EP0897999B1 - Verfahren zur berührungslosen Energie- und Signalübertragung an Textilmaschinen, insbesondere Zwirnmaschinen sowie Einrichtung zur Durchführung des Verfahrens - Google Patents

Verfahren zur berührungslosen Energie- und Signalübertragung an Textilmaschinen, insbesondere Zwirnmaschinen sowie Einrichtung zur Durchführung des Verfahrens Download PDF

Info

Publication number
EP0897999B1
EP0897999B1 EP98110384A EP98110384A EP0897999B1 EP 0897999 B1 EP0897999 B1 EP 0897999B1 EP 98110384 A EP98110384 A EP 98110384A EP 98110384 A EP98110384 A EP 98110384A EP 0897999 B1 EP0897999 B1 EP 0897999B1
Authority
EP
European Patent Office
Prior art keywords
air gap
transformer
component
carrier signal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98110384A
Other languages
English (en)
French (fr)
Other versions
EP0897999A3 (de
EP0897999A2 (de
Inventor
Paul Dipl. Ing. Schroers
Guido Dipl. Ing. Spix
Stefan Dipl. Ing. Kross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkmann GmbH and Co KG
Original Assignee
Volkmann GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkmann GmbH and Co KG filed Critical Volkmann GmbH and Co KG
Publication of EP0897999A2 publication Critical patent/EP0897999A2/de
Publication of EP0897999A3 publication Critical patent/EP0897999A3/de
Application granted granted Critical
Publication of EP0897999B1 publication Critical patent/EP0897999B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H1/00Spinning or twisting machines in which the product is wound-up continuously
    • D01H1/14Details
    • D01H1/20Driving or stopping arrangements
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H7/00Spinning or twisting arrangements
    • D01H7/02Spinning or twisting arrangements for imparting permanent twist
    • D01H7/86Multiple-twist arrangements, e.g. two-for-one twisting devices ; Threading of yarn; Devices in hollow spindles for imparting false twist

