EP0900322B1 - Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle - Google Patents

Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle Download PDF

Info

Publication number
EP0900322B1
EP0900322B1 EP97924884A EP97924884A EP0900322B1 EP 0900322 B1 EP0900322 B1 EP 0900322B1 EP 97924884 A EP97924884 A EP 97924884A EP 97924884 A EP97924884 A EP 97924884A EP 0900322 B1 EP0900322 B1 EP 0900322B1
Authority
EP
European Patent Office
Prior art keywords
turbine
turbine shaft
steam
shaft
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97924884A
Other languages
English (en)
French (fr)
Other versions
EP0900322A1 (de
Inventor
Armin Drosdziok
Axel Remberg
Ernst-Erich MÜHLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0900322A1 publication Critical patent/EP0900322A1/de
Application granted granted Critical
Publication of EP0900322B1 publication Critical patent/EP0900322B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/02Machines or engines with axial-thrust balancing effected by working-fluid characterised by having one fluid flow in one axial direction and another fluid flow in the opposite direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/084Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type

Definitions

  • the invention relates to a turbine shaft, which along a Main axis is directed, and an inflow area for Has fluid, at least in the axial direction at least two spaced-apart recesses for receiving a respective turbine blade.
  • the invention further relates to a method for cooling a Inflow area of a turbine, in particular one Steam turbine, arranged turbine shaft.
  • DE 34 06 071 A1 shows an annular shaft shield, that between the two rings of the first rows of guide vanes is arranged. Shielding is provided by the shaft shielding the outer circumference or the surface of the turbine shaft compared to live steam.
  • the shaft shield faces upstream of the wreaths through which a partial flow of the Live steam throttled into a gap between the shaft shield and the turbine shaft.
  • the inlets are like this inclined that the live steam is a flow component in the circumferential direction the turbine shaft.
  • On the inner circumference the shaft shield as well as on the turbine shaft Auxiliary guide or auxiliary blades can be provided.
  • the object of the invention is to provide a turbine shaft which can be cooled in a region which is subject to high thermal stress, in particular an inflow region for action fluid.
  • Another object of the invention is to provide a method for cooling a turbine shaft arranged in a turbine, in particular an inflow region of the turbine shaft.
  • a turbine shaft Task solved by a turbine shaft running along a Main axis is directed, an inflow area for action fluid, at least two of them and the inflow area axially spaced recesses for receiving at least a respective turbine blade and one the inflow area has associated cavity, which with a feed line and a derivative of a partial flow of the action fluid is connected as a cooling fluid.
  • the supply line leads downstream of a first recess from the shaft surface into the cavity and the derivative leads from the cavity on the shaft surface downstream of a second Recess. This second recess is further downstream than the first recess.
  • the Cavity is preferably rotationally symmetrical to the shaft axis.
  • Cooling of the turbine shaft in the inflow area is achieved.
  • the cooling fluid which is used to cool the turbine shaft Cavity is supplied, a partial flow of already cooled the turbine shaft in the inflow area supplied action fluid, in particular steam.
  • the cooling fluid used for cooling becomes a cavity through heat transfer heated.
  • the cooling fluid corresponds to the action fluid to operate the turbine in which the turbine shaft is arranged, the cavity provides a reheater
  • the cooling fluid reheated therein can be used by the turbine, especially the steam turbine, at a suitable point again (as an action fluid) or through a Tapping out of this.
  • the inflow area preferably along the main axis in the central region of the turbine shaft arranged.
  • the inflow area also serves a division of the inflowing, driving the turbine, Action fluid.
  • the cavity is preferably in the radial direction deep turned and lies between in the axial direction the first row of blades.
  • the inflow range is in an end region of the turbine shaft, wherein according to the invention Leads through the housing, for example in the steam flow area back, downstream of the first Recess. This also results in a pressure and / or temperature difference between the inlet of the supply line and the outlet the derivation guaranteed.
  • the derivation can also be too lead a tap so that the flowing out of the cavity Cooling fluid withdrawn directly from the steam turbine can be.
  • the end portion is preferably as a piston formed with an enlarged diameter. This piston points a seal that covers the steam flow area between Seals turbine shaft and housing of the turbine.
  • the cavity is preferably between the recess for the first Blade row and the piston formed.
  • the derivative preferably leads from the cavity into the piston and ends there in the area of the seal.
  • the feed line and / or the discharge line preferably have one largely axial bore and a largely radial bore on.
  • the radial bore leads in from the shaft surface the turbine shaft and goes into the axial bore, which extends from the cavity in the axial direction.
  • the diameter of the inlet and outlet are the corresponding ones Steam conditions and adapted to the desired cooling. Accordingly, the size of the cavity is the required one Cooling capacity adjusted.
  • the cavity is preferably through one, in particular for Shaft axis rotationally symmetrical, cover closed, which also serve as a flow deflecting element can.
  • the cover is preferably welded to the turbine shaft, which ensures that cooling fluid and action fluid performed separately from one another in the inflow region become. There are flow losses due to mixing thus avoided.
  • the cooling fluid is none in the cavity direct contact with that on the outer surface of the Cover hitting hot action fluid, which in particular Is steam with a supercritical steam state.
  • the Cover serves as a heat exchanger, so that heat from the turbine shaft both over the lid and over the walls of the cavity is transferred to the cooling fluid.
  • the turbine shaft with cooling in the inflow range from hot action fluid is particularly suitable in a steam turbine, which with steam with a supercritical steam state is applied.
  • the steam turbine can be a double flow Medium pressure partial turbine or a single-flow steam turbine his.
  • the steam turbine is already fed of live steam so coolable behind the first row of blades, that safe operation of the turbine shaft in steam conditions guaranteed with temperatures above 550 ° C.
  • the on a method for cooling an inflow area in a turbine, in particular a steam turbine Turbine shaft is solved according to the invention in that downstream of a first row of moving blades, in particular action fluid Steam with a supercritical steam state, as Cooling fluid in a cavity assigned to the inflow area flows and from there via a discharge from the turbine shaft is brought out. This will heat from the inflowing Action fluid, which is delivered to the turbine shaft was, over the walls of the cavity to that in the cavity passed cooling fluid, so that cooling the Turbine shaft is guaranteed.
  • the one that serves as the cooling fluid Partial flow of the action fluid is at a first pressure level removed in the inflow area and in a second, opposite the first pressure level lower, pressure level led out of the turbine shaft.
  • This cooling is constructive simply by creating an appropriate cavity, for example by deep turning, with the associated discharge and supply lines produced. Possible influences from training of the cavity in terms of thermomechanical Properties of the turbine shaft are carried out by the Cooling more than compensated.
  • the turbine shaft with Cooling of the inflow area is therefore particularly suitable also for steam with supercritical steam condition with temperatures of over 550 ° C.
  • the cooling fluid is used, in particular, with a steam double-flow medium pressure turbine downstream of one second row of blades, which is further downstream than the first Blade row is arranged, led out of the turbine shaft. Because between the inflow into the feed line and a pressure and / or temperature gradient for the outflow from the discharge line prevails, the flow of the cooling fluid maintained through the cavity without coercive measures.
  • the cooling fluid from the cavity over an end region of the turbine shaft through the derivative into the the housing enclosing the turbine shaft can the cooling fluid directly into a tap or downstream of one further downstream than the first row of blades Guide vane row again (as action fluid) in the steam flow be introduced between the housing and the turbine shaft.
  • the removed from the steam flow driving the turbine shaft Partial stream is thus made usable again, so that at most a slight influence on the efficiency the turbine occurs. Since also the inflowing into the cavity Cooling fluid is heated up - the cavity thus acts as a reheater - may even increase efficiency to reach.
  • the volume is preferably a volume flow of steam from 1% to 4%, in particular 1.5 to 3%, of the total live steam volume flow, which drives the turbine shaft.
  • the amount of steam supplied for cooling depends on individual parameters, such as steam conditions, used Materials and output size of the steam turbine system, from.
  • FIG. 1 is a section of a longitudinal section through a double-flow medium pressure turbine 15 of a steam turbine system shown.
  • a housing 19 is a turbine shaft 1 arranged.
  • the turbine shaft 1 extends along a main axis 2 and has 10 in its central region an inflow area 3 for action fluid 4a, in particular Steam with a supercritical steam state.
  • the housing 19 has a steam inlet assigned to the inflow region 3 22, so that steam between the housing 19 and the turbine shaft 1 flows.
  • the steam is in the inflow area 3 in two sub-streams, as shown by flow arrows, divided.
  • the steam turbine 15 has a preferably deep-turned cavity 7 arranged in its central region 10 on.
  • This cavity 7 is at its steam inlet 22 facing Side closed by a lid 11, which is welded to the turbine shaft 1.
  • the lid 11 is in Direction of the steam inlet 22 arched, so that the Division of the steam 4a into two steam streams supported becomes.
  • the turbine shaft 1 shows itself in the axial direction the inflow area 3 adjoining each other spaced recesses 5a and 5b.
  • This recess 5a, 5b serve to hold turbine blades 6a, 6b each form a blade row 16 or 17.
  • the clarity for the sake of further recesses and in it arranged blades not shown.
  • Guide vane row 21 is provided before each row of blades 16, 17 is a corresponding one on the housing 19 Guide vane row 21 is provided.
  • the cavity 7 closed by the cover 11 takes place an intermediate overheating of the steam serving as cooling fluid 4b instead, which in addition to cooling the turbine shaft 1, if necessary also an increase in efficiency of the steam turbine 15 can be reached.
  • the through the feed line 8, the cavity 7 and discharge line 9 guided volume flow of steam 4b depends on the amount of heat to be dissipated, the output of the steam turbine 15 and other parameters. It can be between 1.5 % and 3.0% of the total live steam volume flow. Possibly is about an asymmetrical loading of the arranged left and right of the inflow area Turbine blades 6a, 6b due to the steam throughput to avoid a suitable division through the cavity 7 of the total live steam flow in two approximately the same partial flows flowing to the left or right are provided.
  • FIG. 2 shows a longitudinal flow of a single-flow medium-pressure steam turbine 15 shown, with the clarity for the sake of only the one above a main axis 2 Part is shown.
  • the steam turbine 15 has a housing 19, in which an extending along the main axis 2 Turbine shaft 1 is shown. In an end region 18 the turbine shaft 1 with a shaft seal 24 opposite Housing 19 sealed.
  • the steam 4a for driving the turbine shaft 1 is through a steam inlet 22 of the steam turbine 15 fed and flows substantially along the Main axis 2 by alternating rows of blades 16,17 and guide vane rows 21 to an outflow nozzle 23.
  • An inflow region adjoins the steam inlet 22 3, that between the end region 18 and the first row of blades 16 lies.
  • the Turbine shaft 1 has a cavity 7, which with a cover 11 is closed towards the inflow region 3. Downstream the first blade row 16 carries a feed line 8 the turbine shaft 1 through to the cavity 7. From this Cavity 7 leads a discharge line 9 through the turbine shaft 1 through to the shaft seal 24 and from there through the housing 19 through to a tap 20. Between the first Blade row 16 and the tap 20 is located Temperature and / or pressure difference before, so that steam 4b without additional coercive measures through the supply line 8 in the Cavity 7 and from there via the lead 9 to the tap 20 flows.
  • This steam 4b takes over the walls, in particular the cover 11, heat from the turbine shaft 1, and thus causes cooling of the turbine shaft 1 Absorbing the heat, the steam 4b is reheated in the cavity 7 and can therefore continue for the entire Steam process optionally used to increase efficiency become.
  • the lead 8 and the derivative 9 can be constructive simply be designed as holes.
  • the invention is characterized by a turbine shaft, which in a thermally highly stressed inflow area Has cavity, the fluid for cooling can be supplied.
  • the cooling fluid supplied to the cavity is preferably made of the total flow of steam driving the turbine shaft or Branched gas.
  • Through a fluidic connection of the Cavity in areas where different pressure and / or temperature states of the steam or gas prevail, is a constant without additional coercive measures Guaranteed flow through the cavity.
  • Through the Walls of the cavity find heat transfer from the turbine shaft on the cooling fluid, in particular Water vapor, instead, which ensures safe cooling of the turbine shaft and there is an intermediate overheating of the cooling fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Articles (AREA)

Description

Die Erfindung betrifft eine Turbinenwelle, welche entlang einer Hauptachse gerichtet ist, und einen Einströmbereich für Fluid aufweist, an den sich in axialer Richtung zumindest zwei untereinander beabstandete Ausnehmungen zur Aufnahme zumindest einer jeweiligen Turbinenschaufel anschließen. Die Erfindung betrifft weiterhin ein Verfahren zur Kühlung eines Einströmbereichs einer in einer Turbine, insbesondere einer Dampfturbine, angeordneten Turbinenwelle.
Die DE 32 09 506 A1 behandelt eine axial beaufschlagte Dampfturbine, insbesondere in zweiflutiger Ausführung. Im Bereich der Dampfeinströmung ist zwischen der Welle und einer ringförmigen Wellenabschirmung ein Ringkanal gebildet. Die Welle hat im Bereich der Dampfeinströmung eine rotationssymmetrische Vertiefung. In diese Vertiefung ragt teilweise die ringförmige Wellenabschirmung hinein, welche über die ersten Leitschaufelreihen mit dem Gehäuse der Turbine verbunden und durch diese getragen ist. Die Wellenabschirmung weist zur Dampfeinleitung Durchführungen auf, die zentrisch zu dem Einströmbereich und zwischen den ersten Leitschaufeln angeordnet sind und tangential in den Spalt zwischen der rotierenden Welle und der feststehenden, vom Gehäuse getragenen Abschirmung münden.
Die DE 34 06 071 A1 zeigt eine ringförmige Wellenabschirmung, die zwischen den beiden Kränzen der ersten Leitschaufelreihen angeordnet ist. Durch die Wellenabschirmung erfolgt eine Abschirmung des Außenumfangs bzw. der Oberfläche der Turbinenwelle gegenüber dem Frischdampf. Die Wellenabschirmung weist stromauf der Kränze Einlässe auf, durch die ein Teilstrom des Frischdampfs gedrosselt in einen Spalt zwischen der Wellenabschirmung und der Turbinenwelle gelangt. Die Einlässe sind so geneigt, daß der Frischdampf eine Strömungskomponente in Umfangsrichtung der Turbinenwelle erhält. An dem Innenumfang der Wellenabschirmung sowie an der Turbinenwelle können Hilfs-Leit- bzw. Hilfs-Laufschaufeln vorgesehen sein.
Zur Steigerung des Wirkungsgrades einer Dampfturbine trägt die Verwendung von Dampf mit höheren Drücken und Temperaturen bei, insbesondere sogenannte überkritische Dampfzustände, mit einer Temperatur von beispielsweise über 550 °C. Die Verwendung von Dampf mit einem solchen Dampfzustand stellt erhöhte Anforderungen an eine entsprechend beaufschlagte Dampfturbine, insbesondere an die Turbinenwelle der Dampfturbine.
In dem Patent Abstracts of Japan zu der japanischen Patentanmeldung JP 58/133402 A1 ist eine zweiflutige Dampfturbine beschrieben, die in Kammerbauweise ausgeführt ist. Hierbei sind auf die Turbinenwelle Radscheiben aufgebracht, an deren jeweiligen äußeren Ende die Turbinenlaufschaufeln angeordnet sind. In dem Mittelbereich der Turbinenwelle, in dem das Aktionsfluid einströmt, ist eine Abdeckplatte angeordnet, die durch die jeweiligen ersten Leitschaufelreihen gehalten wird. Diese am oberen Ende der Radscheiben angeordnete Abdeckplatte bildet einen nicht dichten Abschluß für einen Raumbereich, welcher durch die Flanken der Radscheiben einerseits sowie die Turbinenwelle andererseits gebildet ist. In den diesen Raumbereich begrenzenden Radscheiben sind Öffnungen zum Einströmen von Aktionsfluid in den Raumbereich vorgesehen. Die Öffnungen weisen eine unterschiedliche Größe auf, so daß in dem Raumbereich ein Unterdruck erzeugt wird, so daß durch zumindest eine Radscheibe Aktionsfluid in den Raumbereich einströmen kann.
Aufgabe der Erfindung ist es, eine Turbinenwelle anzugeben, welche in einem thermisch hoch belasteten Bereich, insbesondere einem Einströmbereich für Aktionsfluid, kühlbar ist.
Eine weitere Aufgabe der Erfindung liegt darin, ein Verfahren zur Kühlung einer in einer Turbine angeordneten Turbinenwelle, insbesondere eines Einströmbereiches der Turbinenwelle, anzugeben.
Erfindungsgemäß wird die auf eine Turbinenwelle gerichtete Aufgabe durch eine Turbinenwelle gelöst, welche entlang einer Hauptachse gerichtet ist, einen Einströmbereich für Aktionsfluid, zumindest zwei untereinander sowie von dem Einströmbereich axial beabstandete Ausnehmungen zur Aufnahme zumindest einer jeweiligen Turbinenschaufel und einen dem Einströmbereich zugeordneten Hohlraum aufweist, welcher mit einer Zuleitung und einer Ableitung eines Teilstroms des Aktionsfluids als Kühlfluid verbunden ist. Die Zuleitung führt stromab einer ersten Ausnehmung von der Wellenoberfläche in den Hohlraum hinein, und die Ableitung führt von dem Hohlraum an dis Wellenoberfläche stromab einer zweiten Ausnehmung. Diese zweite Ausnehmung liegt weiter stromab als die erste Ausnehmung. Hierdurch ist gewährleistet, daß im Bereich der zweiten Ausnehmung sowohl ein geringerer Druck als auch eine geringere Temperatur des Aktionsfluides vorliegt als im Bereich der ersten Ausnehmung. Wird als Kühlfluid zur Kühlung der Turbinenwelle das Aktionsfluid zum Antrieb der Turbinenwelle verwendet, so ist hierdurch gewährleistet, daß sich bereits aufgrund des Temperatur- und/oder Druckgradienten eine Strömung durch den Hohlraum hinweg ausbildet. Der Hohlraum ist vorzugsweise zur Wellenachse rotationssymmetrisch.
Durch die Kühlung des Wellenwerkstoffs wird eine deutliche Erhöhung der Tragfähigkeit desselben bewirkt und damit eine rationellere Bauweise, z.B. der Einsatz konventioneller, kostengünstiger Wellenwerkstoffe auch im Bereich sehr hoher Dampfeintrittstemperaturen, ermöglicht.
Bei einer Beaufschlagung der Turbinenwelle mit Aktionsfluid, insbesondere Dampf eines überkritischen Dampfzustandes, ist durch Zuführung von Kühlfluid in den Hohlraum hinein eine Kühlung der Turbinenwelle in dem Einströmbereich erreicht. Das Kühlfluid, welches zur Kühlung der Turbinenwelle dem Hohlraum zugeführt wird, kann hierbei ein Teilstrom von bereits abgekühltem der Turbinenwelle in dem Einströmbereich zugeführtem Aktionsfluid, insbesondere Dampf, sein. In dem Hohlraum wird das zur Kühlung verwendete Kühlfluid durch Wärmeübertragung erhitzt. Entspricht das Kühlfluid dem Aktionsfluid zum Betrieb der Turbine, in welcher die Turbinenwelle angeordnet ist, so stellt der Hohlraum einen Zwischenüberhitzer dar. Das darin zwischenüberhitzte Kühlfluid kann der Turbine, insbesondere der Dampfturbine, an geeigneter Stelle wieder (als Aktionsfluid) zugeführt werden oder durch eine Anzapfung aus dieser heraus geführt werden.
Bei einer Turbinenwelle für eine zweiflutige Turbine, insbesondere Mitteldruck-Dampfturbine, ist der Einströmbereich vorzugsweise entlang der Hauptachse im Mittelbereich der Turbinenwelle angeordnet. Der Einströmbereich dient zusätzlich einer Teilung des einströmenden, die Turbine antreibenden, Aktionsfluides. Der Hohlraum ist in radialer Richtung, vorzugsweise tiefgedreht und liegt in axialer Richtung zwischen den jeweils ersten Laufschaufelreihen.
