EP0903468B1 - Vorrichtung zur Spaltdichtung - Google Patents

Vorrichtung zur Spaltdichtung Download PDF

Info

Publication number
EP0903468B1
EP0903468B1 EP97810686A EP97810686A EP0903468B1 EP 0903468 B1 EP0903468 B1 EP 0903468B1 EP 97810686 A EP97810686 A EP 97810686A EP 97810686 A EP97810686 A EP 97810686A EP 0903468 B1 EP0903468 B1 EP 0903468B1
Authority
EP
European Patent Office
Prior art keywords
stator
flow
labyrinth
shroud
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97810686A
Other languages
English (en)
French (fr)
Other versions
EP0903468A1 (de
Inventor
Franz Kreitmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to EP97810686A priority Critical patent/EP0903468B1/de
Priority to DE59710621T priority patent/DE59710621D1/de
Priority to US09/153,270 priority patent/US6102655A/en
Priority to JP26168598A priority patent/JP4199855B2/ja
Priority to CN98119296.3A priority patent/CN1294341C/zh
Publication of EP0903468A1 publication Critical patent/EP0903468A1/de
Application granted granted Critical
Publication of EP0903468B1 publication Critical patent/EP0903468B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator

Definitions

  • the invention relates to a device for sealing the gap between the Blades and the conical contoured housing one Turbo machine, the blades being provided with circumferential cover plates are, which form radial gaps against the one provided with sealing strips Seal housing.
  • labyrinth seals are also known, in which the The cover band of the blades seals against a honeycomb arrangement.
  • there Prongs of the cover tape form either a smooth or a stepped labyrinth with pure radial gaps or, as discussed in EP 0536575, with radial and Diagonatspalten.
  • a brush against certain transient operating phases is relatively unproblematic in this type of gap seals, since the Honeycomb inserts are made of an abradable material. in case of a When rubbed, there is a local abrasion of the wear layer, the then, however, in the case of flow channels of pronounced conicity among the important stationary nominal operating conditions again large column and so that big company games can result.
  • FIG. 1 are the middle three, each from a leading row Le and a running row
  • the existing stages of low-pressure blading are shown.
  • the Level Le3 / La3 corresponds to the penultimate level.
  • the one with her feet 21 in Rotations of the rotor 9 used blades La are at their Blade ends provided with cover plates 16.
  • the radially outer contours of the Depending on the row, cover plates are geometrically differently graded.
  • Under Formation of labyrinths 15 seal with their steps against sealing strips, which are arranged in a suitable manner in the stator 8.
  • the with their feet 13 in Turnings of the stator 8 inserted guide blades Le are on their Provide blade ends with cover plates 20. Forming labyrinths 19 they also seal against sealing strips which are arranged in the rotor 9 in a suitable manner are.
  • the flow through channel 50 has the conically extending as the starting position outer contour 51 on the stator and the cylindrical inner contour 11 on the rotor. However, neither is mandatory. Regardless of the actual course in any case, the walls become the outer flow-restricting one Contour 10 in the area of the airfoil through the channel facing Cover plate 16 of the blades La formed.
  • Radial gaps 26, which represent the labyrinth outlets 42 are limited by stator parts, which the Take over flow guidance in the non-bladed levels.
  • Fig. 2 is the cover plate seal of the row La3, as the beginning corresponds to the prior art mentioned. It essentially exists from the cover plate 16A, which extends over the entire blade width and with their outer diameter and the four sealing strips caulked in the stator 8A 17A forms a half-labyrinth with pure radial gaps. The are recognizable spacious labyrinth entry 40A and the unfavorably designed labyrinth exit 42A. With 54 the channel wall is designated when it is in a tap empties.
  • the contour runs in the stator 8 initially radially outwards and against the flow direction, then downstream in the axial direction, forming a protruding into the cavity Jagged 41.
  • the cover plate 16 is configured accordingly. You will be with provided with an understitch 43 which is adapted to the shape of the prongs.
  • the axial The running part of the backstitch is dimensioned in such a way that during the assembly and during the operating transient cover plate and Do not touch the stator.
  • With approximately horizontal in its first section running and then curved sealing strips 52 are the individual Partial cavities 40a and 40c sealed. These sealing strips 52 are preferred with its horizontally running section in the axially running housing parts caulked.
  • a comparison with Fig. 2 shows that in the operating position a much smaller passage gap 18 between the stator and Cover plate adjusts. The flow forms within the partial cavity 40c damping vortex chamber 22.
  • the known half-labyrinth is through after this embodiment replaced a full maze.
  • the outer diameter of the cover plate 16 stepped and provided with only two throttling points.
  • Two caulked into the stator 8 limit radial sealing strips 17, each acting on one step a well functioning vortex chamber 22. Due to the radial displacement of the Throttling points do not influence each other. With this full labyrinth a further reduction in the gap mass flow is achieved.
  • a third measure serves to improve the re-inflow of the Maze mass flow in the main channel.
