EP0900322B1 - Arbre de turbine et procede de refroidissement d'un arbre de turbine - Google Patents

Arbre de turbine et procede de refroidissement d'un arbre de turbine Download PDF

Info

Publication number
EP0900322B1
EP0900322B1 EP97924884A EP97924884A EP0900322B1 EP 0900322 B1 EP0900322 B1 EP 0900322B1 EP 97924884 A EP97924884 A EP 97924884A EP 97924884 A EP97924884 A EP 97924884A EP 0900322 B1 EP0900322 B1 EP 0900322B1
Authority
EP
European Patent Office
Prior art keywords
turbine
turbine shaft
steam
shaft
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97924884A
Other languages
German (de)
English (en)
Other versions
EP0900322A1 (fr
Inventor
Armin Drosdziok
Axel Remberg
Ernst-Erich MÜHLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0900322A1 publication Critical patent/EP0900322A1/fr
Application granted granted Critical
Publication of EP0900322B1 publication Critical patent/EP0900322B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/02Machines or engines with axial-thrust balancing effected by working-fluid characterised by having one fluid flow in one axial direction and another fluid flow in the opposite direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/084Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type

Definitions

  • the invention relates to a turbine shaft, which along a Main axis is directed, and an inflow area for Has fluid, at least in the axial direction at least two spaced-apart recesses for receiving a respective turbine blade.
  • the invention further relates to a method for cooling a Inflow area of a turbine, in particular one Steam turbine, arranged turbine shaft.
  • DE 34 06 071 A1 shows an annular shaft shield, that between the two rings of the first rows of guide vanes is arranged. Shielding is provided by the shaft shielding the outer circumference or the surface of the turbine shaft compared to live steam.
  • the shaft shield faces upstream of the wreaths through which a partial flow of the Live steam throttled into a gap between the shaft shield and the turbine shaft.
  • the inlets are like this inclined that the live steam is a flow component in the circumferential direction the turbine shaft.
  • On the inner circumference the shaft shield as well as on the turbine shaft Auxiliary guide or auxiliary blades can be provided.
  • the object of the invention is to provide a turbine shaft which can be cooled in a region which is subject to high thermal stress, in particular an inflow region for action fluid.
  • Another object of the invention is to provide a method for cooling a turbine shaft arranged in a turbine, in particular an inflow region of the turbine shaft.
  • a turbine shaft Task solved by a turbine shaft running along a Main axis is directed, an inflow area for action fluid, at least two of them and the inflow area axially spaced recesses for receiving at least a respective turbine blade and one the inflow area has associated cavity, which with a feed line and a derivative of a partial flow of the action fluid is connected as a cooling fluid.
  • the supply line leads downstream of a first recess from the shaft surface into the cavity and the derivative leads from the cavity on the shaft surface downstream of a second Recess. This second recess is further downstream than the first recess.
  • the Cavity is preferably rotationally symmetrical to the shaft axis.
  • Cooling of the turbine shaft in the inflow area is achieved.
  • the cooling fluid which is used to cool the turbine shaft Cavity is supplied, a partial flow of already cooled the turbine shaft in the inflow area supplied action fluid, in particular steam.
  • the cooling fluid used for cooling becomes a cavity through heat transfer heated.
  • the cooling fluid corresponds to the action fluid to operate the turbine in which the turbine shaft is arranged, the cavity provides a reheater
  • the cooling fluid reheated therein can be used by the turbine, especially the steam turbine, at a suitable point again (as an action fluid) or through a Tapping out of this.
  • the inflow area preferably along the main axis in the central region of the turbine shaft arranged.
  • the inflow area also serves a division of the inflowing, driving the turbine, Action fluid.
  • the cavity is preferably in the radial direction deep turned and lies between in the axial direction the first row of blades.
  • the inflow range is in an end region of the turbine shaft, wherein according to the invention Leads through the housing, for example in the steam flow area back, downstream of the first Recess. This also results in a pressure and / or temperature difference between the inlet of the supply line and the outlet the derivation guaranteed.
  • the derivation can also be too lead a tap so that the flowing out of the cavity Cooling fluid withdrawn directly from the steam turbine can be.