Definitions

  • the present invention relates to a method for non-contact energy and signal transmission on textile machines, especially twisting machines with the features from the preamble of claim 1, and a Facility to carry out this procedure with the Features from the preamble of claim 11.
  • EP-0 525 495 A1 A contactless transmission of signals and electrical Energy is also described in EP-0 525 495 A1.
  • an axial transformer arrangement with a primary winding and a secondary winding and a core made of ferromagnetic material used for additional, contactless transmission of alternating signals in the immediate area of the Primary winding and secondary winding at least one Sender and at least one receiver are arranged, the alternately to transmitter and receiver electronics connectable, designed as flat antennas and with the primary winding, the secondary winding and / or the core of the transformer are combined into one unit.
  • the primary winding and the secondary winding of the transformer rotatably arranged relative to each other his.
  • two of these, as an axial transmission from well-known, well-known transformers in principle it is possible for a textile machine Energy and signal transmission from a first stationary Component through a rotatable component to one to transfer second stationary component.
  • the at Textile machines sometimes very high speeds (> 10,000 rpm), however, there is no reliable construction achieve.
  • Experiments with such arrangements repeatedly show the technical limits caused by the lack of centrifugal strength of the brittle and Cracking ferrite material. This also applies if the transformer is designed as a radial transformer.
  • DE 41 25 145 A1 also relates to a device for contactless transmission of electrical energy and Alternating signals with an axial transformer arrangement Primary and secondary winding and a ferromagnetic core Material in the immediate area of the Primary winding and secondary winding at least one Transmitter and a receiver are arranged as flat Antennas are formed, with primary winding and secondary winding together with the assigned antennas against each other be slidable or rotatable can.
  • the basic idea of the invention is energy and Data or control signals by means of a common carrier signal to be transmitted as the signals to be transmitted Frequency modulation are impressed, the evaluation of the frequency hopping to a bit serial Data stream leads, which are combined into data bytes or words and thus any number of control commands and / or Setpoint specifications for any number of functional elements enable.
  • the device for performing the invention Procedure is based on the knowledge that a transfer the required performance is only possible if the one used To the transformer in a very special way conditions are adjusted.
  • suitable transformers are described in claim 10, subject to particularly advantageous embodiments of dependent claims 11 to 17. With such a Training and arrangement of primary and secondary parts of the transformer it is possible to achieve higher performances minimized apparent power consumption and low Magnetic loss transfer without additional Cooling measures become necessary.
  • Figure 1 shows a highly schematic representation Double wire twisting spindle 1 of the type, as for example is shown and described in DE 43 31 801 C1.
  • the spindle has an outer housing 2 in which a spindle rotor disk 3 is rotatably mounted, the thread guide channel 3.1 and can be driven via a whorl 3.4 is.
  • On the outer circumference of the spindle rotor disc 3 is as Thread guiding element attached to a balloon limiter 3.2.
  • Thread guiding element attached to a balloon limiter 3.2.
  • Thread guide channel 3.1 opens as part of the Hollow spindle axis bent at its lower end Thread guide tube 3.3.
  • a chamber 8 with the interposition of a bearing 8.1 secured against rotation, preferably the shape of a cylinder, and a bottom 8.2, an outer wall 8.3 and includes a removable lid, not shown.
  • this chamber 8 Within this chamber 8 are two rotor spinning devices R1 and R2 housed, the spinning rotors of each Electric motors 4 and 5 are driven.
  • the electric motors 4 and 5 are over lines 4.1. or 5.1 with one electronic assembly 7 connected to the floor 8.2 the chamber 8 is arranged.
  • the electronic assembly 7 is connected to the secondary part 6.2 of a transformer 6, whose primary part 6.1 in the wall of the outer housing 2 is fixed.
  • the inside of the spinning rotors according to the usual open-end process Spun threads are made from the above open spinning rotors pulled upwards and not in merged in a way shown in a point of union, from where they work according to the double wire principle be united into a twine by being axially through the double wire twisting spindle along the spindle axis deducted and after exiting the radial Thread guide channel 3.1 to form a thread balloon to a lying in the extension of the hollow spindle axis, subtracted centering point, not shown, and from there usually continued to a thread winding unit become.
  • FIG shown Another embodiment of a twisting spindle is shown in FIG shown, which is different from the embodiment only differs according to Figure 1 in that here is working with a free thread balloon and thus the balloon limiter connected to the spindle rotor disc eliminated.
  • Figure 2 are those of the embodiment Figure 1 corresponding components with the same reference numerals referred to, each with an apostrophe are provided.
  • Regarding the construction of the spindle refer to the description of Figure 1.
  • FIG 3 is easy compared to Figures 1 and 2 enlarged the arrangement of the transformer 6 the twisting spindle, which is only indicated by dashed lines here, shown.
  • the primary part of the transformer 6 is in the wall 3.2 of the stationary outer housing, while the secondary part 6.2 in the also stationary Wall 8.3 of the chamber 8 is arranged. Between these an air gap 9, whose Width is such that the thread balloon and the Embodiment according to Figure 1, the balloon limiter through can be moved through it.
  • the primary part 6.1 of the transformer 6 has a primary winding 6.11 wound on a bobbin 6.13 is, and preferably a U-core or E-core Ferrite core.
  • the secondary part has a secondary winding 6.21 wound on a bobbin 6.23 is, and preferably as a U-core or as an E-core trained ferrite core 6.22.
  • the two cores are axially aligned and at a distance of the width of the air gap 9 arranged from each other. As can be seen in FIG. 3, are the two ferrite cores 6.12 and 6.22 in view on the length of their thighs and the formation of the End faces of the legs to the contour of the air gap 9 adjusted and follow its curvature.
  • each of the cores 6.12 and 6.22 is several times (preferably> 4) larger than that Width, preferably> 2 mm, of the air gap 9. Since the between the primary and secondary side of the transformer 6 rotating unit made of an electrically non-conductive Material must exist in the embodiment Figure 1 of the balloon limiter 3.2 in the through the transformer 6 passing section a window 3.21 that is closed with a plastic material.
  • both on Primary part 6.1 and the windings on the secondary part 6.2 6.11 and 6.21 are arranged so that their on the air gap 9 adjacent parts also to the contour of the Air gaps are adjusted and follow its curvature.
  • the secondary winding 6.21 is still designed that their parts facing away from the air gap 9 also are adapted to the contour of the air gap 9 and in essentially follow its curvature. This is done by a with bevelled part 6.24 of the bobbin reached.
  • the electrical energy is transmitted in the medium frequency range (10 to 30 kHz) in order to be able to realize acceptable sizes.
  • the use of ferrite cores ensures that the magnetic losses are low and that no additional cooling measures are required even at higher powers.
  • Width of the air gap 4.5 mm efficiency 93% Transferable performance approx. 400 - 500 W.
  • FIG. 4 shows the circuit for Supply of electrical energy, as well as the signals the outside through the transformer 6 in the interior of the Thread spindle 1 or 1 '.
  • the only winding of the primary part 6.1 of the transformer 6 is connected to the output of a control unit 10, the one in addition to the mains voltage in not shown Control signals (e.g. start, stop, setpoint speed) are supplied become.
  • Control signals e.g. start, stop, setpoint speed
  • this control unit 10 here generated carrier signal that has a frequency between Can have 10 and 30 kHz and that for energy transmission serves, assigned to the control signals a control signal specific Frequency modulation imprinted.
  • the resulting frequency-modulated signal is from the primary part 6.1 of the transformer 6 transferred to the secondary part 6.2. So there is both energy transfer, as well as data transmission over the same winding of the primary part and the secondary part.
  • the secondary part 6.2 is via a rectifier bridge 11 and optionally a voltage stabilization 12 to the Energy inputs of components connected in figure 4 referred to as "functional element 1" and “functional element N" are, and in the present example by the two Electric motors 4 and 5 are represented. Of course can also be used here for other functional elements of the Thread spindle connected.
  • the secondary part 6.2 of the transformer 6 via a voltage comparator connected amplifier 13 to the "evaluation electronics" designated electronic assembly 7 inside connected to the chamber 8 of the twisting spindle.
  • This electronic assembly e.g. a microprocessor contains, evaluates occurring frequency changes accordingly the procedure described below.
  • FIG. 5A shows a possible voltage curve over time of the frequency-modulated primary voltage / secondary voltage generated by the control unit 10.
  • these signals are designed as square-wave signals. However, it can be both sinusoidal and rectangular.
  • the amplifier 13 which is connected as a voltage comparator, a square-wave voltage is present at the input of the evaluation electronics 7, regardless of the rectangular or sine shape of the voltage fed in.
  • the supply voltage of frequency f B base frequency
  • the frequency of the supply voltage changes according to the bit pattern to be transmitted between the base frequency f B and a second frequency f O (offset frequency).
  • the frequency changes such as level changes in asynchronous transmission methods are evaluated in the electronic unit 7.
  • the interpretation of the signals in the evaluation electronics is shown in FIG. 5C.
  • the frequency f O can optionally be greater or smaller than the base frequency f B , the frequency / level assignment of course having to be interpreted or evaluated in the same way in the control unit 10 and evaluation unit 7.
  • a high-low edge change is interpreted as a start bit.
  • FIGS. 5A to 5C A method is illustrated in FIGS. 5A to 5C, in which the frequency change within a period the supplied AC voltage is evaluated.
  • N integer period numbers
  • the interference immunity of the process e.g. by averaging to increase.
  • too a different integer number of consecutive Pulses of the same frequency agreed or defined be the number N and M for the two frequencies can be chosen so differently that approximately same times for the transmission of low and high levels result (this is the usual asynchronous transmission method the next). Because of the inevitable interference signals such a transmission path is sensible in all of the aforementioned variants, thanks to the evaluation electronics Edge changes only in such Evaluate time windows that correspond to the agreed period of base and offset frequencies.
  • a 10-bit frame (a start bit, 8 data bits and a Stop bit) is used.
  • the bits transmitted are through the evaluation electronics combined into a data word (byte).
  • the bits can also be used for data structures consisting of any number of data bytes combined become.
  • a transferred Data block can be created in a known manner by checksuming (e.g. CRC check) are saved so that transmission errors recognized and taken into account by the evaluation electronics can. Transmission errors lead to a standstill of the controlled motors. This can be done by simple sensors outside the rotating device unit can be detected.
  • the evaluation electronics can modulate the Cause current consumption caused by current sensors in the converter of the primary energy supply evaluated becomes.
  • the error-free data transmission can thus be acknowledged become.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur berührungslosen Energie- und Signalübertragung an Textilmaschinen, insbesondere Zwirnmaschinen mit den Merkmalen aus dem Oberbegriff des Patentanspruchs 1, sowie eine Einrichtung zur Durchführung dieses Verfahrens mit den Merkmalen aus dem Oberbegriff des Patentanspruchs 11.
Ein Verfahren sowie eine Einrichtung mit den dort aufgeführten Merkmalen ist bekannt und in DE-C- 1 510 854 für eine Zwirnmaschine beschrieben. Bei der bekannten Einrichtung erfolgt die Energieübertragung zwischen der stationär angeordneten Primärseite und der gleichfalls stationär angeordneten Sekundärseite eines Transformators, wobei zwischen den beiden Transformatorhälften der Fadenballon hindurchläuft. Genauere Angaben zur Ausführung des Transformators sind in dieser Druckschrift nicht angegeben. Die beschriebenen Ausführungsbeispiele zeigen aber, daß der Transformator ausschließlich zur Übertragung kleiner Leistungen geeignet ist. Hierauf deutet schon die Verwendung von Eisen-Spulenkernen bei Übertragungsfrequenzen von mehr 1000 Hz hin. Bei höheren Leistungen, also Leistungen oberhalb 50 W wären die aufgrund der hohen Ummagnetisierungsverluste auftretenden Verlustleistungen ohne aufwendige zusätzliche Kühlungsmaßnahmen nicht mehr abführbar. Ein weiterer Nachteil der bekannten Anordnung besteht darin, daß aufgrund der analogen Steuerung der beschriebenen Funktionseinheiten (Veränderung der Primärspannung des Transformators) mehrere Transformatoreinheiten erforderlich sind, sobald mehrere Funktionseinheiten (z.B. Bremse und Motor) gesteuert werden sollen. Ein weiterer, prinzipieller Nachteil eines analogen Steuerverfahrens besteht darin, daß hochpräzise Steuerungen z.B. genaue Drehzahlsteuerungen von Motoren nicht realisierbar sind, da insbesondere bei großem Luftspalt die Toleranzen von Wicklungsausführung und Luftspalteinstellung mit vertretbarem Aufwand nicht ausreichend genau eingehalten werden können und eine Datenübertragung z.B. durch Sollwertvorgabe nicht möglich ist.
Eine berührungslose Übertragung von Signalen und elektrischer Energie ist auch in EP-0 525 495 A1 beschrieben. Bei dieser bekannten Anordnung wird eine axiale Transformator-Anordnung mit einer Primärwicklung und einer Sekundärwicklung sowie einem Kern aus ferromagnetischem Material verwendet, bei dem zur zusätzlichen, kontaktlosen Übertragung von Wechselsignalen im unmittelbaren Bereich der Primärwicklung und der Sekundärwicklung mindestens ein Sender und mindestens ein Empfänger angeordnet sind, die wechselweise an eine Sender- und an eine Empfangselektronik anschließbar, als flächige Antennen ausgebildet und mit der Primärwicklung, der Sekundärwicklung und/oder dem Kern des Transformators zu einer Baueinheit zusammengefaßt sind.
Dabei können die Primärwicklung und die Sekundärwicklung des Transformators relativ zueinander verdrehbar angeordnet sein. Durch die Verwendung von zwei derartigen, als Axialübertrager aus gebildeten, bekannten Transformatoren wäre es prinzipiell möglich, bei einer Textilmaschine eine Energie- und Signalübertragung von einem ersten stationären Bauteil durch ein drehbares Bauteil hindurch zu einem zweiten stationären Bauteil zu übertragen. Bei den bei Textilmaschinen auftretenden zum Teil sehr hohen Drehzahlen (> 10.000 Upm) läßt sich jedoch keine betriebssichere Konstruktion erzielen. Experimente mit derartigen Anordnungen zeigen immer wieder die technischen Grenzen bedingt durch die mangelnde Fliehkraftfestigkeit des spröden und zur Rißbildung neigenden Ferritmaterials. Dies gilt auch dann, wenn der Transformator als Radialübertrager ausgebildet ist.
Weiterhin erfolgt bei diesen bekannten Anordnungen die Signalübertragung parallel zur Energieübertragung auf getrennten Wegen über zusätzliche Wicklungen oder über, als Antennen ausgebildete, zusätzliche induktive oder kapazitive Koppelelemente. Falls zusätzliche Wicklungen verwendet werden, führt dies zu unerwünscht großem Bauraum. Bei Anordnung von Antennen werden zur Leistungs- und Datenübertragung üblicherweise unterschiedliche Trägerfrequenzen verwendet, daß heißt, die Energieübertragung erfolgt üblicherweise im kHz-Bereich, während die Signalübertragung im MHz-Bereich erfolgt. Der hierzu erforderliche Aufwand an Bauelementen führt zu erhöhten Kosten, die insbesondere bei im Textilmaschinenbau üblichen Vielstellenmaschinen nicht zu vertreten sind.
Auch die DE 41 25 145 A1 betrifft eine Einrichtung zur berührungslosen Übertragung von elektrischer Energie und Wechselsignalen mit einer axialen Transformatoranordnung mit Primär- und Sekundärwicklung und einem Kern aus ferromagnetischem Material, bei der im unmittelbaren Bereich der Primärwicklung und der Sekundärwicklung mindestens ein Sender und ein Empfänger angeordnet sind, die als flächige Antennen ausgebildet sind, wobei Primärwicklung und Sekundärwicklung zusammen mit den zugeordneten Antennen gegeneinander verschiebbar oder verdrehbar ausgebildet sein können. Bezüglich der Verwendung einer derartigen Einrichtung zur Energie- und Signalübertragung an einer Textilmaschine gilt das zur vorgenannten Druckschrift gesagte.
Aus der DE 195 45 220 A1 ist eine Anordnung zum kontaktlosen Übertragen von Signalen zwischen gegeneinander linear bewegbaren Fahrzeugteilen bekannt, die insbesondere zur Übertragung von Energie- und Steuersignalen zwischen der Karosserie eines Fahrzeugs und dem Fahrer- oder Beifahrersitz gedacht ist. Die Anordnung weist einen Übertrager auf, dessen Primär- und Sekundärwicklung in getrennten Schalenkernen liegen, die als aneinander entlanggleitende Schienen ausgebildet sind, welche solche Profile besitzen, daß sie zusammen einen geschlossenen Kreis für den magnetischen Fluß zwischen der Primär- und der Sekundärwicklung bilden. Mit dieser Anordnung ist jedoch eine Energie- und Signalübertragung an einer Textilmaschine durch ein drehbares Bauteil hindurch nicht möglich.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der im Oberbegriff des Patentanspruchs 1 angegebenen Art so auszugestalten, daß über einen Luftspalt hinweg durch den mindestens ein Bauteil bzw. ein Fadenballon bewegt wird, vom ersten stationären Bauteil, z.B. dem Maschinengestell einer Zwirnmaschine, zu dem zweiten stationären Bauteil, z.B. einer Zwirnspindel, elektrische Energie und Signale derart übertragen werden können, daß folgende Bedingungen erfüllt sind:
  • 1) Es können beliebig viele Funktionselemente des von dem bewegten Bauteil umschlossenen zweiten stationären Bauteils gesteuert werden;
  • 2) das bewegte Bauteil kann mit hoher Drehzahl (z.B. mehr als 10.000 Upm) rotieren;
  • 3) es ist eine Energieübertragung mit Leistungen > 50 W über einen relativ großen Luftspalt (> 1 mm) möglich;
  • 4) es ist eine bevorzugt unidirektionale alternativ auch bidirektionale Datenübertragung ohne zusätzliche, als Antennen ausgebildete induktive bzw. kapazitive Koppelelemente möglich.
  • Die Lösung dieser Aufgabe erfolgt erfindungsgemäß mit den Merkmalen aus dem kennzeichnenden Teil des Patentanspruchs 1. Vorteilhafte Weiterbildungen des Verfahrens sind in den abhängigen Ansprüchen 2 bis 9 beschrieben. Eine Einrichtung
    zur Durchführung des erfindungsgemäßen Verfahrens ist Gegenstand des Anspruchs 10. Vorteilhafte Weiterbildungen dieser Einrichtung sind in den abhängigen Ansprüchen 11 bis 19 beschrieben.
    Der Grundgedanke der Erfindung besteht darin, Energie und Daten- bzw. Steuersignale mittels eines gemeinsamen Trägersignals zu übertragen, dem die zu übertragenden Signale als Frequenzmodulation aufgeprägt werden, wobei die Auswertung der auftretenden Frequenzsprünge zu einem bitseriellen Datenstrom führt, die zu Datenbytes bzw. -worten zusammengefaßt werden und somit beliebig viele Steuerbefehle und/oder Sollwertvorgaben für beliebig viele Funktionselemente ermöglichen.
    Als im zweiten stationären Bauteil angeordnete Funktionselemente kommen außer Fadenbremsen, Zwirnflügelbremsen und dergleichen auch Motoren in Frage, die beispielsweise zum Antrieb von Spinnaggregaten dienen, welche in einer Zwirnspindel innerhalb des vom Fadenballon definierten Raumes angeordnet sind. Derartige Vorrichtungen dienen zur Herstellung eines Zwirns in einem integrierten Spinn-Zwirn-Prozeß und sind beispielsweise in DE 43 31 801 C1 beschrieben.
    Die Einrichtung zur Durchführung des erfindungsgemäßen Verfahrens beruht auf der Erkenntnis, daß eine Übertragung der geforderten Leistung nur möglich ist, wenn der verwendete Transformator in ganz besonderer Weise an die vorausgesetzten Bedingungen angepaßt ist. Die Merkmale des zur Durchführung des erfindungsgemäßen Verfahrens geeigneten Transformators sind in Anspruch 10 beschrieben, wobei besonders vorteilhafte Ausführungsformen Gegenstand der abhängigen Ansprüche 11 bis 17 sind. Mit einer derartigen Ausbildung und Anordnung von Primär- und Sekundärteil des Transformators ist es möglich, höhere Leistungen bei minimierter Scheinleistungsaufnahme und geringen Ummagnetisierungsverlusten zu übertragen, ohne daß zusätzliche Kühlmaßnahmen notwendig werden.
    Im folgenden werden anhand der beigefügten Zeichnungen Ausführungsbeispiele für das erfindungsgemäße Verfahren sowie Einrichtungen zu dessen Durchführung näher erläutert.
    In den Zeichnungen zeigen:
    Figur 1
    in einer stark schematisierten Schnittdarstellung eine Zwirnspindel mit geführtem Fadenballon und zwei innerhalb der Zwirnspindel angeordneten Spinnaggregaten, zu denen aus dem Außenraum Energie und Signale übertragen werden;
    Figur 2
    in einer Darstellung analog Figur 1, eine Zwirnspindel mit freiem Fadenballon und zwei vom Außenraum her mit Energie und Signalen versorgten Spinnaggregaten;
    Figur 3
    im Horizontalschnitt die Ausbildung des Transformators zur Energie- und Signalübertragung bei den Zwirnspindeln nach Figur 1 und 2;
    Figur 4
    in einem Prinzipschaltbild die elektrischen Bauelemente der Einrichtung zur Energie- und Signalübertragung bei den Zwirnspindeln nach Figur 1 oder 2;
    Die Figuren 5A bis 5C
    erläutern in Zeitdiagrammen ein Ausführungsbeispiel für eine bitserielles Übertragungsverfahren von Signalen mittels Frequenzmodulation.
    Figur 1 zeigt in stark schematisierter Darstellung eine Doppeldraht Zwirnspindel 1 der Bauart, wie sie beispielsweise in DE 43 31 801 C1 dargestellt und beschrieben ist.
    Die Spindel besitzt ein Außengehäuse 2, in dem eine Spindelrotorscheibe 3 drehbar gelagert ist, die einen Fadenleitkanal 3.1 aufweist und über einen Wirtel 3.4 antreibbar ist. Am Außenumfang der Spindelrotorscheibe 3 ist als Fadenleitelement ein Ballonbegrenzer 3.2 befestigt. In das innere Ende des Fadenleitkanals 3.1 mündet als ein Teil der Spindelhohlachse ein an seinem unteren Ende abgebogenes Fadenführungsrohr 3.3. Oberhalb der Spindelrotorscheibe 3 ist unter Zwischenschalten eines Lagers 8.1 eine Kammer 8 gegen Drehung gesichert gelagert, die vorzugsweise die Form eines Zylinders hat, und einen Boden 8.2, eine Außenwand 8.3 und einen nicht dargestellten abnehmbaren Deckel umfaßt. Innerhalb dieser Kammer 8 sind zwei Rotor-Spinnvorrichtungen R1 und R2 untergebracht, deren Spinnrotoren jeweils von Elektromotoren 4 und 5 angetrieben werden. Die Elektromotoren 4 und 5 sind über Leitungen 4.1. bzw. 5.1 mit einer elektronischen Baugruppe 7 verbunden, die auf dem Boden 8.2 der Kammer 8 angeordnet ist. Die elektronische Baugruppe 7 ist an den Sekundärteil 6.2 eines Transformators 6 angeschlossen, dessen Primärteil 6.1 in der Wand des Außengehäuses 2 fest angeordnet ist.
    Es wird darauf hingewiesen, daß in den Figuren 1 und 2 alle für die Speisung und Ansteuerung der Elektromotoren 4 und 5 unwesentlichen Teile der Zwirnspindel weggelassen sind.
    Im Betrieb wird den Rotor-Spinnvorrichtungen R1 und R2 in nicht eigens dargestellter Weise aufgelöstes Fasermaterial von außen durch den Fadenballon hindurch zugeführt. Die innerhalb der Spinnrotoren nach dem üblichen Open-End-Verfahren hergestellten Spinnfäden werden aus den oben offenen Spinnrotoren nach oben hin abgezogen und in nicht eigens dargestellter Weise in einem Vereinigungspunkt zusammengeführt, von wo aus sie entsprechend dem Doppeldraht-Prinzip zu einem Zwirn vereinigt werden, indem sie axial durch die Doppeldraht-Zwirnspindel entlang der Spindelachse abgezogen und nach dem Austritt aus dem radial verlaufenden Fadenleitkanal 3.1 unter Bildung eines Fadenballons bis zu einem in der Verlängerung der Spindelhohlachse liegenden, nicht dargestellten Zentrierpunkt abgezogen und von da aus üblicherweise zu einem Fadenaufwickelaggregat weitergeführt werden.
    Einzelheiten hierzu sind der DE 43 31 801 C1 zu entnehmen.
    In Figur 2 ist eine andere Ausführungsform einer Zwirnspindel dargestellt, die sich von der Ausführungsform nach Figur 1 lediglich dadurch unterscheidet, daß hier mit einem freien Fadenballon gearbeitet wird und somit der mit der Spindelrotorscheibe verbundene Ballonbegrenzer entfällt. In Figur 2 sind die der Ausführungsform nach Figur 1 entsprechenden Bauteile mit den gleichen Bezugsziffern bezeichnet, die jeweils mit einem Apostroph-Strich versehen sind. Bezüglich des Aufbaus der Spindel wird daher auf die Beschreibung zur Figur 1 verwiesen.
    In beiden Ausführungsformen wird die elektrische Energie zum Antrieb der Elektromotoren 4 und 5 bzw. 4' und 5' über den Transformator 6 bzw. 6' zugeführt. Weiterhin werden Signale zur Ansteuerung der beiden Elektromotoren ebenfalls über den Transformator 6 bzw. 6' zugeführt. Dies wird weiter unten näher erläutert.
    In Figur 3 ist in gegenüber den Figuren 1 und 2 leicht vergrößerter Weise die Anordnung des Transformators 6 an der Zwirnspindel, die hier nur gestrichelt angedeutet ist, dargestellt. Der Primärteil des Transformators 6 ist in der Wand 3.2 des stationären Außengehäuses angeordnet, während der sekundäre Teil 6.2 in der ebenfalls stationären Wand 8.3 der Kammer 8 angeordnet ist. Zwischen diesen beiden stationären Wänden liegt ein Luftspalt 9, dessen Breite so bemessen ist, daß der Fadenballon und bei der Ausführungsform nach Figur 1, auch der Ballonbegrenzer durch ihn hindurchbewegt werden können.
    Der Primärteil 6.1 des Transformators 6 besitzt eine Primärwicklung 6.11, die auf einen Spulenkörper 6.13 aufgewickelt ist, sowie einen vorzugsweise als U-Kern oder E-Kern ausgebildeten Ferritkern. Der Sekundärteil besitzt eine Sekundärwicklung 6.21, die auf einen Spulenträger 6.23 aufgewickelt ist, sowie einen vorzugsweise als U-Kern oder als E-Kern ausgebildeten Ferritkern 6.22. Die beiden Kerne sind axial aufeinander ausgerichtet und im Abstand der Breite des Luftspalts 9 voneinander angeordnet. Wie Figur 3 zu entnehmen, sind die beiden Ferritkerne 6.12 und 6.22 im Hinblick auf die Länge ihrer Schenkel und die Ausbildung der Stirnflächen der Schenkel an die Kontur des Luftspalts 9 angepaßt und folgen dessen Krümmung. Der gegenseitige Abstand der äußeren Schenkel jedes der Kerne 6.12 und 6.22 ist um ein mehrfaches (vorzugsweise >4) größer als die Breite, vorzugsweise >2 mm, des Luftspalts 9. Da die zwischen Primär- und Sekundärseite des Transformators 6 rotierende Einheit aus einem elektrisch nicht leitenden Material bestehen muß, besitzt bei der Ausführungsform nach Figur 1 der Ballonbegrenzer 3.2 in dem durch den Transformator 6 hindurchlaufenden Abschnitt ein Fenster 3.21, daß mit einem Kunststoffmaterial verschlossen ist.
    Es ist weiterhin aus Figur 3 ersichtlich, daß sowohl am Primärteil 6.1 als auch am Sekundärteil 6.2 die Wicklungen 6.11 bzw. 6.21 so angeordnet sind, daß ihre an den Luftspalt 9 angrenzenden Teile ebenfalls an die Kontur des Luftspalts angepaßt sind und seiner Krümmung folgen. Auf diese Weise sind die Wicklungen 6.11 und 6.22 bis auf den geringst möglichen Abstand an den Luftspalt 9 herangeführt. Darüberhinaus ist die Sekundärwicklung 6.21 noch so ausgebildet, daß ihre vom Luftspalt 9 abgewandten Teile ebenfalls an die Kontur des Luftspalts 9 angepaßt sind und im wesentlichen seiner Krümmung folgen. Dies wird durch einen mit Schrägflächen versehenen Teil 6.24 des Spulenträgers erreicht.
    Die Übertragung der elektrischen Energie erfolgt im mittleren Frequenzbereich (10 bis 30 kHz), um akzeptable Baugrößen realisieren zu können. Durch die Verwendung von Ferritkernen wird erreicht, daß die Ummagnetisierungsverluste gering sind, und auch bei höheren Leistungen keine zusätzlichen Kühlmaßnahmen erforderlich sind. Es konnten beispielsweise folgende Leistungsdaten erzielt werden:
    Breite des Luftspalts 4,5 mm
    Wirkungsgrad 93 %
    Übertragbare Leistung ca. 400 - 500 W
    Benötigte Scheinleistung ca. 2.500 VA
    Selbstverständlich ist es möglich, bei der Ausbildung des Transformators 6 auf den Spulenkörper als Wicklungsträger zu verzichten, wobei eine vorgefertigte, fixierte Spule unmittelbar durch Vergießen am Kern befestigt wird.
    Da über den Transformator 6 außer der zum Antrieb der Elektromotoren 4 und 5 benötigten elektrischen Energie auch Daten zur Sollwertvorgabe des Motorbetriebes übertragen werden sollen, wird im folgenden diese Datenübertragung anhand der Figuren 4, sowie 5A bis 5C erläutert.
    Figur 4 zeigt in einem Prinzipschaltbild die Schaltung zur Zuführung der elektrischen Energie, sowie der Signale aus dem Außenraum über den Transformator 6 in den Innenraum der Zwirnspindel 1 bzw. 1'.
    Die einzige Wicklung des Primärteils 6.1 des Transformators 6 ist an den Ausgang einer Steuereinheit 10 angeschlossen, der außer der Netzspannung in nicht näher dargestellter Weise Steuersignale (z.B. Start, Stop, Solldrehzahl) zugeführt werden. In dieser Steuereinheit 10 wird dem hier generiertem Trägersignal, das eine Frequenz zwischen 10 und 30 kHz aufweisen kann und das zur Energieübertragung dient, zugeordnet zu den Steuersignalen eine steuersignalspezifische Frequenzmodulation aufgeprägt. Das entstandene frequenzmodulierte Signal wird vom Primärteil 6.1 des Transformators 6 auf den Sekundärteil 6.2 übertragen. Es erfolgen also sowohl die Energieübertragung, als auch die Datenübertragung über die gleiche Wicklung des Primärteils und des Sekundärteils.
    Der Sekundärteil 6.2 ist über eine Gleichrichterbrücke 11 und gegebenenfalls eine Spannungsstabilisierung 12 an die Energieeingänge von Bauteilen angeschlossen, die in Figur 4 als "Funktionselement 1" und "Funktionselement N" bezeichnet sind, und im vorliegenden Beispiel durch die beiden Elektromotoren 4 und 5 repräsentiert sind. Selbstverständlich können hier auch noch weitere Funktionselemente der Zwirnspindel angeschlossen sein. Weiterhin ist der Sekundärteil 6.2 des Transformators 6 über einen als Spannungskomparator geschalteten Verstärker 13 an die als "Auswerteelektronik" bezeichnete elektronische Baugruppe 7 im Innern der Kammer 8 der Zwirnspindel angeschlossen. Diese elektronische Baugruppe, die z.B. einen Mikroprozessor enthält, wertet auftretende Frequenzänderungen entsprechend dem nachfolgend beschriebenen Verfahren aus.
    Figur 5A zeigt einen möglichen zeitlichen Spannungsverlauf der durch die Steuereinheit 10 generierten frequenzmodulierten Primärspannung/Sekundärspannung. Diese Signale sind im Ausführungsbeispiel als Rechtecksignale ausgebildet. Sie kann jedoch sowohl sinus- als auch rechteckförmig sein. Nach Durchlaufen des als Spannungskomparators geschalteten Verstärkers 13 steht unabhängig von Rechteck- oder Sinusform der eingespeister Spannung eine Rechteckspannung am Eingang der Auswerteelektronik 7 an. Solange keine Daten übertragen werden, liegt an der elektronischen Baueinheit 7 die Versorgungsspannung der Frequenz fB (Basisfrequenz) an. Sobald Daten übertragen werden, wechselt die Frequenz der Versorgungsspannung entsprechend dem zu übertragenden Bitmuster zwischen der Basisfrequenz fB und einer zweiten Frequenz fO (Offset-Frequenz). Diese durch die elektronische Baueinheit detektierten Frequenzsprünge sind in Figur 5B dargestellt. In der elektronischen Baueinheit 7 werden die Frequenzänderungen wie Pegeländerungen bei asynchronen Übertragungsverfahren ausgewertet. Die Interpretation der Signale in der Auswerteelektronik ist in Figur 5C dargestellt. Zur Übertragung eines High-Pegels (Bit = 1) wird die Frequenz fB und zur Übertragung eines Low-Pegels (Bit = 0) die Frequenz fO eingespeist. Dabei kann die Frequenz fO wahlweise größer oder kleiner als die Basis-Frequenz fB sein, wobei die Frequenz/Pegelzuordnung natürlich bei Steuereinheit 10 und Auswerteeinheit 7 in gleicher Weise interpretiert bzw. ausgewertet werden muß. Ein High-Low-Flankenwechsel wird als Startbit interpretiert.
    In den Figuren 5A bis 5C ist ein Verfahren dargestellt, bei dem der Frequenzwechsel innerhalb einer Periodendauer der eingespeisten Wechselspannung ausgewertet wird. Natürlich können auch ganzzahlige Periodenanzahlen N zur Detektion des Frequenzwechsels vereinbart bzw. definiert werden, um die Störsicherheit des Verfahrens z.B. durch Mittelwertbildung zu erhöhen. In einer weiteren Variante kann auch eine unterschiedliche ganzzahlige Anzahl aufeinanderfolgender Impulse gleicher Frequenz vereinbart bzw. definiert werden, wobei die Anzahl N und M für die beiden Frequenzen derart unterschiedlich gewählt sein kann, daß sich annähernd gleiche Zeiten für die Übertragung von Low- und High-Pegeln ergeben (dies kommt dem üblichen asynchronen Übertragungsverfahren am nächsten). Aufgrund der unvermeidlichen Störsignale einer derartigen Übertragungsstrecke ist es bei allen vorgenannten Varianten sinnvoll, durch die Auswerteelektronik Flankenwechsel ausschließlich in derartigen Zeitfenstern auszuwerten, die den vereinbarten Periodendauern von Basis- und Offset-Frequenz entsprechen.
    Bei dem in Figur 5C dargestellten Auswerteverfahren wird ein 10-Bit-Rahmen (ein Startbit, 8 Datenbits und ein Stopbit) verwendet. Die übertragenen Bits werden durch die Auswerteelektronik zu einem Datenwort (Byte) zusammengefaßt. Natürlich können die Bits auch zu Datenstrukturen bestehend aus einer beliebigen Anzahl Datenbytes zusammengefaßt werden. Mit diesem Verfahren sind bei definierten Datenstrukturen beliebig viele, unterschiedliche Sollwertgrößen bzw. Steuerbefehle übertragbar. Ein übertragener Datenblock kann in bekannter Weise durch Prüfsummenbildung (z.B. CRC-Check) gesichert werden, so daß Übertragungsfehler erkannt und durch die Auswerteelektronk berücksichtigt werden können. Übertragungsfehler führen hierbei zum Stillstand der angesteuerten Motoren. Dies kann wiederum durch einfache Sensoren außerhalb der rotierenden Geräteeinheit detektiert werden.
    Alternativ kann die Auswerteelektronik eine Modulation der Stromaufnahme hervorrufen, die durch Stromsensoren im Umrichter der primärseitigen Energieeinspeisung ausgewertet wird. Die fehlerfreie Datenübertragung kann somit quittiert werden.
    Bei Einsatz derartiger Stromsensoren können in einer weiteren Variante der Erfindung auch beliebige Datenblöcke durch Strom-Modulation übertragen und detektiert werden, so daß auch eine bidirektionale Datenübertragung möglich wird.

    Claims (19)

    1. Verfahren zur berührungslosen Energie- und Signalübertragung an Textilmaschinen, insbesondere Zwirnmaschinen von einem ersten stationären Bauteil über einen Luftspalt vorgegebener Breite zu einem zweiten stationären Bauteil, wobei durch den Luftspalt minddestens ein Bauteil oder Gegenstand aus elektrisch nicht leitendem Material bewegt wird, insbesondere vom Maschinengestell einer Zwirnmaschine zu einer Zwirnspindel, durch den in einem Luftspalt rotierenden Fadenballon hindurch, bei welchem ein Wechselspannungssignal mit einer Frequenz von mindestens 10 kHz durch induktive Übertragung über einen Transformator übertragen wird, dessen Primärseite am ersten Bauteil und dessen Sekundärseite am zweiten Bauteil angeordnet ist, wobei sich zwischen Primärteil und Sekundärteil ein Luftspalt befindet, dadurch gekennzeichnet, daß ein Transformator mit nur einem Wicklungspaar verwendet wird, über welches Energie und Signale mittels eines gemeinsamen Trägersignals übertragen werden, wobei das Trägersignal selbst zur Energieübertragung dient, während die zu übertragenden Signale im Trägersignal als Frequenzmodulation derart aufgeprägt werden, daß das Trägersignal zwischen zwei einen festen vorgegebenen Abstand aufweisenden Frequenzwerten springt und Frequenzsprünge sekundärseifig als bitserielle Signale ausgewertet werden, aus denen Steuersignale erzeugt werden.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Frequenzsprünge des Trägersignals innerhalb einer Periodendauer des Trägersignals ausgewertet werden.
    3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Frequenzsprünge dem Trägersignal mit einer vorgegebenen Anzahl von Perioden aufgeprägt und innerhalb der Dauer dieser Perioden ausgewertet werden.
    4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Anzahl von Perioden, mit denen die Frequenzsprünge dem Trägersignal aufgeprägt werden, für die beiden vorgegebenen Frequenzwerte die gleiche ist.
    5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Anzahl von Perioden, mit denen die Frequenzsprünge dem Trägersignal aufgeprägt werden, für die beiden vorgegebenen Frequenzwerte unterschiedlich ist.
    6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Anzahl von Perioden, mit denen die Frequenzsprünge dem Trägersignal aufgeprägt werden, für die beiden vorgegebenen Frequenzwerte derart unterschiedlich gewählt wird, daß sich annähernd gleiche Zeiten für die Übertragung der beiden Frequenzwerte ergeben.
    7. Verfahren nach einem der Ansprüch 2 bis 6, dadurch gekennzeichnet, daß die übertragenen Bits bei der Auswertung zu Datenworten bzw. -blöcken zusammengefaßt werden.
    8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Datenworte bzw. -blöcke durch Prüfsummenbildung gesichert werden und beim Erkennen eines Übertragungsfehlers Schaltvorgänge ausgelöst oder unterbunden und/oder Alarmsignale ausgelöst werden.
    9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Stromaufnahme der Energieeinspeisung überwacht und Stromänderungen zur Erzeugung von Quittungssignalen ausgewertet werden.
    10. Einrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9 an einer Anlage mit mindestens einem, im wesentlichen zylindrisch ausgebildeten ersten stationären Bauteil, insbesondere dem Außengehäuse einer Zwirnspindel und mindestens einem zweiten stationären Bauteil, das mindestens einen Teil der Innenseite des ersten Bauteils in einem vorgegebenen, einen Luftspalt definierenden Abstand gegenüberliegt, insbesondere dem Innengehäuse einer Zwirnspindel, wobei durch den Luftspalt mindestens ein Gegenstand aus elektrisch nicht leitendem Material, insbesondere ein Fadenballon bewegbar ist, die einen Transformator aufweist, dessen Primärteil am ersten Bauteil angeordnet ist, und dessen Sekundärteil am zweiten Bauteil angeordnet ist, wobei Primärteil und Sekundärteil jeweils eine auf einem Kern angeordnete Wicklung aufweisen und axial aufeinander ausgerichtet, in radialer Richtung zum zweiten Bauteil im Abtand der Breite des Luftspalts einander gegenüberliegen, und der Primärteil an einen Wechselstromgenerator angeschlossen ist, während der Sekundärteil mit im zweiten Bauteil angeordneten elektrischen Einrichtungen verbunden ist, dadurch gekennzeichnet, daß die beiden Kerne (6.12, 6.22) des Transformators (6) an ihren einander gegenüberliegenden Seiten, insbesondere den einander gegenüberliegenden Stirnflächen ihrer Schenkel an die Kontur.des Luftspalts (9), insbesondere an seinem Krümmungsradius angepaßt sind, und der gegenseitige Abstand der beiden Schenkel jeweils eines Kerns (6.12, 6.22) um ein mehrfaches größer ist, als die Breite des Luftspalts (9).
    11. Einrichtung nach Anspruch 10, dadurch gekennzeichnet, daß an jedem der beiden Kerne (6.12, 6.22) des Transformators (6) die an den Luftspalt (9) angrenzenden Teile der Wicklung (6.11, 6.21) an die Kontur des Luftspalts (9), insbesondere an seinem Krümmungsradius angepaßt und auf der ganzen Breite des Kerns bis auf den geringsmöglichen Abstand an den Luftspalt herangeführt sind.
    12. Einrichtung nach Anspruch 11, dadurch gekennzeichnet, daß die vom Luftspalt (9) abgewandten Teile von Kern und Wicklung des Transformators (6) an die Kontur des Luftspalts (9), insbesondere an seinem Krümmungsradius angepaßt sind.
    13. Einrichtung nach Anspruch 12, dadurch gekennzeichnet, daß der Luftspalt > 2 mm beträgt.
    14. Einrichtung nach Anspruch 12, dadurch gekennzeichnet, daß die Kerne U- oder E-Form haben.
    15. Einrichtung nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß der Schenkelabstand > 4 x Luftspalt ist.
    16. Einrichtung nach Anspruch 13, dadurch gekennzeichnet, daß der Krümmungsradius zwischen 40 - 100 mm liegt.
    17. Einrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die beiden Kerne (6.12, 6.22) des Transformators (6) als Ferritkerne ausgebildet sind.
    18. Einrichtung nach einem der Ansprüche 10 bis 17, gekennzeichnet durch eine an dem Sekundärteil (6.2) des Transformators (6) angeschlossene Auswerteelektronik (7) zur Erzeugung der Steuersignale, die z.B. einen Mikroprozessor enthält und an welche im zweiten stationären Bauteil angeordnete Funktionselemente (4, 5) angeschlossen sind.
    19. Einrichtung nach Anspruch 18, dadurch gekennzeichnet, daß die Funktionselemente Elektromotoren (4, 5) sind, die innerhalb einer Zwirnspindel angeordnete Rotor-Spinnvorrichtungen (R1, R2) antreiben.
    EP98110384A 1997-08-16 1998-06-06 Verfahren zur berührungslosen Energie- und Signalübertragung an Textilmaschinen, insbesondere Zwirnmaschinen sowie Einrichtung zur Durchführung des Verfahrens Expired - Lifetime EP0897999B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19735651A DE19735651C1 (de) 1997-08-16 1997-08-16 Verfahren zur berührungslosen Energie- und Signalübertragung an Textilmaschinen, insbesondere Zwirnmaschinen sowie Einrichtung zur Durchführung des Verfahrens
    DE19735651 1997-08-16

    Publications (3)

    Publication Number Publication Date
    EP0897999A2 EP0897999A2 (de) 1999-02-24
    EP0897999A3 EP0897999A3 (de) 2000-05-03
    EP0897999B1 true EP0897999B1 (de) 2003-02-19

    Family

    ID=7839236

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98110384A Expired - Lifetime EP0897999B1 (de) 1997-08-16 1998-06-06 Verfahren zur berührungslosen Energie- und Signalübertragung an Textilmaschinen, insbesondere Zwirnmaschinen sowie Einrichtung zur Durchführung des Verfahrens

    Country Status (6)

    Country Link
    US (1) US6047535A (de)
    EP (1) EP0897999B1 (de)
    JP (1) JPH11176674A (de)
    CN (1) CN1214523A (de)
    CZ (1) CZ261198A3 (de)
    DE (1) DE19735651C1 (de)

    Families Citing this family (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10049719C1 (de) * 2000-10-07 2001-11-15 Volkmann Gmbh Vorrichtung zur Herstellung eines Zwirns in einem integrierten Spinn-Zwirnprozeß
    DE10163200A1 (de) * 2001-12-21 2003-07-10 Bsh Bosch Siemens Hausgeraete Wäschebehandlungsvorrichtung
    DE10242144A1 (de) * 2002-09-04 2004-03-18 E.G.O. Control Systems Gmbh & Co. Kg Wäschetrockner mit Sensoreinrichtung
    NZ528542A (en) * 2003-09-29 2006-09-29 Auckland Uniservices Ltd Inductively-powered power transfer system with one or more, independently controlled loads
    DE10347612A1 (de) * 2003-10-09 2005-05-25 Fertigungstechnik Weissenfels Gmbh Vorrichtung zum Positionieren eines Werkstückes
    TR200301753A2 (tr) * 2003-10-14 2005-05-23 Ağteks Örme Teksti̇l Endüstri̇leri̇ Sanayi̇ Ve Ti̇caret Li̇mi̇ted Ön hazırlıksız bobinlerden bobine direkt büküm yapabilen ve büküm sıklığı iğ hızından bağımsız ayarlanabilen büküm makinası ve metodu
    JP5552662B2 (ja) * 2012-06-06 2014-07-16 株式会社豊田自動織機 紡機の糸検出装置
    DE102012022377A1 (de) * 2012-11-15 2014-05-15 Saurer Germany Gmbh & Co. Kg Doppeldrahtspinnvorrichtung
    DE102014108871A1 (de) * 2014-06-25 2015-12-31 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Elektronische Schaltung, Feldgerät umfassend zumindest eine solche elektronische Schaltung und Verfahren

    Family Cites Families (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE1510854B1 (de) * 1965-08-06 1970-07-09 Palitex Project Co Gmbh Mehrfachdrahtzwirn- oder -spinnspindel
    GB1173849A (en) * 1968-10-30 1969-12-10 Land Pyrometers Ltd Improvements in or relating to Sampling Devices for Liquid Metal
    DE2203586A1 (de) * 1972-01-26 1973-08-02 Schubert & Salzer Maschinen Lagerung eines ein spinnorgan direkt antreibenden elektromotors
    GB1461259A (en) * 1973-03-14 1977-01-13 Platt Saco Lowell Ltd Textile machines
    CS201779B1 (en) * 1978-09-06 1980-11-28 Jiri Sloupensky Method of and apparatus for controlling the operation of open-end spinning machines
    DE3842576A1 (de) * 1988-12-17 1990-06-21 Vogt Electronic Ag Monokernrotationstransformator
    DE9109274U1 (de) * 1991-07-26 1991-09-19 Siemens Ag, 8000 Muenchen, De
    DE4125145A1 (de) * 1991-07-30 1993-02-04 Schwan Ulrich Uebertragungseinrichtung
    US5814900A (en) * 1991-07-30 1998-09-29 Ulrich Schwan Device for combined transmission of energy and electric signals
    US5161361A (en) * 1991-08-30 1992-11-10 Platt Saco Lowell Corporation Motor-driven spindle assembly for ring spinning
    US5637973A (en) * 1992-06-18 1997-06-10 Kabushiki Kaisha Yaskawa Denki Noncontacting electric power transfer apparatus, noncontacting signal transfer apparatus, split-type mechanical apparatus employing these transfer apparatus and a control method for controlling same
    DE4331801C1 (de) * 1993-09-18 1995-02-23 Palitex Project Co Gmbh Verfahren und Vorrichtung zur Herstellung eines Zwirns in einem integrierten Spinn-Zwirnprozeß
    US5629590A (en) * 1993-10-19 1997-05-13 Futaba Denshi Kogyo Kabushiki Kaisha Rotational drive control device for variable speed drive motor
    DE4427875C1 (de) * 1994-08-06 1996-01-04 Palitex Project Co Gmbh Verfahren zur Herstellung eines Zwirns in einem integrierten Spinn-Zwirnprozess nach dem Doppeldrahtprinzip sowie Vorrichtung zur Durchführung des Verfahrens
    DE4430917C1 (de) * 1994-08-31 1995-09-28 Palitex Project Co Gmbh Verfahren und Vorrichtung zur Herstellung eines Zwirns
    DE4431830C1 (de) * 1994-09-07 1995-10-26 Palitex Project Co Gmbh Verfahren zum Anspinnen eines Fadens in einer Vorrichtung zur Herstellung eines Zwirns in einem integrierten Spinn-Zwirnprozeß sowie Vorrichtung zur Durchführung des Verfahrens
    KR200153822Y1 (ko) * 1995-02-15 1999-08-02 전주범 로터리 트랜스
    DE19526846A1 (de) * 1995-07-22 1997-01-23 Schlafhorst & Co W Verfahren und Einrichtung zur Datenübermittlung an einer Textilmaschine
    DE19543522A1 (de) * 1995-11-22 1997-05-28 Duerrwaechter E Dr Doduco Einrichtung zur leitungsgebundenen, uni- oder bidirektionalen Übertragung von elektrischen Signalen zu einem Lenkrad eines Fahrzeuges
    DE19545220A1 (de) * 1995-12-05 1997-06-12 Bosch Gmbh Robert Anordnung zum kontaktlosen Übertragen von Signalen zwischen gegeneinander linear bewegbaren Fahrzeugteilen

    Also Published As

    Publication number Publication date
    CN1214523A (zh) 1999-04-21
    JPH11176674A (ja) 1999-07-02
    EP0897999A3 (de) 2000-05-03
    US6047535A (en) 2000-04-11
    EP0897999A2 (de) 1999-02-24
    DE19735651C1 (de) 1998-08-20
    CZ261198A3 (cs) 1999-02-17

    Similar Documents

    Publication Publication Date Title
    DE3923525C2 (de) Computertomographie-(CT)-Scanner
    EP2858204B1 (de) Drehübertrager für Werkzeugmaschinen
    DE4208039C2 (de) Topfspinnvorrichtung
    EP0897999B1 (de) Verfahren zur berührungslosen Energie- und Signalübertragung an Textilmaschinen, insbesondere Zwirnmaschinen sowie Einrichtung zur Durchführung des Verfahrens
    DE3841464A1 (de) Textilmaschine mit aggregaten zur wartung und/oder bedienung der arbeitseinheiten
    DE4336312C2 (de) Vorrichtung zum Wickeln von Garnkörpern
    WO2006136267A1 (de) System zur berührungslosen energieübertragung
    DE102018130471A1 (de) Rotor mit einem Leiter für einen Elektromotor
    WO2007147672A1 (de) Fadenspanner sowie anordnung und verfahren zum betrieb eines spulengatters
    EP1149012B1 (de) Vorrichtung zum erfassen der winkelstellung des lenkrades eines kraftfahrzeugs
    WO1992014121A1 (de) Messeinrichtung zur bestimmung eines drehwinkels
    DE102006018820A1 (de) Aufspulvorrichtung
    DE102015009191A1 (de) Verfahren zur Herstellung einer Kreuzspule
    DE19935074A1 (de) Elektrische Maschine, insbesondere Drehstromgenerator
    EP3159439A1 (de) Ringspinnmaschine mit einem sensor zur überwachung eines fadens und verfahren zum betreiben des sensors
    DE60311955T2 (de) Apparat und Verfahren zur Herstellung einer Mehrleiter-Wicklung
    DE3439341C2 (de)
    WO2019110761A1 (de) Verfahren sowie vorrichtung zur herstellung einer leitung
    EP1284004A1 (de) Induktiver übertrager bestehend aus zwei spulen mit je einem kern
    EP3622254B1 (de) Messanordnung zur messung einer position und/oder einer drehzahl einer welle
    DE102006008339A1 (de) Aufspulmaschine
    EP1626024A1 (de) Changiervorrichtung an Spinnmaschine
    EP0675216A1 (de) Einzelmotorischer Antrieb für einen OE-Spinnrotor
    EP0755360A1 (de) Vorrichtung und verfahren zur herstellung von litzen
    WO2019115231A1 (de) Drehwinkelmesseinrichtung

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): CH FR GB IT LI

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20000405

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: VOLKMANN GMBH

    AKX Designation fees paid

    Free format text: CH FR GB IT LI

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: 8566

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): CH FR GB IT LI

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20030219

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030219

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030219

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20030219

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    EN Fr: translation not filed
    26N No opposition filed

    Effective date: 20031120

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20040625

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050630

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050630

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL