EP0897573B1 - Systeme d'affichage numerique a modulation d'impulsions en largeur et plan de memoire d'image a multiprogrammation autonome - Google Patents

Systeme d'affichage numerique a modulation d'impulsions en largeur et plan de memoire d'image a multiprogrammation autonome Download PDF

Info

Publication number
EP0897573B1
EP0897573B1 EP97921309A EP97921309A EP0897573B1 EP 0897573 B1 EP0897573 B1 EP 0897573B1 EP 97921309 A EP97921309 A EP 97921309A EP 97921309 A EP97921309 A EP 97921309A EP 0897573 B1 EP0897573 B1 EP 0897573B1
Authority
EP
European Patent Office
Prior art keywords
bits
display
duration
bit
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97921309A
Other languages
German (de)
English (en)
Other versions
EP0897573A1 (fr
Inventor
Richard John Edward Aras
Paul A. Alioshin
Bryan P. Straker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silicon Light Machines Inc
Original Assignee
Silicon Light Machines Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Light Machines Inc filed Critical Silicon Light Machines Inc
Publication of EP0897573A1 publication Critical patent/EP0897573A1/fr
Application granted granted Critical
Publication of EP0897573B1 publication Critical patent/EP0897573B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0216Interleaved control phases for different scan lines in the same sub-field, e.g. initialization, addressing and sustaining in plasma displays that are not simultaneous for all scan lines