  • the end portion is preferably as a piston formed with an enlarged diameter. This piston points a seal that covers the steam flow area between Seals turbine shaft and housing of the turbine.
  • the cavity is preferably between the recess for the first Blade row and the piston formed.
  • the derivative preferably leads from the cavity into the piston and ends there in the area of the seal.
  • the feed line and / or the discharge line preferably have one largely axial bore and a largely radial bore on.
  • the radial bore leads in from the shaft surface the turbine shaft and goes into the axial bore, which extends from the cavity in the axial direction.
  • the diameter of the inlet and outlet are the corresponding ones Steam conditions and adapted to the desired cooling. Accordingly, the size of the cavity is the required one Cooling capacity adjusted.
  • the cavity is preferably through one, in particular for Shaft axis rotationally symmetrical, cover closed, which also serve as a flow deflecting element can.
  • the cover is preferably welded to the turbine shaft, which ensures that cooling fluid and action fluid performed separately from one another in the inflow region become. There are flow losses due to mixing thus avoided.
  • the cooling fluid is none in the cavity direct contact with that on the outer surface of the Cover hitting hot action fluid, which in particular Is steam with a supercritical steam state.
  • the Cover serves as a heat exchanger, so that heat from the turbine shaft both over the lid and over the walls of the cavity is transferred to the cooling fluid.
  • the turbine shaft with cooling in the inflow range from hot action fluid is particularly suitable in a steam turbine, which with steam with a supercritical steam state is applied.
  • the steam turbine can be a double flow Medium pressure partial turbine or a single-flow steam turbine his.
  • the steam turbine is already fed of live steam so coolable behind the first row of blades, that safe operation of the turbine shaft in steam conditions guaranteed with temperatures above 550 ° C.
  • the on a method for cooling an inflow area in a turbine, in particular a steam turbine Turbine shaft is solved according to the invention in that downstream of a first row of moving blades, in particular action fluid Steam with a supercritical steam state, as Cooling fluid in a cavity assigned to the inflow area flows and from there via a discharge from the turbine shaft is brought out. This will heat from the inflowing Action fluid, which is delivered to the turbine shaft was, over the walls of the cavity to that in the cavity passed cooling fluid, so that cooling the Turbine shaft is guaranteed.
  • the one that serves as the cooling fluid Partial flow of the action fluid is at a first pressure level removed in the inflow area and in a second, opposite the first pressure level lower, pressure level led out of the turbine shaft.
  • This cooling is constructive simply by creating an appropriate cavity, for example by deep turning, with the associated discharge and supply lines produced. Possible influences from training of the cavity in terms of thermomechanical Properties of the turbine shaft are carried out by the Cooling more than compensated.
  • the turbine shaft with Cooling of the inflow area is therefore particularly suitable also for steam with supercritical steam condition with temperatures of over 550 ° C.
  • the cooling fluid is used, in particular, with a steam double-flow medium pressure turbine downstream of one second row of blades, which is further downstream than the first Blade row is arranged, led out of the turbine shaft. Because between the inflow into the feed line and a pressure and / or temperature gradient for the outflow from the discharge line prevails, the flow of the cooling fluid maintained through the cavity without coercive measures.
  • the cooling fluid from the cavity over an end region of the turbine shaft through the derivative into the the housing enclosing the turbine shaft can the cooling fluid directly into a tap or downstream of one further downstream than the first row of blades Guide vane row again (as action fluid) in the steam flow be introduced between the housing and the turbine shaft.
  • the removed from the steam flow driving the turbine shaft Partial stream is thus made usable again, so that at most a slight influence on the efficiency the turbine occurs. Since also the inflowing into the cavity Cooling fluid is heated up - the cavity thus acts as a reheater - may even increase efficiency to reach.
  • the volume is preferably a volume flow of steam from 1% to 4%, in particular 1.5 to 3%, of the total live steam volume flow, which drives the turbine shaft.
  • the amount of steam supplied for cooling depends on individual parameters, such as steam conditions, used Materials and output size of the steam turbine system, from.