  • the stator housing on Labyrinth outlet 42 reduced to a permissible minimum dimension in the radial direction Crevice flow is immediately compared to the general one Tapered outward stator wall taken over. With that you can significantly reduce the harmful cross exchange of flow material and the unnecessary dissipation of the high-energy gap flow largely avoid.
  • the total pressure profile is through the kinked stator wall the main flow favorably influenced.
  • the flow-limiting wall of the cover plate 16 is directly on Provide outlet blades La3 with an articulation angle A.
  • This kink angle is dimensioned so that the outflow from the blades with respect to Total pressure and outflow angle is homogenized.
  • the broken part of the wall runs radially outwards, i.e. it is from the machine axis, not shown directed away.
  • the choice of the articulation angle is based on the following considerations: At the outlet the blades have a divergent flow, with swirl at the cylinder. At least the flow in the radially outer zone has an essential higher energy than in the radially inner rotor zone, which is in the form of manifested significantly higher total pressures in the radially outer zone.
  • the total pressure and outflow angle inhomogeneity be as low as possible to achieve above the bucket height.
  • the equation for that radial balance teaches that this is primarily about the meridian curvature the streamlines can be reached. This has to be influenced primarily by adjusting the articulation angle.
  • a homogeneous total pressure distribution the outer boundary wall can only be achieved if the corresponding one Kink angle A with respect to the conical contour of the channel in each Fall opens to the outside.
  • the desired total pressure reduction in achieved in this area is based on the following considerations: At the outlet the blades have a divergent flow, with swirl at the cylinder. At least the flow
  • FIG. 4 shows a solution in which the shroud has the same taper of approx. Has 25 ° as that in Fig. 2 and 3.
  • the cavity at the labyrinth entrance is in its radial extension in three axially offset partial cavities 40a, 40b and 40c divided.
  • three are caulked into the stator radial sealing strips 17 arranged.
  • main channel 50 is the cavity at the labyrinth outlet 42 immediately behind the last radial sealing strip 17 in the radial direction to an allowable Minimum dimensions reduced. As a rule, this minimum dimension is also used in the front cavities provided.
  • the cover plate 16 is step-shaped educated. With approximately horizontal in its first section and then curved sealing strips 52 become the individual partial cavities 40a, 40b, 40c sealed. These sealing strips 52 are preferably with their horizontally extending section in the axially extending housing parts caulked. It is understood that other fastening methods and Geometries are possible.
  • the partial cavities separated by the sealing strips 52 40b and 40c form vortex chambers 22.
  • Fig. 4 shows the cover plate in the normal operating position.
  • the front sealing strips 52 act on the front edges of the horizontally oriented cover plate gradations.
  • the rear radial sealing strips 17 act horizontally on the last one directional cover plate gradation.
  • the cover plate 16 is in its extreme positions on a somewhat reduced scale shown, namely in the case of transients such as those when starting and leaving of the machine. It can be seen that in the dash-dotted position the sealing strips 52 in the intersection between axially and radially directed Intervene in the step part.
  • the sealing strips 52 in the intersection between axially and radially directed Intervene in the step part.
  • the Curvature of the sealing strips a problem-free evasion in the event that the Cover plate would take an even more extreme position. In this position continues to seal the foremost of the radial sealing strips 17 against the horizontal facing rear cover plate part. The sealing strips are in the dashed position 52 no longer engaged. Only the last of the radial seals here Sealing strip 17 and thus prevents uncontrolled working fluid through the Flow through gap 42.
  • Fig. 6 shows the new solution for a cover plate with a taper of only approx. 10 ° as used in the front stages of low pressure parts Steam turbines.
  • the cavity is divided into two partial cavities 40a and 40c. These partial cavities 40a and 40c are separated by one in its first Section approximately horizontal and then curved sealing strips 52. This strip acts on a simply stepped cover plate 16. Die remaining sealing strips 17 are arranged so that at least in extreme positions one of the strips 52 or 17 is effective.
  • FIG. 7 finally shows the new solution for a cover plate 16 with a Taper of approx. 45 °, as used in the rear low pressure stages of steam turbines. It can be seen here that even with such extreme Channel openings the solution of FIG. 4 is easily transferable. moreover this solution offers the advantage that the radially inward and in itself aerodynamically damaging kink angles at the inlet can be avoided can. This means that the cover band contour corresponds to the globally specified one Channel contour.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Technisches Gebiet
Die Erfindung betrifft eine Vorrichtung zur Dichtung des Spaltes zwischen den Laufschaufeln und dem mit konischer Kontur ausgebildeteten Gehäuse einer Turbomaschine, wobei die Laufschaufeln mit umlaufenden Deckplatten versehen sind, welche unter Bildung von Radialspalten gegen das mit Dichtstreifen versehene Gehäuse dichten.
Stand der Technik
Derartige Vorrichtungen sind bekannt. Sie bilden ein glattes oder ein gestuftes Halb-Labyrinth mit reinen Radialspalten. Eine solche Dichtung ist in der später zu beschreibenden Fig. 2 dargestellt.
Infolge des besseren Wirkungsgrades und der grösseren Zuverlässigkeit wird diese Art von Spaltdichtung inzwischen auch bereits bei den Laufschaufeln der vorletzen Stufe von Kondensationsdampfturbinen angewendet. Die mechanischen Anforderungen sind hier mit Umfangsgeschwindigkeiten von 450 m/sec recht hoch, während die thermischen Bedingungen mit ca. 90°C bescheiden sind. Problematisch sind die geometrischen Anforderungen. Einerseits wegen der starken Konizität, die zu tiefen Kavitäten der bekannten Dichtvorrichtung in der Gehäusewand führt; andererseits wegen der grossen Differenzdehnungen zwischen Rotor und Gehäuse, die zu breiten Kavitäten mit den oben genannten Halb-Labyrinthen führt.
  • Die dabei gebildete grosse Kavität im Eintrittsbereich der Dichtung bewirkt einen ungünstigen Queraustausch von Strömungsmaterial mit der Hauptströmung im Schaufelkanal. Dieser Queraustausch ist begünstigt durch die in der Ebene der Schaufelvorderkante ausserordentlich grosse Schwankung der Druckdifferenz zwischen zwei benachbarten Schaufeln. Ausserdem wird in diesem Bereich durch die Hauptströmung und die Seitenwand des Deckbandes ein starker Wirbel angetrieben. Zur Verminderung der nachteiligen Wirkungen einer grossen Eingangskavität wird gemäss der in US 4662820 beschriebenen Lösung dieser Raum durch Anordnung eines Festkörpers, beispielsweise in Form eines eingesetzten Rings oder als Bestandteil des Stators, ausgefüllt. Allerdings unterliegt die Auslegung engen, durch die Differenzdehnungen zwischen Rotor und Stator gesetzten Grenzen. Um ein Anstreifen sicher auszuschliessen, muss der verbleibende Spalt stets ausreichend gross belassen werden. Insbesondere in den Niederdruckteilen von Kondensationsdampfturbinen, die durch erhebliche radiale und axiale Differenzdehnungen gekennzeichnet sind, verbleiben daher zwangsläufig relativ grosse Kavitäten.
  • Wenig wirksam ist das Halb-Labyrinth mit den Dichtstreifen, mit denen das Gehäuse versehen ist und die gegen das umlaufende Deckband dichten, wie beispielsweise in der vorgenannten US-Druckschrift wiedergegeben. Dies, weil bei den vorliegenden Verhältnissen das Betriebsspiel eine Grösse von ca. 1/3 der freien Kammerhöhe aufweisen muss. Auch mehrere Dichtstreifen sind deshalb nicht wesentlich effektiver als ein einziger.
  • Schliesslich erlaubt auch die grosse Kavität im Austrittsbereich der Dichtung einen unerwünschten Queraustausch mit der Hauptströmung im Schaufelkanal, da auch hier die Druckdifferenz zwischen zwei benachbarten Schaufelspitzen grossen Schwankungen unterliegt. Zudem geht in diesem Bereich die Führung der Hauptströmung vollständig verloren.
  • Von Nachteil ist ausserdem bei diesen Dichtungen der hinter den aussen liegenden Dichtstreifen gebildete grosse Wirbelraum, welcher eine grosse Dissipation der austrittsseitigen Spaltströmung bewirkt.
Um die Spaltverluste möglichst gering zu halten und die Spiele sehr gering auszulegen, sind des weiteren Labyrinthdichtungen bekannt, bei denen das Deckband der Laufschaufeln gegen eine Honigwabenanordnung dichtet. Dabei bilden Zacken des Deckbands ein glattes oder ein gestuftes Labyrinth entweder mit reinen Radialspalten oder, wie in EP 0536575 diskutiert, mit Radial- und Diagonatspalten. Ein Anstreifen während bestimmter transienter Betriebsphasen ist bei dieser Gattung von Spaltdichtungen relativ unproblematisch, da die Honigwabeneinsätze aus einem abreibbaren Material bestehen. Im Falle eines Anstreifens kommt es zu einem örtlichen Abschleifen der Verschleissschicht, das dann allerdings bei Strömungskanälen von ausgeprägter Konizität unter den wichtigen stationären Nennbetriebsbedingungen wiederum grosse Spalte und damit grosse Betriebsspiele zur Folge haben kann.
Darstellung der Erfindung
Hier will die Erfindung Abhilfe schaffen. Ihr liegt die Aufgabe zugrunde, bei Schaufeln der eingangs genannten Art eine Labyrinthdichtung bereitzustellen, die das Betriebsspiel weiter reduziert und grosse Kavitäten im Eingangsbereich der Dichtung vermeidet.
Erfindungsgemäss wird dies mit den kennzeichnenden Merkmalen des Patentanspruchs 1 erreicht.
Der Vorteil der Erfindung ist unter anderem darin zu sehen, dass bei der neuen Dichtung nur kleine Spaltmengen auftreten. Zudem wird eine gute Einführung der Spaltströmung in die Hauptströmung erreicht.
Kurze Beschreibung der Zeichnung
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand der vorletzten Stufe einer axialdurchströmten Kondensationsdampfturbine dargestellt.
Es zeigen:
Fig. 1 ;
einen Teillängsschnitt einer Niederdruck-Dampfturbine mit Deckplattendichtung;
Fig. 2
einen Teillängsschnitt der Laufschaufelspitze der vorletzten Stufe mit Deckplattendichtung gemäss Stand der Technik;
Fig. 3
einen Teillängsschnitt der Laufschaufelspitze der vorletzten Stufe mit Deckplattendichtung gemäss Erfindung;
Fig. 4 und 5
einen Teillängsschnitt der Laufschaufelspitze der vorletzten Stufe mit einer Deckplatten-Ausführungsvariante;
Fig. 6
einen Teillängsschnitt der Laufschaufelspitze einer Stufe mit schwacher Konizität mit einer Deckplatten-Ausführungsvariante;
Fig. 7
einen Teillängsschnitt der Laufschaufelspitze einer Stufe mit starker Konizität mit einer Deckplatten-Ausführungsvariante.
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Die Strömungsrichtung des Arbeitsmittels ist mit Pfeilen bezeichnet.
Weg zur Ausführung der Erfindung
Gemäss Figur. 1 sind die mittleren drei, aus je einer Leitreihe Le und einer Laufreihe La bestehenden Stufen einer Niederdruckbeschaufelung dargestellt. Die Stufe Le3/La3 entspricht dabei der vorletzten Stufe. Die mit ihren Füssen 21 in Eindrehungen des Rotors 9 eingesetzten Laufschaufeln La sind an ihren Schaufelenden mit Deckplatten 16 versehen. Die radial äusseren Konturen der Deckplatten sind je nach Laufreihe geometrisch unterschiedlich gestuft. Unter Bildung von Labyrinthen 15 dichten sie mit ihren Stufen gegen Dichtstreifen, welche im Stator 8 auf geeignete Art angeordnet sind. Die mit ihren Füssen 13 in Eindrehungen des Stators 8 eingesetzten Leitschaufeln Le sind an ihren Schaufelenden mit Deckplatten 20 versehen. Unter Bildung von Labyrinthen 19 dichten auch sie gegen Dichtstreifen, welche im Rotor 9 auf geeignete Art angeordnet sind.