Definitions

  • This invention relates to the field of pulse width modulation (PWM) techniques. More particularly, this invention relates to a method of and an apparatus for providing gray scale or colors on a digital display where bits of different weights are time interleaved in order to minimize data bandwidth peaks.
  • PWM pulse width modulation
  • a pixel When displaying an image on a digital display, a pixel is either 'on' or 'off'. To form a more variable image it is desirable to provide selectable gray scale. Such increased variability can be used to provide more information or more realism in an image. For example, consider a display where an 'on' pixel is white and an 'off' pixel is black. To achieve an in-between state, eg., gray, the pixel can be toggled equally between 'on' and 'off'. If the pixel display duration is sufficiently short, the viewer's eye/brain system automatically integrates this toggled pixel to perceive a gray image rather than black or white. To achieve a lighter or darker gray, the duty cycle for toggling the pixel can be adjusted so the pixel is on more or less of the time, respectively.
  • FIG. 1 illustrates a conventional 3-bit unweighted scheme.
  • a pixel's image display cycle commonly known as a frame, is divided into seven equal time slots. Each pixel is selected to be on or off for the duration of the time slot by the writing of the corresponding data value. Pixels can be activated during any number of the slots from zero through seven. Providing the frame rate is high enough, the same intensity will be achieved with any ordering of the bits.
  • there are eight distinct intensity levels ranging from having a pixel off during all time slots to having a pixel on in all time slots.
  • Figure 2 illustrates a conventional binary weighted 8-bit PWM scheme.
  • each event has a distinct duration which is half that of its predecessor.
  • the intensity of the pixel can be selected using conventional binary coding.
  • the frame-time is divided into N events, with the duration of each event selected by the weight of the bit.
  • the shortest duration event, corresponding to the least significant bit, is frame-time/(2 N -1).
  • the scheme illustrated in Figure 2 can select among 256 (0 to 255) levels of gray scale from black to white.
  • the present invention has been designed for inclusion into a display system that includes a plurality of pixels arranged in an array of rows and columns.
  • the system includes 1024 rows of pixels, each having 1280 pixels arranged in columns.
  • a row of 1280 registers is loaded with the display data and the data is then written into the display.
  • Shift registers are used to sequentially store the data for a row of pixels.
  • the time available for loading a row of data into the shift registers is ⁇ /(# of rows), where ⁇ is the pixel display duration and the # of rows is 1024 in this example. Therefore, the required data bus peak bandwidth for the electronics supplying data to the shift registers is (# of rows)/ ⁇ x1280. It is well understood that the cost of a system can increase significantly with increased peak bandwidth requirement.
  • the data for the longest duration event ⁇ 1 is loaded and displayed, then the next longest event ⁇ 2 and so on until the data for the shortest event ⁇ N is loaded and displayed. Because all 1024 data bits must be loaded and then displayed during the time for the shortest event ⁇ N , this causes the limiting factor for the bandwidth of the system.
  • Figures 3A, B and C show a graphical representation of the timing necessary for loading and displaying a row of pixels of a display system using a four bit weighted gray scale.
  • the graphical representation of Figure 3A - shows time on the horizontal axis and the lines for displaying a single row of the display on its vertical axis. It will be understood that the time axis of Figure 3A repeats for each column of the display to form a complete image in a single frame. Once the frame is displayed, the process for forming a frame repeats itself indefinitely to form each subsequent frame in a display sequence.
  • the data for bit 3 (the longest duration bit) for all the rows are loaded sequentially into the display.
  • the data is displayed for the duration of the event as is schematically shown in Figure 3A.
  • the data for bit 2 is written to the display.
  • the data for bit 1 is written to the display.
  • the data for bit 0 is written to the display.
  • the data for bit 3 for the next frame is written to the display. This process of displaying the data for bit 3 must be completed within the duration of the event for bit 0.
  • the sloped line 100 ( Figure 3A) schematically represents the timing for loading the register with bit 3 data during the display time for event 0. It will be apparent to one of ordinary skill in the art that the bandwidth necessary to load 1280 bits of data for bit 3 of the next row during the display time for bit 0 of the present row is high.
  • the frame rate for the display is 60 Hz, i.e., the entire frame is drawn 60 times per second such that a frame is drawn in ⁇ 16.667 mSeconds. Assuming the display has 1024 rows, each row must be displayed in ⁇ 16.28 ⁇ Seconds.
  • the shortest duration event is ⁇ 64 nSeconds. This means that all 1280 bits of the next row must be written in ⁇ 64 nSeconds or ⁇ 800 pSeconds per word if loaded 16 bits at a time. This translates to ⁇ 1.25 GHz bandwidth. Naturally, these numbers are representational only. For example, the 60 Hz frame rate was drawn from standard television display technology. Other frame rates would apply for digital video signals such as produced by a high resolution computer graphics application that would typically utilize a 1280x1024 display.
  • Figure 3B is a timing diagram accurately depicting the events of Figure 3A. Rather that showing the fictional view of all events in successive rows happening simultaneously, the events for successive rows are shown actually occurring at successive cycles.
  • Figure 3C shows graphically the bandwidth requirements for loading data into the rows for a system built according to the timing of Figure 3B. As shown, the bandwidth requirements are high during the time that the data is transferred to the display. Accordingly, a system built according to the timing diagram of Figure 3B will have a bandwidth requirement as described above, as prescribed by the shortest duration bit weight of the binary coding scheme. Thus, for any of the longer weighted bits, the bandwidth requirements falls to zero during significant portions of the frame time causing unwanted 'dead times'. In other words, the bandwidth requirements of this system are either at a maximum level or at a zero level.
  • the bandwidth cannot be reduced by simply lengthening the duration of all the events.
  • an intermediate gray level is desired. If the duration of the frame and appropriate event are sufficiently long, the displayed pixel(s) will appear to flicker rather than appear as the intermediate gray level. Thus, it is important that the display time for all of the events not be too long.
  • An algorithmic time-interleaved bit-plane, pulse-width-modulation (PWM) digital display system method and apparatus reduces the bandwidth requirements necessary for providing a plurality of data entries representing multiple points of information.
  • the bandwidth requirements are constant, and for at least one system of measurement, optimal.
  • a weighted PWM scheme modulates an output by utilizing a frame duration that is divided into events of varying durations; most conventional schemes have each bit in the frame being half the duration of its predecessor. The modulated signal is activated during all, some or none of the events in the frame to develop a signal representing a particular parameter.
  • a predetermined number of bits is stored, wherein the bits are sufficient for defining the signal, such that each one of the bits represents a different duration event.
  • a set of these bits, one for each signal, is selected such that bits for at least two different duration events are comprised in the set.
  • a set of replacement bits is selected, one for any bit representing an event that will expire at a next clock pulse.
  • This method according to the invention is implemented by an apparatus comprising a memory, a selecting circuit, a control circuit for controlling the selecting circuit, and a circuit for generating modulated signals corresponding to the selected bits.
  • This method and apparatus can be used in a display for selecting among varying levels of gray scale or from among multiple colors on a palette.
  • a register containing the same number of data bits as pixels in a row of the display is provided.
  • the register is loaded, one row at a time, with one bit per column for each pixel in the entire row.
  • the duration for successively display rows is dissimilar thereby reducing the bandwidth requirements. This allows a bit for a long duration event to be displayed in one row, while bits for shorter duration events are displayed in other rows. This obviates the need to successively load the data for the shortest duration bits in all the rows.
  • the organization of the sequence of the events amongst the various rows is arranged to achieve reduced bandwidth. If the organization is chosen in a pseudo-random manner, the order can be pre-selected for an optimized bandwidth or organized into a predetermined format to achieve an improved visual effect.
  • the display is formed of an array of diffraction grating elements, such as disclosed in the Bloom, et al., U.S. patent 5,311,360, issued May 10, 1994.
  • the array of diffraction grating elements are arranged in rows and columns to form pixels of a display.
  • the array can be formed of single grating pixels for a black and white display - or time sequential multiplexing of pixels for color.
  • the pixels can be formed using multiple grating elements for each pixel to form a color display.
  • light from an illumination source can be made to selectively enter the display optics of display.
  • the light from a pixel enters the display optics, that pixel appears lighted.
  • Various levels of gray scale are formed by lighting the pixel varying percentages of time, i.e., by modulating the pulse width.
  • the preferred embodiment utilizes a weighted PWM scheme to form the gray scale selections.
  • a conventional display draws (illuminates) one pixel at a time as it scans the beam over the entire surface of the display. Unlike conventional displays, all the pixels in a single row of the diffraction grating light valve can be updated simultaneously in the preferred embodiment. Accordingly, the descriptions of the invention that follow will be directed toward displaying a row at a time. Nevertheless, it will be apparent to one of ordinary skill in the art that the techniques of the present invention can equally be applied to other types of devices that utilize a PWM scheme for generating gray scale.
  • each frame includes 1280 x 1024 pixels for a total of 1,310,720 pixels. Assuming an 8-bit weighted gray scale, 10,485,760 data bits are required to define a single frame.
  • each row of the graphical image is formed, one row at a time. Because of the ability to draw the display, one row at a time, the number of rows multiplied by the number of bits in gray scale weighting is equal to the number of update events per frame or write cycles per frame. Thus, there are 1024x8 events to draw a frame. Note that an event is the transfer of pixel data from a row-wide register into a row. It will be readily understood that a - number of operations (such as memory cycles) may be necessary to fill the register with the pixel data for the row.
