EP0898798A1 - Optischer faserverstärker für wellenlängen-multiplexbetrieb - Google Patents

Optischer faserverstärker für wellenlängen-multiplexbetrieb

Info

Publication number
EP0898798A1
EP0898798A1 EP97949971A EP97949971A EP0898798A1 EP 0898798 A1 EP0898798 A1 EP 0898798A1 EP 97949971 A EP97949971 A EP 97949971A EP 97949971 A EP97949971 A EP 97949971A EP 0898798 A1 EP0898798 A1 EP 0898798A1
Authority
EP
European Patent Office
Prior art keywords
amplifier
ovl
gain
constant
fiber amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97949971A
Other languages
German (de)
English (en)
French (fr)
Inventor
Peter Krummrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0898798A1 publication Critical patent/EP0898798A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/296Transient power control, e.g. due to channel add/drop or rapid fluctuations in the input power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/003Devices including multiple stages, e.g., multi-stage optical amplifiers or dispersion compensators

Definitions

  • the invention relates to a fiber amplifier for wavelength division multiplexing.
  • Wavelength division multiplexing offers the possibility of increasing the transmission capacity of optical transmission systems.
  • fiber amplifiers are provided, which usually amplify all signals transmitted in different channels together.
  • the amplifiers In order to avoid differences in quality in the transmitted signals as much as possible, the amplifiers must amplify in all channels as equally as possible: in the wavelength range used, therefore, have a flat “gain spectrum” (a uniform amplification).
  • the total power at the output of an amplifier is usually kept constant with the aid of a control loop. If, however, the sections of the route between the amplifiers have different attenuations, then the amplifiers are operated with different input powers and therefore with different amplifications in order to keep the output power constant. Without additional measures, however, the required flat gain spectrum then "tilts", i.e. that different amplifications occur for different wavelengths, so that the flat gain spectrum (gain) plotted over the wavelength rotates
  • Tilts This is the case with fiber amplifiers that are doped with ions from the rare earth group.
  • the problem of this gain spectrum tilting is kept within limits by restricting the permissible signal power range at the inputs of the optical fiber amplifiers. If the signal levels at the inputs of the individual amplifiers deviate only slightly from one another, the resulting level deviations between the individual channels can usually still be compensated for by system reserves at the end of a transmission path.
  • the object of the invention is to provide a fiber amplifier whose gain spectrum practically does not change in the wavelength range used with different input powers.
  • the use of two amplifier stages connected in a chain is particularly advantageous, an attenuator being inserted between the amplifier stages.
  • an attenuator By connecting the amplifier stages in series, a higher gain can be achieved and a large input power range can be processed.
  • a constant input level is fed to the second amplifier and through the attenuator, so that the output level can be controlled both for a constant gain and for a constant output signal.
  • the gain With the controllable attenuator, the gain can be kept constant at different input powers, so that the output spectrum does not tilt (gain tilt).
  • the gain (gain) of both amplifier stages is designed so that compensate for their drop in profits as much as possible. A desired tilt can also be set.
  • the use of at least two separate amplifier stages enables very favorable noise characteristics, since the first optical amplifier can be optimized with regard to noise.
  • the arrangement of the attenuator between the amplifiers has the advantage that only the lower output power of the first optical amplifier is attenuated and less power losses occur than when the attenuator is attached to the output of the second optical amplifier. This arrangement is also favorable with regard to the noise behavior.
  • more than two amplifier stages can also be provided. Additional controllable attenuators can be inserted between these additional amplifier stages.
  • Figure 1 shows a preferred embodiment of the invention
  • Figure 2 shows the basic circuit diagram of a regulated amplifier stage.
  • FIG. 1 shows the series connection of a first optical amplifier stage OV1, a controllable attenuator DG, an optical filter OF and a second optical amplifier stage 0V2 shown.
  • An optical signal OS fed to the input 1 of the series circuit is amplified by a constant factor and then reduced to a constant level by the controllable attenuator DG.
  • the second optical amplifier stage amplifies this signal (mostly) to a desired constant output level, which is present at output 2.
  • both the output level and the gain can be regulated to a constant value. Due to the constant gain (amplification), there is no tilting (distortion) of the gain spectrum (signal spectrum). Any remaining deviations of the resulting output spectrum of the entire amplifier from the ideal flat profile can be compensated for with the aid of a fixed filter inserted between the amplifiers.
  • HP8158B from HEWLETT PACKARD are well-known industrial products.
  • a controllable optical amplifier stage OV is shown in FIG.
  • the amplifier part consists of a pump coupler PK, via which pump radiation from a pump laser PL is coupled, and a doped fiber FA.
  • the input power at input E is measured via a first coupler KOI and an optical receiver OE1; via a second one arranged at the output A of the optical amplifier
  • Coupler K02 and a second optical receiver 0E2 the output power is measured and, after the attenuation of the corresponding electrical signal in an attenuator KD, compared with the input power in a laser control LS.
  • the pump laser PL is readjusted accordingly so that the gain (gain) is constant. It can both the total output power as well - if appropriate selective evaluation - the power of a particular signal can be used for control.
  • the control can be modified in the second optical amplifier of the circuit shown in FIG. Both a comparison between the input power and a constant output value and the output power with a constant reference value can be compared, i.e. the output variable is kept constant.
  • regulation of the second amplifier stage can be dispensed with, since its input signal is constant and the amplification can be set to be sufficiently constant via the pump laser.
  • the entire fiber amplifier is optimized with regard to its noise behavior, in particular by optimizing its first amplifier stage with regard to its noise behavior as part of the required amplification.
  • the noise behavior deteriorates somewhat again due to the attenuator, this effect is negligible due to the gain of the first amplifier stage, which clearly exceeds the attenuation.
  • a further amplifier stage can also be connected upstream or downstream of the fiber amplifier shown in FIG. 1, further controllable attenuators and optical filters being inserted if necessary.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)
EP97949971A 1996-12-20 1997-11-27 Optischer faserverstärker für wellenlängen-multiplexbetrieb Withdrawn EP0898798A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19653466 1996-12-20
DE19653466 1996-12-20
PCT/DE1997/002782 WO1998028826A1 (de) 1996-12-20 1997-11-27 Optischer faserverstärker für wellenlängen-multiplexbetrieb

Publications (1)

Publication Number Publication Date
EP0898798A1 true EP0898798A1 (de) 1999-03-03

Family

ID=7815650

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97949971A Withdrawn EP0898798A1 (de) 1996-12-20 1997-11-27 Optischer faserverstärker für wellenlängen-multiplexbetrieb

Country Status (6)

Country Link
EP (1) EP0898798A1 (ru)
JP (1) JP2000505954A (ru)
CN (1) CN1216641A (ru)
AU (1) AU5309298A (ru)
RU (1) RU98117454A (ru)
WO (1) WO1998028826A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19838788A1 (de) 1998-08-26 2000-03-09 Siemens Ag Geregelter optischer Verstärker

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406404A (en) * 1993-11-02 1995-04-11 At&T Corp. Method of mitigating gain peaking using a chain of fiber amplifiers
CA2139957C (en) * 1994-02-18 1999-02-09 Andrew R. Chraplyvy Multi-channel optical fiber communication system
US5539563A (en) * 1994-05-31 1996-07-23 At&T Corp. System and method for simultaneously compensating for chromatic dispersion and self phase modulation in optical fibers
PE41196A1 (es) * 1994-07-25 1996-12-17 Pirelli Cavi Spa Sistema de telecomunicacion amplificado para transmisiones en multiplex por division de longitud de onda, capaz de limitar las variaciones en la potencia de salida
JPH08248455A (ja) * 1995-03-09 1996-09-27 Fujitsu Ltd 波長多重用光増幅器
JP3739453B2 (ja) * 1995-11-29 2006-01-25 富士通株式会社 光増幅器及び該光増幅器を備えた光通信システム
JP3298396B2 (ja) * 1996-02-06 2002-07-02 日本電信電話株式会社 光増幅器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9828826A1 *

Also Published As

Publication number Publication date
AU5309298A (en) 1998-07-17
CN1216641A (zh) 1999-05-12
JP2000505954A (ja) 2000-05-16
RU98117454A (ru) 2000-07-20
WO1998028826A1 (de) 1998-07-02

Similar Documents

Publication Publication Date Title
DE69627438T2 (de) Verfahren und Vorrichtung zum Niveauausgleich der Leistung der Kanäle eines spektral gemultiplexten optischen Signals
DE69830145T2 (de) Faseroptischer verstärker mit variabler verstärkung
EP0895369B1 (de) Verfahren und optisches Überttragungssystem zur Kompensation von Dispersion in optischen Übertragungsstrecken
DE69936628T2 (de) Optischer Verstärker und Optisches Übertragungssystem für Wellenlängenmultiplexübertragung
DE60031141T2 (de) Lichtverstärker unter verwendung der ramanverstärkung und zugehöriges steuerungsverfahren
DE69834382T2 (de) Optische Verstärkungseinrichtung für Wellenlängenmultiplexsignale
EP0811280A1 (de) Optische verstärkereinrichtung
EP0590379A1 (de) Optische Übertragungseinrichtung für die Übertragung optischer Signale im Wellenlängenmultiplex auf einer Vielzahl benachbarter optischer Trägerwellenlängen
DE69503101T2 (de) Geregelter optischer Verstärker mit optischem Zirkulator
DE69825913T2 (de) Kontrolle eines optischen verstärker
DE69720974T2 (de) Dispersionskompensation bei faseroptischer übertragung
DE60000598T2 (de) Optisches übertragungssystem sowie optische verstärkungsvorrichtung, optische verstärkungseinheit und optischer koppler dafür
EP1034629A1 (de) Verfahren zur pegeleinstellung für optische signale
DE60304088T2 (de) Optischer Faserverstärker mit automatischer Leistungsregelungsfunktion und automatisches Leistungssteuerungsverfahren
DE602004006714T2 (de) Optischer Verstärker und Methode zur Kontrolle eines Raman-Verstärkers
DE60304143T2 (de) Ramanverstärker mit Verstärkungsregelung
EP0898798A1 (de) Optischer faserverstärker für wellenlängen-multiplexbetrieb
DE102004018166A1 (de) Verfahren zur Preemphase eines optischen Multiplexsignals
DE10048460B4 (de) Raman-Verstärker
DE10358698B4 (de) Verfahren zur Regelung der Pumpleistung eines optischen Verstärkers
DE69929645T2 (de) Optischer Verstärker, Übertragungsgerät, Übertragungssystem und Verfahren
DE60014823T2 (de) Breitbandiger ramanverstärker
DE10144948B4 (de) Verfahren zur Regelung einer Pumpeinrichtung bei optischer Verstärkung eines übertragenen Wellenlängen-Multiplex(-WDM)-Signals
EP0914012A2 (de) Vorrichtung zum Zusammenführen und Verstärken von zwei breitbandigen Signalen
DE10206181B4 (de) Verfahren zur Regelung der Signalverkippung in einem Wellenlängen.Multiplex-(WDM-)Übertragungssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980805

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20000601