Bei einer einflutigen Turbine liegt der Einströmbereich in einem Endbereich der Turbinenwelle, wobei erfindungsgemäß die Ableitung durch das Gehäuse hindurchführt, beispielsweise in den Dampfströmungsbereich zurück und zwar stromab der ersten Ausnehmung. Hierdurch ist ebenfalls ein Druck- und/oder Temperaturunterschied zwischen Eingang der Zuleitung und Ausgang der Ableitung gewährleistet. Die Ableitung kann ebenfalls zu einer Anzapfung führen, so daß das aus dem Hohlraum ausströmende Kühlfluid unmittelbar aus der Dampfturbine abgezogen werden kann. Der Endbereich ist vorzugsweise als ein Kolben mit vergrößertem Durchmesser ausgebildet. Dieser Kolben weist eine Dichtung auf, die den Dampfströmungsbereich zwischen Turbinenwelle und Gehäuse der Turbine abdichtet. Der Hohlraum ist hierbei vorzugsweise zwischen der Ausnehmung für die erste Laufschaufelreihe und dem Kolben ausgebildet. Die Ableitung führt vorzugsweise von dem Hohlraum in den Kolben hinein und mündet dort im Bereich der Dichtung.
Vorzugsweise weist die Zuleitung und/oder die Ableitung eine weitgehend axiale Bohrung und eine weitgehend radiale Bohrung auf. Die radiale Bohrung führt von der Wellenoberfläche in die Turbinenwelle hinein und geht in die axiale Bohrung über, welche sich von dem Hohlraum in axialer Richtung erstreckt. Durchmesser der Zu- und Ableitung sind jeweils den entsprechenden Dampfzuständen und der gewünschten Kühlung angepaßt. Entsprechend ist die Größe des Hohlraums an die erforderliche Kühlleistung angepaßt.
Der Hohlraum ist vorzugsweise durch einen, insbesondere zur Wellenachse rotationssymmetrischen, Deckel verschlossen, welcher gleichzeitig auch als Strömungsumlenkungselement dienen kann. Der Deckel ist vorzugsweise mit der Turbinenwelle verschweißt, wodurch sichergestellt ist, daß Kühlfluid und Aktionsfluid in dem Einströmbereich getrennt voneinander geführt werden. Strömungsverluste infolge einer Durchmischung sind somit vermieden. Das Kühlfluid steht in dem Hohlraum in keinem unmittelbaren Kontakt mit dem an der Außenoberfläche des Deckels auftreffenden heißen Aktionsfluid, welches insbesondere Dampf mit einem überkritischen Dampfzustand ist. Der Deckel dient als Wärmeübertrager, so daß Wärme von der Turbinenwelle sowohl über den Deckel als auch über die Wandungen des Hohlraums an das Kühlfluid übertragen wird.
Die Turbinenwelle mit einer Kühlung im Einströmbereich von heißem Aktionsfluid eignet sich besonders in einer Dampfturbine, welche mit Dampf mit einem überkritischen Dampfzustand beaufschlagt wird. Die Dampfturbine kann hierbei eine zweiflutige Mitteldruck-Teilturbine oder eine einflutige Dampfturbine sein. Die Dampfturbine ist bereits durch Zuführung von Frischdampf hinter der ersten Laufschaufelreihe so kühlbar, daß ein sicherer Betrieb der Turbinenwelle bei Dampfzuständen mit Temperaturen über 550 °C gewährleistet ist.
Die auf ein Verfahren zur Kühlung eines Einströmbereichs in einer Turbine, insbesondere einer Dampfturbine, angeordneten Turbinenwelle wird erfindungsgemäß dadurch gelöst, daß stromab einer ersten Laufschaufelreihe Aktionsfluid, insbesondere Dampf mit einem überkritischen Dampfzustand, als Kühlfluid in einen dem Einströmbereich zugeordneten Hohlraum strömt und von dort über eine Ableitung aus der Turbinenwelle herausgeführt wird. Hierdurch wird Wärme von dem einströmenden Aktionsfluid, welche an die Turbinenwelle abgegeben wurde, über die Wandungen des Hohlraums an das in den Hohlraum geleitete Kühlfluid abgegeben, so daß eine Kühlung der Turbinenwelle gewährleistet ist. Der als Kühlfluid dienende Teilstrom des Aktionsfluids wird bei einem ersten Druckniveau in dem Einströmbereich entnommen und bei einem zweiten, gegenüber dem ersten Druckniveau niedrigeren, Druckniveau aus der Turbinenwelle herausgeführt. Diese Kühlung ist konstruktiv einfach durch Ausbildung eines entsprechenden Hohlraumes, beispielsweise durch Tiefdrehen, mit zugehöriger Ab- und Zuleitung herstellbar. Mögliche Beeinflussungen durch die Ausbildung des Hohlraumes hinsichtlich der thermomechanischen Eigenschaften der Turbinenwelle werden durch die durchgeführte Kühlung mehr als kompensiert. Die Turbinenwelle mit Kühlung des Einströmbereiches eignet sich daher besonders auch für Dampf mit überkritischem Dampfzustand mit Temperaturen von über 550 °C.
Das Kühlfluid wird insbesondere bei einer mit Dampf beaufschlagten zweiflutigen Mitteldruck-Teilturbine stromab einer zweiten Laufschaufelreihe, die weiter stromab als die erste Laufschaufelreihe angeordnet ist, aus der Turbinenwelle herausgeführt. Da zwischen der Einströmung in die Zuleitung und der Ausströmung aus der Ableitung ein Druck- und/oder Temperaturgradient vorherrscht, wird die Strömung des Kühlfluides durch den Hohlraum ohne Zwangsmaßnahmen aufrechterhalten.
Bei einer einflutigen Turbine, insbesondere einer Mitteldruck-Teilturbine, wird das Kühlfluid aus dem Hohlraum über einen Endbereich der Turbinenwelle durch die Ableitung in das die Turbinenwelle umschließende Gehäuse geführt. Hier kann das Kühlfluid unmittelbar in eine Anzapfung oder stromab einer weiter stromab als die erste Laufschaufelreihe liegenden Leitschaufelreihe wieder (als Aktionsfluid) in die Dampfströmung zwischen Gehäuse und Turbinenwelle eingeleitet werden. Der aus dem die Turbinenwelle antreibenden Dampfstrom abgeführte Teilstrom wird somit erneut nutzbar gemacht, so daß allenfalls eine geringfügige Beeinflussung des Wirkungsgrades der Turbine auftritt. Da zudem das in den Hohlraum einströmende Kühlfluid aufgeheizt wird - der Hohlraum wirkt somit als Zwischenüberhitzer - ist sogar gegebenenfalls eine Wirkungsgradsteigerung zu erreichen.
Dem Hohlraum wird vorzugsweise ein Volumenstrom an Dampf von 1 % bis 4 %, insbesondere 1,5 bis 3 %, des gesamten Frischdampfvolumenstroms, welcher die Turbinenwelle antreibt, zugeführt. Die zugeführte der Kühlung dienende Menge an Dampf hängt von Einzelparametern, wie Dampfzuständen, verwendete Materialien und Leistungsgröße der Dampfturbinenanlage, ab.
Anhand der in der Zeichnung dargestellten Ausführungsbeispiele werden die Turbinenwelle sowie das Verfahren zur Kühlung der Turbinenwelle näher erläutert. Es zeigen schematisch und nicht maßstäblich
FIG 1
einen Ausschnitt eines Längsschnittes durch eine zweiflutige Mitteldruck-Teilturbine und
FIG 2
einen Längsschnitt einer einflutigen Mitteldruck-Dampfturbine.
Gleiche Bezugszeichen haben in FIG 1 und FIG 2 jeweils die gleiche Bedeutung.
In FIG 1 ist ein Ausschnitt eines Längsschnittes durch eine zweiflutige Mitteldruck-Teilturbine 15 einer Dampfturbinenanlage dargestellt. In einem Gehäuse 19 ist eine Turbinenwelle 1 angeordnet. Die Turbinenwelle 1 erstreckt sich entlang einer Hauptachse 2 und weist in ihrem Mittelbereich 10 einen Einströmbereich 3 für Aktionsfluid 4a, insbesondere Dampf mit einem überkritischen Dampfzustand, auf. Das Gehäuse 19 hat einen dem Einströmbereich 3 zugeordneten Dampfeintritt 22, so daß Dampf zwischen das Gehäuse 19 und die Turbinenwelle 1 einströmt. Der Dampf wird in dem Einströmbereich 3 in zwei Teilströme, wie durch Strömungspfeile dargestellt, geteilt. Die Dampfturbine 15 weist einen vorzugsweisen tiefgedrehten in ihrem Mittelbereich 10 angeordneten Hohlraum 7 auf. Dieser Hohlraum 7 ist an seiner dem Dampfeintritt 22 zugewandten Seite durch einen Deckel 11 verschlossen, welcher mit der Turbinenwelle 1 verschweißt ist. Der Deckel 11 ist in Richtung des Dampfeintrittes 22 gewölbt, so daß hierdurch die Teilung des Dampfes 4a in zwei Dampfteilströme unterstützt wird. Die Turbinenwelle 1 weist in axialer Richtung sich an den Einströmbereich 3 anschließende und jeweils voneinander beabstandete Ausnehmungen 5a und 5b auf. Diese Ausnehmung 5a, 5b dienen der Aufnahme von Turbinenschaufeln 6a,6b, die jeweils eine Laufschaufelreihe 16 bzw. 17 bilden. Der Übersichtlichkeit halber sind weitere Ausnehmungen sowie darin angeordnete Laufschaufeln nicht dargestellt. Vor jeder Laufschaufelreihe 16,17 ist an dem Gehäuse 19 eine entsprechende Leitschaufelreihe 21 vorgesehen. Stromab der ersten Ausnehmung 5a des in FIG 1 nach rechts strömenden Teildampfstromes ist eine im wesentlichen radial verlaufende in das Innere der Turbinenwelle 1 führende Bohrung 14 dargestellt. Diese Bohrung 14 geht in eine axiale Bohrung 13 über, welche in den Hohlraum 7 mündet. Die beiden Bohrungen 14 und 13 bilden eine Zuleitung 8, die die Wellenoberfläche 12 strömungstechnisch mit dem Hohlraum 7 verbindet. Hierdurch gelangt ein Teil des Dampfes 4 entsprechend der Strömungspfeile stromab der ersten Laufschaufelreihe 16 in den Hohlraum 7 hinein. Von dem Hohlraum 7 führt eine weitere axiale Bohrung 13, an der der Zuleitung 8 gegenüberliegenden Seite des Hohlraums 7 in die Turbinenwelle 1 hinein. Diese axiale Bohrung 13 geht in eine im wesentlichen radiale Bohrung 14 über, welche an der Wellenoberfläche 12 stromab einer zweiten Ausnehmung 5b mündet. Letztere beiden Bohrungen 13 und 14 stellen eine Ableitung 9 dar, durch die Dampf 4b aus dem Hohlraum 7 in den gemäß FIG 1 nach links abgelenkten Dampfteilstrom zurückgeführt wird.
In dem durch den Deckel 11 abgeschlossenen Hohlraum 7 findet eine Zwischenüberhitzung des als Kühlfluid dienenden Dampfes 4b statt, wodurch neben einer Kühlung der Turbinenwelle 1 gegebenenfalls auch eine Wirkungsgraderhöhung der Dampfturbine 15 erreichbar ist. Der durch die Zuleitung 8, den Hohlraum 7 und Ableitung 9 geführte Volumenstrom an Dampf 4b hängt von der abzuführenden Wärmemenge, der Leistungsgröße der Dampfturbine 15 sowie anderen Parametern ab. Er kann zwischen 1,5 % und 3,0 % des gesamten Frischdampfvolumenstroms liegen. Gegebenenfalls ist um eine unsymmetrische Beaufschlagung der linksseitig und rechtsseitig des Einströmbereiches angeordneten Turbinenschaufeln 6a,6b infolge des Dampfdurchsatzes durch den Hohlraum 7 zu vermeiden, eine geeignete Aufteilung des gesamten Frischdampfstromes in zwei annähernd gleiche nach links bzw. rechts strömende Teilströme vorgesehen. Durch die Kühlung der Turbinenwelle 1 in dem Einströmbereich 3 werden deren thermomechanische Eigenschaften verbessert und eine Beständigkeit der Turbinenwelle 1 auch bei Hochtemperaturbelastungen von über 550 °C sichergestellt.
In FIG 2 ist in einem Längsschnitt eine einflutige Mitteldruck-Dampfturbine 15 dargestellt, wobei der Übersichtlichkeit halber lediglich der oberhalb einer Hauptachse 2 liegende Teil gezeigt ist. Die Dampfturbine 15 hat ein Gehäuse 19, in dem sich eine entlang der Hauptachse 2 erstreckende Turbinenwelle 1 dargestellt ist. In einem Endbereich 18 ist die Turbinenwelle 1 mit einer Wellendichtung 24 gegenüber dem Gehäuse 19 abgedichtet. Der Dampf 4a zum Antrieb der Turbinenwelle 1 wird durch einen Dampfeintritt 22 der Dampfturbine 15 zugeführt und strömt im wesentlichen entlang der Hauptachse 2 durch alternierend angeordnete Laufschaufelreihen 16,17 und Leitschaufelreihen 21 zu einem Abströmstutzen 23. An den Dampfeintritt 22 schließt sich ein Einströmbereich 3 an, der zwischen dem Endbereich 18 und der ersten Laufschaufelreihe 16 liegt. In diesem Einströmbereich 3 weist die Turbinenwelle 1 einen Hohlraum 7 auf, welcher mit einem Dekkel 11 zu dem Einströmbereich 3 hin verschlossen ist. Stromab der ersten Laufschaufelreihe 16 führt eine Zuleitung 8 durch die Turbinenwelle 1 hindurch zu dem Hohlraum 7. Von diesem Hohlraum 7 führt eine Ableitung 9 durch die Turbinenwelle 1 hindurch zu der Wellendichtung 24 und von dort durch das Gehäuse 19 hindurch zu einer Anzapfstelle 20. Zwischen der ersten Laufschaufelreihe 16 und der Anzapfstelle 20 liegt ein Temperatur und/oder Druckunterschied vor, so daß Dampf 4b ohne zusätzliche Zwangsmaßnahmen durch die Zuleitung 8 in den Hohlraum 7 und von dort über die Ableitung 9 zur Anzapfstelle 20 strömt. Dieser Dampf 4b nimmt über die Wandungen, insbesondere den Deckel 11, Wärme von der Turbinenwelle 1 auf, und bewirkt somit eine Kühlung der Turbinenwelle 1. Durch die Aufnahme der Wärme wird der Dampf 4b in dem Hohlraum 7 zwischenüberhitzt und kann somit weiterhin für den gesamten Dampfprozeß gegebenenfalls wirkungsgradsteigernd verwendet werden. Die Zuleitung 8 sowie die Ableitung 9 können konstruktiv einfach als Bohrungen ausgeführt sein.
Die Erfindung zeichnet sich durch eine Turbinenwelle aus, welche in einem thermisch hoch belasteten Einströmbereich einen Hohlraum aufweist, dem Fluid zur Kühlung zuführbar ist. Vorzugsweise ist das dem Hohlraum zugeführte Kühlfluid aus dem die Turbinenwelle antreibenden Gesamtstrom von Dampf oder Gas abgezweigt. Durch eine strömungstechnische Anbindung des Hohlraums an Bereiche, in denen unterschiedliche Druck- und/oder Temperaturzustände des Dampfes oder des Gases vorherrschen, ist ein stete ohne zusätzliche Zwangsmaßnahmen hervorgerufene Strömung durch den Hohlraum gewährleistet. Durch die Wandungen des Hohlraums findet ein Wärmeübergang von der Turbinenwelle auf das der Kühlung dienende Fluid, insbesondere Wasserdampf, statt, wodurch eine sichere Kühlung der Turbinenwelle sowie eine Zwischenüberhitzung des Kühlfluides erfolgt.

Claims (10)

  1. Turbinenwelle (1), die sich entlang einer Hauptachse (2) erstreckt, mit einem Einströmbereich (3) für Aktionsfluid (4a), zumindest zwei untereinander sowie von dem Einströmbereich (3) axial beabstandete Ausnehmungen (5a,5b) zur Aufnahme zumindest einer jeweiligen Turbinenschaufel (6a, 6b), dadurch gekennzeichnet daß die Turbinenwelle einen dem Einströmbereich (3) zugeordneten Hohlraum (7) aufweist, welcher mit einer Zuleitung (8) und einer Ableitung (9) eines Teilstroms des Aktionsfluids als Kühlfluid (4b) verbunden ist, wobei die Zuleitung (8) stromab einer ersten Ausnehmung (5a) und die Ableitung (9) stromab einer weiter stromab angeordneten Ausnehmung (5b) an der Wellenoberfläche (12) mündet.
  2. Turbinenwelle (1) nach Anspruch 1, bei der der Einströmbereich (3) zur Fluidstromteilung in Richtung der Hauptachse (2) in ihrem Mittelbereich (10) angeordnet ist.
  3. Turbinenwelle (1) nach Anspruch 1 oder 2 in einer Dampfturbine (15), insbesondere einer zweiflutigen Mitteldruck-Teilturbine.
  4. Turbinenwelle (1) nach Anspruch 3, bei der die Zuleitung (8) stromab einer ersten Laufschaufelreihe (16) und die Ableitung (9) stromab einer zweiten Laufschaufelreihe (17), die stromab der ersten Laufschaufelreihe (16) angeordnet ist, an der Wellenoberfläche (12) mündet.
  5. Dampfturbine, insbesondere einflutige Mitteldruck-Teilturbine, mit einem Gehäuse (19) mit einer Turbinenwelle (1), die sich entlang der Hauptachse (2) erstreckt, mit einem Einströmbereich (3) für Aktionsfluid (4a), mit zumindest zwei untereinander sowie von dem Einströmbereich (3) axial beabstandete Ausnehmungen (5a,5b) zur Aufnahme zumindest einer jeweiligen Turbinenschaufel (6a, 6b), dadurch gekennzeichnet daß die Dampfturbine einen in der Turbinenwelle (1) angeordneten, dem Einströmbereich (3) zugeordneten Hohlraum (7) aufweist, welcher Hohlraum (7) mit einer Zuleitung (8) und einer Ableitung (9) eines Teilstroms des Aktionsfluids als Kühlfluid (4b) verbunden ist, wobei die Zuleitung (8) stromab einer ersten Ausnehmung (5a) an der Wellenoberfläche (12) mündet und die Ableitung (9) über einen Endbereich (18) der Turbinenwelle (1) in das Gehäuse (19) hinein und darin bis zu einem Bereich stromab einer weiter stromab angeordneten Ausnehmung (5b) geführt ist.
  6. Turbinenwelle (1) nach Anspruch 5, die Ableitung (9) in eine stromab einer ersten Laufschaufelreihe (16) angeordneten Anzapfung (20) mündet.
  7. Turbinenwelle (1) nach einem der vorhergehenden Ansprüche, bei der der Hohlraum (7) durch einen Deckel (11) verschlossen ist.
  8. Turbinenwelle (1) nach einem der vorhergehenden Ansprüche, bei der die Zuleitung (8) und/oder die Ableitung (9) eine weitgehend axiale Bohrung (13) und eine weitgehend radiale Bohrung (14) aufweist bzw. aufweisen.
  9. Verfahren zur Kühlung eines Einströmbereichs (3) einer in einer Turbine, insbesondere einer Dampfturbine (15), angeordneten Turbinenwelle (1), dadurch gekennzeichnet daß bei dem einem in der Turbinenwelle (1) angeordneten und dem Einströmbereich (3) zugeordneten Hohlraum (7) von der Wellenoberfläche (12) stromab einer ersten Laufschaufelreihe (16) ein Teilstrom des Aktionsfluids als Kühlfluid (4b) bei einem ersten Druckniveau zugeführt und über eine an der Wellenoberfläche (12) mündende Ableitung (9) aus der Turbinenwelle (1) bei einem zweiten gegenüber dem ersteren niedrigeren Druckniveau herausgeführt wird.
  10. Verfahren nach Anspruch 9, bei dem in einer Dampfturbine (15) dem Hohlraum (7) als Kühlfluid (4b) ein Volumenstrom an Dampf von 1,0 % bis 4,0 %, insbesondere 1,5% bis 3%, des gesamten Frischdampfvolumenstroms zugeführt wird.
EP97924884A 1996-05-23 1997-05-14 Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle Expired - Lifetime EP0900322B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19620828 1996-05-23
DE19620828A DE19620828C1 (de) 1996-05-23 1996-05-23 Turbinenwelle sowie Verfahren zur Kühlung einer Turbinenwelle
PCT/DE1997/000970 WO1997044568A1 (de) 1996-05-23 1997-05-14 Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle

Publications (2)

Publication Number Publication Date
EP0900322A1 EP0900322A1 (de) 1999-03-10
EP0900322B1 true EP0900322B1 (de) 2003-08-20

Family

ID=7795152

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97924884A Expired - Lifetime EP0900322B1 (de) 1996-05-23 1997-05-14 Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle

Country Status (10)

Country Link
US (1) US6082962A (de)
EP (1) EP0900322B1 (de)
JP (1) JP3943135B2 (de)
CN (1) CN1079491C (de)
AT (1) ATE247767T1 (de)
CZ (1) CZ296698A3 (de)
DE (2) DE19620828C1 (de)
ES (1) ES2206713T3 (de)
PL (1) PL329689A1 (de)
WO (1) WO1997044568A1 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1378630A1 (de) * 2002-07-01 2004-01-07 ALSTOM (Switzerland) Ltd Dampfturbine
EP1452688A1 (de) * 2003-02-05 2004-09-01 Siemens Aktiengesellschaft Dampfturbinenrotor sowie Verfahren und Verwendung einer aktiven Kühlung eines Dampfturbinenrotors
EP1455066B1 (de) * 2003-03-06 2010-06-02 Siemens Aktiengesellschaft Verfahren zur Kühlung einer Strömungsmaschine und Strömungsmaschine dafür
DE10355738A1 (de) 2003-11-28 2005-06-16 Alstom Technology Ltd Rotor für eine Turbine
EP1705339B1 (de) * 2005-03-23 2016-11-30 General Electric Technology GmbH Rotorwelle, insbesondere für eine Gasturbine
US7357618B2 (en) * 2005-05-25 2008-04-15 General Electric Company Flow splitter for steam turbines
EP1785586B1 (de) * 2005-10-20 2014-05-07 Siemens Aktiengesellschaft Rotor einer Strömungsmaschine
EP1780376A1 (de) 2005-10-31 2007-05-02 Siemens Aktiengesellschaft Dampfturbine
US7322789B2 (en) * 2005-11-07 2008-01-29 General Electric Company Methods and apparatus for channeling steam flow to turbines
EP1806476A1 (de) * 2006-01-05 2007-07-11 Siemens Aktiengesellschaft Turbine für ein thermisches Kraftwerk
PL1892376T3 (pl) * 2006-08-25 2013-11-29 Siemens Ag Chłodzony wirnik turbiny parowej z rurą wewnętrzną
JP4908137B2 (ja) * 2006-10-04 2012-04-04 株式会社東芝 タービンロータおよび蒸気タービン
EP2093866A1 (de) * 2008-02-25 2009-08-26 Siemens Aktiengesellschaft Dynamoelektrische Maschine
US8317458B2 (en) * 2008-02-28 2012-11-27 General Electric Company Apparatus and method for double flow turbine tub region cooling
US8096748B2 (en) * 2008-05-15 2012-01-17 General Electric Company Apparatus and method for double flow turbine first stage cooling
CH699978A1 (de) 2008-11-26 2010-05-31 Alstom Technology Ltd Dampfturbine.
EP2211017A1 (de) * 2009-01-27 2010-07-28 Siemens Aktiengesellschaft Rotor mit Hohlraum für eine Strömungsmaschine
CH701914A1 (de) 2009-09-30 2011-03-31 Alstom Technology Ltd Dampfturbine mit Entlastungsnut am Rotor im Bereich des Schubausgleichskolbens.
EP2412937A1 (de) * 2010-07-30 2012-02-01 Siemens Aktiengesellschaft Dampfturbine sowie Verfahren zum Kühlen einer solchen
US20120067054A1 (en) 2010-09-21 2012-03-22 Palmer Labs, Llc High efficiency power production methods, assemblies, and systems
CN103174464B (zh) * 2011-12-22 2015-02-11 北京全四维动力科技有限公司 一种中部进汽双向流动结构的汽轮机转子冷却系统
CN103603694B (zh) * 2013-12-04 2015-07-29 上海金通灵动力科技有限公司 一种降低汽轮机主轴轴承处工作温度的结构
US9702261B2 (en) 2013-12-06 2017-07-11 General Electric Company Steam turbine and methods of assembling the same
EP3009610B1 (de) * 2014-10-14 2020-11-25 General Electric Technology GmbH Dampfturbinenwellendichtungsanordnung
CN109386317B (zh) * 2017-08-09 2022-01-11 西门子公司 蒸汽轮机与燃气轮机以及其末级结构
CN111520195B (zh) * 2020-04-03 2022-05-10 东方电气集团东方汽轮机有限公司 一种汽轮机低压进汽室导流结构及其参数设计方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH133001A (de) * 1928-06-11 1929-05-15 Bbc Brown Boveri & Cie Einrichtung zur Heizung von Scheibenrotoren bei Dampf- und Gasturbinen.
CH341940A (de) * 1956-08-08 1959-10-31 Bbc Brown Boveri & Cie Einrichtung zum Stabilisieren des Betriebes mehrstufiger parallel geschalteter Kreiselverdichter
US3291447A (en) * 1965-02-15 1966-12-13 Gen Electric Steam turbine rotor cooling
JPS5650084B2 (de) * 1972-04-26 1981-11-26
JPS5857606B2 (ja) * 1981-12-11 1983-12-21 株式会社東芝 蒸気タ−ビン
US4465429A (en) * 1982-02-01 1984-08-14 Westinghouse Electric Corp. Steam turbine with superheated blade disc cavities
JPS58133402A (ja) * 1982-02-04 1983-08-09 Toshiba Corp 軸流タ−ビンのロ−タ冷却機構
DE3209506A1 (de) * 1982-03-16 1983-09-22 Kraftwerk Union AG, 4330 Mülheim Axial beaufschlagte dampfturbine, insbesondere in zweiflutiger ausfuehrung
JPS59153901A (ja) * 1983-02-21 1984-09-01 Fuji Electric Co Ltd 蒸気タ−ビンロ−タの冷却装置
JPS59155503A (ja) * 1983-02-24 1984-09-04 Toshiba Corp 軸流タ−ビンのロ−タ冷却装置
JPS60159304A (ja) * 1984-01-27 1985-08-20 Toshiba Corp 蒸気タ−ビンのデイスク冷却装置
FR2666846B1 (fr) * 1990-09-13 1992-10-16 Alsthom Gec Grille d'aubes pour turbomachine munie de fentes d'aspiration dans le plafond et/ou dans le plancher et turbomachine comportant ces grilles.

Also Published As

Publication number Publication date
ATE247767T1 (de) 2003-09-15
PL329689A1 (en) 1999-04-12
CN1079491C (zh) 2002-02-20
EP0900322A1 (de) 1999-03-10
US6082962A (en) 2000-07-04
DE59710620D1 (de) 2003-09-25
JP2000511257A (ja) 2000-08-29
CN1217042A (zh) 1999-05-19
JP3943135B2 (ja) 2007-07-11
DE19620828C1 (de) 1997-09-04
ES2206713T3 (es) 2004-05-16
WO1997044568A1 (de) 1997-11-27
CZ296698A3 (cs) 1999-02-17

Similar Documents

Publication Publication Date Title
EP0900322B1 (de) Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle
EP0906494B1 (de) Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle
EP0991850B1 (de) Turbinenwelle einer dampfturbine mit interner kühlung sowie verfahren zur kühlung einer turbinenwelle
EP1945911B1 (de) Dampfturbine
DE3407218C2 (de) Gasturbine
DE69937652T2 (de) Bürstendichtung für eine Turbomaschine
DE69018338T2 (de) Gasturbine.
DE3428892A1 (de) Schaufel- und dichtspaltoptimierungseinrichtung fuer verdichter von gasturbinentriebwerken, insbesondere gasturbinenstrahltriebwerken
EP2596213B1 (de) Dampfturbine mit einer internen kühlung
EP0953099B1 (de) Dampfturbine
EP2078137B1 (de) Rotor für eine strömungsmaschine
EP0122872A1 (de) MD-Dampfturbine in einflutiger Bauweise für eine Hochtemperaturdampfturbinenanlage mit Zwischenüb erhitzung
EP1413711B1 (de) Gasturbine und Verfahren zum Kühlen einer Gasturbine
WO2001016467A1 (de) Turbine sowie verfahren zur abführung von leckfluid
EP2718545B1 (de) Dampfturbine umfassend einen schubausgleichskolben
DE830853C (de) Duesenring fuer mit hohen Betriebstemperaturen arbeitende Turbinen, insbesondere Gasturbinen
WO2001086121A1 (de) Verfahren zur kühlung einer welle in einem hochdruck-expansionsabschnitt einer dampfturbine
DE60224746T2 (de) Dampfrohrleitungsstruktur einer Gasturbine
DE1941873A1 (de) Gaturbinentriebwerk
EP2324208B1 (de) Turbinenleitschaufelträger für eine gasturbine und verfahren zum betrieb einer gasturbine
EP2159377A1 (de) Leitschaufelträger für eine Gasturbine und entsprechende Gasturbinenanlage
EP2598724A1 (de) Dampfturbine sowie verfahren zum kühlen einer solchen
EP1788191A1 (de) Dampfturbine sowie Verfahren zur Kühlung einer Dampfturbine
EP3183426B1 (de) Kontrollierte kühlung von turbinenwellen
EP2025873A1 (de) Dampfzuführung für eine Dampfturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SERVOPATENT GMBH

REF Corresponds to:

Ref document number: 59710620

Country of ref document: DE

Date of ref document: 20030925

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031120

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040514

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2206713

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040524

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160627

Year of fee payment: 20

Ref country code: GB

Payment date: 20160512

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160527

Year of fee payment: 20

Ref country code: FR

Payment date: 20160512

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160802

Year of fee payment: 20

Ref country code: DE

Payment date: 20160720

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59710620

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170513

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170515