  • the row image is displayed during one frame time such that the eight bits for each pixel in the row are appropriately presented to the viewer's eye.
  • the viewer's eye/brain system then integrates the 8 weighted bits for each pixel into a row of pixels each of the appropriate gray scale.
  • the viewer's eye/brain system integrates the display for each row into a single graphical image.
  • the display apparatus of the present invention includes an image memory 400 as shown in Figure 4.
  • the image memory 400 can be any convenient memory type including semiconductor memory such as RAM, including but not limited to DRAM, SRAM or VRAM, or a non-semiconductor memory such as a hard disk, floppy disk or optical disk, with or iwthout intermediate processing (e.g., MPEG decompression).
  • the image memory 400 is shown in Figure 4 as having multiple planes. This plane metaphor is used conceptually to show that each pixel includes multiple data bits for the various bits of the weighted PWM scheme; it will be apparent to those of ordinary skill in the art that any convenient organization of the graphical image data in the image memory 400 can be used.
  • a control circuit 402 Under control of a control circuit 402, data is transferred from the image memory 400 into a register 404. Once the register is full, and at an appropriate time according to a clock signal generated by the control circuit 402, the data in the register 404 is coupled to illuminate pixels in the appropriate row of the display 406. The display retains data of a pixel state written to the rows until they are updated in a subsequent cycle.
  • the register 404 contains 1280 latch and driver circuits that buffer the memory bus to the column connections of the display. As discussed in the background section of this patent document, if all 1280 latches must be loaded with data during the shortest event duration, the bandwidth requirements for the electronics becomes too severe for an economical solution.
  • the present invention re-orders the time during which the bits of the various weights are displayed in comparison to the prior art. Because the frame time is sufficiently short so that the viewer's eye/brain system can integrate the displayed image into the appropriate shades of gray, the presentation order of these bits does not affect the image quality.
  • Figure 5 shows one example of an 8-bit binary weighted PWM scheme for four rows of data according to one embodiment of the present invention. As Figure 5 clearly shows, the shortest event is not repeated in the same time slot during any of the four rows. It will be apparent to one of ordinary skill in the art after reading this disclosure that the order of the weighted bits can be selected for optimization of different characteristics, such as bandwidth or visual effect.
  • Figure 6A shows another scheme for selecting the data to be loaded into the register without the necessity of performing a complex optimization scheme. Only the first eight rows of the row of data are shown in this Figure. Immediately before time zero, the bit in the register that corresponds to row 0 is loaded with the data for the 0th weight bit, the register bit for row 1 is loaded with the 3rd weight bit, the register for row 2 is loaded with the 2nd weight bit, the register for rows 3-6 are loaded with the 1st weight bits and row 7 is loaded with the 0th weight bit. During the next clock cycle the data in rows 1 and 2 changes such that row 1 is loaded with the data for its 0th weight bit and row 2 is loaded with the 3rd weight bit. At time one, this new data is clocked into the display. During the next clock cycle, only the data in rows 2 and 3 changes, and so forth. In this way, the number of data transitions per clock cycle is dramatically reduced and the data can be extracted from the memory in a regular fashion.
  • Figure 6B shows a bandwidth requirement diagram for a system built according to the timing diagram of Figure 6A. As discussed above the bandwidth requirements of a system built according to the embodiment of Figure 6A are reduced. Here, as shown in Figure 6B, the bandwidth requirement becomes constant; there are no 'dead times' as shown in the prior art of Figure 3C.
  • FIG. 6A shows an alternative scheme to that of Figure 6A. According the the scheme of Figure 6C, the longest duration bit 602 is split into two (or more) time-separated display periods.
  • next shortest bit 604 is displayed between the two halves of the longest duration bit 602.
  • the third longest duration bit 606 and the shortest duration bit 608 follow the second half of the longest duration bit 602. In this way, even if only the longest duration bit is displayed, its duty cycle is the same but the duration of each on-off cycle is sufficiently shortened to avoid forming a flicker.
  • Figures 7A and 7B show the timing for loading the data for the rows of this small display according to a prior art PWM scheme.
  • the time to display a frame is divided into (2 n -1) segments.
  • Figure 7A all fifteen rows display the data for the longest event during the time segment zero.
  • All fifteen rows display the data for the next longest event during the time segment eight.
  • All fifteen rows display the data for the third longest event during the time segment twelve.
  • All fifteen rows display the data for the shortest event during the time segment fourteen.
  • Figure 7B shows the same prior art PWM timing as Figure 7A except that the shortest event is displayed first.
  • all fifteen rows display the data for the shortest event during the time segment zero.
  • All fifteen rows display the data for the next shortest event during the time segment one, for the third shortest event during the time segment three and for the longest event during the time segment seven.
  • Figure 8 shows the timing necessary for loading the data for the rows of this small display according to one non-binary embodiment of the present invention.
  • the timing diagram for Figure 8 shows that the bandwidth requirement for the display system are considerably reduced by not having all the shortest duration events displayed at the same time.
  • the time segment zero there are four events displayed: for rows zero (the shortest event gray scale), eight (the longest event gray scale), twelve (the third shortest event) and fourteen (the second shortest event).
  • the time segment one there are four events displayed: for rows zero (the second shortest event), one (the shortest event), nine (the longest event) and thirteen (the third shortest event).
  • the time segment two only four events are displayed: for the rows one (the second shortest), two (the shortest), ten (the longest) and fourteen (the third shortest). This timing for displaying the rest of the frame is shown in the remainder of the drawing.
  • the number of rows that can be drawn according to the present invention is equal to the number of time segments. Because of the nature of conventional PWM weighting, only 2 n -1 time segments are available, where n is the number of bits of gray scale. For example, in Figure 8, because 4 bit gray scale is used, only 15 rows can appear in the display. To provide for more rows, for example 30 rows, the timing for drawing the two halves of the array must be interleaved.
  • the granularity of gray scale is a function of the number of rows in the display or the number of rows in the video format.
  • each row of bits is first blanked before each new display event.
  • Figure 10 shows a modified time chart for a single row of a display which includes these blanking times.
  • the total blanking time for displaying the gray scale for a row is equal to one time segment. Because there is one blanking time of duration 1/n for each bit of gray scale one full time segment is added.
  • the preferred embodiment includes 2 n time segments rather than 2 n -1 as found in the prior art. Accordingly, this embodiment can readily support drawing sixteen rows as shown in Figure 11 rather than the fifteen rows shown in Figures 7A, 7B and 8. Referring now to Figure 10, the timing can be seen for a single row having its shortest event first.
  • Bit zero (the shortest event) is displayed during the first time segment. Next, the blanking period is provided for bit 1 for a duration of 1/4 time segment. Then, bit 1 is displayed for a total period of 2 time segments. This sequence continues for the remaining bits of gray scale control.
  • Figures 7A, 7B, 8 and 11 imply that the rows of an entire frame image are all simultaneously displayed.
  • the data for each frame is received serially.
  • Figure 6 shows a time. line representation for the timing of data presentation of the rows in a display.
  • the shaded portion 600 of Figure 6 shows the collection of data and their respective timing for forming a single frame image. As the first row of a new frame image is drawn onto the display, the remaining portion of the previous frame image is still being displayed.
  • Table I shows the timing for displaying the lowest order bit according to the scheme of Figure 7B. According to Table I, each data bit is sequentially loaded into each row as also shown in Figure 3. To display a frame, 240 clock cycles are neede for 4 bit gray scale according to one version of the prior art.
  • Table II shows the timing of the present invention.
  • the timing for loading and for clearing the data is indicated such as graphically indicated in Figure 10.
  • the data for Bit0, Row0 is loaded and data for Row15 is cleared.
  • the data for Bit1, Row15 is loaded and data for row 13 is cleared.
  • This analysis continues for the remainder of Table II.
  • 64 clock cycles are neede for 4 bit gray scale according to the preferred embodiment of the present invention.
  • Virtual lines can be added to the display sequence to match the gray scale resolution requirement. It will be understood that these virtual rows are not display but rather add only to the sequence of events for forming the display image. For example, if only 480 lines comprise a frame, and the cycle time is adjusted to represent 512 lines per frame, the a 6% increase in bandwidth results. In this case 6% of the possible update cyucles are not used for writing data to the display.
  • a second approach for resolving a non-matching gray scale-display system is to use the granularity provided by the total number of rows.
  • the gray scale definition can be reduced and/or a higher bandwidth can be implemented.
  • a 480 row display would achieve nearly 9 bits of gray scale resolution (512 levels), but some of the binary codes would be missing while others would produce equal output brightness.
  • 9 bits of gray scale are used to encode the 480 distinct values, a 12% increase in bandwidth results.
  • a third approach for resolving a non-matching gray scale-display system is to increase the duration of the least significant bits in combination with a clear behind technique such as taught in U.S. Patent Application, Serial No. 08/482,192, filed June 7, 1995, and entitled CLEAR-BEHIND MATRIX ADDRESSING FOR DISPLAY SYSTEMS.
  • Such a system can provide a bandwidth optimal system for a non-power-of-2 number of rows but reduces the optical efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Radar Systems Or Details Thereof (AREA)

Claims (13)

  1. Procédé de formation d'une pluralité de signaux de modulation de largeur d'impulsion, comprenant les étapes, dans lesquelles :
    b. on mémorise un nombre prédéterminé de bits pour chaque signal, dans lequel les bits suffisent à définir le signal, de façon que chacun des bits représente un événement de durée différente ;
    c1. on choisit un ensemble de bits, un pour chaque signal, de façon à choisir des bits d'au moins deux événements de durée différente ; et
    d. on choisit un ensemble de bits de remplacement, un pour chaque bit représentant un événement qui expire à une impulsion d'horloge suivante.
  2. Procédé selon la revendication 1, comprenant en outre l'étape :
    a. de réception dudit nombre prédéterminé de bits de chaque signal avant de le mémoriser.
  3. Procédé selon la revendication 2 de formation d'une pluralité de signaux de modulation de largeur d'impulsion pour délivrance à un afficheur numérique (406) comportant une pluralité de lignes et une pluralité de colonnes, dans lequel l'afficheur (406) est configuré pour recevoir des signaux de modulation de largeur d'impulsion, une ligne de pixels à la fois, dans lequel :
    c2. lesdites étapes de choix d'un ensemble de bits et de bits de remplacement comprennent, respectivement, le choix d'un sous-ensemble de bits et de bits de remplacement, chaque sous-ensemble comprenant les bits de chaque pixel d'une ligne prédéterminée pour former une partie de signal d'une durée prédéterminée,
       ledit procédé comprenant en outre les étapes, dans lesquelles :
    c3. on écrit des données pour toutes les lignes, une ligne à la fois,
    d. on forme une pluralité de parties de signal, une pour chacun des sous-ensembles de bits, de durée représentative du sous-ensemble de bits, et l'on couple les signaux avec l'une, prédéterminée, des lignes de l'afficheur (406) ; et
       dans lequel au moins trois sous-ensembles consécutifs de bits sont affichés pendant une durée différente.
  4. Dispositif pour obtenir une modulation de largeur d'impulsion pondérée pour chacun d'une pluralité de signaux pendant une durée de trame, comprenant :
    a. une mémoire destinée à mémoriser une pluralité de groupements de bits de données représentatifs de chacun des signaux, dans lequel chacun des groupements comprend un nombre identique de bits, de sorte que chaque bit d'un groupement représente l'une d'une durée d'événement différente prédéterminée ;
    b. un circuit de choix destiné à choisir, à partir d'un premier sous-ensemble de la pluralité, un bit par groupement formant un premier ensemble de bits choisis ayant tous une durée d'événement prédéterminée, de façon à choisir des bits d'au moins deux événements de durée différente ; et
    c. un circuit destiné à générer plusieurs signaux modulés correspondant aux bits choisis ; et
    d. un circuit de commande (402) destiné à commander le circuit de choix pour choisir, à partir d'un second sous-ensemble de la pluralité, un bit par groupement en formant un second ensemble de bits choisis, de façon à ne remplacer que les bits, pendant un cycle d'horloge suivant, pour lesquels la durée d'événement différente expire à l'impulsion d'horloge suivante, et en outre, dans lequel seul un ensemble de bits peut expirer à une quelconque impulsion d'horloge.
  5. Dispositif selon la revendication 4, dans lequel une exigence de largeur de bande pour adaptation au choix du second ensemble de bits choisis est inférieure à celle du cas dans lequel tous les bits de durée la plus courte sont choisis successivement.
  6. Dispositif selon la revendication 5, dans lequel l'exigence de largeur de bande est constante.
  7. Dispositif selon l'une quelconque des revendications 4 à 6, dans lequel les signaux sont couplés pour moduler plusieurs pixels d'un afficheur (406), dans le but de former une image en demi-teintes.
  8. Dispositif selon la revendication 7, dans lequel les pixels sont agencés en une pluralité de lignes et de colonnes et comprenant en outre un registre (404) comportant plusieurs éléments de mémorisation, un pour chaque pixel d'une ligne.
  9. Dispositif selon l'une quelconque des revendications 4 à 8, dans lequel le circuit de commande (402) choisit l'ensemble de bits choisis en fonction d'un algorithme prédéterminé.
  10. Dispositif selon l'une quelconque des revendications 4 à 6, dans lequel les signaux sont couplés pour moduler une pluralité de pixels d'un afficheur (406), dans le but de former une couleur prédéterminée.
  11. Dispositif selon la revendication 10, dans lequel les pixels sont agencés en une pluralité de lignes et de colonnes et comprenant en outre un registre (404) comportant une pluralité d'éléments de mémorisation, un pour chaque pixel d'une ligne.
  12. Dispositif selon l'une quelconque des revendications 4 à 11, dans lequel ledit dispositif est apte à fournir une modulation de largeur d'impulsion pondérée de n bits pour chaque m lignes de signaux, dans lequel, chaque ligne de signaux est configurée pour recevoir n signaux, dans le but d'afficher des bits d'une durée qui varie ayant une durée la plus courte à une durée la plus longue, qui sont représentatifs de m x n bits de données modulés en largeur d'impulsion, dans lequel lesdits ensembles de bits choisis comprennent des sous-ensembles incluant des bits de chaque pixel d'une ligne prédéterminée ayant tous la même durée, dans lequel ledit circuit de commande est apte à afficher ultérieurement des sous-ensembles différents dans des rangées différentes, et dans lequel au moins trois sous-ensembles consécutifs concernent des bits de durée différente.
  13. Afficheur comprenant :
    a. un groupement de pixels agencés en une pluralité de lignes et une pluralité de colonnes ;
    b. un registre (404) comportant une pluralité d'éléments de mémorisation servant à mémoriser temporairement des données, le registre (404) comportant autant d'éléments de mémorisation que de pixels d'une ligne ; et
    c. un dispositif selon l'une quelconque des revendications 4 à 7 ou 9 à 12.
EP97921309A 1996-04-22 1997-04-21 Systeme d'affichage numerique a modulation d'impulsions en largeur et plan de memoire d'image a multiprogrammation autonome Expired - Lifetime EP0897573B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/635,479 US5731802A (en) 1996-04-22 1996-04-22 Time-interleaved bit-plane, pulse-width-modulation digital display system
US635479 1996-04-22
PCT/US1997/006656 WO1997040487A1 (fr) 1996-04-22 1997-04-21 Systeme d'affichage numerique a modulation d'impulsions en largeur et plan de memoire d'image a multiprogrammation autonome