  • FIG. 1 is a section of a longitudinal section through a double-flow medium pressure turbine 15 of a steam turbine system shown.
  • a housing 19 is a turbine shaft 1 arranged.
  • the turbine shaft 1 extends along a main axis 2 and has 10 in its central region an inflow area 3 for action fluid 4a, in particular Steam with a supercritical steam state.
  • the housing 19 has a steam inlet assigned to the inflow region 3 22, so that steam between the housing 19 and the turbine shaft 1 flows.
  • the steam is in the inflow area 3 in two sub-streams, as shown by flow arrows, divided.
  • the steam turbine 15 has a preferably deep-turned cavity 7 arranged in its central region 10 on.
  • This cavity 7 is at its steam inlet 22 facing Side closed by a lid 11, which is welded to the turbine shaft 1.
  • the lid 11 is in Direction of the steam inlet 22 arched, so that the Division of the steam 4a into two steam streams supported becomes.
  • the turbine shaft 1 shows itself in the axial direction the inflow area 3 adjoining each other spaced recesses 5a and 5b.
  • This recess 5a, 5b serve to hold turbine blades 6a, 6b each form a blade row 16 or 17.
  • the clarity for the sake of further recesses and in it arranged blades not shown.
  • Guide vane row 21 is provided before each row of blades 16, 17 is a corresponding one on the housing 19 Guide vane row 21 is provided.
  • the cavity 7 closed by the cover 11 takes place an intermediate overheating of the steam serving as cooling fluid 4b instead, which in addition to cooling the turbine shaft 1, if necessary also an increase in efficiency of the steam turbine 15 can be reached.
  • the through the feed line 8, the cavity 7 and discharge line 9 guided volume flow of steam 4b depends on the amount of heat to be dissipated, the output of the steam turbine 15 and other parameters. It can be between 1.5 % and 3.0% of the total live steam volume flow. Possibly is about an asymmetrical loading of the arranged left and right of the inflow area Turbine blades 6a, 6b due to the steam throughput to avoid a suitable division through the cavity 7 of the total live steam flow in two approximately the same partial flows flowing to the left or right are provided.
  • FIG. 2 shows a longitudinal flow of a single-flow medium-pressure steam turbine 15 shown, with the clarity for the sake of only the one above a main axis 2 Part is shown.
  • the steam turbine 15 has a housing 19, in which an extending along the main axis 2 Turbine shaft 1 is shown. In an end region 18 the turbine shaft 1 with a shaft seal 24 opposite Housing 19 sealed.
  • the steam 4a for driving the turbine shaft 1 is through a steam inlet 22 of the steam turbine 15 fed and flows substantially along the Main axis 2 by alternating rows of blades 16,17 and guide vane rows 21 to an outflow nozzle 23.
  • An inflow region adjoins the steam inlet 22 3, that between the end region 18 and the first row of blades 16 lies.
  • the Turbine shaft 1 has a cavity 7, which with a cover 11 is closed towards the inflow region 3. Downstream the first blade row 16 carries a feed line 8 the turbine shaft 1 through to the cavity 7. From this Cavity 7 leads a discharge line 9 through the turbine shaft 1 through to the shaft seal 24 and from there through the housing 19 through to a tap 20. Between the first Blade row 16 and the tap 20 is located Temperature and / or pressure difference before, so that steam 4b without additional coercive measures through the supply line 8 in the Cavity 7 and from there via the lead 9 to the tap 20 flows.
  • This steam 4b takes over the walls, in particular the cover 11, heat from the turbine shaft 1, and thus causes cooling of the turbine shaft 1 Absorbing the heat, the steam 4b is reheated in the cavity 7 and can therefore continue for the entire Steam process optionally used to increase efficiency become.
  • the lead 8 and the derivative 9 can be constructive simply be designed as holes.
  • the invention is characterized by a turbine shaft, which in a thermally highly stressed inflow area Has cavity, the fluid for cooling can be supplied.
  • the cooling fluid supplied to the cavity is preferably made of the total flow of steam driving the turbine shaft or Branched gas.
  • Through a fluidic connection of the Cavity in areas where different pressure and / or temperature states of the steam or gas prevail, is a constant without additional coercive measures Guaranteed flow through the cavity.
  • Through the Walls of the cavity find heat transfer from the turbine shaft on the cooling fluid, in particular Water vapor, instead, which ensures safe cooling of the turbine shaft and there is an intermediate overheating of the cooling fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Articles (AREA)

Claims (10)

  1. Arbre (1) de turbine qui s'étend le long d'un axe (2) principal, et qui comprend une partie (3) d'afflux de fluide (4a) d'action, au moins deux évidements (5a, 5b) à distance axialement entre eux, ainsi que de la partie (3) d'afflux, de réception d'au moins respectivement une aube (6a, 6b) de turbine, caractérisé en ce que l'arbre de la turbine a une cavité (7) qui est associée à la partie (3) d'afflux et qui communique avec un conduit (8) d'entrée et un conduit (9) de sortie d'un courant partiel du fluide d'action servant de fluide (4b) de refroidissement, le conduit d'entrée (8) débouchant en aval d'une première cavité (5a) et le conduit (9) de sortie en aval d'une autre cavité (5b) plus en aval sur la surface (12) de l'arbre.
  2. Arbre (1) de turbine suivant la revendication 1, dans lequel la partie (3) d'afflux est disposée pour la répartition du courant de fluide en direction de l'axe (2) principal dans sa partie (10) médiane.
  3. Arbre (1) de turbine suivant la revendication 1 ou 2, dans une turbine (15) à vapeur, notamment dans une sous-turbine moyenne pression à deux flux.
  4. Arbre (1) de turbine suivant la revendication 3, dans laquelle le conduit (8) d'entrée débouche sur la surface (12) de l'arbre en aval d'une première rangée (16) d'aubes mobiles et le conduit (9) de sortie en aval d'une deuxième rangée (17) d'aubes mobiles, qui est disposée en aval de la première rangée (16) d'aubes mobiles.
  5. Turbine à vapeur, notamment sous-turbine moyenne pression à un seul flux, comprenant un carter (19) ayant un arbre (1) de turbine qui s'étend le long de l'axe (2) principal, une partie (3) d'afflux de fluide (4a) d'action, au moins deux évidements (5a, 5b) à distance axialement entre eux ainsi que de la partie (3) d'afflux, de réception d'au moins respectivement une aube (6a, 6b) de turbine, caractérisée en ce que la turbine à vapeur a une cavité (7) qui est disposée sur l'arbre (1) de la turbine, qui est associée à la partie (3) d'afflux et qui communique avec un conduit (8) d'entrée et avec un conduit (9) de sortie d'un courant partiel du fluide d'action servant de fluide (4b) de refroidissement, le conduit (8) d'entrée débouchant en aval d'une première cavité (5a) sur la surface (12) de l'arbre et le conduit (9) de sortie pénétrant par une partie (18) d'extrémité de l'arbre (1) de la turbine à l'intérieur du carter (19) et allant jusqu'à une partie en aval d'une cavité (5b) disposée plus en aval.
  6. Turbine à vapeur (1) suivant la revendication 5, dans lequel le conduit (9) de sortie débouche dans un ajutage (20) placé en aval d'une première rangée (16) d'aubes mobiles.
  7. Turbine à vapeur (1) suivant l'une des revendications précédentes, dans lequel la cavité (7) est fermée par un couvercle (11).
  8. Turbine à vapeur (1) suivant l'une des revendications précédentes, dans lequel le conduit (8) d'entrée et/ou le conduit (9) de sortie a ou ont un trou (13) dans une grande mesure axial et un autre trou (14) dans une grande mesure radial.
  9. Procédé de refroidissement d'une partie (3) d'afflux d'un arbre (1) de turbine disposé dans une turbine (15) à vapeur, caractérisé en ce que l'on envoie à une cavité (7) de la surface (12) de l'arbre qui est disposée dans l'arbre (1) de la turbine, qui s'est associée à la partie (3) d'afflux, en aval d'une première rangée (16) d'aubes mobiles, un courant partiel du fluide d'action servant de fluide (4b) de refroidissement à un premier niveau de pression et on le fait sortir de l'arbre (1) de la turbine à un deuxième niveau de pression plus bas que le premier par un conduit (9) de sortie débouchant sur la surface (12) de l'arbre.
  10. Procédé suivant la revendication 9, dans lequel on envoie dans une turbine (15) à vapeur à la cavité (7), comme fluide (4b) de refroidissement, un courant en volume de vapeur représentant de 1,0 % à 4,0 % et notamment de 1,5 % à 3 % du courant total en volume de vapeur fraíche.
EP97924884A 1996-05-23 1997-05-14 Arbre de turbine et procede de refroidissement d'un arbre de turbine Expired - Lifetime EP0900322B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19620828A DE19620828C1 (de) 1996-05-23 1996-05-23 Turbinenwelle sowie Verfahren zur Kühlung einer Turbinenwelle
DE19620828 1996-05-23
PCT/DE1997/000970 WO1997044568A1 (fr) 1996-05-23 1997-05-14 Arbre de turbine et procede de refroidissement d'un arbre de turbine