Der durchströmte Kanal 50 hat als Ausgangslage die konisch verlaufende äussere Kontur 51 am Stator und die zylindrisch verlaufende innere Kontur 11 am Rotor. Beides ist indes nicht zwingend. Unabhängig vom tatsächlichen Verlauf der Wandungen wird in jedem Fall die äussere strömungsbegrenzende Kontur 10 im Bereich des Laufschaufelblattes durch die dem Kanal zugekehrte Deckplatte 16 der Laufschaufeln La gebildet. Unmittelbar stromaufwärts der Deckplatten 16, 20 befinden sich Axialspalte 18, welche die Labyrinth-Eintritte 40 darstellen. Unmittelbar stromabwärts dieser Deckplatten 16, 20 befinden sich Radialspalte 26, welche die Labyrinth-Austritte 42 darstellen. In der Regel werden die genannten Spalte anderseits begrenzt durch Statorteile, welche die Strömungsführung in den nichtbeschaufelten Ebenen übernehmen.
In Fig. 2 ist die Deckplattendichtung der Laufreihe La3, wie sie dem eingangs erwähnten Stand der Technik entspricht, gezeigt. Sie besteht im wesentlichen aus der Deckplatte 16A, die sich über die ganze Schaufelbreite erstreckt und mit ihrem äusseren Durchmesser und den vier im Stator 8A eingestemmten Dichtstreifen 17A ein Halblabyrinth mit reinen Radialspalten bildet. Erkennbar sind der grossräumige Labyrinth-Eintritt 40A und der ungünstig gestaltete Labyrinth-Austritt 42A. Mit 54 ist die Kanalwand bezeichnet, wenn sie in eine Anzapfung mündet.
Wie in Fig. 3 gezeigt, wird nunmehr gemäss der Erfindung sowohl die Geometrie des Deckbandes als auch dessen Einbettung im Stator verbessert.
Um den Queraustausch von Strömungsmaterial und die Wirbelintensität zu reduzieren, wird die radial gerichtete Kavität am Labyrinth-Eintritt in ihrer radialen Erstreckung in zwei axial gegeneinander versetzte Teilkavitäten 40a und 40c unterteilt, das heisst im Beispielsfall mit annähernd horizontal verlaufenden, am freien Ende gekrümmten Dichtstreifen 52 ausgerüstet. Hierzu verläuft die Kontur im Stator 8 zunächst radial nach aussen und entgegen der Strömungsrichtung, danach in Axialrichtung stromab unter Bildung eines in die Kavität hineinragenden Zackens 41. Entsprechend wird die Deckplatte 16 konfiguriert. Sie wird mit einem Hinterstich 43 versehen, welcher der Zackenform angepasst ist. Der axial verlaufende Teil des Hinterstiches ist in seinem Durchmesser so bemessen, dass sich anlässlich der Montage und während der Betriebstransienten Deckplatte und Stator nicht berühren. Mit in ihrem ersten Abschnitt annähernd horizontal verlaufenden und danach abgekrümmten Dichtstreifen 52 werden die einzelnen Teilkavitäten 40a und 40c gedichtet. Diese Dichtstreifen 52 sind vorzugsweise mit ihrem horizontal verlaufenden Abschnitt in den axial verlaufenden Gehäuseteilen eingestemmt. Ein Vergleich mit Fig. 2 zeigt, dass sich in der Betriebsstellung ein wesentlich kleinerer Durchlass-Spalt 18 zwischen Stator und Deckplatte einstellt. Innerhalb der Teilkavität 40c bildet sich eine den Durchfluss dämpfende Wirbelkammer 22 aus.
Weiter ist nach dieser Ausführungsvariante das bekannte Halb-Labyrinth durch ein Voll-Labyrinth ersetzt. Hierzu ist der äussere Durchmesser der Deckplatte 16 gestuft und mit nur zwei Drosselstellen versehen. Zwei in den Stator 8 eingestemmte radiale Dichtstreifen 17, die jeweils auf eine Stufe wirken, begrenzen eine gut funktionierende Wirbelkammer 22. Durch die radiale Versetzung der Drosselstellen beeinflussen diese sich nicht gegenseitig. Mit diesem Volllabyrinth wird eine weitere Reduzierung des Spaltmassenstromes erzielt.
Eine dritte Massnahme dient der Verbesserung der Wiedereinströmung des Labyrinthmassenstromes in den Hauptkanal. Hierzu wird das Statorgehäuse am Labyrinth-Austritt 42 in radialer Richtung auf ein zulässiges Mindestmass reduziert.Die Spaltströmung wird sofort durch eine gegenüber der allgemeinen Konizität nach aussen abgeknickte Statorwand übernommen. Damit lässt sich der schädliche Queraustausch von Strömungsmaterial wesentlich reduzieren und die unnötige Dissipation der hochenergetischen Spaltströmung weitgehend vermeiden. Darüberhinaus wird durch die abgeknickte Statorwand das Totaldruck-Profil der Hauptströmung günstig beeinflusst.
Hierfür wird die strömungsbegrenzende Wand der Deckplatte 16 unmittelbar am Austritt der Laufschaufeln La3 mit einem Knickwinkel A versehen. Dieser Knickwinkel ist so bemessen, dass die Abströmung aus den Laufschaufeln bezüglich Totaldruck und Abströmwinkel homogenisiert wird. Im Beispielsfall bedeutet dies, dass der gezeigte Winkel A als positiv definiert wird. Der abgeknickte Wandteil verläuft radial nach aussen, d.h. er ist von der nicht gezeigten Maschinenachse weggerichtet. Mit dieser Ausbildung wird der durch das teilungsabhängige Druckfeld induzierte Queraustausch von Strömungsmaterial reduziert. Dieser kann nämlich die Ursache sein von Ablösung an der besonders empfindlichen Saugseite der Schaufeln.
Der Wahl des Knickwinkels liegen folgende Überlegungen zugrunde: Am Austritt der Laufschaufeln liegt eine divergente Strömung vor, mit Mitdrall am Zylinder. Zumindest weist die Strömung in der radial äusseren Zone eine wesentlich höhere Energie auf als in der radial inneren Rotorzone, was sich in Form von wesentlich höheren Totaldrücken in der radial äusseren Zone manifestiert. Mit der Knickwinkel-ldee gilt es nun, eine möglichst geringe Totaldruck-und Abströmwinkel-Inhomogenität über der Schaufelhöhe zu erzielen. Die Gleichung für das radiale Gleichgewicht lehrt, dass dies in erster Linie über die Meridiankrümmung der Stromlinien errreicht werden kann. Diese muss also primär beeinflusst werden durch Anpassung des Knickwinkels. Eine homogene Totaldruckverteilung an der äusseren Begrenzungswand lässt sich nur dann erzielen, wenn der entsprechende Knickwinkel A gegenüber der konischen Kontur des Kanals in jedem Fall nach aussen öffnet. Hierbei wird die gewünschte Totaldruckerniedrigung in diesem Bereich erzielt.
Eine vollständige Umsetzung dieser Knickwinkel-Idee setzt eine saubere Führung der Strömung über einen gewissen Bereich voraus. Dies erfolgt aus der Erkenntnis, dass sich erst in einer Distanz - welche dem halben Abstand zwischen Laufschaufelaustritt und Leitschaufeleintritt geteilt durch die Schaufelteilung entspricht - langsam die von der Schaufelzirkulation herrührenden Strömungsinhomogenitäten verlieren.
Bei den nachstehend erläuterten Ausführungsbeispielen sind die funktionsgleichen Elemente mit den selben Bezugszeichen versehen wie in Fig. 3.
Fig. 4 zeigt eine Lösung, bei welcher das Deckband die gleiche Konizität von ca. 25° aufweist wie jenes in Fig. 2 und 3. Die Kavität am Labyrinth-Eintritt ist in ihrer radialen Erstreckung in drei axial gegeneinander versetzte Teilkavitäten 40a, 40b und 40c unterteilt. Am Labyrinth-Austritt sind drei in den Stator eingestemmte radiale Dichtstreifen 17 angeordnet.
Zur Verbesserung der Wiedereinströmung des Labyrinthmassenstromes in den Hauptkanal 50 ist auch hier die Kavität am Labyrinth-Austritt 42 unmittelbar hinter dem letzten radialen Dichtstreifen 17 in radialer Richtung auf ein zulässiges Mindestmass reduziert. In der Regel wird dieses Mindestmass auch in den vorderen Kavitäten vorgesehen. Hierzu ist die Deckplatte 16 stufenförmig ausgebildet. Mit in ihrem ersten Abschnitt annähernd horizontal verlaufenden und danach abgekrümmten Dichtstreifen 52 werden die einzelnen Teilkavitäten 40a, 40b, 40c gedichtet. Diese Dichtstreifen 52 sind vorzugsweise mit ihrem horizontal verlaufenden Abschnitt in den axial verlaufenden Gehäuseteilen eingestemmt. Es versteht sich, dass auch andere Befestigungsmethoden und Geometrien möglich sind. Die durch die Dichtstreifen 52 getrennten Teilkavitäten 40b und 40c bilden Wirbelkammern 22 aus.
Fig. 4 zeigt die Deckplatte in der normalen Betriebsposition. Die vorderen Dichtstreifen 52 wirken auf die Vorderkanten der horizontal gerichteten Deckplattenabstufungen. Die hinteren radialen Dichtstreifen 17 wirken auf die letzte horizontal gerichtete Deckplattenabstufung.
In Fig. 5 ist in etwas verkleinertem Masstab die Deckplatte 16 in ihren Extremstellungen gezeigt, nämlich bei Transienten, wie sie beim Anfahren und Abfahren der Maschine vorkommen. Zu erkennen ist, dass in der strichpunktierten Stellung die Dichtstreifen 52 in den Schnittpunkt zwischen axial und radial gerichtetem Stufenteil eingreifen. Unter anderem um dies zu erleichtern, ist der radiale Stufenteil gegen die Strömungsrichtung schräg ausgebildet. Zudem erlaubt die Krümmung der Dichtstreifen ein problemloses Ausweichen für den Fall, dass die Deckplatte eine noch extremere Stellung einnehmen würde. Bei dieser Stellung dichtet weiterhin der vorderste der radialen Dichtstreifen 17 gegen den horizontal gerichteten hinteren Deckplattenteil. In der strichlierten Stellung sind die Dichtstreifen 52 nicht mehr im Eingriff. Hier dichtet nur noch der letzte der radialen Dichtstreifen 17 und verhindert damit, dass unkontrolliert Arbeitsmittel durch den Spalt 42 durchströmt.
Fig. 6 zeigt die neue Lösung bei einer Deckplatte mit einer Konizität von lediglich ca. 10°, wie sie Anwendung findet in Frontstufen von Niederdruckteilen von Dampfturbinen. Die Kavität ist hier in zwei Teilkavitäten 40a und 40c unterteilt. Getrennt werden diese Teilkavitäten 40a und 40c durch einen in seinem ersten Abschnitt annähernd horizontal verlaufenden und danach abgekrümmten Dichtstreifen 52. Dieser Streifen wirkt auf eine einfach gestufte Deckplatte 16. Die übrigen Dichtstreifen 17 sind so angeordnet, dass auch in Extremlagen mindestens einer der Streifen 52 oder 17 wirksam ist.
Fig. 7 schliesslich zeigt die neue Lösung bei einer Deckplatte 16 mit einer Konizität von ca. 45°, wie sie Anwendung findet in den hinteren Niederdruckstufen von Dampfturbinen. Hier ist zu erkennen, dass auch bei solchen extremen Kanalöffnungen die Lösung nach Fig. 4 ohne weiteres übertragbar ist. Zudem bietet diese Lösung den Vorteil, dass der radial einwärts gerichtete und an sich strömungsmechanisch schädliche Knickwinkel am Eintritt vermieden werden kann. Das heisst, die Deckbandkontur entspricht hier der global vorgegebenen Kanalkontur.
Alle bisher gezeigten und beschriebenen Lösungen weisen gegenüber dem Stand der Technik den Vorteil auf, dass infolge der Abstufung und insbesondere der schräg verlaufenden Radialteile eine wesentlich erhöhte Dichtlänge zur Verfügung steht. Darüber hinaus weisen zumindest die Deckplatten 16 nach den Fig. 4, 6 und 7 auch geringere Deckplattenmassen auf.
Bezugszeichenliste
8
Stator
9
Rotor
10
statorseitige strömungsbegrenzende Wand
11
rotorseitige strömungsbegrenzende Wand
13
Fussplatte der Leitschaufeln Le
15
Laufschaufel-Labyrinth
16
Deckplatte der Laufschaufel La
17
Dichtstreifen
18
Axialspalt
19
Leitschaufel-Labyrinth
20
Deckplatte der Leitschaufel Le
21
Fussplatte der Laufschaufel La
22
Wirbelkammer
26
Radialspalt
40
Kavität am Labyrinth-Eintritt
40a, 40b, 40c
Teilkavitäten
41
Zacken
42
Labyrinth-Austritt
43
Hinterstich
50
durchströmter Kanal
51
äussere Kanalkontur
52
horizontale Dichtstreifen
54
Kanalkontur bei Anzapfung
La, La3 ...
Laufschaufeln
Le, Le3 ...
Leitschaufeln
A
Knickwinkel aussen hinter Laufrad
B
Knickwinkel aussen vor Laufrad
P
Intersektion mit gerader äusserer Kanalkontur

Claims (5)

  1. Vorrichtung zum Dichten des Spalts zwischen in einem sich konisch erweiternden Strömungskanal (50) einer Turbomaschine umlaufenden Laufschaufeln (La) und der äusseren Kanalkontur (51) des Stators (8), wobei die Laufschaufeln (La) am Schaufelende mit umlaufenden Deckplatten (16) versehen sind, welche in eine Kavität im Stator (8) hineinragen, und eine Labyrinthdichtung Radialspalte zwischen Stator (8) und umlaufenden Deckplatten (16) mittels am Stator fixierter Dichtstreifen dichtet, wobei ein Teil der Dichtstreifen radial angeordnet ist, wobei die Kavität (40) am Labyrinth-Eintritt in ihrer radialen Erstreckung in mindestens zwei axial gegeneinander versetzte Teilkavitäten unterteilt ist, und die Deckplatte (16) stufenförmig ausgeführt ist mit mindestens zwei Drosselstellen gegen den Stator (8), und Dichtstreifen unter Einschluss einer Wirbelkammer (22) auf je eine Stufe wirken, dadurch gekennzeichnet, dass auf mindestens eine Stufe der stufenförmig ausgebildeten Deckplatte (16) ein in seinem ersten Abschnitt annähernd horizontal verlaufender, an seinem freien Ende abgekrümmter Dichtstreifen (52) wirkt.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die radial auswärts gerichteten Flächen der Deckplattenstufen gegen die Strömungsrichtung schräg ausgebildet sind.
  3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass am Labyrinth-Eintritt die Kontur der Kavität (40) im Stator (8) zunächst radial nach aussen und gegen die Strömungsrichtung verläuft, danach in Axialrichtung stromab gerichtet ist unter Bildung eines in die Kavität (40) hineinragenden Zackens (41), und dass die Deckplatte (16) mit einem Hinterstich (43) versehen ist, welcher der Form des Zackens (41) angepasst ist.
  4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Statorgehäuse am Labyrinth-Austritt (42) radial eingezogen ist zwecks Bildung eines Minimalmass aufweisenden Engspaltes.
  5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die innere strömungsbegrenzende Wand der Deckplatte (16) unmittelbar an der Hinterkante des Schaufelblattes mit einem radial auswärts gerichteten Knickwinkel (A) versehen ist.
EP97810686A 1997-09-19 1997-09-19 Vorrichtung zur Spaltdichtung Expired - Lifetime EP0903468B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP97810686A EP0903468B1 (de) 1997-09-19 1997-09-19 Vorrichtung zur Spaltdichtung
DE59710621T DE59710621D1 (de) 1997-09-19 1997-09-19 Vorrichtung zur Spaltdichtung
US09/153,270 US6102655A (en) 1997-09-19 1998-09-14 Shroud band for an axial-flow turbine
JP26168598A JP4199855B2 (ja) 1997-09-19 1998-09-16 軸流タービンのためのシュラウドバンド
CN98119296.3A CN1294341C (zh) 1997-09-19 1998-09-18 用于轴流式汽轮机的围带