Publications (2)

Publication Number Publication Date
EP0897573A1 EP0897573A1 (fr) 1999-02-24
EP0897573B1 true EP0897573B1 (fr) 2002-09-25

Family

ID=24547954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97921309A Expired - Lifetime EP0897573B1 (fr) 1996-04-22 1997-04-21 Systeme d'affichage numerique a modulation d'impulsions en largeur et plan de memoire d'image a multiprogrammation autonome

Country Status (9)

Country Link
US (1) US5731802A (fr)
EP (1) EP0897573B1 (fr)
JP (1) JP2000510252A (fr)
KR (1) KR20000010572A (fr)
AT (1) ATE225071T1 (fr)
AU (1) AU2738097A (fr)
DE (1) DE69715837T2 (fr)
NO (1) NO984907L (fr)
WO (1) WO1997040487A1 (fr)

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100229072B1 (ko) * 1996-07-02 1999-11-01 구자홍 서브 프레임 구동방식을 위한 계조 데이터 구현회로 및 그 방법
JP2962245B2 (ja) * 1996-10-23 1999-10-12 日本電気株式会社 表示装置の階調表示方法
JPH10326088A (ja) * 1997-03-24 1998-12-08 Ngk Insulators Ltd ディスプレイの駆動装置及びディスプレイの駆動方法
US7403213B1 (en) * 1997-06-04 2008-07-22 Texas Instruments Incorporated Boundary dispersion for artifact mitigation
JP3437743B2 (ja) * 1997-07-18 2003-08-18 日本碍子株式会社 ディスプレイの駆動装置及びディスプレイの駆動方法
US6151001A (en) * 1998-01-30 2000-11-21 Electro Plasma, Inc. Method and apparatus for minimizing false image artifacts in a digitally controlled display monitor
US6326980B1 (en) * 1998-02-27 2001-12-04 Aurora Systems, Inc. System and method for using compound data words in a field sequential display driving scheme
US6151011A (en) * 1998-02-27 2000-11-21 Aurora Systems, Inc. System and method for using compound data words to reduce the data phase difference between adjacent pixel electrodes
US6100863A (en) * 1998-03-31 2000-08-08 Matsushita Electric Industrial Co., Ltd. Motion pixel distortion reduction for digital display devices using dynamic programming coding
US6303986B1 (en) 1998-07-29 2001-10-16 Silicon Light Machines Method of and apparatus for sealing an hermetic lid to a semiconductor die
US6674563B2 (en) 2000-04-13 2004-01-06 Lightconnect, Inc. Method and apparatus for device linearization
US6826330B1 (en) 1999-08-11 2004-11-30 Lightconnect, Inc. Dynamic spectral shaping for fiber-optic application
US6501600B1 (en) 1999-08-11 2002-12-31 Lightconnect, Inc. Polarization independent grating modulator
US6888983B2 (en) 2000-04-14 2005-05-03 Lightconnect, Inc. Dynamic gain and channel equalizers
US6388661B1 (en) * 2000-05-03 2002-05-14 Reflectivity, Inc. Monochrome and color digital display systems and methods
US6690499B1 (en) * 2000-11-22 2004-02-10 Displaytech, Inc. Multi-state light modulator with non-zero response time and linear gray scale
DE10112622A1 (de) * 2001-03-14 2002-09-19 Grundig Ag Verfahren und Vorrichtung zur Verbesserung der Grauwertauflösung einer pulsbreitengesteuerten Bildanzeigevorrichtung
US6707591B2 (en) 2001-04-10 2004-03-16 Silicon Light Machines Angled illumination for a single order light modulator based projection system
JP2002311921A (ja) * 2001-04-19 2002-10-25 Hitachi Ltd 表示装置およびその駆動方法
US6747781B2 (en) 2001-06-25 2004-06-08 Silicon Light Machines, Inc. Method, apparatus, and diffuser for reducing laser speckle
US6782205B2 (en) 2001-06-25 2004-08-24 Silicon Light Machines Method and apparatus for dynamic equalization in wavelength division multiplexing
US6829092B2 (en) 2001-08-15 2004-12-07 Silicon Light Machines, Inc. Blazed grating light valve
US6800238B1 (en) 2002-01-15 2004-10-05 Silicon Light Machines, Inc. Method for domain patterning in low coercive field ferroelectrics
US6788282B2 (en) * 2002-02-21 2004-09-07 Seiko Epson Corporation Driving method for electro-optical device, driving circuit therefor, electro-optical device, and electronic apparatus
EP1359749A1 (fr) * 2002-05-04 2003-11-05 Deutsche Thomson-Brandt Gmbh Mode d'affichage à balayage multiple pour un panneau d'affichage à plasma
US6728023B1 (en) 2002-05-28 2004-04-27 Silicon Light Machines Optical device arrays with optimized image resolution
US6767751B2 (en) 2002-05-28 2004-07-27 Silicon Light Machines, Inc. Integrated driver process flow
US6822797B1 (en) 2002-05-31 2004-11-23 Silicon Light Machines, Inc. Light modulator structure for producing high-contrast operation using zero-order light
US6829258B1 (en) 2002-06-26 2004-12-07 Silicon Light Machines, Inc. Rapidly tunable external cavity laser
US6714337B1 (en) 2002-06-28 2004-03-30 Silicon Light Machines Method and device for modulating a light beam and having an improved gamma response
US6813059B2 (en) 2002-06-28 2004-11-02 Silicon Light Machines, Inc. Reduced formation of asperities in contact micro-structures
US6801354B1 (en) 2002-08-20 2004-10-05 Silicon Light Machines, Inc. 2-D diffraction grating for substantially eliminating polarization dependent losses
US7317464B2 (en) * 2002-08-21 2008-01-08 Intel Corporation Pulse width modulated spatial light modulators with offset pulses
US6712480B1 (en) 2002-09-27 2004-03-30 Silicon Light Machines Controlled curvature of stressed micro-structures
US7417782B2 (en) * 2005-02-23 2008-08-26 Pixtronix, Incorporated Methods and apparatus for spatial light modulation
US6829077B1 (en) 2003-02-28 2004-12-07 Silicon Light Machines, Inc. Diffractive light modulator with dynamically rotatable diffraction plane
US6806997B1 (en) 2003-02-28 2004-10-19 Silicon Light Machines, Inc. Patterned diffractive light modulator ribbon for PDL reduction
US20050062765A1 (en) * 2003-09-23 2005-03-24 Elcos Microdisplay Technology, Inc. Temporally dispersed modulation method
US20050128223A1 (en) * 2003-12-12 2005-06-16 Adam Ghozeil Method and system for generating pixel gray scale levels
EP1544836A1 (fr) * 2003-12-17 2005-06-22 Deutsche Thomson-Brandt GmbH Procédé et dispositif de traitement de données video qui contiennent séquences en mode Film
US7499065B2 (en) * 2004-06-11 2009-03-03 Texas Instruments Incorporated Asymmetrical switching delay compensation in display systems
DE102004044001A1 (de) * 2004-09-09 2006-04-13 Lehmann, Erhard, Dipl.-Ing. (FH) Verfahren zur Steuerung der Energiezufuhr von einer Stromquelle an einen Stromverbraucher
US7483010B2 (en) * 2004-12-22 2009-01-27 Himax Technologies Limited Frame-varying addressing method of color sequential display
US20060164443A1 (en) * 2005-01-26 2006-07-27 Kettle Wiatt E Modulating spatial light modulator with logically OR'ed values of bit planes
US7755582B2 (en) * 2005-02-23 2010-07-13 Pixtronix, Incorporated Display methods and apparatus
US7675665B2 (en) 2005-02-23 2010-03-09 Pixtronix, Incorporated Methods and apparatus for actuating displays
US7999994B2 (en) 2005-02-23 2011-08-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US9229222B2 (en) 2005-02-23 2016-01-05 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
US8482496B2 (en) 2006-01-06 2013-07-09 Pixtronix, Inc. Circuits for controlling MEMS display apparatus on a transparent substrate
US7746529B2 (en) 2005-02-23 2010-06-29 Pixtronix, Inc. MEMS display apparatus
US8519945B2 (en) 2006-01-06 2013-08-27 Pixtronix, Inc. Circuits for controlling display apparatus
US20060209012A1 (en) * 2005-02-23 2006-09-21 Pixtronix, Incorporated Devices having MEMS displays
US7616368B2 (en) * 2005-02-23 2009-11-10 Pixtronix, Inc. Light concentrating reflective display methods and apparatus
US9158106B2 (en) 2005-02-23 2015-10-13 Pixtronix, Inc. Display methods and apparatus
US9261694B2 (en) 2005-02-23 2016-02-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US9082353B2 (en) 2010-01-05 2015-07-14 Pixtronix, Inc. Circuits for controlling display apparatus
US7304785B2 (en) 2005-02-23 2007-12-04 Pixtronix, Inc. Display methods and apparatus
US7742016B2 (en) * 2005-02-23 2010-06-22 Pixtronix, Incorporated Display methods and apparatus
US20070205969A1 (en) 2005-02-23 2007-09-06 Pixtronix, Incorporated Direct-view MEMS display devices and methods for generating images thereon
US7271945B2 (en) 2005-02-23 2007-09-18 Pixtronix, Inc. Methods and apparatus for actuating displays
US8159428B2 (en) 2005-02-23 2012-04-17 Pixtronix, Inc. Display methods and apparatus
US7405852B2 (en) * 2005-02-23 2008-07-29 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US7502159B2 (en) 2005-02-23 2009-03-10 Pixtronix, Inc. Methods and apparatus for actuating displays
US7304786B2 (en) * 2005-02-23 2007-12-04 Pixtronix, Inc. Methods and apparatus for bi-stable actuation of displays
US8310442B2 (en) 2005-02-23 2012-11-13 Pixtronix, Inc. Circuits for controlling display apparatus
US8339428B2 (en) * 2005-06-16 2012-12-25 Omnivision Technologies, Inc. Asynchronous display driving scheme and display
US7545396B2 (en) * 2005-06-16 2009-06-09 Aurora Systems, Inc. Asynchronous display driving scheme and display
US8526096B2 (en) 2006-02-23 2013-09-03 Pixtronix, Inc. Mechanical light modulators with stressed beams
US7876489B2 (en) * 2006-06-05 2011-01-25 Pixtronix, Inc. Display apparatus with optical cavities
EP2080045A1 (fr) 2006-10-20 2009-07-22 Pixtronix Inc. Guides de lumière et systèmes de rétroéclairage comportant des redirecteurs de lumière a densité variable
US7852546B2 (en) 2007-10-19 2010-12-14 Pixtronix, Inc. Spacers for maintaining display apparatus alignment
US20100188443A1 (en) * 2007-01-19 2010-07-29 Pixtronix, Inc Sensor-based feedback for display apparatus
US9176318B2 (en) 2007-05-18 2015-11-03 Pixtronix, Inc. Methods for manufacturing fluid-filled MEMS displays
JP4743132B2 (ja) * 2007-02-15 2011-08-10 ティアック株式会社 複数のファンクションキーを有する電子機器
US8223179B2 (en) * 2007-07-27 2012-07-17 Omnivision Technologies, Inc. Display device and driving method based on the number of pixel rows in the display
US8248560B2 (en) 2008-04-18 2012-08-21 Pixtronix, Inc. Light guides and backlight systems incorporating prismatic structures and light redirectors
US8228349B2 (en) * 2008-06-06 2012-07-24 Omnivision Technologies, Inc. Data dependent drive scheme and display
US9024964B2 (en) * 2008-06-06 2015-05-05 Omnivision Technologies, Inc. System and method for dithering video data
US8228350B2 (en) 2008-06-06 2012-07-24 Omnivision Technologies, Inc. Data dependent drive scheme and display
US8169679B2 (en) 2008-10-27 2012-05-01 Pixtronix, Inc. MEMS anchors
WO2010062647A2 (fr) * 2008-10-28 2010-06-03 Pixtronix, Inc. Système et procédé pour sélectionner des modes d'affichage
CN103000141B (zh) 2010-02-02 2016-01-13 皮克斯特罗尼克斯公司 用于控制显示装置的电路
CN102834763B (zh) 2010-02-02 2015-07-22 皮克斯特罗尼克斯公司 用于制造填充冷密封流体的显示装置的方法
US20110205756A1 (en) * 2010-02-19 2011-08-25 Pixtronix, Inc. Light guides and backlight systems incorporating prismatic structures and light redirectors
BR112012022900A2 (pt) 2010-03-11 2018-06-05 Pixtronix Inc modos de operação transflexivos e refletivos para um dispositivo de exibição
US8749538B2 (en) 2011-10-21 2014-06-10 Qualcomm Mems Technologies, Inc. Device and method of controlling brightness of a display based on ambient lighting conditions
US9183812B2 (en) 2013-01-29 2015-11-10 Pixtronix, Inc. Ambient light aware display apparatus
US9134552B2 (en) 2013-03-13 2015-09-15 Pixtronix, Inc. Display apparatus with narrow gap electrostatic actuators
US9918053B2 (en) * 2014-05-14 2018-03-13 Jasper Display Corp. System and method for pulse-width modulating a phase-only spatial light modulator
US9640108B2 (en) 2015-08-25 2017-05-02 X-Celeprint Limited Bit-plane pulse width modulated digital display system
US9930277B2 (en) 2015-12-23 2018-03-27 X-Celeprint Limited Serial row-select matrix-addressed system
US10091446B2 (en) 2015-12-23 2018-10-02 X-Celeprint Limited Active-matrix displays with common pixel control
US9928771B2 (en) 2015-12-24 2018-03-27 X-Celeprint Limited Distributed pulse width modulation control
WO2017187837A1 (fr) * 2016-04-28 2017-11-02 ソニー株式会社 Dispositif d'affichage d'image et procédé d'affichage d'image
US10360846B2 (en) 2016-05-10 2019-07-23 X-Celeprint Limited Distributed pulse-width modulation system with multi-bit digital storage and output device
US10453826B2 (en) 2016-06-03 2019-10-22 X-Celeprint Limited Voltage-balanced serial iLED pixel and display
CN109891485B (zh) 2016-10-27 2022-08-16 索尼公司 显示装置
US10832609B2 (en) * 2017-01-10 2020-11-10 X Display Company Technology Limited Digital-drive pulse-width-modulated output system
US11030942B2 (en) 2017-10-13 2021-06-08 Jasper Display Corporation Backplane adaptable to drive emissive pixel arrays of differing pitches
US10951875B2 (en) 2018-07-03 2021-03-16 Raxium, Inc. Display processing circuitry
CN110021263B (zh) * 2018-07-05 2020-12-22 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板
US11710445B2 (en) 2019-01-24 2023-07-25 Google Llc Backplane configurations and operations
US11637219B2 (en) 2019-04-12 2023-04-25 Google Llc Monolithic integration of different light emitting structures on a same substrate
DE102019113916A1 (de) 2019-05-24 2020-11-26 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronische Leuchtvorrichtung mit einer Programmiereinrichtung und Verfahren zum Steuern einer optoelektronischen Leuchtvorrichtung
US11238782B2 (en) 2019-06-28 2022-02-01 Jasper Display Corp. Backplane for an array of emissive elements
US11626062B2 (en) 2020-02-18 2023-04-11 Google Llc System and method for modulating an array of emissive elements
CN115362491A (zh) 2020-04-06 2022-11-18 谷歌有限责任公司 显示组件
US11538431B2 (en) 2020-06-29 2022-12-27 Google Llc Larger backplane suitable for high speed applications
US11615736B2 (en) * 2020-09-09 2023-03-28 Texas Instruments Incorporated Light-emitting diode (LED) display driver with blank time distribution
EP4131244A4 (fr) * 2020-10-08 2023-11-01 Samsung Electronics Co., Ltd. Dispositif électronique et procédé de commande associé
EP4371104A1 (fr) 2021-07-14 2024-05-22 Google LLC Fond de panier et procédé de modulation de largeur d'impulsion

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331698Y2 (fr) * 1973-05-19 1978-08-07
US5196839A (en) * 1988-09-16 1993-03-23 Chips And Technologies, Inc. Gray scales method and circuitry for flat panel graphics display
US5185602A (en) * 1989-04-10 1993-02-09 Cirrus Logic, Inc. Method and apparatus for producing perception of high quality grayscale shading on digitally commanded displays
JP2932686B2 (ja) * 1990-11-28 1999-08-09 日本電気株式会社 プラズマディスプレイパネルの駆動方法
CA2063744C (fr) * 1991-04-01 2002-10-08 Paul M. Urbanus Architecture et dispositif de synchronisation de systeme d'affichage a modulation d'impulsions en duree
ATE261168T1 (de) * 1992-10-15 2004-03-15 Texas Instruments Inc Anzeigevorrichtung
CN1057614C (zh) * 1993-01-11 2000-10-18 德克萨斯仪器股份有限公司 用于空间光调制器的象素控制电路
JP3145552B2 (ja) * 1993-12-28 2001-03-12 セイコーインスツルメンツ株式会社 液晶表示パネルの駆動装置
EP0685830A1 (fr) * 1994-06-02 1995-12-06 Texas Instruments Incorporated Améliorations concernant les modulateurs de lumière spatiaux
US5497172A (en) * 1994-06-13 1996-03-05 Texas Instruments Incorporated Pulse width modulation for spatial light modulator with split reset addressing

Also Published As

Publication number Publication date
JP2000510252A (ja) 2000-08-08
DE69715837D1 (de) 2002-10-31
KR20000010572A (ko) 2000-02-15
US5731802A (en) 1998-03-24
ATE225071T1 (de) 2002-10-15
EP0897573A1 (fr) 1999-02-24
WO1997040487A1 (fr) 1997-10-30
DE69715837T2 (de) 2003-01-23
NO984907L (no) 1998-12-18
NO984907D0 (no) 1998-10-21
AU2738097A (en) 1997-11-12

Similar Documents

Publication Publication Date Title
EP0897573B1 (fr) Systeme d'affichage numerique a modulation d'impulsions en largeur et plan de memoire d'image a multiprogrammation autonome
JP2853998B2 (ja) 表示装置、および表示装置の動作方法
US5189406A (en) Display device
US6064404A (en) Bandwidth and frame buffer size reduction in a digital pulse-width-modulated display system
KR100232983B1 (ko) 해상도 변환이 가능한 디스플레이 패널 및 장치
US5767828A (en) Method and apparatus for displaying grey-scale or color images from binary images
US5339116A (en) DMD architecture and timing for use in a pulse-width modulated display system
US6094243A (en) Liquid crystal display device and method for driving the same
US7352350B2 (en) Display device
US5798743A (en) Clear-behind matrix addressing for display systems
US5583530A (en) Liquid crystal display method and apparatus capable of making multi-level tone display
US6268890B1 (en) Image display apparatus with selected combinations of subfields displayed for a gray level
JP5675030B2 (ja) ディスプレイ装置に表示するビデオ画像の処理方法
JPH11509647A (ja) 2値画像を表示する装置および方法
KR930001649B1 (ko) 액정 표시장치
US6930693B1 (en) Fast readout of multiple digital bit planes for display of greyscale images
US5774101A (en) Multiple line simultaneous selection method for a simple matrix LCD which uses temporal and spatial modulation to produce gray scale with reduced crosstalk and flicker
JP2728703B2 (ja) 表示装置およびその作動方法
KR19980071872A (ko) 액정 패널의 구동방법과 세그먼트 구동기와 표시 제어기와 액정
JP3357173B2 (ja) 画像表示装置の駆動方法
JP3347628B2 (ja) 解像度変換可能な表示パネル及び表示装置
WO1999023634A1 (fr) Configuration memoire pour la regulation des degrades de teintes des dispositifs d'affichage electroluminescent au moyen de circuits de commande marche/arret
CN1222992A (zh) 时间交错位面脉宽调制数字显示系统
US12094387B2 (en) Offset drive scheme for digital display

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20010516

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020925

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020925

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020925

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020925

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020925

REF Corresponds to:

Ref document number: 225071

Country of ref document: AT

Date of ref document: 20021015

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69715837

Country of ref document: DE

Date of ref document: 20021031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021225

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021226

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030328

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030421

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030421

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031101

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040426

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050215

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050216

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060430

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060421

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070421