Publications (2)

Publication Number Publication Date
EP0900322A1 EP0900322A1 (fr) 1999-03-10
EP0900322B1 true EP0900322B1 (fr) 2003-08-20

Family

ID=7795152

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97924884A Expired - Lifetime EP0900322B1 (fr) 1996-05-23 1997-05-14 Arbre de turbine et procede de refroidissement d'un arbre de turbine

Country Status (10)

Country Link
US (1) US6082962A (fr)
EP (1) EP0900322B1 (fr)
JP (1) JP3943135B2 (fr)
CN (1) CN1079491C (fr)
AT (1) ATE247767T1 (fr)
CZ (1) CZ296698A3 (fr)
DE (2) DE19620828C1 (fr)
ES (1) ES2206713T3 (fr)
PL (1) PL329689A1 (fr)
WO (1) WO1997044568A1 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1378630A1 (fr) * 2002-07-01 2004-01-07 ALSTOM (Switzerland) Ltd Turbine à vapeur
EP1452688A1 (fr) * 2003-02-05 2004-09-01 Siemens Aktiengesellschaft Rotor pour une turbine à vapeur, procédé et utilisation de refroidissement d'un tel rotor
DE50312764D1 (de) * 2003-03-06 2010-07-15 Siemens Ag Verfahren zur Kühlung einer Strömungsmaschine und Strömungsmaschine dafür
DE10355738A1 (de) 2003-11-28 2005-06-16 Alstom Technology Ltd Rotor für eine Turbine
EP1705339B1 (fr) * 2005-03-23 2016-11-30 General Electric Technology GmbH Arbre de rotor, particulièrement pour une turbine à gaz
US7357618B2 (en) * 2005-05-25 2008-04-15 General Electric Company Flow splitter for steam turbines
EP1785586B1 (fr) * 2005-10-20 2014-05-07 Siemens Aktiengesellschaft Rotor d'une turbomachine
EP1780376A1 (fr) 2005-10-31 2007-05-02 Siemens Aktiengesellschaft Turbine à vapeur
US7322789B2 (en) * 2005-11-07 2008-01-29 General Electric Company Methods and apparatus for channeling steam flow to turbines
EP1806476A1 (fr) * 2006-01-05 2007-07-11 Siemens Aktiengesellschaft Turbine pour une centrale thermique
PL1892376T3 (pl) * 2006-08-25 2013-11-29 Siemens Ag Chłodzony wirnik turbiny parowej z rurą wewnętrzną
JP4908137B2 (ja) * 2006-10-04 2012-04-04 株式会社東芝 タービンロータおよび蒸気タービン
EP2093866A1 (fr) * 2008-02-25 2009-08-26 Siemens Aktiengesellschaft Machine dynamoélectrique
US8317458B2 (en) * 2008-02-28 2012-11-27 General Electric Company Apparatus and method for double flow turbine tub region cooling
US8096748B2 (en) * 2008-05-15 2012-01-17 General Electric Company Apparatus and method for double flow turbine first stage cooling
CH699978A1 (de) 2008-11-26 2010-05-31 Alstom Technology Ltd Dampfturbine.
EP2211017A1 (fr) * 2009-01-27 2010-07-28 Siemens Aktiengesellschaft Rotor doté d'un espace creux pour une turbomachine
CH701914A1 (de) * 2009-09-30 2011-03-31 Alstom Technology Ltd Dampfturbine mit Entlastungsnut am Rotor im Bereich des Schubausgleichskolbens.
EP2412937A1 (fr) * 2010-07-30 2012-02-01 Siemens Aktiengesellschaft Turbine à vapeur et procédé de refroidissement de celle-ci
US20120067054A1 (en) * 2010-09-21 2012-03-22 Palmer Labs, Llc High efficiency power production methods, assemblies, and systems
CN103174464B (zh) * 2011-12-22 2015-02-11 北京全四维动力科技有限公司 一种中部进汽双向流动结构的汽轮机转子冷却系统
CN103603694B (zh) * 2013-12-04 2015-07-29 上海金通灵动力科技有限公司 一种降低汽轮机主轴轴承处工作温度的结构
US9702261B2 (en) 2013-12-06 2017-07-11 General Electric Company Steam turbine and methods of assembling the same
EP3009610B1 (fr) * 2014-10-14 2020-11-25 General Electric Technology GmbH Agencement d'étanchéité d'un arbre d'une turbine à vapeur
CN109386317B (zh) * 2017-08-09 2022-01-11 西门子公司 蒸汽轮机与燃气轮机以及其末级结构
CN111520195B (zh) * 2020-04-03 2022-05-10 东方电气集团东方汽轮机有限公司 一种汽轮机低压进汽室导流结构及其参数设计方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH133001A (de) * 1928-06-11 1929-05-15 Bbc Brown Boveri & Cie Einrichtung zur Heizung von Scheibenrotoren bei Dampf- und Gasturbinen.
CH341940A (de) * 1956-08-08 1959-10-31 Bbc Brown Boveri & Cie Einrichtung zum Stabilisieren des Betriebes mehrstufiger parallel geschalteter Kreiselverdichter
US3291447A (en) * 1965-02-15 1966-12-13 Gen Electric Steam turbine rotor cooling
JPS5650084B2 (fr) * 1972-04-26 1981-11-26
JPS5857606B2 (ja) * 1981-12-11 1983-12-21 株式会社東芝 蒸気タ−ビン
US4465429A (en) * 1982-02-01 1984-08-14 Westinghouse Electric Corp. Steam turbine with superheated blade disc cavities
JPS58133402A (ja) * 1982-02-04 1983-08-09 Toshiba Corp 軸流タ−ビンのロ−タ冷却機構
DE3209506A1 (de) * 1982-03-16 1983-09-22 Kraftwerk Union AG, 4330 Mülheim Axial beaufschlagte dampfturbine, insbesondere in zweiflutiger ausfuehrung
JPS59153901A (ja) * 1983-02-21 1984-09-01 Fuji Electric Co Ltd 蒸気タ−ビンロ−タの冷却装置
JPS59155503A (ja) * 1983-02-24 1984-09-04 Toshiba Corp 軸流タ−ビンのロ−タ冷却装置
JPS60159304A (ja) * 1984-01-27 1985-08-20 Toshiba Corp 蒸気タ−ビンのデイスク冷却装置
FR2666846B1 (fr) * 1990-09-13 1992-10-16 Alsthom Gec Grille d'aubes pour turbomachine munie de fentes d'aspiration dans le plafond et/ou dans le plancher et turbomachine comportant ces grilles.

Also Published As

Publication number Publication date
US6082962A (en) 2000-07-04
CN1079491C (zh) 2002-02-20
JP3943135B2 (ja) 2007-07-11
CZ296698A3 (cs) 1999-02-17
JP2000511257A (ja) 2000-08-29
EP0900322A1 (fr) 1999-03-10
DE59710620D1 (de) 2003-09-25
ATE247767T1 (de) 2003-09-15
PL329689A1 (en) 1999-04-12
WO1997044568A1 (fr) 1997-11-27
ES2206713T3 (es) 2004-05-16
DE19620828C1 (de) 1997-09-04
CN1217042A (zh) 1999-05-19

Similar Documents

Publication Publication Date Title
EP0900322B1 (fr) Arbre de turbine et procede de refroidissement d'un arbre de turbine
EP0906494B1 (fr) Arbre de turbine et procede de refroidissement d'un arbre de turbine
EP0991850B1 (fr) Arbre de turbine a vapeur avec refroidissement interne et procede pour refroidir un arbre de turbine
EP1945911B1 (fr) Turbine à gaz
DE3407218C2 (de) Gasturbine
DE69937652T2 (de) Bürstendichtung für eine Turbomaschine
DE69713502T2 (de) Rotorkühlung für eine turbomaschine
DE69018338T2 (de) Gasturbine.
EP1389690A1 (fr) Vis intérieurement refroidissable
DE3428892A1 (de) Schaufel- und dichtspaltoptimierungseinrichtung fuer verdichter von gasturbinentriebwerken, insbesondere gasturbinenstrahltriebwerken
EP2596213B1 (fr) Turbine à vapeur avec un refroidissement interne
EP0953099B1 (fr) Turbine a vapeur
EP2078137B1 (fr) Rotor pour une turbomachine
EP0122872A1 (fr) Turbine de vapeur de moyenne pression pour une installation de vapeur de haute température avec réchauffage intermédiaire
EP1413711B1 (fr) Turbine à gaz et méthode de refroidissement d'une turbine à gaz
EP1206627A1 (fr) Turbine et procede pour evacuer du fluide de fuite
EP2718545B1 (fr) Turbine à vapeur comprenant un piston de compensation
DE830853C (de) Duesenring fuer mit hohen Betriebstemperaturen arbeitende Turbinen, insbesondere Gasturbinen
EP1280980A1 (fr) Procede pour le refroidissement d'un arbre dans un segment d'expansion haute pression d'une turbine a vapeur
DE60224746T2 (de) Dampfrohrleitungsstruktur einer Gasturbine
DE1941873A1 (de) Gaturbinentriebwerk
EP2324208B1 (fr) Support d'aube directrice de turbine pour une turbine à gaz
EP2598724A1 (fr) Turbine à vapeur et procédé pour refroidir une turbine à vapeur
EP1788191A1 (fr) Turbine à vapeur et procédé pour le refroidissement d'une turbine à vapeur
EP3183426B1 (fr) Refroidissement contrôlé d'arbres de turbines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SERVOPATENT GMBH

REF Corresponds to:

Ref document number: 59710620

Country of ref document: DE

Date of ref document: 20030925

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031120

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040514

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2206713

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040524

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160627

Year of fee payment: 20

Ref country code: GB

Payment date: 20160512

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160527

Year of fee payment: 20

Ref country code: FR

Payment date: 20160512

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160802

Year of fee payment: 20

Ref country code: DE

Payment date: 20160720

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59710620

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170513

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170515