveninnenseite ansammelnde Verbrennungsgas eintreten kann, das anschließend durch den Auspuff 88 entweichen kann.
    Auf einer Kurvenaußenseite (Überdruckregion) ist ein Einlaßrohr 89 für einen Kühler 90 vorgesehen. In diesem wird die Antriebsflüssigkeit gekühlt und wird anschließend durch das Auslaßrohr 91, welches an einer Kurveninnenseite (Unterdruckregion) des Flüssigkeitsschwungkreises mündet, wieder in den Flüssigkeitsschwungkreis rückgeführt.

    Claims (15)

    1. Verbrennungsmotor mit einer Brennkammer (8) zum Verbrennen des Arbeitsgases in einem Explosionstakt und einer mit der Brennkammer (8) in Verbindung stehenden Pumpkammer (18), die über eine Einlaßöffnung (181) mit einer Antriebsflüssigkeit befüllbar ist und aus deren Auslaßöffnung (182) die Antriebsflüssigkeit unter Einwirkung des im Explosionstakt gebildeten Verbrennungsgases ausstoßbar ist, dadurch gekennzeichnet, daß eine Sprüheinrichtung (19, 50) vorgesehen ist, mit der in einem an den Explosionstakt anschließenden Implosionstakt ein Kühlmedium in die Pumpkammer (18) einsprühbar ist.
    2. Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, daß das Kühlmedium eine Flüssigkeit, vorzugsweise Wasser ist.
    3. Verbrennungsmotor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Sprüheinrichtung (19, 50) eine Pumpeinrichtung (50) aufweist, durch die das Kühlmedium mit einem Druck beaufschlagbar ist.
    4. Verbrennungsmotor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Sprüheinrichtung (19, 50) zumindest eine in der Pumpkammer (18) vorgesehene Sprühdüse (19) umfaßt, die derart ausgebildet ist, daß das Kühlmedium hauptsächlich in die Längsrichtung der Pumpkammer (18) eingesprüht wird.
    5. Verbrennungsmotor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Volumen der Brennkammer (8) zusammen mit dem Volumen der Pumpkammem (18) im wesentlichen dem Volumen des expandierten und entspannten Verbrennungsgases entspricht.
    6. Verbrennungsmotor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Auslaßöffnung (182) der Pumpkammer (18) von einem Auslaßventil (20) verschließbar ist, das als ein bei einem Unterdruck in der Pumpkammer (18) die Pumpkammer (18) verschließendes Rückschlagventil ausgebildet ist.
    7. Verbrennungsmotor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Brennkammer (8) eine längliche Form aufweist und das Arbeitsgas von einer Mehrpunktzündeinrichtung, insbesondere Zündstange (7), gezündet wird.
    8. Verbrennungsmotor nach Anspruch 7, dadurch gekennzeichnet, daß sich die Brennkammer (8) vom Gaseinlaßbereich ausgehend konisch erweitert.
    9. Verbrennungsmotor nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß eine Steuereinrichtung (36), vorzugsweise Nockensteuerung, vorgesehen ist, durch die die Zündeinrichtung (10, 7) für das Arbeitsgas und die Sprüheinrichtung (19, 50) derart zeitlich koordinierbar sind, daß das Einsprüchen des Kühlmediums unmittelbar nach Ende des Explosionstaktes erfolgt.
    10. Verbrennungsmotor nach Anspruch 9, dadurch gekennzeichnet, daß das Einsprühen des Kühlmediums erst nach der vollständigen Entspannung des Verbrennungsgases bis im wesentlichen auf atmosphärischen Druck erfolgt.
    11. Verbrennungsmotor nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß zur Steuerung eines Langsamlaufes des Verbrennungsmotors die Steuereinrichtung (36) nach dem Implosionstakt eine Wartepause bis zum nächsten Explosionstakt zwischenschaltet.
    12. Bootsantrieb mit einem Verbrennungsmotor nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der/den Pumpkammer(n) (18) eine Injektorpumpe (23) nachgeschaltet ist, welche ein kronenartig gezacktes Innenrohr (24) aufweist, dessen Spitzen in Fließrichtung weisen und vorzugsweise abgeflacht sind, und welche einen das Innenrohr (24) umgebenden biegsamen und zugfesten Außenschlauch (25) aufweist, der auf der Seite der Einlaßöffnung des Innenrohres (24) an diesem befestigt ist und dessen andere Seite frei ist und sich vorzugsweise in Fließrichtung leicht konisch erweitert.
    13. Antriebseinrichtung mit einem Flüssigkeitsschwungkreis (80), einem den Flüssigkeitsschwungkreis antreibenden Motor (81) und einer im Flüssigkeitsschwungkreis angeordneten Antriebsturbine (82), dadurch gekennzeichnet, daß der Motor (81) ein Verbrennungsmotor nach einem der Ansprüche 1 bis 12 ist.
    14. Antriebseinrichtung nach Anspruch 13, dadurch gekennzeichnet, daß die Antriebsturbine (82) eine Strömungsturbine, vorzugsweise Kaplan- oder Francis-Turbine, ist, deren Rotation eine Antriebswelle (83) antreibt.
    15. Antriebseinrichtung nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, daß der Flüssigkeitsschwungkreis (80) einen großen Kreislauf, der durch die Pumpkammer(n) des Verbrennungsmotors (81) verläuft, und einen kleinen Kreislauf, der den Verbrennungsmotor (81) kurzschließt, umfaßt.
    EP97929008A 1996-07-03 1997-06-26 Pulsierender rückstossantrieb für wasserfahrzeuge Expired - Lifetime EP0907555B1 (de)

    Applications Claiming Priority (4)

    Application Number Priority Date Filing Date Title
    AT1168/96 1996-07-03
    AT116896 1996-07-03
    AT116896 1996-07-03
    PCT/AT1997/000142 WO1998001338A1 (de) 1996-07-03 1997-06-26 Pulsierender rückstossantrieb für wasserfahrzeuge

    Publications (2)

    Publication Number Publication Date
    EP0907555A1 EP0907555A1 (de) 1999-04-14
    EP0907555B1 true EP0907555B1 (de) 2002-03-27

    Family

    ID=3508090

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97929008A Expired - Lifetime EP0907555B1 (de) 1996-07-03 1997-06-26 Pulsierender rückstossantrieb für wasserfahrzeuge

    Country Status (6)

    Country Link
    US (1) US6132270A (de)
    EP (1) EP0907555B1 (de)
    AT (1) ATE215041T1 (de)
    AU (1) AU3327697A (de)
    DE (1) DE59706776D1 (de)
    WO (1) WO1998001338A1 (de)

    Families Citing this family (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1058646A2 (de) 1998-03-02 2000-12-13 HMS Artist Scheier OEG Verbrennungskraftmaschine
    US6216444B1 (en) 1998-05-14 2001-04-17 Edmund Ferdinand Nagel Combustion engine
    EP0957250A3 (de) 1998-05-14 2000-08-30 HMS Artist Scheier OEG Verbrennungsmotor
    EP1152138A3 (de) 2000-05-02 2002-04-17 Heinzle, Friedrich Verfahren zum Betreiben eines Verbrennungsmotors sowie Verbrennungsmotor
    US10213815B1 (en) * 2017-11-01 2019-02-26 Benton Frederick Baugh Method of cleaning the inlet to a thruster while in operation

    Family Cites Families (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB700393A (en) * 1951-08-23 1953-12-02 Engineering Corp Ltd Improvements in and relating to the propulsion of nautical vessels by water reactiontubes
    FR1044839A (fr) * 1951-09-15 1953-11-20 Engineering Corp Ltd Procédé de commande d'un dispositif à tubes d'expulsion d'eau pour bateaux, et moteur à réaction pour la mise en oeuvre de ce procédé
    DE1122403B (de) * 1958-02-17 1962-01-18 Paul Hildebrand Verfahren und Vorrichtung zum Betrieb eines Wasserreaktionsmotors fuer Wasserfahrzeug durch intermittierendes Ausstossen von Wassersaeulen aus einem Rohr
    FR1206530A (fr) * 1958-11-03 1960-02-10 Moteur à explosion, à réaction hydrodynamique
    US3060682A (en) * 1960-07-01 1962-10-30 Kemenczky Ets Lishement Jet propulsion engine for watercraft
    CH398352A (de) * 1960-09-14 1966-03-15 Kemenczky Establishment Rückstossmotor für Wasserfahrzeuge
    AT230215B (de) * 1960-09-15 1963-11-25 Kemenczky Establishment Rückstoßmotor für Bootsantriebe
    US3279178A (en) * 1963-04-16 1966-10-18 Kemenczky Establishment Hydrodynamic valve structure
    US3271947A (en) * 1964-05-12 1966-09-13 Kemenczky Establishment Continuous pressure jet propulsion engine
    GB1232171A (de) * 1969-08-15 1971-05-19
    US4057961A (en) * 1973-05-08 1977-11-15 Payne Peter R Pulse-jet water propulsor
    JPS57185689A (en) * 1981-05-09 1982-11-15 Nippon Soken Multipoint ignition plug
    US4726183A (en) * 1986-01-24 1988-02-23 Innerspace Corporation Self retracting screens for turbomachinery
    US5417057A (en) * 1992-10-23 1995-05-23 Robey; Marvin L. Thermodynamic drive

    Also Published As

    Publication number Publication date
    ATE215041T1 (de) 2002-04-15
    AU3327697A (en) 1998-02-02
    EP0907555A1 (de) 1999-04-14
    DE59706776D1 (de) 2002-05-02
    US6132270A (en) 2000-10-17
    WO1998001338A1 (de) 1998-01-15

    Similar Documents

    Publication Publication Date Title
    DE1576030C3 (de) Brennkraftmaschine mit als Zund kerzenvorkammer ausgebildeter Verdampfungs kammer
    EP0907555B1 (de) Pulsierender rückstossantrieb für wasserfahrzeuge
    EP0347581A1 (de) Einspritzpumpe für Brennkraftmaschinen
    WO1999044886A2 (de) Verbrennungskraftmaschine
    EP3707364B1 (de) Pulsantrieb
    DE2609894A1 (de) Kolbenbrennkraftmaschine fuer betrieb mit staubfoermigem brennstoff
    DE2851401A1 (de) Verbrennungskrafteinheit fuer die verwendung von gasartigen brennstoffen
    DE753727C (de)
    CH441021A (de) Rückstossmotor mit Treibstoffeinspritzung
    AT230215B (de) Rückstoßmotor für Bootsantriebe
    AT305816B (de) Instationärer, unter Wasser arbeitender Wasserstrahlantrieb für schnelle Wasserfahrzeuge, insbesondere für Tragflügelschiffe und Luftkissenfahrzeuge
    DE602005001784T2 (de) Wasserfahrzeugantriebssystem und Wasserfahrzeug mit einem solchen System
    DE1014794B (de) Intermittierend arbeitender Gaserzeuger, insbesondere fuer Triebwerke
    DE305967C (de)
    DE695180C (de) Gasturbine
    DE2650663A1 (de) Schnellaufender dieselmotor
    DE945967C (de) Zweikreis-Turbinenstrahltriebwerk
    DE2328692C3 (de) Verfahren und Vorrichtung zum Aufladen von Brennkraftmaschinen
    DE354488C (de) Verfahren und Einrichtungen zum Betrieb von Verbrennungsturbinen
    AT127224B (de) Brennkraft-Turbine.
    DE949700C (de) Rueckstroemdrossel
    DE1601615A1 (de) Pulsoduesen-Gasanlasser
    AT262825B (de) Kontinuierlich arbeitende Rückstoßmaschine zur Beschleunigung von Flüssigkeiten
    DE1007121B (de) Rueckstosstriebwerk
    DE962841C (de) Verfahren zum Betriebe Feuergase durch Verpuffungen herstellender Treibgaserzeuger und Vorrichtung zur Durchfuehrung des Verfahrens

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19981204

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IT LI NL SE

    17Q First examination report despatched

    Effective date: 20000630

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IT LI NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020327

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 20020327

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020327

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020327

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020327

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020327

    REF Corresponds to:

    Ref document number: 215041

    Country of ref document: AT

    Date of ref document: 20020415

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59706776

    Country of ref document: DE

    Date of ref document: 20020502

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020627

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020627

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: LUCHS & PARTNER PATENTANWAELTE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020630

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20020327

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020925

    BERE Be: lapsed

    Owner name: *HMS ARTIST SCHEIER OEG

    Effective date: 20020630

    EN Fr: translation not filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20021230

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20030624

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20030630

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20030811

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040626

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040630

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050101

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL