EP0897976A2 - Schweres Waschmittelgranulat mit hoher Löslichkeit und verbessertem Fettauswaschvermögen - Google Patents

Schweres Waschmittelgranulat mit hoher Löslichkeit und verbessertem Fettauswaschvermögen Download PDF

Info

Publication number
EP0897976A2
EP0897976A2 EP98111711A EP98111711A EP0897976A2 EP 0897976 A2 EP0897976 A2 EP 0897976A2 EP 98111711 A EP98111711 A EP 98111711A EP 98111711 A EP98111711 A EP 98111711A EP 0897976 A2 EP0897976 A2 EP 0897976A2
Authority
EP
European Patent Office
Prior art keywords
silicate
acid
weight
nonionic surfactant
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98111711A
Other languages
English (en)
French (fr)
Other versions
EP0897976A3 (de
Inventor
Thomas Dr. Dipl.-Chem. Holderbaum
Hans-Josef Dr. Dipl.-Chem. Beaujean
Dieter Dr. Dipl.-Chem. Jung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0897976A2 publication Critical patent/EP0897976A2/de
Publication of EP0897976A3 publication Critical patent/EP0897976A3/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/08Silicates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/1273Crystalline layered silicates of type NaMeSixO2x+1YH2O
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/525Carboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain two or more hydroxy groups per alkyl group, e.g. R3 being a reducing sugar rest
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols

Definitions

  • the present invention relates to silicate-containing detergent compositions containing a high bulk density, very good solubility and very good primary and secondary washing power, in particular have a high fat washability. Specifically affects
  • Detergent compositions are known from European patent EP-B-0 698 658 (Procter & Gamble), which have an improved fat and oil wash-out capacity. These compositions contain 1 to 90% by weight of an anionic alkylbenzenesulfonate-free surfactant system comprising at least 30% by weight of an alkoxylated alkyl sulfate with an average degree of alkoxylation of 0.1 to 10, with defined weight ratios of mono-, di-, tri- and higher alkylated Fatty alcohol sulfates are present.
  • EP-B-0 698 659 (Procter & Gamble) extends this surfactant system to be used to the use of less than 40% by weight alkylbenzenesulfonate (ABS).
  • ABS-containing detergent composition also has an improved wash-out capacity for oil and grease stains.
  • silicates to nonionic surfactants are known, for example, from WO96 / 20269 (Henkel). Neither these nor other documents which deal with the exposure of silicates to nonionic surfactants impose restrictions on the particle size distribution or the bulk density of the silicate used.
  • silicate builder components are preferred which have at least 40% of the particles sizes between 0.4 and 0.8 mm.
  • the process according to the invention can be carried out in both high-intensity and slow-running mixers.
  • high-speed mixers are the Lödige® CB 30 recycler, the Schugi® granulator, the Eirich® mixer type R or the Drais® K-TTP 80
  • slow-speed mixer granulators are the Drais® KT 160 and the Lödige® KM 300.
  • the latter which is often called Lödige ploughshare mixer "is particularly suitable for carrying out this process step.
  • the silicates used according to the invention can be both crystalline and amorphous, amorphous silicates are preferred.
  • Suitable amorphous sodium silicates are those with a modulus Na 2 O: SiO 2 of 1: 2 to 1: 3.3, preferably of 1: 2 to 1: 2.8 and in particular of 1: 2 to 1: 2.6 are delayed in dissolving and have secondary washing properties.
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compaction or by overdrying (for example water content of the silicate below 18% by weight).
  • the term “amorphous” is also understood to mean “X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles provide washed-out or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE-A-44 00 024 .
  • Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
  • crystalline, layered sodium silicates which have the general formula NaMSi x O 2x + 1 .yH 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and is preferred Values for x are 2, 3 or 4.
  • M sodium or hydrogen
  • x is a number from 1.9 to 4
  • y is a number from 0 to 20 and is preferred Values for x are 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European patent application EP-A-0 164 514.
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicate Na 2 Si 2 O 5 .yH 2 O are preferred, wherein ⁇ -sodium disilicate can be obtained, for example, by the method described in international patent application WO-A-91/08171 .
  • Silicate compounds which may contain other constituents, can also be used in the invention Procedures are used insofar as they relate to the general conditions Particle size and bulk density are sufficient. Preferred are, for example Silicate carbonate compounds.
  • silicates used according to the invention and to be loaded with nonionic surfactant have before exposure to a particle diameter of less than 2.0 mm, with silicates with a particle size below 0.8 mm are preferred. Silicates are particularly preferred, in which at least 40% of the silicate particles of the silicate used have sizes between 0.4 and 0.8 mm. A bulk density of the used is absolutely necessary Silicates above 800 g / l.
  • silicate particles it is preferred to apply less than 10% by weight of the silicate particles, in particular between 2 and 5% by weight of nonionic surfactant (s), based on the detergent and cleaning agent.
  • nonionic surfactant s
  • Non-ionic surfactants suitable for acting on the silica particles are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol in which the alcohol radical is linear or preferably in 2 Position can be methyl-branched or can contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow fat or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C 9-11 alcohol with 7 EO, C 13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 alcohols with 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C 12-14 alcohol with 3 EO and C 12-18 alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • a C 12-18 alcohol ethoxylated with 5 to 8 ethylene oxide units is preferably suitable for the application of the silicate particles.
  • alkyl glycosides of the general formula RO (G) x in which R is a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, C., can also be used as further nonionic surfactants to act on the silicate particles -Atoms means and G is the symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; x is preferably 1.2 to 1.4.
  • washing and Detergents contain other nonionic surfactants that do not have the impacted silicate particles were brought into the procedure, but at a different time than pure substances or as compounds and granules can be added.
  • nonionic surfactants which can also be added, can be used in this way other nonionic surfactants are incorporated into the detergents and cleaning agents become.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl esters, such as them are described, for example, in Japanese patent application JP 58/217598 or which are preferably produced by the process described in international patent application WO-A-90/13533 .
  • nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of ethoxylated fatty alcohols, especially not more than half of it.
  • Suitable surfactants are polyhydroxy fatty acid amides of the formula (I), in which RCO stands for an aliphatic acyl radical with 6 to 22 carbon atoms, R 1 for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms and [Z] for a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (II) in which R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R 1 represents a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms and R 2 represents a linear, branched or cyclic alkyl radical or an aryl radical or an oxy-alkyl radical having 1 to 8 carbon atoms, C 1-4 alkyl or phenyl radicals being preferred and [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propylated, derivatives of this rest.
  • R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 represents a linear, branched or cyclic alkyl radical or an aryl radical having
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then, for example according to the teaching of international application WO-A-95/ 07331, be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • the nonionic surfactant introduced into the process according to the invention becomes at least partially given up on the silicate.
  • the applicant assumes that the use of the nonionic surfactant in the form of the nonionic surfactant-silicate compound the amount of nonionic surfactant in the wash liquor, which is necessary for a certain cleaning success lower total nonionic surfactant concentrations in the agents is achievable. Will that If nonionic surfactant is added as a granulating liquid, the components will stick together and the bulk density of the agents obtained in this way is less than 750 g / l.
  • the nonionic surfactant at least partially adheres to the outer surface of the silicate particles, on the one hand the bulk density of the finished Detergent composition increases because of the granular bulk density and the bulk density of the nonionic surfactant-silicate compound are high, on the other hand the nonionic surfactant fully dispensed to the wash liquor faster, which means that compared to adding the Nonionic surfactant as a granulating liquid reduces the total proportion of agents in nonionic surfactant can or the agents deliver better results with the same nonionic surfactant content.
  • the proportion of finished detergent and cleaning agent compositions is nonionic surfactant preferably below 10% by weight, in particular from 2 to 5% by weight, based on the composition, the total surfactant content of the agents may well be significantly higher, and preferably is above 20% by weight.
  • the percentage of nonionic surfactant that is applied to the silicate is preferably above 50% by weight of the total nonionic surfactant content.
  • silicates used according to the invention can also be used be used in the detergent compositions.
  • builder and cobuilder substances can also be used be used in the detergent compositions.
  • zeolites, citrates and polymeric polycarboxylates which includes in particular zeolites, citrates and polymeric polycarboxylates.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP (R) (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are also suitable.
  • the zeolite can be used as a spray-dried powder or as an undried stabilized suspension which is still moist from its production.
  • the zeolite may contain minor additions of nonionic surfactants as stabilizers, for example 1 to 3% by weight, based on zeolite, of ethoxylated C 12 -C 18 fatty alcohols with 2 to 5 ethylene oxide groups , C 12 -C 14 fatty alcohols with 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • phosphates are also used as builder substances possible if such use is not avoided for ecological reasons should be.
  • the sodium salts of orthophosphates, pyrophosphates are particularly suitable and especially the tripolyphosphates.
  • Their salary is generally not more than 25% by weight, preferably not more than 20% by weight, in each case based on the finished agent.
  • tripolyphosphates in particular even in small amounts up to a maximum of 10% by weight, based on the finished agent, in combination with other builder substances to a synergistic improvement of the Secondary washing power.
  • Useful organic builders are, for example, those in the form of their sodium salts usable polycarboxylic acids, such as citric acid, adipic acid, succinic acid, glutaric acid, Tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if provided such use is not objectionable for ecological reasons, as well as mixtures from these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, Adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of this.
  • the acids themselves can also be used.
  • the acids have a builder effect typically also the property of an acidifying component and serve thus also for setting a lower and milder pH value of washing or Detergents.
  • citric acid succinic acid, glutaric acid, Adipic acid, gluconic acid and any mixtures of these.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme-catalyzed, methods. They are preferably hydrolysis products with average molecular weights in the range from 400 to 500,000.
  • DE dextrose equivalent
  • Both maltodextrins with a DE between 3 and 20 and dry glucose syrups with a DE between 20 and 37 as well as so-called yellow dextrins and white dextrins with higher molar masses in the range from 2000 to 30000 can be used.
  • a preferred dextrin is described in British patent application 94 19 091 .
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and processes for their production are sufficiently known from the prior art.
  • a product oxidized at C 6 of the saccharide ring can be particularly advantageous.
  • Suitable cobuilders are oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate.
  • glycerin and glycerol are particularly preferred in this context, for example as American US in patents US 4,524,009, US 4,639,325, disclosed in European Patent Application EP-A 0 150 930 and Japanese Patent Application No. 93/339896 will.
  • Suitable amounts used in formulations containing zeolite and / or silicate are 3 to 15% by weight.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may also be in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Such cobuilders are described, for example, in international patent application WO-A-95/20029 .
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight from 800 to 150,000 (based on acid).
  • Suitable copolymeric polycarboxylates are in particular those of acrylic acid with methacrylic acid and acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid have been found to be particularly suitable Maleic acid proved to be 50 to 90 wt .-% acrylic acid and 50 to 10 wt .-% maleic acid contain.
  • Their relative molecular weight, based on free acids is in general 5000 to 200000, preferably 10000 to 120000 and in particular 50000 to 100000.
  • the (co) polymeric polycarboxylates can be either as a powder or as an aqueous solution are used, 20 to 55% by weight aqueous solutions being preferred.
  • biodegradable polymers composed of more than two different monomer units, for example those which, according to DE-A-43 00 772, are monomers salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives or according to DE-C-42 21 381 contain as monomers salts of acrylic acid and 2-alkylallylsulfonic acid as well as sugar derivatives.
  • copolymers are those which are described in German patent applications DE-A-43 03 320 and DE-A-44 17 734 and preferably contain acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
  • Suitable builder substances are oxidation products of carboxyl group-containing polyglucosans and / or their water-soluble salts, as are described, for example, in international patent application WO-A-93/08251 or whose preparation is described, for example, in international patent application WO-A-93/16110 .
  • Oxidized oligosaccharides according to the older German patent application P 196 00 018.1 are also suitable.
  • polymeric aminodicarboxylic acids their salts or their precursor substances.
  • Particularly preferred are polyaspartic acids or their salts and derivatives, of which German Patent Application P 195 40 086.0 discloses that, in addition to cobuilder properties, they also have a bleach-stabilizing effect.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application EP-A-0 280 223 .
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • the agents can be known, usually in detergents additives used, for example bleaching agents and bleach activators, Foam inhibitors, salts of polyphosphonic acids, optical brighteners, enzymes, enzyme stabilizers, small amounts of neutral filling salts as well as colors and fragrances, opacifiers or pearlescent agents.
  • detergents additives for example bleaching agents and bleach activators, Foam inhibitors, salts of polyphosphonic acids, optical brighteners, enzymes, enzyme stabilizers, small amounts of neutral filling salts as well as colors and fragrances, opacifiers or pearlescent agents.
  • bleaching agents that can be used are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -supplying peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperic acid or diperdodecanedioic acid.
  • the bleaching agent content of the agents is preferably 1 to 40% by weight and in particular 10 to 20% by weight, advantageously using perborate monohydrate or percarbonate.
  • bleach activators can be incorporated into the preparations.
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • Multi-acylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetyloxy, 2,5-acetiacetyl, ethylene glycol 2,5-dihydrofuran and the enol esters known
  • hydrophilically substituted acylacetals known from German patent application DE 196 16 769 and the acyl lactams described in German patent application DE 196 16 770 and international patent application WO 95/14075 are also preferably used.
  • the combinations of conventional bleach activators known from German patent application DE 44 43 177 can also be used. Bleach activators of this type are present in the customary quantitative range, preferably in amounts of 1% by weight to 10% by weight, in particular 2% by weight to 8% by weight, based on the total agent.
  • the sulfonimines and / or bleach-enhancing transition metal salts or transition metal complexes known from European patents EP 0 446 982 and EP 0 453 003 may also be present as so-called bleaching catalysts.
  • the transition metal compounds in question include, in particular, the manganese, iron, cobalt, ruthenium or molybdenum-salt complexes known from German patent application DE 195 29 905 and their N-analog compounds known from German patent application DE 196 20 267 , which consist of the German patent application DE 195 36 082 known manganese, iron, cobalt, ruthenium or molybdenum carbonyl complexes, the manganese, iron, cobalt, ruthenium, molybdenum, titanium described in German patent application DE 196 05 688 -, Vanadium and copper complexes with nitrogen-containing tripod ligands, the cobalt, iron, copper and ruthenium amine complexes known from German patent application DE 196 20 411 , the manganese described in German patent application DE 44 16 438 , Copper and cobalt complexes, the cobalt complexes described in European patent application EP 0 272 030 , the manganese complexes known from
  • bleach activators and transition metal bleach catalysts are known, for example, from German patent application DE 196 13 103 and international patent application WO 95/27775 .
  • Bleach-enhancing transition metal complexes in particular with the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, are used in customary amounts, preferably in an amount of up to 1% by weight, in particular 0.0025% by weight. % to 0.25% by weight and particularly preferably from 0.01% by weight to 0.1% by weight, in each case based on the total agent.
  • surfactant components which are introduced into the process according to the invention can come anionic and optionally amphoteric and / or cationic as well if appropriate, further nonionic surfactants into consideration, at least a part of the nonionic surfactants in the form of a silicate nonionic compound in the Procedures must be introduced.
  • Anionic surfactants used are, for example, those of the sulfonate and sulfate type.
  • Preferred surfactants of the sulfonate type are C 9-13- alkylbenzenesulfonates, olefin sulfonates, ie mixtures of alkene and hydroxyalkanesulfonates, and disulfonates such as are obtained, for example, from C 12-18 monoolefins with a terminal or internal double bond by sulfonating with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation products.
  • alkanesulfonates obtained from C 12-18 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • the esters of ⁇ -sulfofatty acids for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids, are also suitable.
  • Suitable anionic surfactants are sulfonated fatty acid glycerol esters.
  • fatty acid glycerol esters the mono-, di- and triesters and their mixtures are to be understood as they are the production by esterification of a monoglycerin with 1 to 3 moles of fatty acid or obtained in the transesterification of triglycerides with 0.3 to 2 mol of glycerol.
  • Preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids with 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, Myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • alk (en) yl sulfates are the alkali and especially the sodium salts of the sulfuric acid half esters of C 12 -C 18 fatty alcohols, for example from coconut oil alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half-esters of secondary alcohols of this chain length are preferred. Also preferred are alk (en) yl sulfates of the chain length mentioned, which contain a synthetic, petrochemical-based straight-chain alkyl radical which have a degradation behavior similar to that of the adequate compounds based on oleochemical raw materials.
  • C 12 -C 16 alkyl sulfates and C 12 -C 15 alkyl sulfates as well as C 14 -C 15 alkyl sulfates are preferred from the point of view of washing technology.
  • 2,3-Alkyl sulfates which are produced, for example, according to US Pat . Nos . 3,234,258 or 5,075,041 and can be obtained as commercial products from the Shell Oil Company under the name DAN®, are also suitable anionic surfactants.
  • the sulfuric acid monoesters of the straight-chain or branched C 7-21 alcohols ethoxylated with 1 to 6 mol of ethylene oxide such as 2-methyl-branched C 9-11 alcohols with an average of 3.5 mol of ethylene oxide (EO) or C 12-18 - Fatty alcohols with 1 to 4 EO are suitable. Because of their high foaming behavior, they are used in cleaning agents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8-18 fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue which is derived from ethoxylated fatty alcohols, which in themselves are nonionic surfactants (description see below).
  • alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Soaps are particularly suitable as further anionic surfactants.
  • Saturated fatty acid soaps are suitable, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular soap mixtures derived from natural fatty acids, for example coconut, palm kernel or tallow fatty acids.
  • those soap mixtures are preferred which are composed of 50 to 100% by weight of saturated C 12-24 fatty acid soaps and 0 to 50% by weight of oleic acid soap.
  • the anionic surfactants including the soaps can be in the form of their sodium, potassium or Ammonium salts and as soluble salts of organic bases, such as mono-, di- or Triethanolamine.
  • the anionic surfactants are preferably in the form of their Sodium or potassium salts, especially in the form of the sodium salts.
  • the agents can also contain components that make oil and fat washable made of textiles. This effect is particularly evident if a textile is soiled, which has previously been repeatedly with an inventive Detergent containing this oil and fat-dissolving component is washed has been.
  • the preferred oil- and fat-dissolving components include, for example, nonionic Cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with one Proportion of 15 to 30% by weight of methoxyl groups and of hydroxypropoxyl groups from 1 to 15% by weight, based in each case on the nonionic cellulose ether, as well as the polymers of phthalic acid and / or of the known from the prior art Terephthalic acid or its derivatives, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionically and / or nonionically modified Derivatives of these. Of these, the sulfonated ones are particularly preferred Derivatives of phthalic acid and terephthalic acid polymers.
  • a finely divided silicate carrier composed of 5% by weight of sodium carbonate, 76% by weight of water glass and 19% by weight of water was produced by spray drying. The particle size distribution was ⁇ 2.0 mm with 86% of the particles between 0.8 and 0. 4 mm was brought. This carrier was loaded with nonionic surfactant and had a bulk density of 824 g / l. The remaining surfactants, builders and additives were added to a Lödige mixer and the silicate charged with nonionic surfactant was added while the mixer was running.
  • the agent E1 according to the invention was obtained with a bulk density of 760 g / l and the composition [% by weight]: Soap 0.76 C 13 alkylbenzenesulfonate Na 7.49 C 8 -C 18 fatty alcohol sulfate 11.48 Water glass 11.29 sodium 1.01 Zeolite A 19.09 C 13-15 oxo alcohol 3 to 7 EO 2.39 C 12 -C 18 fatty alcohol 7 EO 1.04 Sokalan CP5® 3.58 Tylose 0.24 opt.
  • Sokalan CP5 ® is an acrylic acid-maleic acid copolymer from BASF Repelotex ® is a terephthalic acid-ethylene glycol-polyethylene glycol ester from Rhône-Poulenc.
  • the application test was carried out under practical conditions in one Household washing machine (Miele W 717). For this, the machine was cleaned with 3 kg Filling laundry and 0.5 kg test fabric soiled with natural grease (cotton / linen) loaded. Washing conditions: tap water of 16 ° dH (equivalent to 160 mg CaO / l), amount of detergent used per detergent: 76 g, washing temperature 60 ° C, Washing time 60 min, liquor ratio (kg of laundry to liter of washing water in Main wash cycle) 1 to 5.7, rinse three times with tap water, spin off and Dry.
  • Coffee W 717 Household washing machine
  • the agent E1 produced by the method according to the invention was tested against two commercially available universal detergents V1 and V2, the test fabrics being examined after drying in accordance with DIN 6174 (colorimetric determination of color differences in body colors) using a Minolta CR 300 (3-point measurement).
  • the results of the color distance measurements are summarized in Table 1: Color distance values medium E1 V1 V2 dE (w) (initial value - wash value) 43.3 31.2 30.7

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Wasch- und Reinigungsmitteln, die eine silikatische Builderkomponente enthalten, wobei eine silikatische Builderkomponente in das Verfahren eingebracht wird, in der das Silikat mit Niotensiden beaufschlagt ist, die silikatische Builderkomponente ein Schüttgewicht von mehr als 800 g/l aufweist und die Korngrößenverteilung des zu beaufschlagenden Silikats vor der Beaufschlagung mit Niotensid keine Teilchen oberhalb eines Durchmessers von 2,0 mm aufweist und mit weiteren üblichen Inhaltsstoffen von Wasch- und Reinigungsmitteln granuliert wird, wobei ein Schüttgewicht von mindestens 750 g/l eingestellt wird.

Description

Die vorliegende Erfindung betrifft silikathaltige Waschmittelzusammensetzungen, die ein hohes Schüttgewicht, eine sehr gute Löslichkeit und ein sehr gutes Primär- und Sekundärwaschvermögen, insbesondere eine hohe Fettauswaschbarkeit, besitzen. Speziell betrifft die Erfindung Waschmittelzusammensetzungen mit hohem Schüttgewicht, die sich sowohl in der Einspülrinne handelsüblicher Waschmaschinen als auch beispielsweise im Handwaschbecken schnell und rückstandsfrei auflösen und dabei ohne Verklumpung oder Vergelung in kürzester Zeit eine Waschflotte bilden, die sich durch eine herausragende Reinigungswirkung auszeichnet.
Aus der europäischen Patentschrift EP-B-0 698 658 (Procter&Gamble) sind Waschmittelzusammensetzungen bekannt, die ein verbessertes Fett- und Ölauswaschvermögen besitzen. Diese Zusammensetzungen enthalten 1 bis 90 Gew.-% eines anionischen alkylbenzolsulfonatfreien Tensidsystems aus wenigstens 30 Gew.-% eines alkoxylierten Alkylsulfats mit einem durchschnittlichen Alkoxylierungsgrad von 0,1 bis 10, wobei definierte Gewichtsverhältnisse von mono-, di-, tri- und höher alkylierten Fettalkoholsulfaten vorliegen. Die Lehre der EP-B-0 698 659 (Procter&Gamble) erweitert dieses einzusetzende Tensidsystem auf den Einsatz von weniger als 40 Gew.-% Alkylbenzolsulfonat (ABS). Auch die ABS-haltige Waschmittelzusammensetzung weist ein verbessertes Auswaschvermögen für Öl- und Fettanschmutzungen auf.
Die internationale Patentschrift WO96/06908 (Procter&Gamble) offenbart Waschmittelzusammensetzungen, die mehr als 10 Gew.-% Ethylendiamindisuccinat als Builderkomponente, insbesondere in Kombination mit wasserlöslichen kationischen Tensiden, Glucamiden und Oleylsarconisat, enthalten. Auch diese Mittel weisen eine verbesserte Fettauswaschbarkeit auf.
Die Beaufschlagung von Silikaten mit Niotensiden ist beispielsweise aus der WO96/20269 (Henkel) bekannt. Weder diese noch andere Schriften, die sich mit der Beaufschlagung von Silikaten mit Niotensiden befassen, machen Einschränkungen hinsichtlich der Korngrößenverteilung oder des Schüttgewichts des eingesetzten Silikats.
Keines der oben genannten Dokumente offenbart den Einsatz einer speziellen silikatischen Builderkomponente in Waschmittelzusammensetzungen hoher Schüttdichte zur Verbesserung des Primär- und Sekundärwaschvermögens.
Es wurde nun gefunden, daß der Einsatz von mit Niotensiden beaufschlagten Silikaten mit Teilchengrößen unter 2,0 mm im Granulationsschritt bei der Herstellung von Waschmitteln mit Schüttgewichten oberhalb 750 g/l zu Formulierungen führt, die sich durch eine herausragende Kaltwasserlöslichkeit, Einspülbarkeit und Reinigungswirkung, insbesondere für Fettverschmutzungen, auszeichnen.
Die Erfindung betrifft ein Verfahren zur Herstellung von Wasch- und Reinigungsmitteln, die eine silikatische Builderkomponente enthalten, in üblichen Misch/Granuliervorrichtungen, wobei
  • a) eine silikatische Builderkomponente in das Verfahren eingebracht wird, die sich dadurch auszeichnet, daß das Silikat mit Niotensiden beaufschlagt ist, die silikatische Builderkomponente ein Schüttgewicht von mehr als 800 g/l aufweist und die Korngrößenverteilung des zu beaufschlagenden Silikats vor der Beaufschlagung mit Niotensid keine Teilchen oberhalb eines Durchmessers von 2,0 mm aufweist sowie
  • b) mit weiteren üblichen Inhaltsstoffen von Wasch- und Reinigungsmitteln vermischt oder granuliert wird, wobei ein Schüttgewicht von mindestens 750 g/l eingestellt wird.
  • Im erfindungsgemäßen Verfahren sind silikatische Builderkomponenten bevorzugt, bei denen mindestens 40 % der Teilchen Größen zwischen 0,4 und 0,8 mm aufweisen.
    Das erfindungsgemäße Verfahren kann sowohl in Hochintensitäts- als auch in langsamlaufenden Mischern durchgeführt werden. Beispiele für schnellaufende Mischer sind der Lödige® CB 30 Recycler, der Schugi® Granulator, der Eirich® -Mischer Typ R oder der Drais® K-TTP 80, Beispiele für langsamlaufende Mischgranulatoren sind der Drais® K-T 160 sowie der Lödige® KM 300. Letzterer, der oftmals als
    Figure 00030001
    Lödige Pflugscharmischer" bezeichnet wird, ist zur Durchführung dieser Verfahrensstufe besonders geeignet.
    Die erfindungsgemäß eingesetzten Silikate können sowohl kristallin als auch amorph sein, wobei amorphe Silikate bevorzugt sind.
    Geeignete amorphe Natriumsilikate sind solche mit einem Modul Na2O: SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung (z.B. Wassergehalt des Silikats unter 18 Gew.-%) hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
    Einsetzbar sind auch kristalline, schichtförmige Natriumsilikate, die die allgemeine Formel NaMSixO2x+1·yH2O besitzen, wobei M Natrium oder Wasserstoffbedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5·yH2O bevorzugt, wobei β-Natriumdisilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.
    Auch Silikatcompounds, die gegebenenfalls andere Bestandteile enthalten, können im erfindungsgemäßen Verfahren eingesetzt werden, soweit sie den Rahmenbedingungen hinsichtlich Teilchengröße und Schüttgewicht genügen. Bevorzugt sind hierunter beispielsweise Silikat-Carbonat-Compounds.
    Die erfindungsgemäß eingesetzten und mit Niotensid zu beaufschlagenden Silikate weisen vor der Beaufschlagung einen Teilchendurchmesser von unter 2,0 mm auf, wobei Silikate mit einer Teilchengröße unterhalb 0,8 mm bevorzugt sind. Besonders bevorzugt sind Silikate, in denen mindestens 40 % der Silikatteilchen des eingesetzten Silikats Größen zwischen 0,4 und 0,8 mm aufweisen. Zwingend erforderlich ist ein Schüttgewicht der eingesetzten Silikate oberhalb von 800 g/l.
    Bevorzugt ist eine Beaufschlagung der Silikatteilchen mit weniger als 10 Gew.-%, insbesondere zwischen 2 und 5 Gew.-% an Niotensid(en), bezogen auf das Wasch- und Reinigungsmittel.
    Als zur Beaufschlagung der Silikarteilchen geeignete nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
    Bevorzugt ist für die Beaufschlagung der Silikatteilchen ein mit 5 bis 8 Ethylenoxideinheiten ethoxylierter C12-18-Alkohol geeignet.
    Außerdem können als weitere nichtionische Tenside zur Beaufschlagung der Silikatteilchen auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
    Zusätzlich können die nach dem erfindungsgemäßen Verfahren hergestellten Wasch- und Reinigungsmittel weitere Niotenside enthalten, die nicht über die beaufschlagten Silikatteilchen in das Verfahren eingebracht wurden, sondern zu einem anderen Zeitpunkt als reine Substanzen oder als Compounds und Granulate zugegeben werden. Zusätzlich zu den bisher genannten Niotensiden, die auch zugemischt werden können, können auf diese Weise weitere nichtionische oberflächenaktive Mittel in die Wasch- und Reinigungsmittel eingearbeitet werden.
    Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden.
    Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
    Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I),
    Figure 00070001
    in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
    Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
    Figure 00070002
    in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder Propxylierte Derivate dieses Restes.
    [Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
    Das in das erfindungsgemäße Verfahren eingebrachte Niotensid wird mindestens teilweise auf das Silikat aufgegeben.
    Ohne durch die Theorie beschränkt werden zu wollen, geht die Anmelderin davon aus, daß der Einsatz des Niotensids in Form des Niotensid-Silikat-Compounds die Menge an Niotensid in der Waschflotte, die für einen bestimmten Reinigungserfolg vonnöten ist, bei niedrigeren Gesamt-Niotensid-Konzenttationen in den Mitteln erreichbar ist. Wird das Niotensid als Granulierflüssigkeit zugesetzt, so tritt eine Verklebung der Bestandteile ein und das Schüttgewicht der auf diese Weise erhaltenen Mittel liegt unter 750 g/l. Durch die Beaufschlagung des Silikats mit dem Niotensid, wobei das Niotensid zumindest teilweise an der Außenfläche der Silikatteilchen haftet, wird einerseits das Schüttgewicht der fertigen Waschmittelzusammensetzung erhöht, da das Granulat-Schüttgewicht und das Schüttgewicht des Niotensid-Silikat-Compounds hoch sind, andererseits wird das Niotensid schneller vollständig an die Waschflotte abgegeben, wodurch im Vergleich zur Zugabe des Niotensids als Granulierflüssigkeit der Gesamtanteil der Mittel an Niotensid verringert werden kann bzw. die Mittel bei gleichem Niotensidanteil bessere Resultate liefern. Der Anteil der fertigen Wasch- und Reinigungsmittelzusammensetzungen an Niotensid liegt vorzugsweise unter 10 Gew.-%, insbesondere von 2 bis 5 Gew.-%, bezogen auf die Mittel, wobei der Gesamttensidgehalt der Mittel durchaus deutlich höher liegen kann und vorzugsweise oberhalb 20 Gew.-% liegt. Der Anteil des Niotensids, der auf das Silikat aufgegeben wird, liegt vorzugsweise über 50 Gew.-% des Gesamt-Niotensidgehaltes.
    Neben den erfindungsgemäß eingesetzten Silikaten können auch andere Builder- und Cobuildersubstanzen in den Waschmittelzusammensetzungen eingesetzt werden. Hierzu zählen insbesondere Zeolithe, Citrate und polymere Polycarboxylate.
    Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP(R) (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C12-C14-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
    Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate. Ihr Gehalt beträgt im allgemeinen nicht mehr als 25 Gew.-%, vorzugsweise nicht mehr als 20 Gew.-%, jeweils bezogen auf das fertige Mittel. In einigen Fällen hat es sich gezeigt, daß insbesondere Tripolyphosphate schon in geringen Mengen bis maximal 10 Gew.-%, bezogen auf das fertige Mittel, in Kombination mit anderen Buildersubstanzen zu einer synergistischen Verbesserung des Sekundärwaschvermögens führen.
    Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
    Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
    Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise Säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung 94 19 091 beschrieben. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind aus dem Stand der Technik hinreichend bekannt. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
    Weitere geeignete Cobuilder sind Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat. Besonders bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate, wie sie beispielsweise in den US-amerikanischen Patentschriften US 4 524 009, US 4 639 325, in der europäischen Patentanmeldung EP-A-0 150 930 und der japanischen Patentanmeldung JP 93/339896 beschrieben werden. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silikathaltigen Formulierungen bei 3 bis 15 Gew.-%.
    Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO-A-95/20029 beschrieben.
    Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150000 (auf Säure bezogen). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5000 bis 200000, vorzugsweise 10000 bis 120000 und insbesondere 50000 bis 100000.
    Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden, wobei 20 bis 55 Gew.-%ige wäßrige Lösungen bevorzugt sind.
    Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die gemaß der DE-A-43 00 772 als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder gemäß der DE-C-42 21 381 als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
    Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE-A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
    Weitere geeignete Buildersubstanzen sind Oxidationsprodukte von carboxylgruppenhaltigen Polyglucosanen und/oder deren wasserlöslichen Salzen, wie sie beispielsweise in der internationalen Patentanmeldung WO-A-93/08251 beschrieben werden oder deren Herstellung beispielsweise in der internationalen Patentanmeldung WO-A-93/16110 beschrieben wird. Ebenfalls geeignet sind auch oxidierte Oligosaccharide gemäß der älteren deutschen Patentanmeldung P 196 00 018.1.
    Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmeldung P 195 40 086.0 offenbart wird, daß sie neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
    Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP-A-0 280 223 beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
    Außer den genannten Inhaltsstoffen können die Mittel bekannte, in Waschmitteln üblicherweise eingesetzte Zusatzstoffe, beispielsweise Bleichmittel und Bleichaktivatoren, Schauminhibitoren, Salze von Polyphosphonsäuren, optische Aufheller, Enzyme, Enzymstabilisatoren, geringe Mengen an neutralen Füllsalzen sowie Farb- und Duftstoffe, Trübungsmittel oder Perglanzmittel enthalten.
    Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleichmitteln beträgt vorzugsweise 1 bis 40 Gew.-% und insbesondere 10 bis 20 Gew.-%, wobei vorteilhafterweise Perboratmonohydrat oder Percarbonat eingesetzt wird.
    Um beim Waschen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Präparate eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran und die aus den deutschen Patentanmeldungen DE 196 16 693 und DE 196 16 767 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren in der europäischen Patentanmeldung EP 0 525 239 beschriebene Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Die aus der deutschen Patentanmeldung DE 196 16 769 bekannten hydrophil substituierten Acylacetale und die in der deutschen Patentanmeldung DE 196 16 770 sowie der internationalen Patentanmeldung WO 95/14075 beschriebenen Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch die aus der deutschen Patentanmeldung DE 44 43 177 bekannten Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Derartige Bleichaktivatoren sind im üblichen Mengenbereich, vorzugsweise in Mengen von 1 Gew.-% bis 10 Gew.-%, insbesondere 2 Gew.-% bis 8 Gew.-%, bezogen auf gesamtes Mittel, enthalten.
    Zusätzlich zu den oben aufgeführten konventionellen Bleichaktivatoren oder an deren Stelle können auch die aus den europäischen Patentschriften EP 0 446 982 und EP 0 453 003 bekannten Sulfonimine und/oder bleichverstärkende Übergangsmetallsalze beziehungsweise Übergangsmetallkomplexe als sogenannte Bleichkatalysatoren enthalten sein. Zu den in Frage kommenden Übergangsmetallverbindungen gehören insbesondere die aus der deutschen Patentanmeldung DE 195 29 905 bekannten Mangan-, Eisen-, Cobalt-, Ruthenium- oder Molybdän-Salenkomplexe und deren aus der deutschen Patentanmeldung DE 196 20 267 bekannte N-Analogverbindungen, die aus der deutschen Patentmeldung DE 195 36 082 bekannten Mangan-, Eisen-, Cobalt-, Ruthenium- oder Molybdän-Carbonylkomplexe, die in der deutschen Patentanmeldung DE 196 05 688 beschriebenen Mangan-, Eisen-, Cobalt-, Ruthenium-, Molybdän-, Titan-, Vanadium- und Kupfer-Komplexe mit stickstoffhaltigen Tripod-Liganden, die aus der deutschen Patentanmeldung DE 196 20 411 bekannten Cobalt-, Eisen-, Kupfer- und Ruthenium-Amminkomplexe, die in der deutschen Patentanmeldung DE 44 16 438 beschriebenen Mangan-, Kupfer- und Cobalt-Komplexe, die in der europäischen Patentanmeldung EP 0 272 030 beschriebenen Cobalt-Komplexe, die aus der europäischen Patentanmeldung EP 0 693 550 bekannten Mangan-Komplexe, die aus der europäischen Patentschrift EP 0 392 592 bekannten Mangan-, Eisen-, Cobalt- und Kupfer-Komplexe und/oder weitere aus dem Stand der Technik bekannte Mangan-Komplexe. Kombinationen aus Bleichaktivatoren und Übergangsmetall-Bleichkatalysatoren sind beispielsweise aus der deutschen Patentanmeldung DE 196 13 103 und der internationalen Patentanmeldung WO 95/27775 bekannt. Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 1 Gew.-%, insbesondere von 0,0025 Gew.-% bis 0,25 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,1 Gew.-%, jeweils bezogen auf gesamtes Mittel, eingesetzt.
    Als weitere Tensidkomponenten, die in das erfindungsgemäße Verfahren eingebracht werden können, kommen anionische und gegebenenfalls amphotere und/oder kationische sowie gegebenenfalls weitere nichtionische Tenside in Betracht, wobei mindestens ein Teil der nichtionischen Tenside zwingend in Form eines Silikat-Niotensid-Compounds in das Verfahren eingebracht werden muß.
    Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
    Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
    Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
    Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
    Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
    Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus naturlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische. Insbesondere sind solche Seifengemische bevorzugt, die zu 50 bis 100 Gew.-% aus gesättigten C12-24-Fettsäureseifen und zu 0 bis 50 Gew.-% aus Ölsäureseife zusammengesetzt sind.
    Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
    Zusätzlich können die Mittel auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen. Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxy-propylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
    Bespiele Beispiel:
    Durch Sprühtrocknung wurde ein feinteiliger Silikatträger aus 5 Gew.-% Natriumcarbonat, 76 Gew.-% Wasserglas und 19 Gew.-% Wasser hergestellt, der auf die Teilchengrößenverteilung ≤ 2,0 mm mit 86 % der Teilchen zwischen 0,8 und 0,4 mm gebracht wurde. Dieser Träger wurde mit Niotensid beaufschlagt und besaß ein Schüttgewicht von 824 g/l. In einen Lödige-Mischer wurden die übrigen Tenside, Builder und Zusatzstoffe gegeben und bei laufendem Mischwerk das mit Niotensid beaufschlagte Silikat zugegeben. Auf diese Weise erhielt man das erfindungsgemäße Mittel E1 mit einem Schüttgewicht von 760 g/l und der Zusammensetzung [Gew.-%]:
    Seife 0,76
    C13-Alkylbenzolsulfonat-Na 7,49
    C8-C18-Fettalkoholsulfat 11,48
    Wasserglas 11,29
    Natriumcarbonat 1,01
    Zeolith A 19,09
    C13-15-Oxoalkohol 3 bis 7 EO 2,39
    C12-C18-Fettalkohol 7 EO 1,04
    Sokalan CP5® 3,58
    Tylose 0,24
    opt. Aufheller 0,21
    Phosphonat 0,51
    wäßrige NaOH, 50% 0,18
    Natriumpercarbonat 18,40
    TAED 7,00
    Salze 1,59
    Enzym 1,56
    Parfüm 0,36
    Schauminhibitor 3,64
    Repelotex® 0,50
    Wasser Rest
    Sokalan CP5® ist ein Acrylsäure-Maleinsäure-Copolymer der Firma BASF
    Repelotex® ist ein Terephthalsäure-Ethylenglycol-Polyethylenglycolester der Firma Rhône-Poulenc.
    Bei Einspültests in handelsüblichen Einspülrinnen und bei Löseversuchen im Handwaschtest (insbesondere bei Temperaturen bis 30°C) wies das nach dem erfindungsgemäßen Verfahren hergestellte Mittel vergleichbare bis bessere Ergebnisse auf als handelsübliche Universalwaschmittel mit den gleichen Mengen an Niotensid. An fettigen und/oder öligen Anschmutzungen war die Reinigungsleistung der erfindungsgemäßen Mittel durchweg besser als die der Vergleichsbeispiele.
    Die anwendungstechnische Prüfung erfolgte unter praxisnahen Bedingungen in einer Haushaltswaschmaschine (Miele W 717). Hierzu wurde die Maschine mit 3 kg sauberer Füllwäsche und 0,5 kg mit natürlichem Fettschmutz verschmutzter Testgewebe (Baumwolle/Leinen) beschickt. Waschbedingungen: Leitungswasser von 16°dH (äquivalent 160 mg CaO/l), eingesetzte Waschmittelmenge pro Mittel: 76 g, Waschtemperatur 60°C, Waschzeit 60 min, Flottenverhältnis (kg Wäsche zu Liter Waschlauge im Hauptwaschgang) 1 zu 5,7, dreimaliges Nachspülen mit Leitungswasser, Abschleudern und Trocknen.
    Das nach dem erfindungegemäßen Verfahren hergestellte Mittel E1 wurde gegen zwei handelsübliche Universalwaschmittel V1 und V2 getestet, wobei die Testgewebe nach der Trocknung gemäß der DIN 6174 (Farbmetrische Bestimmung von Farbabständen bei Körperfarben) mit einer Minolta CR 300 (3-Punktmessung) untersucht wurden. Die Ergebnisse der Farbabstandsmessungen sind in Tabelle 1 zusammengefaßt:
    Farbabstandswerte
    Mittel E1 V1 V2
    dE(w) (Anfangswert - Waschwert) 43,3 31,2 30,7

    Claims (8)

    1. Verfahren zur Herstellung von Wasch- und Reinigungsmitteln, die eine silikatische Builderkomponente enthalten, in üblichen Misch-/Granuliervorrichtungen, dadurch gekennzeichnet, daß
      a) eine silikatische Builderkomponente in das Verfahren eingebracht wird, die sich dadurch auszeichnet, daß das Silikat mit Niotensiden beaufschlagt ist, die silikatische Builderkomponente ein Schüttgewicht von mehr als 800 g/l aufweist und die Korngrößenverteilung des zu beaufschlagenden Silikats vor der Beaufschlagung mit Niotensid keine Teilchen oberhalb eines Durchmessers von 2,0 mm aufweist sowie
      b) mit weiteren üblichen Inhaltsstoffen von Wasch- und Reinigungsmitteln vermischt oder granuliert wird, wobei ein Schüttgewicht von mindestens 750 g/l eingestellt wird.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß mindestens 40 % der Silikatteilchen Größen zwischen 0,4 und 0,8 mm aufweisen.
    3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das Silikat mit weniger als 10 Gew.-% Niotensid(en), insbesondere mit 2 bis 5 Gew.-% Niotensid(en), bezogen auf das Wasch- und Reinigungsmittel, beaufschlagt wird.
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zur Beaufschlagung des Silikats ein mit 5 bis 8 Ethylenoxideinheiten ethoxylierter C12-18-Alkohol eingesetzt wird.
    5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zur Beaufschlagung des Silikats Alkylpolyglycoside eingesetzt werden.
    6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die weiteren Inhaltsstoffe von Wasch- und Reinigungsmitteln ausgewählt sind aus anionischen, kationischen und/oder amphoteren Tensiden, Buildern, Cobuildern, Bleichmitteln und deren Vorläufern, Bleichaktivatoren, Enzymen, optischen Aufhellern, Komplexbildnem, soil repellents und Parfüm.
    7. Wasch- und Reinigungsmittel, hergestellt nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Gehalt des Mittels an Niotensiden unterhalb 10 Gew.-%, bezogen auf das Gewicht des Mittels, beträgt.
    8. Wasch- und Reinigungsmittel, hergestellt nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Gesamtgehalt des Mittels an Tensiden oberhalb 20 Gew.-%, bezogen auf das Gewicht des Mittels, beträgt.
    EP98111711A 1997-07-04 1998-06-25 Schweres Waschmittelgranulat mit hoher Löslichkeit und verbessertem Fettauswaschvermögen Withdrawn EP0897976A3 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE1997128588 DE19728588A1 (de) 1997-07-04 1997-07-04 Schweres Waschmittelgranulat mit hoher Löslichkeit und verbessertem Fettauswaschvermögen
    DE19728588 1997-07-04

    Publications (2)

    Publication Number Publication Date
    EP0897976A2 true EP0897976A2 (de) 1999-02-24
    EP0897976A3 EP0897976A3 (de) 1999-05-26

    Family

    ID=7834635

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98111711A Withdrawn EP0897976A3 (de) 1997-07-04 1998-06-25 Schweres Waschmittelgranulat mit hoher Löslichkeit und verbessertem Fettauswaschvermögen

    Country Status (2)

    Country Link
    EP (1) EP0897976A3 (de)
    DE (1) DE19728588A1 (de)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2000071654A1 (de) * 1999-05-22 2000-11-30 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur herstellung von tensidgranulaten

    Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0425804A2 (de) * 1989-11-02 1991-05-08 Henkel KGaA Körniges, nichtionische Tenside enthaltendes Additiv für Wasch- und Reinigungsmittel mit verbessertem Einspülverhalten
    DE4329064A1 (de) * 1993-08-28 1995-03-02 Henkel Kgaa Gerüststoffkomponente für Wasch- oder Reinigungsmittel
    JPH09279195A (ja) * 1996-04-17 1997-10-28 Kao Corp 高密度粒状洗剤組成物の製造方法
    JPH09302393A (ja) * 1996-05-20 1997-11-25 Lion Corp 高嵩密度粒状洗剤組成物

    Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0425804A2 (de) * 1989-11-02 1991-05-08 Henkel KGaA Körniges, nichtionische Tenside enthaltendes Additiv für Wasch- und Reinigungsmittel mit verbessertem Einspülverhalten
    DE4329064A1 (de) * 1993-08-28 1995-03-02 Henkel Kgaa Gerüststoffkomponente für Wasch- oder Reinigungsmittel
    JPH09279195A (ja) * 1996-04-17 1997-10-28 Kao Corp 高密度粒状洗剤組成物の製造方法
    JPH09302393A (ja) * 1996-05-20 1997-11-25 Lion Corp 高嵩密度粒状洗剤組成物

    Non-Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Title
    Database WPI on Questel, week 9805, London: Derwent Publications Ltd., AN 98-045403 (05); & JP 09-279195 A (KAO CORP.), *
    Database WPI on Questel, week 9806, London: Derwent Publications Ltd., AN 98-059505 (06); & JP 09-302393 A (LION CORP.), *

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2000071654A1 (de) * 1999-05-22 2000-11-30 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur herstellung von tensidgranulaten

    Also Published As

    Publication number Publication date
    DE19728588A1 (de) 1999-01-07
    EP0897976A3 (de) 1999-05-26

    Similar Documents

    Publication Publication Date Title
    EP0746599A1 (de) Waschmittel mit amorphen silikatischen buildersubstanzen
    EP0863200A2 (de) Waschmittelformkörper
    EP0682692B1 (de) Gerüststoff für wasch- oder reinigungsmittel
    EP0828818B1 (de) Granulares wasch- oder reinigungsmittel mit hoher schüttdichte
    EP0986629B2 (de) Granulares waschmittel
    EP0853117B1 (de) Granulares Waschmittel mit verbessertem Fettauswaschvermögen
    EP0793708B1 (de) Verfahren zur herstellung extrudierter wasch- oder reinigungsmittel mit wasserlöslichen buildersubstanzen
    DE10062007B4 (de) Feste waschaktive Zubereitung mit verbessertem Einspülverhalten
    EP0897976A2 (de) Schweres Waschmittelgranulat mit hoher Löslichkeit und verbessertem Fettauswaschvermögen
    EP0846758B1 (de) Additiv für Wasch- oder Reinigungsmittel
    DE19622443A1 (de) Granulare Waschmittel, enthaltend optischen Aufheller
    EP0877789B1 (de) Waschmittel, enthaltend amorphe alkalisilikate und peroxybleichmittel
    DE19936614B4 (de) Verfahren zur Herstellung eines Waschmittels
    EP0853118A1 (de) Verfahren zur Herstellung aniontensidhaltiger wasch- und reinigungsaktiver Tensidgranulate
    EP1086202B1 (de) Herstellung alkylpolyglycosid-haltiger granulate
    EP0888450B2 (de) Wasch- oder reinigungsmitteladditiv sowie ein verfahren zu seiner herstellung
    EP0769045B1 (de) Waschmittel mit cellulase
    DE19846439A1 (de) Waschmittel mit kationischen Alkyl- und/oder Alkenylpolyglykosiden
    WO1998055568A1 (de) Wasch- oder reinigungsmittel mit erhöhter reinigungsleistung
    EP0976817A1 (de) Alkylpolyglycoside als Cobuilder
    DE19946342A1 (de) Formkörper mit verbesserter Wasserlöslichkeit
    EP1004658A2 (de) Citronensäurehaltiges Waschmittel
    WO1999043774A1 (de) Pulverförmiges bis granulares wasch- und reinigungsmittel
    DE19936726A1 (de) Verfahren zur Herstellung cobuilder-haltiger Zubereitungen
    DE19916698A1 (de) Alkalischer Überschuß bei Zubereitung des Slurrys von Waschmitteln zur Vermeidung von Waschmittelrückständen auf Textilien

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19980625

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE DE ES FR IT LU NL

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AKX Designation fees paid

    Free format text: AT BE DE ES FR IT LU NL

    17Q First examination report despatched

    Effective date: 20020628

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20021109