EP0898010A2 - Verwendung von Aktivkohle und/oder Kohlenstoffmolekularsieben zur Verbesserung des Fogging-Verhaltens von Geweben, Ledern und Faserverbundwerkstoffen - Google Patents

Verwendung von Aktivkohle und/oder Kohlenstoffmolekularsieben zur Verbesserung des Fogging-Verhaltens von Geweben, Ledern und Faserverbundwerkstoffen Download PDF

Info

Publication number
EP0898010A2
EP0898010A2 EP98115547A EP98115547A EP0898010A2 EP 0898010 A2 EP0898010 A2 EP 0898010A2 EP 98115547 A EP98115547 A EP 98115547A EP 98115547 A EP98115547 A EP 98115547A EP 0898010 A2 EP0898010 A2 EP 0898010A2
Authority
EP
European Patent Office
Prior art keywords
polymer
use according
monomers
activated carbon
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98115547A
Other languages
English (en)
French (fr)
Other versions
EP0898010A3 (de
Inventor
Bradley Ronald Dr. Morrison
Roland Francois Eugene Offner
Ulrich Dr. Müller
Rainer Dr. Hummerich
Jürgen Dr. Schmidt-Thümmes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0898010A2 publication Critical patent/EP0898010A2/de
Publication of EP0898010A3 publication Critical patent/EP0898010A3/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C9/00Impregnating leather for preserving, waterproofing, making resistant to heat or similar purposes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0063Inorganic compounding ingredients, e.g. metals, carbon fibres, Na2CO3, metal layers; Post-treatment with inorganic compounds

Definitions

  • the present invention relates to the use of activated carbon and / or carbon molecular sieves to improve fogging behavior of fabrics, leathers and fiber composites that at least one polymeric binder based on at least one aqueous polymer dispersion of ethylenically unsaturated monomers contain.
  • fogging or window fogging is used in automotive engineering known for 25 years. It stands for the internal fogging of Windshields, especially windshields due to volatile Substances from the interior materials such as leather, Imitation leather, foils, textile fabrics, car carpets and other fiber composites that contain polymeric binders, e.g. B. Wheel arch covers.
  • Exterior materials such as leather, Imitation leather, foils, textile fabrics, car carpets and other fiber composites that contain polymeric binders, e.g. B. Wheel arch covers.
  • polymeric binders e.g. B. Wheel arch covers.
  • fogging is undesirable, on the one hand for aesthetic reasons Reasons and also for security reasons, because the Visibility even with the slightest fogging deposits, especially in the dark, are dramatically restricted. So far the efforts of the industry went, suitable substances to find, which are characterized by a low fogging potential (see e.g. Ullmann's Encyclopedia of Industrial Chemistry, 5th ed. On CD-ROM, Plasticizers 4.2.7). This effort was so far only a moderate success, because on the one hand the various aids with regard to their fogging behavior influence in various and unpredictable ways. On the other hand, there are the automotive interior materials due to the temperature peaks caused by solar radiation often exposed to extreme loads, so that degradation products form, which also contribute to fogging.
  • DE-A 30 23 023 basically discloses activated carbon for Use odor reduction of polymer dispersions.
  • the polymeric binder contain on the basis of aqueous polymer dispersions, e.g. B. fabrics, leathers, synthetic leather and fiber composites, can improve if one looks at the polymeric binders Activated carbon there.
  • aqueous polymer dispersions e.g. B. fabrics, leathers, synthetic leather and fiber composites
  • the present invention relates to the use of activated carbon and / or carbon molecular sieves to improve the Fogging behavior of fabrics, leathers, synthetic leather and fiber composite materials, the at least one polymeric binder on the Basis of at least one aqueous polymer dispersion ethylenically contain unsaturated monomers.
  • the activated carbon used according to the invention generally has a specific surface area in the range from 500 to 2,500 m 2 / g, preferably in the range from 800 to 1,800 m 2 / g and in particular in the range from 1,000 to 1,500 m 2 / g ( Langmuir surface according to DIN 66131).
  • Activated carbon with a high content of micropores (pore diameter 2 2 nm; see also Ullmann's Encyclopedia of Technical Chemistry, 5 ed, Vol. AS, p. 126) is preferred.
  • the pore volume of the activated carbon used is preferably in the range from 0.2 to 1.4 ml / g, in particular 0.4 to 0.8 ml / g. Of these, the micropores take up 0.2 to 1.4 ml / g, preferably 0.2 to 0.5 ml / g and in particular 0.3 to 0.4 ml / g.
  • Suitable activated carbons are commercially available.
  • Suitable activated carbons include both coarse granules Grain sizes> 500 ⁇ m, for example in the range from 0.5 to 5 mm also finely divided activated carbon powder with particle size ⁇ 500 ⁇ m. Prefers become activated carbon powder, especially those with particle size ⁇ 200 ⁇ m and very particularly preferably ⁇ 120 ⁇ m.
  • carbon molecular sieves can also be used be used.
  • Carbon molecular sieves are z. B. from Ullmann's Encyclopedia of Industrial Chemistry, 5th ed. Vol. B3, pp. 9-10 known and commercially available.
  • the activated carbons and / or carbon molecular sieves in an amount of 0.1 to 30% by weight, preferably 0.2 up to 20 wt .-%, in particular 0.5 to 15 wt .-% and particularly preferred 1 to 10 wt .-%, based on the polymeric components of the emulsion polymer used.
  • the activated carbon to be used according to the invention is generally in the aqueous polymer dispersion incorporated before this as polymeric binder or vehicle interior finish clothing is used. However, it is also possible to use activated carbon, or the carbon molecular sieves only during manufacture of the vehicle interior linings. Prefers However, the activated carbon is in the aqueous polymer dispersion incorporated before processing. This is done according to the usual Processes used for adding powdery solids known to liquid systems such as polymer dispersions are, for example by means of a dissolver. The addition of the activated carbon usually takes place at room temperature, but it can can also be carried out at elevated temperatures.
  • a primary dispersion d. H. a polymer disper sion
  • the method of radical, aqueous suspension or emulsion polymerization of ethylenically unsaturated monomers was obtained immediately.
  • Act secondary dispersion d. H. one by radical solution polymerization polymer obtained from ethylenically unsaturated monomers, that afterwards in an aqueous polymer dispersion was transferred.
  • the polymers are essentially composed of C 4 -C 8 -dienes such as butadiene, chloroprene, isoprene, vinylaromatic compounds such as styrene, ⁇ -methylstyrene, ⁇ -butylstyrene, vinyltoluenes, vinylchlorobenzenes, esters of acrylic acid and / or methacrylic acid with C.
  • C 4 -C 8 -dienes such as butadiene, chloroprene, isoprene, vinylaromatic compounds such as styrene, ⁇ -methylstyrene, ⁇ -butylstyrene, vinyltoluenes, vinylchlorobenzenes, esters of acrylic acid and / or methacrylic acid with C.
  • 1 -C 10 alkanols, C 5 -C 10 cycloalkanols or C 6 -C 20 aryl alcohols such as methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n -Butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and decyl (meth) acrylate, as well as vinyl esters of aliphatic carboxylic acids such as vinyl acetate , Vinyl propionate, vinyl butyrate and vinyl versatates (vinyl esters of branched carboxylic acids which are commercially available as Shell's Versatic® acids), olefins such as ethylene, propen
  • Particularly important monomers are butadiene, styrene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidine chloride, n-butyl acrylate, 2-ethylhexyl acrylate, methyl (meth) acrylate, ethylene, propene, acrylonitrile and methacrylonitrile, which are used alone or preferably in mixtures with one another.
  • Typical monomer mixtures are butadiene / styrene, butadiene / styrene / acrylonitrile, styrene / acrylonitrile, styrene / n-butyl acrylate and optionally 2-ethylhexyl acrylate, vinyl acetate / ethylene, vinyl acetate / vinyl propionate / ethylene, vinyl acetate / vinyl chloride, vinyl acetate / vinyl chloride / ethylene, methyl methacrylate n-butyl acrylate and optionally 2-ethylhexyl acrylate and methyl methacrylate / acrylonitrile / n-butyl acrylate and optionally 2-ethylhexyl acrylate.
  • the polymers also contain modifying agents Polymerized monomers.
  • the aforementioned monomers are preferably in Quantities ⁇ 20% by weight, based on the monomers to be polymerized, used.
  • the modifying monomers also include those monomers which usually polymerize on their own to give homopolymers, which have increased water solubility.
  • Such monomers are usually in amounts of 0.5 to 20 wt .-%, preferably 1 to 10 wt .-%, based on the total amount to be polymerized Monomers used.
  • Modifying monomers are also crosslinking or crosslinkable monomers. These are monomers which contain at least one epoxy, hydroxy, N-alkylol or a carbonyl group. Examples include the N-hydroxyalkyl and N-alkylolamides of ethylenically unsaturated carboxylic acids having 3 to 10 carbon atoms, such as 2-hydroxyethyl (meth) acrylamide and N-methylol (meth) acrylamide, the hydroxyalkyl esters of said ethylenically unsaturated carboxylic acids, e.g. B.
  • hydroxyethyl, hydroxypropyl and hydroxybutyl (meth) acrylate furthermore the ethylenically unsaturated glycidyl ether and ester, e.g. B. vinyl, allyl and methallyl glycidyl ether, glycidyl acrylate and methacrylate, the diacetonylamides of the above ethylenically unsaturated carboxylic acids, eg. B. diacetonyl (meth) acrylamide, and the esters of acetoacetic acid with the above-mentioned hydroxyalkyl esters of ethylenically unsaturated carboxylic acids, for. B.
  • the ethylenically unsaturated glycidyl ether and ester e.g. B. vinyl, allyl and methallyl glycidyl ether, glycidyl acrylate and methacrylate
  • Acetylacetoxyethyl (meth) acrylate Furthermore, compounds can be used which have two non-conjugated, ethylenically unsaturated bonds, for. B. the diesters of dihydric alcohols with monoethylenically unsaturated C 3 -C 10 monocarboxylic acids.
  • alkylene glycol diacrylates and dimethacrylates such as ethylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,4-butylene glycol diacrylate, propylene glycol diacrylate, divinylbenzene, vinyl methacrylate, vinyl acrylate, allyl methacrylate, diallyl amyl acrylate, diallyl amyl acrylate, diallyl acrylate, dlylyl acrylate, acrylate, N, N'Divinylimidazolin-2-one or triallyl cyanurate.
  • These are copolymerized in a minor amount, usually up to 10% by weight, preferably up to 5% by weight and in particular up to 1% by weight, based on the total amount of the monomers to be polymerized.
  • the polymers can be prepared according to the usual Polymerization processes are prepared, e.g. B. by radical Bulk, emulsion, suspension, dispersion, precipitation and solution polymerization. It may then be necessary by known methods, the available polymers to convert into aqueous polymer dispersions. With the above Polymerization process is preferred under exclusion worked by oxygen, preferably in a stream of nitrogen.
  • the usual equipment is used for all polymerization processes used, e.g. B. stirred tanks, stirred tank cascades, autoclaves, Tube reactors and kneaders.
  • the polymers are preferred by free radical aqueous Made emulsion polymerization. Procedures for this are the Basically known to a person skilled in the art.
  • the polymerization usually takes place in the presence of radical-forming compounds (initiators).
  • initiators are used in amounts of 0.01 up to 5% by weight and particularly preferably 0.1 to 1% by weight used on the monomers to be polymerized.
  • Suitable polymerization initiators are, for example, peroxides, Hydroperoxides, peroxodisulfates, percarbonates, peroxoesters, Hydrogen peroxide and azo compounds.
  • initiators which can be water-soluble or water-insoluble, are hydrogen peroxide, dibenzoyl peroxide, dicyclohexyl peroxidicarbonate, Dilauroyl peroxide, methyl ethyl ketone peroxide, di-tert-butyl peroxide, Acetylacetone peroxide, tert-butyl hydroperoxide, Cumene hydroperoxide, tert. Butyl perneodecanoate, tert.
  • the initiators can be used alone or as a mixture with one another applied, e.g. Mixtures of hydrogen peroxide and Sodium peroxydisulfate.
  • water-soluble initiators are preferably used.
  • regulators can be used for this, such as, for example, compounds containing organic SH groups, such as 2-mercaptoethanol, 2-mercaptopropanol, mercaptoacetic acid, tert-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan and tert-dodecyl mercaptan, C 1 -C 4- Aldehydes, such as formaldehyde, acetaldehyde, propionaldehyde, hydroxylammonium salts such as hydroxylammonium sulfate, formic acid, sodium bisulfite or isopropanol.
  • the polymerization regulators are generally used in amounts of 0.1 to 10% by weight, based on the monomers.
  • emulsifiers or Protective colloids There are anionic, nonionic, cationic and amphoteric emulsifiers. Common anionic emulsifiers are, for example, the salts, especially the sodium salts of alkylbenzenesulfonic acids, (di) alkyldiphenyl ether disulfonates (e.g.
  • Dowfax® 2A1 from Dow Chemical of sulfonated fatty acids, Sulfosuccinates, fatty alcohol sulfates, alkylphenol sulfates and of fatty alcohol ether sulfates and also the salts of Semi-sulfuric acid ethoxylated alkanols and ethoxylated Alkylphenols.
  • nonionic emulsifiers are Alkylphenol ethoxylates, primary alcohol ethoxylates, fatty acid ethoxylates, Alkanolamide ethoxylates, fatty amine ethoxylates, EO / PO block copolymers and alkyl polyglucosides can be used.
  • Amino alkoxylates alkyl betaines, Alkylamidobetaines and / or sulfobetaines can be used.
  • Typical protective colloids are, for example, cellulose derivatives, Polyethylene glycol, polypropylene glycol, copolymers from Ethylene glycol and propylene glycol, polyvinyl acetate, polyvinyl alcohol, Polyvinyl ether, starch and starch derivatives, dextran, Polyvinylpyrrolidone, polyvinylpyridine, polyethyleneimine, polyvinylimidazole, Polyvinyl succinimide, polyvinyl 2-methyl succinimide, Polyvinyl-1,3-oxazolidone-2, polyvinyl-2-methylimidazoline and Copolymers containing maleic acid or maleic anhydride, such as are described in DE 2 501 123.
  • the emulsifiers or protective colloids are usually in Concentrations of 0.05 to 20% by weight, preferably 0.1 to 10 % By weight based on the monomers.
  • the radical polymerization can be presented in the overall approach (Batch process). Preferably, however, worked in particular on an industrial scale according to the feed process.
  • the radical Initiator system can both be completely in the polymerization vessel submitted, as well as according to its consumption in the course of radical aqueous emulsion polymerization continuously or gradually the polymerization reaction be fed.
  • the preparation of the polymer dispersion can in the presence of a previously prepared aqueous Polymer dispersion carried out as polymer seed (seed latex) become.
  • seed latex a previously prepared aqueous Polymer dispersion carried out as polymer seed
  • the seed latex used usually has a weight average Particle diameter in the range from 10 to 300 nm on.
  • the polymers obtainable in this way generally have one Particle diameter in the range of 50 to 1000 nm.
  • the polymerization temperature is in the range from 0 to 130 ° C and the polymerization pressure in the range of 0.5 to 20 bar lie.
  • the polymer dispersions usually used have solids contents of up to 80% by weight. Of special Polymer dispersions with solids contents are important in the range of 40 to 70 wt .-%, depending on the desired application also to lower solids contents, for example by dilution with water or with a water-miscible organic Solvent can be adjusted.
  • the polymer dispersions used are also used often for the removal of volatile, odor-forming substances designed like odorless residual monomers.
  • Appropriate measures are, for example, stripping volatile compounds using steam or conventional distillation processes (see e.g. EP-A 584 458 and EP-A 327 006).
  • As a deodorization measure chemical deodorization is also an option. Below this is one that follows the main polymerization To understand the polymerization stage. These procedures are the same Expert z. B. from DE-A 3834734, EP-A 379 892, EP-A 327 006 known.
  • the polymer dispersions equipped with the activated carbon can in a known manner for the manufacture or treatment of Equipment, such as those used in automotive engineering, e.g. B. fabrics, leathers, synthetic leather or fiber composite materials, e.g. Car carpets, the back layer with a polymer dispersion solidified, are used.
  • Equipment such as those used in automotive engineering, e.g. B. fabrics, leathers, synthetic leather or fiber composite materials, e.g. Car carpets, the back layer with a polymer dispersion solidified, are used.
  • Equipment such as those used in automotive engineering, e.g. B. fabrics, leathers, synthetic leather or fiber composite materials, e.g. Car carpets, the back layer with a polymer dispersion solidified.
  • the below Use of the polymer dispersions according to the invention Products are characterized by a particularly cheap Fogging behavior.
  • a preferred embodiment of the present invention relates to thermoplastically deformable fiber composite materials, in particular fiber or needle-punched nonwovens, which have been consolidated with an aqueous polymer dispersion of a thermoplastic polymer containing activated carbon.
  • Such fiber composite materials are widely used in automobile construction, for example as thermoplastic deformable interior lining materials.
  • Polymer dispersions which comprise at least one polymer P1 with a glass transition temperature T g (1) of at least 60 ° C. and at least one further polymer P2 with a glass transition temperature T g (2) are preferred for this embodiment of the present invention, where T g ( 2) is at least 20 K, preferably at least 40 K and in particular 60 to 150 K below T g (1).
  • T g (1) is in particular above 80 ° C.
  • the glass transition temperature T g means the limit value of the glass transition temperature which, according to G. Kaniks (Kolloid-Zeitschrift + Zeitschrift für Polymer, vol. 190, p. 1, equation 1), strives with increasing molecular weight; it is determined using the DSC method (DSC, mid-point temperature, ASTM D3418-82).
  • the weight ratio of the polymers P1: P2 preferably 20:80 to 80:20, in particular 40:60 to 75:25 and very particularly preferably 50:50 to 70:30.
  • the polymer P1 is generally essentially composed of at least one monomer A, selected from styrene, ⁇ -methylstyrene, C 1 -C 4 -alkyl methacrylates, acrylonitrile, methacrylonitrile and mixtures of the monomers mentioned.
  • the monomers A generally make up 70 to 100% by weight and in particular 90 to 100% by weight of the monomers constituting the polymer P1, the proportion of acrylonitrile, based on the total amount of the monomers, generally below 50% by weight .-% and particularly preferably below 30 wt .-%.
  • the polymer can also contain, in copolymerized form, monomers B selected from C 1 -C 10 -alkyl acrylates, the vinyl esters of aliphatic C 1 -C 10 -carboxylic acids, C 2 -C 6 -olefins and butadiene.
  • monomers B selected from C 1 -C 10 -alkyl acrylates, the vinyl esters of aliphatic C 1 -C 10 -carboxylic acids, C 2 -C 6 -olefins and butadiene.
  • the proportion of the monomers B in the monomers constituting the polymer P1 will preferably be below 30% by weight. Polymers P1 which contain no monomers B are particularly preferred.
  • the polymer P1 in copolymerized form can also contain the above-mentioned modifying monomers in the amounts specified therein.
  • Preferred modifying monomers of this embodiment are the above-mentioned ethylenically unsaturated carboxylic acids, in particular acrylic acid, methacrylic acid and itaconic acid, their amides, in particular acrylamide and methacrylamide, their N-alkylolamides, in particular N-methylol (meth) acrylamide and their hydroxyalkyl esters, in particular 2-hydroxyethyl ( meth) acrylate.
  • Monomers C of this type are preferably used in amounts of 0.1 to 10% by weight and in particular 0.5 to 5% by weight, based on the total weight of the monomers which form the polymer P1.
  • the polymer P2 is essentially composed of monomers B and subordinate Measure of monomers A and optionally monomers C. built up.
  • the polymer P2 is preferably from 10 to 70% by weight. and in particular 20 to 60 wt .-%, based on the total amount of the monomers forming the polymer P2, monomers A and 30 to 90% by weight, preferably 40 to 80% by weight, of monomers B.
  • the proportion of the monomers C in the monomers forming the polymer P2 is preferably in the range from 0.1 to 10% by weight and in particular 0.5 to 5% by weight.
  • the polymer P1 is very particularly preferably from 50 to 99.5 % By weight of styrene and / or ⁇ -methylstyrene, 0 to 49.5% by weight of acrylonitrile and 0.5 to 5% by weight of ethylenically unsaturated monocarboxylic acids built up.
  • the polymer P2 is then usually from 20 to 70% by weight of butadiene and 30 to 80% by weight of styrene, which, if appropriate up to 50 wt .-% can be replaced by acrylonitrile, and 0.5 to 5 wt .-% acrylic acid, methacrylic acid and / or itaconic acid and optionally up to 2% by weight of acrylamide, methacrylamide, N-methylolacrylamide and / or N-methylol methacrylamide.
  • the styrene / butadiene monomer combination can also be a monomer combination Styrene / n-butyl acrylate and / or 2-ethylhexyl acrylate or a monomer combination of methyl methacrylate / n-butyl acrylate and / or 2-ethylhexyl acrylate can be used.
  • the polymers P1 and the polymers P2 are preferably produced by radical, aqueous emulsion polymerization in the way described above.
  • the polymers P1 and P2 can be separated be produced or together by stepwise emulsion polymerization.
  • the monomer mixture is preferably used first, which leads to polymer P1, polymerized and then the monomer mixture from which P2 is constructed.
  • core / shell polymers are obtained.
  • the polymer P1 forms the core of the polymer particles and that Polymer P2 the shell. This can be done easily realize that you first make P1 and then P2 polymerizing constituent monomers. Manufacturing process
  • Such polymers are for example from DE-A 3200072, US-A 3,454,516, EP-A 184 091, EP-A 492 405 and GB 975 421 known.
  • the fiber composite materials are manufactured by solidification the fibers with the aid of the polymer dispersions according to the invention using known methods (e.g. Ullmann's encyclopedia der technical chemistry, 4th ed., vol. 23, 1983, pp. 738-742).
  • the polymer dispersions in addition to the activated carbon Additives suitable for the respective purpose fillers such as clays or chalk.
  • Act the fiber composites are those already mentioned thermoformable needle punch nonwovens for the automotive industry, one starts from needle felt, which consists of the usual fibers, e.g.
  • Polypropylene, polyamide, polyester fibers according to the usual procedures (Römpp, chemistry lexicon, Georg-Thieme-Verlag, Stuttgart-New York, 9th ed., P. 4550 and literature cited there) were manufactured.
  • These needled fleeces are impregnated by bath, Foam impregnation, spraying, flapping or printing impregnated with the polymer dispersions. This can be done using the dispersion possibly diluted with water or with common thickeners be thickened to the desired processing viscosity adjust.
  • the fleece treatment with the dispersion closes drying and tempering of the product obtained in general Fiber composite.
  • the drying conditions depend on the Type of dryer used, usually the drying temperature is between 80 and 160 ° C, especially in the range of 110 to 130 ° C.
  • Suitable dryers are, for example, circulating air or Fresh air drying cabinets or drum dryers. Often done the use of infrared heaters for preheating.
  • the fiber composite materials available in this way show the usual ones Conditions with little or no tendency to fogging, as they do e.g. B. can be determined by DIN 75201. Even with thermal The tendency to fogging is significantly lower when exposed to temperatures above 90 ° C than in the case of non-inventive fiber composite materials without activated carbon.
  • the mechanical properties of activated carbon Fiber composite materials correspond to those of fiber composite materials, that were produced without the use of activated carbon.
  • the polymer dispersion was prepared by the process semi-continuous radical emulsion polymerization.
  • the template was heated to 70 ° C and polymerized for 30 minutes. Then the remaining feed 1 was 4.5 hours. and at the same time starting with inlet 1, the remaining inlet 2 added over 5 hours. This was followed by 0.5 hours at 70 ° C post-polymerized. After that, the dispersion became a physical Subject to deodorization.
  • the solids content of the obtained Dispersion was 50% by weight (dispersion A).
  • Dispersion A Analogous to dispersion A, a polystyrene emulsion polymer was used manufactured. Inlet 2 and template had the dispersion A indicated Composition on. In the feed 1, butadiene was passed through Replaces styrene (total 15.6 kg styrene) and on itaconic acid waived. Dispersion B had a solids content of about 50% by weight.
  • Dispersion containing activated carbon Dispersion containing activated carbon:
  • the nonwovens to be consolidated are commercially available non-consolidated polyester / polypropylene needled nonwovens with a polyester / polypropylene ratio of 80/20 (PES80 / PP20 nonwoven), each with a basis weight of 200 g / m 2 (from Emfisint, Spain).
  • the needle fleece was impregnated with the dispersions from C and D. (120 g 50% dispersion per 100 g nonwoven). Subsequently was 20 minutes at 120 ° C in a fresh air drying cabinet dried.
  • the fogging values FR averaged over 5 individual values
  • their standard deviation sFR below the fogging value FR is that with a commercially available reflectometer understand the measured relative gloss of a glass surface, which was exposed to a gas space in which this solidified Needle fleece was compared to the gloss value of an untreated Glass plate. The glass plate was used to create the fogging Exposed to the gas space for 3 h at 100 ° C. An FR value of 100% means that the gloss of the treated glass plate is the same the gloss of the untreated glass plate. Correspond to FR values ⁇ 100% reduced gloss due to fogging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von Aktivkohle und/oder Kohlenstoffmolekularsieben zur Verbesserung des Fogging-Verhaltens von Geweben, Ledern, Kunstledern und Faserverbundwerkstoffen, die wenigstens ein polymeres Bindemittel auf der Basis wenigstens einer wässrigen Polymerisatdispersion ethylenisch ungesättigter Monomere enthalten.

Description

Die vorliegende Erfindung betrifft die Verwendung von Aktivkohle und/oder Kohlenstoffmolekularsieben zur Verbesserung des Fogging-Verhaltens von Geweben, Ledern und Faserverbundwerkstoffen, die wenigstens ein polymeres Bindemittel auf der Basis wenigstens einer wässrigen Polymerisatdispersion ethylenisch ungesättigter Monomere enthalten.
Der Begriff Fogging oder auch Window-Fogging ist im Automobilbau seit 25 Jahren bekannt. Er steht für das inwendige Beschlagen von Scheiben, insbesondere von Windschutzscheiben durch flüchtige Substanzen aus den Innenausstattungsmaterialien wie Ledern, Kunstledern, Folien, textilen Flächengebilden, Autoteppichen und anderen Faserverbundwerkstoffen, die polymere Bindemittel enthalten, z. B. Radkastenabdeckungen. Für das Auftreten des Foggings sind nach jüngeren Untersuchungen (s. beispielsweise D. Eisele, Melliand Textilberichte 1987, S. 206-215 sowie P. Hardt et al., Textilpraxis International, 49 (1994), S. 163-167) insbesondere Weichmacher, Emulgatoren, Gleitmittel, Avivagen, Netzmittel und andere Hilfsmittel, wie sie bei der Herstellung von Innenausstattungsmaterialien üblicherweise verwendet werden, verantwortlich. Ferner sind auch Abbauprodukte der vorgenannten Hilfsmittel sowie auch Abbauprodukte der Polymere, die den Innenausstattungsmaterialien zu Grunde liegen oder in ihnen enthalten sind, für das Fogging relevant. Eine ausführliche Diskussion der für das Fogging relevanten Substanzen findet sich in D. Eisele (loc. cit.). Fogging-trächtige Substanzen weisen im Unterschied zu geruchsbildenden Substanzen, die ebenfalls von Polymeren emittiert werden können, ein höheres Molekulargewicht auf.
Grundsätzlich ist Fogging unerwünscht, zum einen aus ästhetischen Gründen und zum anderen auch aus Sicherheitsgründen, da die Sichtverhältnisse schon bei geringsten Fogging-Ablagerungen, insbesondere bei Dunkelheit, dramatisch eingeschränkt sind. Bislang gingen die Bestrebungen der Industrie dahin, geeignete Substanzen zu finden, die sich durch ein geringes Fogging-Potential auszeichnen (s. z. B. Ullmann's Encyclopedia of Industrial Chemistry, 5th ed. on CD-ROM, Plasticizers 4.2.7). Diesen Bemühungen war bislang nur ein mäßiger Erfolg beschieden, da sich zum einen die verschiedenen Hilfsmittel im Hinblick auf ihr Fogging-Verhalten in unterschiedlichster und nicht vorhersagbarer Weise beeinflussen. Zum anderen sind die Automobilinnenausstattungsmaterialien durch die von Sonneneinstrahlung erwirkten Temperaturspitzen oftmals extremen Belastungen ausgesetzt, so dass sich Abbauprodukte bilden, die ebenfalls zum Fogging beitragen.
Aus der DE-A 30 23 023 ist grundsätzlich bekannt, Aktivkohle zur Geruchsminderung von Polymerisatdispersionen zu verwenden.
Es wurde nun überraschenderweise gefunden, dass man das Fogging-Verhalten von Autoinnenausstattungsmaterialien, die polymere Bindemittel auf der Basis von wässrigen Polymerisatdispersionen enthalten, z. B. Geweben, Ledern, Kunstledern und Faserverbundwerkstoffen, verbessern kann, wenn man zu den polymeren Bindemitteln Aktivkohle gibt. Ein ähnlicher Effekt wird beobachtet, wenn man zu den polymeren Bindemitteln anstelle oder zusammen mit der Aktivkohle Kohlenstoffmolekularsiebe gibt.
Demnach betrifft die vorliegende Erfindung die Verwendung von Aktivkohle und/oder Kohlenstoffmolekularsieben zur Verbesserung des Fogging-Verhaltens von Geweben, Ledern, Kunstledern und Faserverbundwerkstoffen, die wenigstens ein polymeres Bindemittel auf der Basis wenigstens einer wässrigen Polymerisatdispersion ethylenisch ungesättigter Monomere enthalten.
Die erfindungsgemäß verwendete Aktivkohle weist in der Regel eine spezifische Oberfläche im Bereich von 500 bis 2 500 m2/g, vorzugsweise im Bereich 800 bis 1 800 m2/g und insbesondere im Bereich von 1 000 bis 1 500 m2/g auf (Langmuir-Oberfläche entsprechend DIN 66131). Bevorzugt wird Aktivkohle mit einem hohen Gehalt an Mikroporen (Porendurchmesser ≤ 2 nm; siehe auch Ullmann's Encyclopedia of Technical Chemistry, 5 ed, Vol. AS, S. 126). Das Porenvolumen der verwendeten Aktivkohle liegt vorzugsweise im Bereich von 0,2 bis 1,4 ml/g, insbesondere 0,4 bis 0,8 ml/g. Davon nehmen die Mikroporen 0,2 bis 1,4 ml/g, vorzugsweise 0,2 bis 0,5 ml/g und insbesondere 0,3 bis 0,4 ml/g ein. Geeignete Aktivkohlen sind im Handel erhältlich.
Geeignete Aktivkohlen umfassen sowohl grobteilige Granulate mit Korngrößen > 500 µm beispielsweise im Bereich von 0,5 bis 5 mm als auch feinteilige Aktivkohlepulver mit Teilchengröße < 500 µm. Bevorzugt werden Aktivkohlepulver, insbesondere solche mit Teilchengröße < 200 µm und ganz besonders bevorzugt < 120 µm.
Anstelle von oder zusammen mit der Aktivkohle können auch Kohlenstoffmolekularsiebe verwendet werden. Kohlenstoffmolekularsiebe sind z. B. aus Ullmann's Encyclopedia of Industrial Chemistry, 5th ed. Vol. B3, S. 9-10 bekannt und kommerziell erhältlich.
In der Regel werden die Aktivkohlen und/oder Kohlenstoffmolekularsiebe in einer Menge von 0,1 bis 30 Gew.-%, vorzugsweise 0,2 bis 20 Gew.-%, insbesondere 0,5 bis 15 Gew.-% und besonders bevorzugt 1 bis 10 Gew.-%, bezogen auf die polymeren Bestandteile des Emulsionspolymerisats, verwendet.
Die erfindungsgemäß einzusetzende Aktivkohle wird in der Regel in die wässrige Polymerisatdispersion eingearbeitet, bevor diese als polymeres Bindemittel oder Ausrüstung für die Fahrzeuginnenaus kleidungen zum Einsatz kommt. Es ist jedoch auch möglich, die Aktivkohle, bzw. die Kohlenstoffmolekularsiebe erst bei der Herstellung der Fahrzeuginnenauskleidungen einzusetzen. Bevorzugt wird jedoch die Aktivkohle in die wässrige Polymerisatdispersion vor ihrer Verarbeitung eingearbeitet. Dies geschieht nach den üblichen Verfahren, wie sie für die Zugabe von pulverförmigen Feststoffen zu flüssigen Systemen wie Polymerisatdispersionen bekannt sind, beispielsweise mittels eines Dissolvers. Die Zugabe der Aktivkohle erfolgt in der Regel bei Raumtemperatur, sie kann jedoch auch bei erhöhter Temperatur durchgeführt werden.
Hinsichtlich der Art der verwendeten Polymerisatdispersionen bestehen keinerlei Einschränkungen. Sie richtet sich in erster Linie nach dem gewünschten Anwendungszweck. Es kann sich sowohl um eine Primärdispersion handeln, d. h. um eine Polymerisatdisper sion, die nach der Methode der radikalischen, wässrigen Suspensions- oder Emulsionspolymerisation ethylenisch ungesättigter Monomere unmittelbar erhalten wurde. Es kann sich auch um eine sog. Sekundärdispersion handeln, d. h. ein durch radikalische Lösungspolymerisation ethylenisch ungesättigter Monomere erhaltenes Polymerisat, das nachträglich in eine wässrige Polymerdispersion überführt wurde.
Hinsichtlich der das Polymer konstituierenden Monomere bestehen ebenfalls keine Einschränkungen. Auch hier richtet sich die Art der gewünschten Monomere nach dem jeweiligen Verwendungszweck. In der Regel sind die Polymere im Wesentlichen aufgebaut aus C4-C8-Dienen wie Butadien, Chloropren, Isopren, vinylaromatischen Verbindungen wie Styrol, α-Methylstyrol, α-Butylstyrol, Vinyltoluole, Vinylchlorbenzole, Estern der Acrylsäure und/oder Methacrylsäure mit C1-C10-Alkanolen, C5-C10-Cycloalkanolen oder C6-C20-Arylalkoholen wie Methyl(meth)acrylat, Ethyl(meth)acrylat, n-Propyl(meth)acrylat, Isopropyl(meth)acrylat, n-Butyl(meth)acrylat, Isobutyl(meth)acrylat, tert.-Butyl(meth)acrylat, n-Hexyl(meth)acrylat, 2-Ethylhexyl(meth)acrylat und Decyl(meth)acrylat, ferner Vinylester aliphatischer Carbonsäuren wie Vinylacetat, Vinylpropionat, Vinylbutyrat und Vinylversatate (Vinylester verzweigter Carbonsäuren welche als Versatic®-Säuren der Shell im Handel sind), Olefinen wie Ethylen, Propen, 1-Buten, Isobuten oder 1-Penten, ferner Vinylchlorid, Vinylidenchlorid, Acrylnitril und Methacrylnitril sowie Mischungen der vorgenannten Monomere und Monomerklassen. Besonders wichtige Monomere sind Butadien, Styrol, Vinylacetat, Vinylpropionat, Vinylchlorid, Vinylidinchlorid, n-Butylacrylat, 2-Ethylhexylacrylat, Methyl(meth)acrylat, Ethylen, Propen, Acrylnitril und Methacrylnitril, die alleine oder bevorzugt in Mischungen untereinander eingesetzt werden. Typische Monomermischungen sind Butadien/Styrol, Butadien/Styrol/Acrylnitril, Styrol/Acrylnitril, Styrol/n-Butylacrylat und gegebenenfalls 2-Ethylhexylacrylat, Vinylacetat/Ethylen, Vinylacetat/Vinylpropionat/Ethylen, Vinylacetat/Vinylchlorid, Vinylacetat/Vinylchlorid/Ethylen, Methylmethacrylat/n-Butylacrylat und gegebenenfalls 2-Ethylhexylacrylat sowie Methylmethacrylat/Acrylnitril/n-Butylacrylat und gegebenenfalls 2-Ethylhexylacrylat.
Ferner enthalten die Polymere je nach Verwendungszweck auch modifizierende Monomere einpolymerisiert. Hierzu zählen sowohl Monomere, die weichmachende oder lipophilisierende Eigenschaften aufweisen wie die Ester ethylenisch ungesättigter Carbonsäuren mit langkettigen Alkoholen wie Decanol, Dodecanol, Stearylalkohol und Behenylalkohol, ferner die Ester ethylenisch ungesättigter Carbonsäuren mit Polyetherglykolen und Monoalkylpolyetherglykolen, insbesondere entsprechende Ester der Acrylsäure oder der Methacrylsäure sowie die Dialkylester ethylenisch ungesättigter Dicarbonsäuren, z. B. Di-n-butylmaleinat, Di-n-butylfumarat sowie Dimethylmaleinat. Die vorgenannten Monomere werden vorzugsweise in Mengen ≤ 20 Gew.-%, bezogen auf die zu polymerisierenden Monomere, eingesetzt.
Zu den modifizierenden Monomeren zählen ferner solche Monomere, die für sich polymerisiert üblicherweise Homopolymerisate ergeben, die eine erhöhte Wasserlöslichkeit aufweisen. Hierzu zählen ethylenisch ungesättigte Carbonsäuren wie Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure, Itaconsäure, Acrylamidoglykolsäure, Methacrylamidoglykolsäure sowie die Halbester ethylenisch ungesättigter Dicarbonsäuren wie Methylmaleinat und Mono-n-butylmaleinat. Hierzu zählen auch die Amide der vorgenannten ethylenisch ungesättigten Carbonsäuren, insbesondere Acrylamid und Methacrylamid, ethylenisch ungesättigte Sulfonsäuren und deren wasserlöslichen Salze, insbesondere deren Natriumsalze, wie Vinylsulfonsäure, Styrolsulfonsäure, Acrylamido-2-methylpropansulfonsäure, sowie ferner N-Vinylpyrrolidon. Derartige Monomere werden in der Regel in Mengen von 0,5 bis 20 Gew.-%, vorzugsweise 1 bis 10 Gew.-%, bezogen auf die Gesamtmenge der zu polymerisierenden Monomere eingesetzt.
Modifizierende Monomere sind weiterhin vernetzende oder vernetzbare Monomere. Hierbei handelt es sich um Monomere, die wenigstens eine Epoxy-, Hydroxy-, N-Alkylol- oder eine Carbonylgruppe enthalten. Beispiele hierfür sind die N-Hydroxyalkyl- und N-Alkylolamide der ethylenisch ungesättigten Carbonsäuren mit 3 bis 10 C-Atomen wie 2-Hydroxyethyl (meth) acrylamid und N-Methylol(meth)acrylamid, die Hydroxyalkylester besagter ethylenisch ungesättigter Carbonsäuren, z. B. Hydroxyethyl-, Hydroxypropyl- und Hydroxybutyl(meth)acrylat, ferner die ethylenisch ungesättigten Glycidylether und -ester, z. B. Vinyl-, Allyl- und Methallylglycidylether, Glycidylacrylat und -methacrylat, die Diacetonylamide der obengenannten ethylenisch ungesättigten Carbonsäuren, z. B. Diacetonyl(meth)acrylamid, und die Ester der Acetylessigsäure mit den oben genannten Hydroxyalkylestern ethylenisch ungesättigter Carbonsäuren, z. B. Acetylacetoxyethyl(meth)acrylat. Weiterhin können Verbindungen eingesetzt werden, die zwei nicht-konjugierte, ethylenisch ungesättigte Bindungen aufweisen, z. B. die Diester zweiwertiger Alkohole mit monoethylenisch ungesättigten C3-C10-Monocarbonsäuren. Beispiele für derartige Verbindungen sind Alkylenglykoldiacrylate- und -dimethacrylate, wie Ethylenglykoldiacrylat, 1,3-Butylenglykoldiacrylat, 1,4-Butylenglykoldiacrylat, Propylenglykoldiacrylat, Divinylbenzol, Vinylmethacrylat, Vinylacrylat, Allylmethacrylat, Allylacrylat, Diallylmaleat, Diallylfumarat, Methylenbisacrylamid, Cyclopentadienylacrylat, Tricyclodecenyl(meth)acrylat, N,N'Divinylimidazolin-2-on oder Triallylcyanurat. Diese werden in untergeordneter Menge, in der Regel bis zu 10 Gew.-%, vorzugsweise bis 5 Gew.-% und insbesondere bis 1 Gew.-%, bezogen auf die Gesamtmenge der zu polymerisierenden Monomere, mit einpolymerisiert.
Wie bereits oben erwähnt, können die Polymere nach den üblichen Polymerisationsverfahren hergestellt werden, z. B. durch radikalisch Substanz-, Emulsions-, Suspensions-, Dispersions-, Fällungs- und Lösungspolymerisation. Gegebenenfalls ist es dann erforderlich, nach bekannten Methoden, die erhältlichen Polymerisate in wässrige Polymerdispersionen zu überführen. Bei den genannten Polymersationsverfahren wird bevorzugt unter Ausschluss von Sauerstoff gearbeitet, vorzugsweise in einem Stickstoffstrom. Für alle Polymerisationsverfahren werden die üblichen Apparaturen verwendet, z. B. Rührkessel, Rührkesselkaskaden, Autoklaven, Rohrreaktoern und Kneter.
Bevorzugt werden die Polymerisate durch radikalische wässrige Emulsionspolymerisation hergestellt. Verfahren hierzu sind dem Fachmann grundsätzlich bekannt. In der Regel erfolgt die Polymerisation in Gegenwart von Radikale bildenden Verbindungen (Initiatoren). In der Regel werden Initiatoren in Mengen von 0,01 bis 5 Gew.-% und besonders bevorzugt 0,1 bis 1 Gew.-%, bezogen auf die zu polymerisierenden Monomere eingesetzt.
Geeignete Polymerisationsinitiatoren sind beispielsweise Peroxide, Hydroperoxide, Peroxodisulfate, Percarbonate, Peroxoester, Wasserstoffperoxid und Azoverbindungen. Beispiele für Initiatoren, die wasserlöslich oder auch wasserunlöslich sein können, sind Wasserstoffperoxid, Dibenzoylperoxid, Dicyclohexylperoxidicarbonat, Dilauroylperoxid, Methylethylketonperoxid, Di-tert.-Butylperoxid, Acetylacetonperoxid, tert.-Butylhydroperoxid, Cumolhydroperoxid, tert. -Butylperneodecanoat, tert. -Amylperpivalat, tert.-Butylperpivalat, tert.-Butylperneohexanoat, tert.-Butylper-2-ethylhexanoat, tert. -Butyl-perbenzoat, Lithium-, Natrium-, Kalium- und Ammoniumperoxidisulfat, Azodiisobutyronitril, 2,2'-Azobis(2-amidinopropan)dihydrochlorid, 2-(Carbamoyl-azo)isobutyronitril und 4,4-Azobis(4-cyanovaleriansäure). Auch die bekannten Redox-Initiatorsysteme können als Polymerisationsinitiatoren verwendet werden.
Die Initiatoren können allein oder in Mischung untereinander angewendet werden, z.B. Mischungen aus Wasserstoffperoxid und Natriumperoxidisulfat. Für die Polymerisation in wäßrigem Medium werden bevorzugt wasserlösliche Initiatoren eingesetzt.
Um Polymerisate mit niedrigem mittleren Molekulargewicht herzustellen, ist es oft zweckmäßig, die Copolymerisation in Gegenwart von Reglern durchzuführen. Hierfür können übliche Regler verwendet werden, wie beispielsweise organische SH-Gruppen enthaltende Verbindungen, wie 2-Mercaptoethanol, 2-Mercaptopropanol, Mercaptoessigsäure, tert.-Butylmercaptan, n-Octylmercaptan, n-Dodecylmercaptan und tert.-Dodecylmercaptan, C1- bis C4-Aldehyde, wie Formaldehyd, Acetaldehyd, Propionaldehyd, Hydroxylammoniumsalze wie Hydroxylammoniumsulfat, Ameisensäure, Natriumbisulfit oder Isopropanol. Die Polymerisationsregler werden im allgemeinen in Mengen von 0,1 bis 10 Gew.-%, bezogen auf die Monomeren eingesetzt.
Ferner kann es vorteilhaft sein, die Monomertröpfchen bzw. Polymerteilchen durch grenzflächenaktive Hilfsstoffe zu stabilisieren. Typischerweise verwendet man hierzu Emulgatoren oder Schutzkolloide. Es kommen anionische, nichtionische, kationische und amphotere Emulgatoren in Betracht. Übliche anionische Emulgatoren sind beispielsweise die Salze, insbesondere die Natriumsalze von Alkylbenzolsulfonsäuren, (Di)alkyldiphenyletherdisulfonaten (z.B. Dowfax® 2A1 der Dow Chemical), von sulfonierten Fettsäuren, Sulfosuccinaten, Fettalkoholsulfaten, Alkylphenolsulfaten und von Fettalkoholethersulfaten sowie ferner die Salze der Schwefelsäurehalbester ethoxylierter Alkanole und ethoxilierter Alkylphenole. Als nichtionische Emulgatoren können beispielsweise Alkylphenolethoxylate, Primäralkoholethoxilate, Fettsäureethoxilate, Alkanolamidethoxilate, Fettaminethoxilate, EO/PO-Blockcopolymere und Alkylpolyglucoside verwendet werden.
Als kationische Emulgatoren können Aminoalkoxilate, Alkylbetaine, Alkylamidobetaine und/oder Sulfobetaine eingesetzt werden.
Typische Schutzkolloide sind beispielsweise Cellulosederivate, Polyethylenglykol, Polypropylenglykol, Copolymerisate aus Ethylenglykol und Propylenglykol, Polyvinylacetat, Polyvinylalkohol, Polyvinylether, Stärke und Stärkederivate, Dextran, Polyvinylpyrrolidon, Polyvinylpyridin, Polyethylenimin, Polyvinylimidazol, Polyvinylsuccinimid, Polyvinyl-2-methylsuccinimid, Polyvinyl-1,3-oxazolidon-2, Polyvinyl-2-methylimidazolin und Maleinsäure bzw. Maleinsäureanhydrid enthaltende Copolymerisate, wie sie z.B. in DE 2 501 123 beschrieben sind.
Die Emulgatoren oder Schutzkolloide werden üblicherweise in Konzentrationen von 0,05 bis 20 Gew.-%, vorzugsweise 0,1 bis 10 Gew.-% bezogen auf die Monomere, eingesetzt.
Die radikalische Polymerisation kann in Gesamtansatzvorlage (Batch-Verfahren) durchgeführt werden. Vorzugsweise wird jedoch, insbesondere im technischen Maßstab, nach dem Zulaufverfahren gearbeitet. Hierbei wird die überwiegende Menge (in der Regel 80 bis 100 Gew.-%) der zu polymerisierenden Monomere dem Polymerisationsgefäß gemäß dem Fortschreiten der Polymerisation der bereits im Polymerisationsgefäß befindlichen Monomere zugesetzt. Das radikalische Initiatorsystem kann hierbei sowohl vollständig im Polymerisationsgefäß vorgelegt, als auch nach Maßgabe seines Verbrauchs im Lauf der radikalischen wässrigen Emulsionspolymerisation kontinuierlich oder stufenweise der Polymerisationsreaktion zugeführt werden.
Im Falle der Emulsionspolymerisation kann die Herstellung der Polymerisatdispersion in Gegenwart einer zuvor hergestellten wässrigen Polymerisatdispersion als Polymersaat (Saat-Latex) durchgeführt werden. Derartige Verfahren sind dem Fachmann grundsätzlich bekannt und beispielsweise in der DE-A 4213967, der DE-A 4213968 und der EP-A 567 811 sowie der dort zitierten Literatur beschrieben. Der eingesetzte Saat-Latex weist in der Regel einen gewichtsmittleren Teilchendurchmesser im Bereich von 10 bis 300 nm auf. Die so erhältlichen Polymerisate weisen in der Regel einen Teilchendurchmesser im Bereich von 50 bis 1 000 nm auf.
Je nach Art der eingesetzten Monomere und den verwendeten Initiatorsystem wird die Polymerisationstemperatur im Bereich von 0 bis 130 °C und der Polymerisationsdruck im Bereich von 0,5 bis 20 bar liegen. Die üblicherweise zum Einsatz kommende Polymerisatdispersionen weisen Feststoffgehalte bis zu 80 Gew.-% auf. Von besonderer Bedeutung sind Polymerisatdispersionen mit Feststoffgehalten im Bereich von 40 bis 70 Gew.-%, die je nach gewünschtem Anwendungszweck auch auf niedrigere Feststoffgehalte, beispielsweise durch Verdünnen mit Wasser oder mit einem Wasser mischbaren organischen Lösungsmittel, eingestellt werden können.
Ferner werden die zum Einsatz kommenden Polymerisatdispersionen oftmals zur Entfernung von flüchtigen, geruchsbildenden Substanzen wie Restmonomeren geruchsfrei gestaltet. Geeignete Maßnahmen sind beispielsweise das Abstreifen von flüchtigen Verbindungen mittels Wasserdampf oder konventionelle Destillationsverfahren (s. z. B. EP-A 584 458 sowie EP-A 327 006). Als Desodorierungsmaßnahme kommt auch die sog. chemische Desodorierung in Frage. Hierunter ist eine sich an die Hauptpolymerisation anschließende Polymerisationsstufe zu verstehen. Auch diese Verfahren sind dem Fachmann z. B. aus der DE-A 3834734, der EP-A 379 892, der EP-A 327 006 bekannt.
Die mit der Aktivkohle ausgerüsteten Polymerisatdispersionen können in bekannter Weise für die Herstellung oder Behandlung von Ausrüstungsgegenständen, wie sie im Automobilbau Anwendung finden, z. B. Geweben, Ledern, Kunstledern oder Faserverbundwerkstoffen, z.B. Autoteppichen, deren Rückenschicht mit einer Polymerisatdispersion verfestigt ist, eingesetzt werden. Die unter verwendung der erfindungsgemäßen Polymerisatdispersionen hergestellten Erzeugnisse zeichnen sich durch ein besonders günstiges Fogging-Verhalten aus.
Eine bevorzugte Ausführungsform der vorliegenden Erfindung betrifft thermoplastisch verformbare Faserverbundwerkstoffe, insbesondere Faser- bzw. Nadelvliese, die mit einer Aktivkohle enthaltenden wässrigen Polymerisatdispersion eines thermoplastischen Polymers verfestigt worden sind. Derartige Faserverbundwerkstoffe finden weite Anwendung im Automobilbau, beispielsweise als thermoplastisch verformbare Innenauskleidungsmaterialien. Für diese Ausführungsform der vorliegenden Erfindung kommen vorzugsweise Polymerisatdispersionen in Frage, die wenigstens ein Polymer P1 mit einer Glasübergangstemperatur Tg(1) von wenigstens 60 °C und wenigstens ein weiteres Polymer P2 mit einer Glasübergangstemperatur Tg(2) umfassen, wobei Tg(2) wenigstens 20 K, vorzugsweise wenigstens 40 K und insbesondere 60 bis 150 K unterhalb Tg(1) liegt. Tg(1) liegt insbesondere oberhalb 80 °C. Mit der Glastemperatur Tg ist der Grenzwert der Glasübergangstemperatur gemeint, dem diese gemäß G. Kaniks (Kolloid-Zeitschrift + Zeitschrift für Polymere, Bd. 190, S. 1, Gleichung 1) mit zunehmendem Molekulargewicht zustrebt; sie wird nach dem DSC-Verfahren ermittelt (DSC, mid-point temperature, ASTM D3418-82).
Dabei ist es oft hilfreich, die Glasübergangstemperatur Tg des dispergierten Polymerisats abzuschätzen. Nach Fox (T.G. Fox, Bull. Am. Phys. Soc. (Ser. II) 1, 123 [1956] und Ullmann's Enzyklopädie der technischen Chemie, Weinheim (1980), S. 17, 18) gilt für die Glasübergangstemperatur von Mischpolymerisaten bei großen Molmassen in guter Nährung 1Tg = X1 Tg 1 + X2 Tg 2 + ····· Xn Tg n wobei X1, X2 ...., Xn die Massenbrüche 1, 2, ..., n und Tg 1, Tg 2, ..., Tg n die Glasübergangstemperaturen der jeweils nur aus einem der Monomeren 1, 2, ..., n aufgebauten Polymeren in Grad Kelvin bedeuten. Letzere sind z.B. aus Ullmann's Encyclopedia of Industrial Chemistry, VCH, Weinheim, Vol. A 21 (1992) S. 169 oder aus J. Bandrup, E.H. Immergut, Polymer Handbook 3rd ed., J. Wiley, New York, 1989, bekannt.
In den für diese Ausführungsform der Erfindung bevorzugten Polymerisatdispersionen beträgt das Gewichtsverhältnis der Polymerisate P1:P2 vorzugsweise 20:80 bis 80:20, insbesondere 40:60 bis 75:25 und ganz besonders bevorzugt 50:50 bis 70:30.
Das Polymerisat P1 ist in der Regel im wesentlichen aufgebaut aus wenigstens einem Monomer A, ausgewählt unter Styrol, α-Methylstyrol, C1-C4-Alkylmethacrylaten, Acrylnitril, Methacrylnitril und Mischungen der genannten Monomere. Die Monomere A machen in der Regel 70 bis 100 Gew.-% und insbesondere 90 bis 100 Gew.-% der das Polymer P1 konstituierenden Monomere aus, wobei der Anteil an Acrylnitril, bezogen auf die Gesamtmenge der Monomere, in der Regel unterhalb 50 Gew.-% und besonders bevorzugt unterhalb 30 Gew.-% liegt. Neben den Monomeren A kann das Polymer in einpolymerisierter Form auch Monomere B, ausgewählt unter C1-C10-Alkylacrylaten, den Vinylestern aliphatischer C1-C10-Carbonsäuren, C2-C6-Olefinen und Butadien, enthalten. Der Anteil der Monomere B an den das Polymer P1 konstituierenden Monomeren wird vorzugsweise unterhalb 30 Gew.-% liegen. Besonders bevorzugt sind Polymere P1, die keine Monomere B enthalten. Ferner kann das Polymer P1 in einpolymerisierter Form auch die oben genannten modifizierenden Monomere in den dort angegebenen Mengen enthalten. Bevorzugte modifizierende Monomere dieser Ausführungsform sind die oben genannten ethylenisch ungesättigten Carbonsäuren, insbesondere Acrylsäure, Methacrylsäure und Itaconsäure, deren Amide, insbesondere Acrylamid und Methacrylamid, deren N-Alkylolamide, insbesondere N-Methylol(meth)acrylamid und deren Hydroxyalkylester, insbesondere 2-Hydroxyethyl(meth)acrylat. Derartige Monomere C werden vorzugsweise in Mengen von 0,1 bis 10 Gew.-% und insbesondere 0,5 bis 5 Gew.-%, bezogen auf das Gesamtgewicht der Monomere, die das Polymer P1 bilden, eingesetzt.
Das Polymer P2 ist im wesentlichen aus Monomeren B und in untergeordnetem Maß aus Monomeren A und gegebenenfalls Monomeren C aufgebaut. Vorzugsweise ist das Polymer P2 aus 10 bis 70 Gew.-% und insbesondere 20 bis 60 Gew.-%, bezogen auf die Gesamtmenge der Monomere, die das Polymer P2 bilden, Monomeren A und 30 bis 90 Gew.-%, vorzugsweise 40 bis 80 Gew.-% Monomeren B aufgebaut. Der Anteil der Monomere C an den das Polymer P2 bildenden Monomeren liegt vorzugsweise im Bereich von 0,1 bis 10 Gew.-% und insbesondere 0,5 bis 5 Gew.-%.
Ganz besonders bevorzugt ist das Polymer P1 aus 50 bis 99,5 Gew.-% Styrol und/oder α-Methylstyrol, 0 bis 49,5 Gew.-% Acrylnitril und 0,5 bis 5 Gew.-% ethylenisch ungesättigten Monocarbonsäuren aufgebaut. Das Polymer P2 ist dann in der Regel aus 20 bis 70 Gew.-% Butadien und 30 bis 80 Gew.-% Styrol, das gegebenenfalls bis zu 50 Gew.-% durch Acrylnitril ersetzt sein kann, sowie 0,5 bis 5 Gew.-% Acrylsäure, Methacrylsäure und/oder Itaconsäure sowie gegebenenfalls bis zu 2 Gew.-% Acrylamid, Methacrylamid, N-Methylolacrylamid und/oder N-Methylolmethacrylamid aufgebaut. Anstelle der Monomerkombination Styrol/Butadien kann auch eine Monomerkombination Styrol/n-Butylacrylat und/oder 2-Ethylhexylacrylat oder eine Monomerkombination Methylmethacrylat/n-Butylacrylat und/oder 2-Ethylhexylacrylat eingesetzt werden.
Die Herstellung der Polymere P1 und der Polymere P2 erfolgt vorzugsweise durch radikalische, wässrige Emulsionspolymerisation in der oben beschriebenen Weise. Die Polymere P1 und P2 können separat hergestellt werden oder gemeinsam durch stufenweise Emulsionspolymerisation. Hierbei wird vorzugsweise zuerst die Monomermischung, die zu Polymer P1 führt, polymerisiert und anschließend die Monomermischung, aus welcher P2 aufgebaut ist. Eine umgekehrte Vorgehensweise ist jedoch ebenfalls denkbar. Hierbei werden sogenannte Kern/Schale-Polymerisate erhalten. Vorzugsweise bildet das Polymer P1 den Kern der Polymerisatteilchen und das Polymer P2 die Schale. Dies lässt sich in einfacher Weise dadurch realisieren, dass man zuerst P1 herstellt und anschließend die P2 konstituierenden Monomere aufpolymerisiert. Verfahren zur Herstellung derartiger Polymerisate sind beispielsweise aus der DE-A 3200072, der US-A 3,454,516, der EP-A 184 091, der EP-A 492 405 und der GB 975 421 bekannt.
Die Herstellung der Faserverbundwerkstoffe erfolgt durch Verfestigen der Fasern mit Hilfe der erfindungsgemäßen Polymerisatdispersionen nach bekannten Verfahren (z.B. Ullmann's Enzyklopädie der technischen Chemie, 4. Aufl., Bd. 23, 1983, S. 738-742). Dabei können den Polymerisatdispersionen außer der Aktivkohle die für den jeweiligen Verwendungszweck geeigneten Zusatzstoffe zugegeben werden, insbesondere Füllstoffe wie Tone oder Kreide. Handelt es sich bei den Faserverbundwerkstoffen um die bereits erwähnten thermoverformbaren Nadelvliesstoffe für den Automobilbau, geht man von Nadelvliesen aus, die aus den hierfür üblichen Fasern, z.B. Polypropylen-, Polyamid-, Polyester-Fasern, nach den üblichen Verfahren (Römpp, Chemielexikon, Georg-Thieme-Verlag, Stuttgart-New York, 9. Aufl., S. 4550 und dort zitierte Literatur) hergestellt wurden. Diese Nadelvliese werden durch Badimprägnieren, Schaumimprägnieren, Besprühen, Flatschen oder Bedrucken mit den Polymerisatdispersionen getränkt. Dazu kann die Dispersion eventuell mit Wasser verdünnt oder mit üblichen Verdickungsmitteln verdickt werden, um die gewünschte Verarbeitungsviskosität einzustellen. Der Vliesbehandlung mit der Dispersion schließt sich im allgemeinen eine Trocknung und Temperung des erhaltenen Faserverbundwerkes an. Die Trocknungsbedingungen hängen von der Art des eingesetzten Trockners ab, üblicherweise liegt die Trocknungstemperatur zwischen 80 und 160°C, insbesondere im Bereich von 110 bis 130°C. Geeignete Trockner sind beispielsweise Umluft- oder Frischlufttrockenschränke oder Trommeltrockner. Häufig erfolgt der Einsatz von Infrarotstrahlern zum Vorerhitzen.
Die so erhältlichen Faserverbundwerkstoffe zeigen unter üblichen Bedingungen keine oder nur eine geringe Foggingneigung, wie sie z. B. durch DIN 75201 bestimmt werden kann. Auch bei thermischer Belastung oberhalb 90°C ist die Foggingneigung deutlich geringer als bei nicht erfindungsgemässen Faserverbundwerkstoffen ohne Aktivkohle. Die mechanischen Eigenschaften der Aktivkohle enthaltenden Faserverbundwerstoffe entsprechen denen von Faserverbundwerkstoffen, die ohne Verwendung von Aktivkohle hergestellt wurden.
Beispiele I. Herstellung der Polymerisat-Dispersionen
Die Herstellung der Polymerisat-Dispersion erfolgte nach dem Verfahren der halbkontinuierlichen radikalischen Emulsionspolymerisation.
Basis-Dispersion: Dispersion A:
Zulauf 1:
9,8 kg Styrol
5,8 kg Butadien
0,1 kg Itaconsäure
0,24 kg Acrylsäure
0,3 kg Texapon®NSO (wässrige Lösung des Natriumsalzes von sulfatiertem Nonylphenolethoxilat; Handelsprodukt der Henkel KGaA)
5,5 kg vollentsalztes Wasser
Zulauf 2:
95 g Natriumperoxidisulfat
1,1 kg vollentsalztes Wasser
Vorlage:
5% von Zulauf 1
5% von Zulauf 2
9,4 kg vollentsalztes Wasser
Die Vorlage wurde auf 70°C angeheizt und 30 Minuten anpolymerisiert. Anschließend wurde der restliche Zulauf 1 während 4,5 Std. und gleichzeitig mit Zulauf 1 beginnend der restliche Zulauf 2 während 5 Std. zugegeben. Anschließend wurde 0,5 Stunden bei 70°C nachpolymerisiert. Danach wurde die Dispersion einer physikalischen Desodorierung unterworfen. Der Feststoffgehalt der erhaltenen Dispersion lag bei 50 Gew% (Dispersion A).
Dispersion B:
Analog Dispersion A wurde ein Polystyrol-Emulsionspolymerisat hergestellt. Zulauf 2 und Vorlage wiesen die für Dispersion A angegebene Zusammensetzung auf. Im Zulauf 1 wurde Butadien durch Styrol ersetzt (insgesamt 15,6 kg Styrol) und auf Itaconsäure verzichtet. Die Dispersion B wies einen Feststoffgehalt von etwa 50 Gew.-% auf.
Aktivkohlehaltige Dispersion:
40 Gewichtsteile Dispersion A wurden mit 60 Gewichtsteilen Dispersion B versetzt (Dispersion C). Die Dispersion C wurde mit 10 Gew.-%, bezogen auf polymere Bestandteile, Aktivkohle versetzt (Dispersionen D). Die verwendete Aktivkohle wies folgende Charakteristika auf:
Langmuir Oberfläche:
1213 m2/g (nach DIN 66131)
Mikroporenvolumen:
0.357 ml/g
Porendurchmesser nach Langmuir:
19 Angström
II. Herstellung der polymergebundenen Nadelvliese
Bei den zu verfestigenden Vliesen handelt es sich um handelsübliche unverfestigte Polyester/Polypropylen-Nadelvliese mit einem Polyester/Polypropylen-Verhältnis von 80/20 (PES80/PP20-Vlies) mit jeweils einem Flächengewicht von 200 g/m2 (der Fa. Emfisint, Spanien).
Die Nadelvliese wurden mit den Dispersionen aus C bzw. D imprägniert (120 g 50%ige Dispersion je 100 g Vliesstoff). Anschließend wurde 20 Minuten bei 120°C in einem Frischluft-Trockenschrank getrocknet.
III. Test des Fogging-Verhaltens:
Zur Bestimmung des Fogging-Verhaltens der gebundenen Nadelvliese aus II wurden in Ahnlehnung an die Volkswagenprüfvorschrift PV 3920 (basierend auf DIN 75201) die Foggingwerte FR (gemittelt über 5 Einzelwerte) und deren Standardabweichung sFR bestimmt. Unter dem Foggingwert FR ist der mit einem handelsüblichen Reflektometer gemessene relative Glanz einer Glasoberfläche zu verstehen, die einem Gasraum ausgesetzt war, in dem sich das verfestigte Nadelvlies befand, gegenüber dem Glanzwert einer unbehandelten Glasplatte. Zur Erzeugung des Foggings wurde die Glasplatte 3 h bei 100 °C dem Gasraum ausgesetzt. Ein FR-Wert von 100 % bedeutet, dass der Glanz der behandelten Glasplatte gleich dem Glanz der unbehandelten Glasplatte ist. FR-Werte < 100 % entsprechen einem verringerten Glanz als Folge von Fogging.
Ferner wurde die Gesamtkohlenstoffemission analog zur Volkswagenprüfvorschrift PV 3341 mittels Head-Space-Gaschromatographie bestimmt. Das Fogging korreliert mit zunehmender Gesamtkohlenstoffemission C.
Ergebnisse: FR(%) sFR2)(%) C(mg/kg)
Dispersion C 96 0,8 58
Dispersion D 100 0,1 45

Claims (14)

  1. Verwendung von Aktivkohle und/oder Kohlenstoffmolekularsieben zur Verbesserung des Fogging-Verhaltens von Geweben, Ledern, Kunstledern und Faserverbundwerkstoffen, die wenigstens ein polymeres Bindemittel auf der Basis wenigstens einer wässrigen Polymerisatdispersion ethylenisch ungesättigter Monomere enthalten.
  2. Verwendung nach Anspruch 1, wobei die Aktivkohle eine mittlere Teilchengröße unterhalb 200 µm aufweist.
  3. Verwendung nach einem der vorhergehenden Ansprüche, wobei die Aktivkohle ein Porenvolumen im Bereich von 0,2 bis 1,4 ml/g aufweist.
  4. Verwendung nach einem der vorhergehenden Ansprüche, wobei die Aktivkohle eine spezifische Oberfläche (nach Langmuir) im Bereich von 500 bis 2 500 m2/g aufweist.
  5. Verwendung nach einem der vorhergehenden Ansprüche, wobei die Aktivkohle und/oder die Kohlenstoffmolekularsiebe in einer Menge von 0,1 bis 30 Gew.-%, bezogen auf das Gesamtgewicht der polymeren Bestandteile der Dispersion, eingesetzt werden.
  6. Verwendung nach einem der vorhergehenden Ansprüche zur Verbesserung des Fogging-Verhaltens von thermoplastisch verformaren Nadel- und Faservliesen, die wenigstens ein polymeres Bindemittel auf der Basis einer wässrigen Polymerisatdispersion wenigstens eines thermoplastischen Polymers enthalten.
  7. Verwendung nach Anspruch 6, wobei die Polymerisatdispersion wenigstens ein Polymer P1 mit einer Glasübergangstemperatur Tg(1) ≥ 60 °C und wenigstens ein Polymer P2 mit einer Glasübergangstemperatur Tg(2) umfasst, wobei Tg(2) wenigstens 20 °C unterhalb Tg(1) liegt.
  8. Verwendung nach Anspruch 7, wobei das Gewichtsverhältnis der Polymerisate P1 : P2 im Bereich von 20 : 80 bis 80 : 20 beträgt.
  9. Verwendung nach einem der Ansprüche 7 oder 8, wobei das Emulsionspolymerisat ein Kern-Schale-Polymerisat, umfassend wenigstens ein Polymer P1 und wenigstens ein Polymer P2, ist.
  10. Verwendung nach einem der Ansprüche 7 bis 9, wobei das Polymer P1 im Wesentlichen aufgebaut ist aus wenigstens einem Monomer A, ausgewählt unter Styrol, α-Methylstyrol, C1-C4-Alkylmethacrylaten, Acrylnitril und Methacrylnitril.
  11. Verwendung nach einem der Ansprüche 7 bis 10, wobei das Polymer P2 im Wesentlichen aufgebaut ist aus
    10 bis 70 Gew.-%, bezogen auf die Gesamtmenge der Monomere, die das Polymer P2 bilden, wenigstens eines Monomers A, ausgewählt unter Styrol, α-Methylstyrol, C1-C4-Alkylmethacrylaten, Acrylnitril und Methacrylnitril und
    30 bis 90 Gew.-%, bezogen auf die Gesamtmenge der Monomere, die das Polymer P2 bilden, wenigstens eines Monomers B, ausgewählt unter C1-C10-Alkylacrylaten, den Vinylestern aliphatischer C1-C10-Carbonsäuren, C2-C6-Olefinen und Butadien.
  12. Verwendung nach einem der Ansprüche 10 oder 11, wobei die Polymere P1 und P2 unabhängig voneinander 0,1 bis 10 Gew.-%, bezogen auf die Gesamtmenge der konstituierenden Monomere, wenigstens eines Monomers C, ausgewählt unter ethylenisch ungesättigten Carbonsäuren, deren Amiden, deren N-Alkylolamiden und deren Hydroxyalkylestern, enthalten.
  13. Verfahren zur Verbesserung des Fogging-Verhaltens von Geweben, Ledern, Kunstledern und Faserverbundwerkstoffen, die wenigstens ein polymeres Bindemittel auf der Basis eines Emulsionspolymerisats enthalten, dadurch gekennzeichnet, dass man zu der wäsrigen Dispersion des Emulsionspolymerisats Aktivkohle und/oder Kohlenstoffmolekularsiebe wie in einem der Ansprüche 1 bis 5 definiert, gibt.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass es sich um ein Emulsionspolymerisat wie in einem der Ansprüche 7 bis 12 definiert handelt.
EP98115547A 1997-08-19 1998-08-18 Verwendung von Aktivkohle und/oder Kohlenstoffmolekularsieben zur Verbesserung des Fogging-Verhaltens von Geweben, Ledern und Faserverbundwerkstoffen Withdrawn EP0898010A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1997135960 DE19735960A1 (de) 1997-08-19 1997-08-19 Verwendung von Aktivkohle und/oder Kohlenstoffmolekularsieben zur Verbesserung des Fogging-Verhaltens von Geweben, Ledern und Faserverbundwerkstoffen
DE19735960 1997-08-19

Publications (2)

Publication Number Publication Date
EP0898010A2 true EP0898010A2 (de) 1999-02-24
EP0898010A3 EP0898010A3 (de) 2000-10-11

Family

ID=7839447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98115547A Withdrawn EP0898010A3 (de) 1997-08-19 1998-08-18 Verwendung von Aktivkohle und/oder Kohlenstoffmolekularsieben zur Verbesserung des Fogging-Verhaltens von Geweben, Ledern und Faserverbundwerkstoffen

Country Status (2)

Country Link
EP (1) EP0898010A3 (de)
DE (1) DE19735960A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2967081A1 (fr) * 2010-11-08 2012-05-11 Lorraine Inst Nat Polytech Procede de purification d'un melange visqueux contenant un ou plusieurs contaminants
CN108642907B (zh) * 2018-05-21 2020-07-10 昆山阿基里斯新材料科技有限公司 一种控制人造革成雾性的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3200072A1 (de) * 1981-01-14 1982-08-12 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung tiefziehbarer, gebundener nadelvliese fuer kraftfahrzeug-innenausstattungen mit verminderter neigung zum schrumpfen
EP0525671A1 (de) * 1991-07-25 1993-02-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Synthetische Harzzusammensetzung und daraus hergestelltes poröses Oberflächematerial
EP0587293A1 (de) * 1992-08-12 1994-03-16 Courtaulds Textiles (Holdings) Limited Das Beschlagen verhindernde Beschichtung
WO1998011156A1 (de) * 1996-09-11 1998-03-19 Basf Aktiengesellschaft Verfahren zur minderung der geruchsemission wässriger polymerisatdispersionen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3200072A1 (de) * 1981-01-14 1982-08-12 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung tiefziehbarer, gebundener nadelvliese fuer kraftfahrzeug-innenausstattungen mit verminderter neigung zum schrumpfen
EP0525671A1 (de) * 1991-07-25 1993-02-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Synthetische Harzzusammensetzung und daraus hergestelltes poröses Oberflächematerial
EP0587293A1 (de) * 1992-08-12 1994-03-16 Courtaulds Textiles (Holdings) Limited Das Beschlagen verhindernde Beschichtung
WO1998011156A1 (de) * 1996-09-11 1998-03-19 Basf Aktiengesellschaft Verfahren zur minderung der geruchsemission wässriger polymerisatdispersionen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2967081A1 (fr) * 2010-11-08 2012-05-11 Lorraine Inst Nat Polytech Procede de purification d'un melange visqueux contenant un ou plusieurs contaminants
WO2012062998A1 (fr) * 2010-11-08 2012-05-18 Institut National Polytechnique De Lorraine Procede de purification d'un melange visqueux contenant un ou plusieurs contaminants
CN108642907B (zh) * 2018-05-21 2020-07-10 昆山阿基里斯新材料科技有限公司 一种控制人造革成雾性的方法

Also Published As

Publication number Publication date
DE19735960A1 (de) 1999-02-25
EP0898010A3 (de) 2000-10-11

Similar Documents

Publication Publication Date Title
DE3300526C2 (de)
EP2328972B1 (de) Wässrige bindemittel für körnige und/oder faserförmige substrate
WO2006079394A1 (de) Schlagzähe poly(meth)acrylat-formmase mit hoher wärmeformbeständigkeit
DE2253689B2 (de) Thermoplastische Masse
CH673463A5 (de)
EP1885811A1 (de) Farbiges polymersystem mit verbesserter elastizität
EP2158266A1 (de) Verfahren zur herstellung von formkörpern
WO2005017004A1 (de) Verbundmaterial für thermisch formbare schuhkomponenten auf organischer faserbasis
EP1215324A2 (de) Verfahren zur Herstellung wiederverwertbarer Faserverbundwerkstoffe
EP1217028B1 (de) Wässrige Polymerisatdispersion enthaltend Kautschukteilchen und verstärkend wirkende Polymerisatteilchen
EP1047715B2 (de) Verfahren zur verbesserung der stabilität wässriger polymerisatdispersionen
EP1227123A1 (de) Verfahren zur Herstellung von wiederverwertbaren Formkörpern
EP0898010A2 (de) Verwendung von Aktivkohle und/oder Kohlenstoffmolekularsieben zur Verbesserung des Fogging-Verhaltens von Geweben, Ledern und Faserverbundwerkstoffen
WO2008083891A1 (de) Sphärische partikel, verfahren zur herstellung von sphärischen partikeln und ihre verwendung
WO2007082839A2 (de) Polymerisatpulver mit hohem kautschukanteil und deren herstellung
DE2748565C2 (de)
EP1049737B1 (de) Verfahren zum fällen von mikrosuspensionspolymerisaten
DE19638086A1 (de) Verfahren zur Minderung der Geruchsemission wässriger Polymerisatdispersionen
WO1998016560A1 (de) Verfahren zur herstellung niedrigviskoser, wässriger polymerisatdispersionen mit polymergehalten von wenigstens 50 vol-%
DE1219227B (de) Verfahren zur Herstellung wasserunloeslicher linearer Additionspolymerer
WO1998020048A2 (de) Verfahren zur herstellung niedrigviskoser, wässriger polymerisatdispersionen mit polymodaler verteilung der polymerisatteilchengrössen
EP3126432B1 (de) Verfahren zur herstellung von formkörpern
WO2000053842A1 (de) Herstellung eines mehrlagigen, textilen bodenbelags unter verwendung einer wässrigen polymerdispersion als klebstoff
EP1315685B1 (de) Verwendung eines polymermodifizierten formkörpers aus ton zum decken von dächern
EP3129414B1 (de) Verfahren zur herstellung einer wässrigen polymerisatdispersion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHMIDT-THUEMMES, JUERGEN, DR.

Inventor name: HUMMERICH, RAINER, DR.

Inventor name: MUELLER, ULRICH, DR.

Inventor name: OFFNER, ROLAND FRANCOIS EUGENE

Inventor name: MORRISON, BRADLEY RONALD, DR.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7D 06M 11/74 A, 7D 06N 3/00 B, 7C 14C 9/00 B, 7D 06M 15/21 B

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20010301