EP1785586B1 - Rotor d'une turbomachine - Google Patents

Rotor d'une turbomachine Download PDF

Info

Publication number
EP1785586B1
EP1785586B1 EP20050022933 EP05022933A EP1785586B1 EP 1785586 B1 EP1785586 B1 EP 1785586B1 EP 20050022933 EP20050022933 EP 20050022933 EP 05022933 A EP05022933 A EP 05022933A EP 1785586 B1 EP1785586 B1 EP 1785586B1
Authority
EP
European Patent Office
Prior art keywords
rotor
groove
rotor shaft
coolant
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP20050022933
Other languages
German (de)
English (en)
Other versions
EP1785586A1 (fr
Inventor
Thomas Dr. Thiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP20050022933 priority Critical patent/EP1785586B1/fr
Publication of EP1785586A1 publication Critical patent/EP1785586A1/fr
Application granted granted Critical
Publication of EP1785586B1 publication Critical patent/EP1785586B1/fr
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/084Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • F01D5/088Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in a closed cavity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam

Definitions

  • the invention relates to a rotor of a turbomachine, in particular a steam and / or gas turbine, with a rotor shaft. Furthermore, the invention relates to a method for partially cooling a rotor shaft of a rotor of a turbomachine, in particular a steam and / or gas turbine.
  • the blades arranged on the rotor shaft of the rotor are subjected to a hot working gas which, for example in the case of a steam turbine, is steam.
  • the hot working gas flowing around the rotor causes a heat input into the rotor shaft of the rotor, on the one hand as a result of direct contact of the hot working gas with the rotor shaft and, on the other hand, due to heating of the rotor blades arranged on the rotor shaft.
  • that rotor shaft section is exposed to a strong heat input, which is opposite to the inlet opening for the hot working gas.
  • the maximum permissible inlet temperature of the hot working gas is limited, inter alia, by the strength characteristic values of the rotor shaft in the inflow region.
  • the object of the invention is therefore to provide a rotor of a turbomachine, which can be used with a simultaneously simple design within an extended range of applications.
  • a method for partial cooling of a rotor shaft of a rotor In addition to be proposed with the invention, a method for partial cooling of a rotor shaft of a rotor.
  • the method is proposed to solve the above problem, a method for partially cooling a rotor shaft of a rotor of a turbomachine, in particular a steam and / or gas turbine, as specified in claim 9.
  • the rotor according to the invention is characterized by a rotor shaft which has a radially encircling groove providing a cavity.
  • This groove is formed in the particularly acted upon rotor shaft region, that is in the region of the rotor shaft, which is opposite to the inlet opening for the hot working gas.
  • a cooling medium is introduced for the purpose of partial cooling of the rotor shaft in this area.
  • the cavity provided by the groove is fluidly sealed on the one hand to a coolant supply line and on the other hand to a coolant discharge line.
  • the coolant supply line and the coolant discharge line are arranged circumferentially of the rotor shaft offset from one another, for example offset by 180 °. This ensures that the coolant introduced via the coolant supply line into the cavity provided by the groove completely flows through the radial circumferential groove before it reaches the coolant discharge line and is discharged therefrom.
  • the groove formed in the rotor shaft is preferably formed open on one side. This allows the simple formation of the groove, for example by means of a machining production.
  • the open side of the groove is preferably closed by means of a covering device, whereby a closed to the surrounding atmosphere cavity is formed.
  • a covering device for a fluid-tight configuration of the cavity provided by the groove is proposed according to a further feature of the invention that the covering is sealed by means of a seal against the guided through the rotor main flow.
  • the seal is preferably non-contact Formed seal, which ensures a sufficiently long life of the same.
  • the covering device is a ring which closes the open side of the radially encircling groove.
  • This embodiment of the covering has been found to be advantageous in particular for manufacturing reasons.
  • the installation of such a trained cover device is particularly simple. Nevertheless, it goes without saying that the covering device can then also be formed annularly in a different way.
  • the coolant is preferably a fluid taken from the main flow through the rotor.
  • a partial flow is taken downstream of the main flow guided by the rotor, which is preferably returned via the stator adjacent to the rotor and introduced via the feed line into the cavity provided by the groove formed in the rotor shaft.
  • the removal point for the partial flow is selected so that the diverted from the working gas partial flow has a significantly lower temperature than the introduced via the inlet into the rotor working gas.
  • the partial flow introduced into the cavity provided by the groove is fed back, at least after a partial passage of the cavity provided by the groove, to the main flow guided through the rotor, namely via the coolant discharge line.
  • the delivery point for transferring the partial flow back into the main flow should be chosen so that the working gas in the main flow in the region of the discharge point in about the same Temperature, as the returned to the main flow gas of the partial flow.
  • a closed cooling system is proposed in an advantageous manner.
  • the coolant is not introduced through external pipelines, but extracted exclusively from the main flow through the rotor.
  • the thermodynamic losses are limited due to the coolant withdrawn from the main flow, since the heated up as a result of cooling the rotor shaft coolant is fed back downstream of the sampling point of the blading.
  • the region of the rotor shaft which is particularly stressed by the introduction of the hot working gas into the rotor is partially cooled according to the invention, whereby an intensive local cooling of the inflow region of the rotor shaft is achieved.
  • the rotor shaft area that is subjected to particular pressure is provided with a groove and a cover ring, which is sealed to the main flow by means of a non-contact seal.
  • the coolant used is a fluid flow which is taken from the working gas flow conducted through the rotor.
  • This fluid or partial flow is supplied by one or more lines or by hollow or with correspondingly formed holes provided rotor blades at a certain circumferential position of the groove formed in the rotor shaft and derived via one or more lines at another circumferential position and the blading downstream again fed.
  • the intensity of the cooling can be adjusted via the design of the seal and the location of the coolant removal point or the coolant addition point. In steam turbines also offers the removal of the taps.
  • the rotor shaft is less subject to thermal stresses in this area.
  • the turbomachine can be operated with an overall hotter working gas, whereby the scope of application, that is, the range of applications is extended.
  • the rotor according to the invention impresses by its overall simple structure.
  • FIGURE 1 shows a schematic sectional view of the rotor and stator according to the invention.
  • FIG. 1 shows the rotor 1 according to the invention together with the stator 2.
  • the rotor 1 has a rotor shaft 3, which carries rotor blades 4 on the outer peripheral side.
  • the rotor shaft 3 is rotatably mounted in a conventional manner about the rotor shaft axis.
  • the hot working gas flowing into the rotor 1 passes through the inlet 5 into the rotor 1.
  • the rotor 1 is designed to be double-flowed, that is to say the hot working gas passing into the rotor 1 via the inlet 5 communicates with it Referring to the plane of the drawing of FIG. 1 in a main flow 7 to the left and in a main flow 7 to the right. After flowing through the rotor 1, the working gas is discharged via the outlets 6.
  • the rotor shaft 3 of the rotor 1 according to the invention has in the inlet region of the hot working gas via a radially circumferential groove 12.
  • This groove 12 is open on one side, and that on the stator side.
  • This open side of the groove 12 is closed by a cover 14, which is annular.
  • This annular covering device is sealed to the main flow 7 by means of a non-contact seal 15, so that the cavity 13 provided by the groove 12 is completely sealed from the surrounding atmosphere.
  • a coolant is introduced into the cavity 13 provided by the groove 12.
  • the cavity 13 provided by the groove 12 is fluidly connected both to a coolant supply line 10 and to a coolant discharge line 11.
  • the partial flow 9a to be supplied to the cavity 13 is taken from the main flow 7 at the removal point 16.
  • the partial flow 9b heated up as a result of the rotor shaft cooling returns via the coolant discharge line 11 into the main flow 7.
  • the stator 2 has a further bore 8 at the discharge point 17, via which the returned partial flow 9b returns can get into the mainstream 7.
  • the temperature of the past at the removal point 16 working gas is lowered so far compared to the temperature of reaching via the inlet 5 in the rotor 1 working gas that by the branched off therefrom and led to the cavity 13 partial flow partial cooling of the rotor shaft 3 in hot working gas acted rotor shaft area can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (9)

  1. Turbine à vapeur comprenant un carter ( 2a, 2b ), un arbre ( 3 ) rotorique monté tournant et un canal d'écoulement constitué entre le carter ( 2a, 2b ) et l'arbre ( 3 ) rotorique,
    dans lequel l'arbre ( 3 ) rotorique a une rainure ( 12 ) faisant le tour radialement et ménageant une cavité ( 13 ), dans laquelle la rainure ( 12 ) est pourvue d'un dispositif ( 14 ) de recouvrement, qui sépare le canal d'écoulement de la rainure ( 12 ),
    dans laquelle la rainure ( 12 ) est, en vue de l'apport et de l'évacuation d'un fluide de refroidissement, raccordée fluidiquement d'une part à un conduit ( 10 ) d'apport de fluide de refroidissement et d'autre part à un conduit ( 11 ) d'évacuation de fluide de refroidissement,
    caractérisée en ce que
    le dispositif ( 14 ) de recouvrement est, pour l'apport et l'évacuation du fluide de refroidissement, constitué de trous ou d'aubes directrices réalisées creuses,
    dans laquelle le conduit ( 10 ) d'apport de fluide de refroidissement et le conduit ( 11 ) d'évacuation de fluide de refroidissement sont disposés du côté du pourtour de l'arbre ( 3 ) rotorique en étant décalés l'un par rapport à l'autre.
  2. Turbine à vapeur suivant la revendication 1,
    dans laquelle le dispositif ( 14 ) de recouvrement est, pour l'apport et l'évacuation du fluide de refroidissement, constitué de trous ou de conduits.
  3. Turbine à vapeur suivant la revendication 1,
    dans laquelle le décalage est sensiblement de 180°.
  4. Turbine à vapeur suivant l'une des revendications précédentes, dans laquelle le dispositif ( 14 ) de recouvrement est rendu étanche par rapport à la rainure ( 12 ) au moyen d'une étanchéité ( 15 ).
  5. Turbine à vapeur suivant la revendication 4,
    dans laquelle l'étanchéité ( 15 ) est une étanchéité sans contact.
  6. Turbine à vapeur suivant l'une des revendications précédentes, dans laquelle dans la carcasse ( 2a ) est réalisé un trou ( 8 ) d'apport, qui met le canal d'écoulement en communication fluidiquement avec le conduit d'apport.
  7. Turbine à vapeur suivant l'une des revendications précédentes, dans laquelle dans la carcasse ( 2a ) est réalisé un trou d'évacuation, qui met le canal d'écoulement en communication fluidiquement avec le conduit d'évacuation.
  8. Turbine à vapeur suivant l'une des revendications 6 ou 7, dans laquelle le fluide de refroidissement est un fluide prélevé du courant ( 7 ) principal passant dans le rotor ( 1 ).
  9. Procédé de refroidissement partiel d'un arbre ( 3 ) rotorique d'un rotor ( 1 ) d'une turbomachine,
    notamment d'une turbine à vapeur et/ou à gaz,
    dans lequel on prélève un courant ( 9 ) partiel du courant ( 7 ) principal passant dans le rotor ( 1 ),
    dans lequel on envoie le courant ( 9 ) partiel afin de refroidir l'arbre rotorique dans une rainure ( 12 ) constituée de manière à faire le tour radialement de l'arbre ( 3 ) rotorique et à ménager une cavité ( 13 ),
    dans laquelle on fait passer le courant ( 9 ) partiel dans la cavité ( 13 ) ménagée par la rainure ( 12 ) et
    dans laquelle on envoie à nouveau le courant ( 9 ) partiel, après qu'il a passé au moins en partie dans la cavité ( 13 ) ménagée par la rainure ( 12 ), dans le courant ( 7 ) principal passant dans le rotor ( 1 ),
    dans lequel le courant partiel est introduit dans la rainure et en est évacué avec un décalage respectif du côté du pourtour de l'arbre rotorique.
EP20050022933 2005-10-20 2005-10-20 Rotor d'une turbomachine Ceased EP1785586B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20050022933 EP1785586B1 (fr) 2005-10-20 2005-10-20 Rotor d'une turbomachine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20050022933 EP1785586B1 (fr) 2005-10-20 2005-10-20 Rotor d'une turbomachine

Publications (2)

Publication Number Publication Date
EP1785586A1 EP1785586A1 (fr) 2007-05-16
EP1785586B1 true EP1785586B1 (fr) 2014-05-07

Family

ID=35788232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050022933 Ceased EP1785586B1 (fr) 2005-10-20 2005-10-20 Rotor d'une turbomachine

Country Status (1)

Country Link
EP (1) EP1785586B1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2031183B1 (fr) * 2007-08-28 2015-04-29 Siemens Aktiengesellschaft Arbre de turbine à vapeur doté d'une couche d'isolation thermique
EP2412937A1 (fr) * 2010-07-30 2012-02-01 Siemens Aktiengesellschaft Turbine à vapeur et procédé de refroidissement de celle-ci

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3429557A (en) * 1966-06-30 1969-02-25 Gen Electric Steam turbine rotor cooling arrangement
JPS59153901A (ja) * 1983-02-21 1984-09-01 Fuji Electric Co Ltd 蒸気タ−ビンロ−タの冷却装置
DE3424139C2 (de) * 1984-06-30 1996-02-22 Bbc Brown Boveri & Cie Gasturbinenrotor
US4668161A (en) * 1985-05-31 1987-05-26 General Electric Company Ventilation of turbine components
DE19620828C1 (de) * 1996-05-23 1997-09-04 Siemens Ag Turbinenwelle sowie Verfahren zur Kühlung einer Turbinenwelle
JP3943136B2 (ja) * 1996-06-21 2007-07-11 シーメンス アクチエンゲゼルシヤフト 双流形タービン用のタービン軸および双流形タービン用のタービン軸の冷却方法
DE19742621A1 (de) * 1997-09-26 1999-04-08 Siemens Ag Bauteil, insbesondere für eine Wellendichtung einer Strömungsmaschine
EP1452688A1 (fr) * 2003-02-05 2004-09-01 Siemens Aktiengesellschaft Rotor pour une turbine à vapeur, procédé et utilisation de refroidissement d'un tel rotor

Also Published As

Publication number Publication date
EP1785586A1 (fr) 2007-05-16

Similar Documents

Publication Publication Date Title
DE60203959T2 (de) Luftgekühltes Abgasgehäuse für eine Gasturbine
DE10009655C1 (de) Kühlluftsystem
EP2430315B1 (fr) Dispositif d'écoulement à refroidissement de cavités
EP1774140B1 (fr) Turbine a vapeur et procede pour faire fonctionner une turbine a vapeur
EP0902164A1 (fr) Refroidissement de la platte-forme dans les turbines à gas
EP2596213B1 (fr) Turbine à vapeur avec un refroidissement interne
WO1997044568A1 (fr) Arbre de turbine et procede de refroidissement d'un arbre de turbine
WO2017029008A1 (fr) Refroidissement de rotor pour turbine à vapeur
EP2718545B1 (fr) Turbine à vapeur comprenant un piston de compensation
EP3155226B1 (fr) Turbine à vapeur et procédé de fonctionnement d'une turbine à vapeur
EP3495639B1 (fr) Module de compresseur pour une turbomachine réduisant la couche limite dans un carter intermédiaire de compresseur
EP1785586B1 (fr) Rotor d'une turbomachine
EP3095957A1 (fr) Rotor pour une turbomachine thermique
EP2997236B1 (fr) Turbine à vapeur
DE19643716A1 (de) Schaufelträger für einen Verdichter
DE102010035393B4 (de) Turbine und Verfahren zum Betrieb einer Turbine für ein CAES-System
DE102014117263A1 (de) Dampfturbine und Verfahren zur Montage derselben
EP2598724B1 (fr) Turbine à vapeur et procédé pour refroidir une turbine à vapeur
DE102012023626A1 (de) Hochdruck-Verdichter, insbesondere einer Gasturbine
DE102012107224A1 (de) Segmentierte Gebläseanordnung
EP3004741B1 (fr) Chambre de combustion tubulaire dotée d'une zone d'extrémité et turbine à gaz
WO2010018021A1 (fr) Réduction de la charge thermique d’un boîtier extérieur pour une turbomachine
EP1788191A1 (fr) Turbine à vapeur et procédé pour le refroidissement d'une turbine à vapeur
EP3183426B1 (fr) Refroidissement contrôlé d'arbres de turbines
DE102006010863B4 (de) Turbomaschine, insbesondere Verdichter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070605

AKX Designation fees paid

Designated state(s): CH DE GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20130620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502005014333

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01D0005080000

Ipc: F01D0025320000

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 25/24 20060101ALI20131015BHEP

Ipc: F01D 9/06 20060101ALI20131015BHEP

Ipc: F01D 25/14 20060101ALI20131015BHEP

Ipc: F01D 5/08 20060101ALI20131015BHEP

Ipc: F01D 25/32 20060101AFI20131015BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005014333

Country of ref document: DE

Effective date: 20140618

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005014333

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005014333

Country of ref document: DE

Effective date: 20150210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151005

Year of fee payment: 11

Ref country code: IT

Payment date: 20151027

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160112

Year of fee payment: 11

Ref country code: DE

Payment date: 20151218

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005014333

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161020

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161020