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97810686A EP0903468B1 (de) 1997-09-19 1997-09-19 Vorrichtung zur Spaltdichtung

Publications (2)

Publication Number Publication Date
EP0903468A1 EP0903468A1 (de) 1999-03-24
EP0903468B1 true EP0903468B1 (de) 2003-08-20

Family

ID=8230394

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810686A Expired - Lifetime EP0903468B1 (de) 1997-09-19 1997-09-19 Vorrichtung zur Spaltdichtung

Country Status (5)

Country Link
US (1) US6102655A (de)
EP (1) EP0903468B1 (de)
JP (1) JP4199855B2 (de)
CN (1) CN1294341C (de)
DE (1) DE59710621D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103375185A (zh) * 2012-04-13 2013-10-30 通用电气公司 具有平行壳体配置的涡轮机叶冠

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1001139B1 (de) * 1998-11-10 2004-01-07 ALSTOM (Switzerland) Ltd Spitzendichtung für Turbinenlaufschaufeln
US6302654B1 (en) * 2000-02-29 2001-10-16 Copeland Corporation Compressor with control and protection system
JP2002371802A (ja) 2001-06-14 2002-12-26 Mitsubishi Heavy Ind Ltd ガスタービンにおけるシュラウド一体型動翼と分割環
US6761530B1 (en) * 2003-03-21 2004-07-13 General Electric Company Method and apparatus to facilitate reducing turbine packing leakage losses
EP1515000B1 (de) * 2003-09-09 2016-03-09 Alstom Technology Ltd Beschaufelung einer Turbomaschine mit konturierten Deckbändern
US7255531B2 (en) * 2003-12-17 2007-08-14 Watson Cogeneration Company Gas turbine tip shroud rails
US7234918B2 (en) * 2004-12-16 2007-06-26 Siemens Power Generation, Inc. Gap control system for turbine engines
EP1862641A1 (de) * 2006-06-02 2007-12-05 Siemens Aktiengesellschaft Ringförmiger Strömungskanal für eine in Axialrichtung von einem Hauptstrom durchströmbare Strömungsmaschine
US7708520B2 (en) * 2006-11-29 2010-05-04 United Technologies Corporation Gas turbine engine with concave pocket with knife edge seal
US8167547B2 (en) * 2007-03-05 2012-05-01 United Technologies Corporation Gas turbine engine with canted pocket and canted knife edge seal
EP2146053A1 (de) * 2008-07-17 2010-01-20 Siemens Aktiengesellschaft Axialturbomaschine mit geringen Spaltverlusten
EP2146054A1 (de) * 2008-07-17 2010-01-20 Siemens Aktiengesellschaft Axialturbine für eine Gasturbine
JP5173646B2 (ja) * 2008-07-28 2013-04-03 三菱重工業株式会社 蒸気タービン
JP2010216321A (ja) * 2009-03-16 2010-09-30 Hitachi Ltd 蒸気タービンの動翼及びそれを用いた蒸気タービン
US8317465B2 (en) * 2009-07-02 2012-11-27 General Electric Company Systems and apparatus relating to turbine engines and seals for turbine engines
US20110070072A1 (en) * 2009-09-23 2011-03-24 General Electric Company Rotary machine tip clearance control mechanism
DE102009042857A1 (de) * 2009-09-24 2011-03-31 Rolls-Royce Deutschland Ltd & Co Kg Gasturbine mit Deckband-Labyrinthdichtung
JP2011080452A (ja) 2009-10-09 2011-04-21 Mitsubishi Heavy Ind Ltd タービン
US8333557B2 (en) * 2009-10-14 2012-12-18 General Electric Company Vortex chambers for clearance flow control
DE102009052314A1 (de) * 2009-11-07 2011-05-12 Mtu Aero Engines Gmbh Dichtanordnung für eine Gasturbine und eine derartige Gasturbine
RU2442900C2 (ru) * 2009-12-07 2012-02-20 Министерство промышленности и торговли Российской Федерации (Минпромторг России) Ступень паровой турбины
JP5484990B2 (ja) * 2010-03-30 2014-05-07 三菱重工業株式会社 タービン
US8834107B2 (en) * 2010-09-27 2014-09-16 General Electric Company Turbine blade tip shroud for use with a tip clearance control system
US8708639B2 (en) * 2010-10-11 2014-04-29 The Coca-Cola Company Turbine bucket shroud tail
JP5517910B2 (ja) * 2010-12-22 2014-06-11 三菱重工業株式会社 タービン、及びシール構造
JP5725848B2 (ja) * 2010-12-27 2015-05-27 三菱日立パワーシステムズ株式会社 タービン
JP2012154201A (ja) * 2011-01-24 2012-08-16 Ihi Corp タービン動翼及びシール構造
JP5518022B2 (ja) 2011-09-20 2014-06-11 三菱重工業株式会社 タービン
JP5374563B2 (ja) * 2011-10-03 2013-12-25 三菱重工業株式会社 軸流タービン
WO2013084260A1 (ja) * 2011-12-07 2013-06-13 株式会社 日立製作所 タービン動翼
US9200528B2 (en) * 2012-09-11 2015-12-01 General Electric Company Swirl interruption seal teeth for seal assembly
FR3001759B1 (fr) * 2013-02-07 2015-01-16 Snecma Rouge aubagee de turbomachine
US9593589B2 (en) 2014-02-28 2017-03-14 General Electric Company System and method for thrust bearing actuation to actively control clearance in a turbo machine
JP6576466B2 (ja) * 2015-04-15 2019-09-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 自由先端部型軸流ファンアセンブリ
CA2932601C (en) 2015-06-17 2023-10-03 Rolls-Royce Corporation Labyrinth seal with tunable flow splitter
JP2017145813A (ja) 2016-02-19 2017-08-24 三菱日立パワーシステムズ株式会社 回転機械
US10774661B2 (en) 2017-01-27 2020-09-15 General Electric Company Shroud for a turbine engine
US10696906B2 (en) 2017-09-29 2020-06-30 Marathon Petroleum Company Lp Tower bottoms coke catching device
US12000720B2 (en) 2018-09-10 2024-06-04 Marathon Petroleum Company Lp Product inventory monitoring
US12031676B2 (en) 2019-03-25 2024-07-09 Marathon Petroleum Company Lp Insulation securement system and associated methods
US11975316B2 (en) 2019-05-09 2024-05-07 Marathon Petroleum Company Lp Methods and reforming systems for re-dispersing platinum on reforming catalyst
JP7368260B2 (ja) * 2020-01-31 2023-10-24 三菱重工業株式会社 タービン
US11352578B2 (en) 2020-02-19 2022-06-07 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stabtility enhancement and associated methods
US11702600B2 (en) 2021-02-25 2023-07-18 Marathon Petroleum Company Lp Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US20220268694A1 (en) 2021-02-25 2022-08-25 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11692141B2 (en) 2021-10-10 2023-07-04 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive
US11802257B2 (en) 2022-01-31 2023-10-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US885032A (en) * 1907-06-24 1908-04-21 Sebastian Ziani De Ferranti Fluid packing.
US1482031A (en) * 1923-01-18 1924-01-29 Said Parsons Packing for rotating bodies
US1708044A (en) * 1923-09-12 1929-04-09 Westinghouse Electric & Mfg Co Labyrinth-gland packing
FR957061A (de) * 1944-09-23 1950-02-14
BE533093A (de) * 1953-11-12 1954-11-30
GB804922A (en) * 1956-01-13 1958-11-26 Rolls Royce Improvements in or relating to axial-flow fluid machines for example compressors andturbines
GB933618A (en) * 1961-05-27 1963-08-08 Rolls Royce A sealing device
GB1008526A (en) * 1964-04-09 1965-10-27 Rolls Royce Axial flow bladed rotor, e.g. for a turbine
US3677660A (en) * 1969-04-08 1972-07-18 Mitsubishi Heavy Ind Ltd Propeller with kort nozzle
FR2051912A5 (de) * 1969-07-01 1971-04-09 Rabouyt Denis
GB1423833A (en) * 1972-04-20 1976-02-04 Rolls Royce Rotor blades for fluid flow machines
US3897169A (en) * 1973-04-19 1975-07-29 Gen Electric Leakage control structure
DE2413655C3 (de) * 1974-03-21 1978-05-03 Maschinenfabrik Augsburg-Nuernberg Ag, 8500 Nuernberg Einrichtung zum dynamischen Stabilisieren des Läufers einer Gas- oder Dampfturbine
US4370094A (en) * 1974-03-21 1983-01-25 Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft Method of and device for avoiding rotor instability to enhance dynamic power limit of turbines and compressors
JPS53104803U (de) * 1977-01-31 1978-08-23
GB1560974A (en) * 1977-03-26 1980-02-13 Rolls Royce Sealing system for rotors
JPS5744707A (en) * 1980-09-01 1982-03-13 Hitachi Ltd Arrangement for damping vibration of rotor in axial-flow rotary machine
JPS5752603A (en) * 1980-09-17 1982-03-29 Toshiba Corp Leakage preventing device in turbine
JPS6123804A (ja) * 1984-07-10 1986-02-01 Hitachi Ltd タ−ビン段落構造
CH666326A5 (en) * 1984-09-19 1988-07-15 Bbc Brown Boveri & Cie Turbine rotor blades with shroud plates at outer ends - have adjacent plates connected via damping circumferential wire through bores in plates
JPS6194206U (de) * 1984-11-28 1986-06-18
JPS61134501U (de) * 1985-02-08 1986-08-22
DE3523469A1 (de) * 1985-07-01 1987-01-08 Bbc Brown Boveri & Cie Beruehrungsfreie spaltdichtung fuer turbomaschinen
JPH0450401Y2 (de) * 1985-09-03 1992-11-27
GB2226365B (en) * 1988-12-22 1993-03-10 Rolls Royce Plc Turbomachine clearance control
GB2239678B (en) * 1989-12-08 1993-03-03 Rolls Royce Plc Gas turbine engine blade shroud assembly
GB2251034B (en) * 1990-12-20 1995-05-17 Rolls Royce Plc Shrouded aerofoils
EP0536575B1 (de) * 1991-10-08 1995-04-05 Asea Brown Boveri Ag Deckband für axialdurchströmte Turbine
US5632598A (en) * 1995-01-17 1997-05-27 Dresser-Rand Shrouded axial flow turbo machine utilizing multiple labrinth seals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103375185A (zh) * 2012-04-13 2013-10-30 通用电气公司 具有平行壳体配置的涡轮机叶冠

Also Published As

Publication number Publication date
JPH11148308A (ja) 1999-06-02
CN1212321A (zh) 1999-03-31
EP0903468A1 (de) 1999-03-24
DE59710621D1 (de) 2003-09-25
JP4199855B2 (ja) 2008-12-24
CN1294341C (zh) 2007-01-10
US6102655A (en) 2000-08-15

Similar Documents

Publication Publication Date Title
EP0903468B1 (de) Vorrichtung zur Spaltdichtung
EP0799973B1 (de) Wandkontur für eine axiale Strömungsmaschine
EP1530670B1 (de) Rezirkulationsstruktur für turboverdichter
EP0690206B1 (de) Diffusor für Turbomaschine
DE60320537T2 (de) Kompressor mit schaufelspitzeneinrichtung
EP1632662B1 (de) Strömungsarbeitsmaschine mit Fluidentnahme
DE2221895C3 (de) Einrichtung zur Kühlluftzufuhr in Kühlkanäle der Laufschaufeln eines Gasturbinenlaufrads
DE69601283T2 (de) Strömungsleitenden Vorrichtung für ein Gasturbinentriebwerk
DE60314476T2 (de) Anordnung eines Gehäuses einer Gasturbine und einer Rotorschaufel
EP2123860B1 (de) Kombinierter Wirbelgleichrichter
EP1004748B1 (de) Laufrad für eine Strömungsmaschine
EP1478828B1 (de) Rezirkulationsstruktur für turboverdichter
DE60114484T2 (de) Verdichter
EP2025946B1 (de) Schaufeldeckband mit Sperrstrahlerzeugung
DE102012013160A1 (de) Labyrinthdichtungen
DE10330084B4 (de) Rezirkulationsstruktur für Turboverdichter
DE60211061T2 (de) Axialturbine mit einer Stufe in einem Abströmkanal
EP2132414B1 (de) Shiplap-anordnung
DE112016005643T5 (de) Stufendichtung, Dichtungsstruktur, Turbomaschine, und Verfahren zur Herstellung einer Stufendichtung
DE102006048933A1 (de) Anordnung zur Strömungsbeeinflussung
WO2005106207A1 (de) Verdichterschaufel und verdichter
DE102015120127A1 (de) Axialverdichterendwandeinrichtung zur steuerung der leckage in dieser
DE102015219556A1 (de) Diffusor für Radialverdichter, Radialverdichter und Turbomaschine mit Radialverdichter
CH668454A5 (de) Stufe einer axialdampfturbine.
DE102015111746A1 (de) Gekühltes Turbinenlaufrad, insbesondere für ein Flugtriebwerk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19990903

AKX Designation fees paid

Free format text: DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

17Q First examination report despatched

Effective date: 20020115

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: GAP SEALING DEVICE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59710621

Country of ref document: DE

Date of ref document: 20030925

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030820

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040524

EN Fr: translation not filed
REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59710621

Country of ref document: DE

Representative=s name: UWE ROESLER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59710621

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59710621

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150922

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59710621

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401