EP0895698B1 - Mappage d'ecran d'un tube cathodique - Google Patents

Mappage d'ecran d'un tube cathodique Download PDF

Info

Publication number
EP0895698B1
EP0895698B1 EP97916992A EP97916992A EP0895698B1 EP 0895698 B1 EP0895698 B1 EP 0895698B1 EP 97916992 A EP97916992 A EP 97916992A EP 97916992 A EP97916992 A EP 97916992A EP 0895698 B1 EP0895698 B1 EP 0895698B1
Authority
EP
European Patent Office
Prior art keywords
correction factor
data
cathode ray
ray tube
factor data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97916992A
Other languages
German (de)
English (en)
Other versions
EP0895698A4 (fr
EP0895698A1 (fr
Inventor
James R. Webb
Ron C. Simpson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DISPLAY LABORATORIES Inc
Original Assignee
DISPLAY LABORATORIES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DISPLAY LABORATORIES Inc filed Critical DISPLAY LABORATORIES Inc
Publication of EP0895698A1 publication Critical patent/EP0895698A1/fr
Publication of EP0895698A4 publication Critical patent/EP0895698A4/fr
Application granted granted Critical
Publication of EP0895698B1 publication Critical patent/EP0895698B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/04Diagnosis, testing or measuring for television systems or their details for receivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/44Factory adjustment of completed discharge tubes or lamps to comply with desired tolerances

Definitions

  • the present invention pertains generally to cathode ray tubes and more particularly to the alignment of video signals on cathode ray tubes.
  • Align means to cause a video image to be adjusted so that distortion characteristics are minimized and the video image that is displayed on the cathode ray tube forms an image that is pleasing to the eye.
  • Alignment camera means the video camera used to generate a signal that is representative of the image displayed on the cathode ray tube in a manner described in US-A-5,216,504.
  • Alignment specifications means a limit set for the distortion data of each correction factor parameter to provide an aligned video image.
  • Bar code means any sort of optically encoded data.
  • Cathode ray tube means the tube structure, the phosphor screen, the neck of the tube, the deflection and control windings, including the yoke and other coils, and the electron guns.
  • Characterization module means a device that is coupled in some manner to a cathode ray tube and may include a storage device for storing correction factor data or an identification number for the cathode ray tube, and/or a processing device such as a micro-processor or other logic device, and/or driver and correction circuits, and/or control circuitry.
  • the characterization module can also store parametric data for use in aligning monitors that employ standardized transformation equations.
  • Coordinate locations means the discrete physical locations on the face of the cathode ray tube, or a physical area on the CRT screen.
  • Correction and driver circuitry means one or more of the following: digital to analog converters, interpolation engine, pulse width modulators and pulse density modulators, as well as various summing amplifiers, if required. These devices are capable of producing correction control signals that are applied to control circuitry to generate an aligned video image.
  • Correction control signals means correction factor signals that have been combined in a manner to be applied to either horizontal control circuitry, vertical control circuitry, or electron gun circuitry.
  • Correction factor data comprises the encoded digital bytes or any other form of data that are representative of the amount of correction required to align a video signal at a particular physical location on a cathode ray tube to counteract distortion characteristics at that location.
  • Correction factor data may include data from the gain matrix table, data relating to electron gun characteristics and/or data relating to geometry characteristics of the cathode ray tube.
  • Correction factor parameters include various geometry characteristics of the cathode ray tube including horizontal size, vertical size, horizontal center, vertical center, pincushioning, vertical linearity, keystoning, convergence, etc., and various electron gun characteristics of the cathode ray tube including contrast, brightness, luminosity, focus, color balance, color temperature, electron gun cutoff, etc.
  • Correction factor signals means digital correction signals that have been integrated or filtered.
  • Correction signals means digital correction signals and correction factor signals.
  • Decoder means a device for generating an electronic signal in response to one or more data bytes that may include PWMs, PDMs, DACs, interpolation engines, on-screen display chips, etc.
  • Digital correction signals means signals that are generated by decoders, such as pulse width modulators, pulse density modulators, digital to analog converters, etc. in response to correction factor data.
  • Digitized signal is any electrical signal that has a digital nature.
  • Direction means up, down, left, right, brighter, dimmer, higher, lower, etc.
  • Discrete locations may mean individual pixels on a cathode ray tube screen or may comprise a plurality of pixels on a cathode ray tube screen.
  • Distortion characteristics means the amount of distortion as indicated by the distortion data at a number of different points on the cathode ray tube.
  • Distortion data is a measure of the amount of distortion that exists on a cathode ray tube with regard to the geometry characteristics of the tube, and/or electron gun characteristics of the tube.
  • distortion data can be measured as a result of misalignment of a video image or improper amplitude or gain of a video signal.
  • Distortion data can be a quantitative measure of the deviation of correction factor parameters from a desired quantitative value.
  • Distortion data can be measured at coordinate locations on the cathode ray tube.
  • Driver signals are the electrical signals that are used to drive the deflection and control windings, and electron guns of the cathode ray tube.
  • Exit criteria means a limit set for the distortion data of each correction factor parameter that allows generation of correction factor data that is capable of producing an aligned video image.
  • Frame grabber means an electronic device for capturing a video frame.
  • Gain matrix table means a table of values that are used to indicate how a change in correction factor data for one correction factor parameter influences the change in the correction factor data for other correction factor parameters.
  • Golden tube means a sample cathode ray tube having limit distortion characteristics for a particular model of cathode ray tube.
  • Integrators means a device for generating an integrated signal that is the time integral of an input signal.
  • Interpolation engine means a device for generating continuously variable signals.
  • Logic device means any desired device for reading the correction factor data from a memory and transmitting it to correction and driver circuitry, including a micro-processor, a state machine, or other logic devices.
  • Magnetic strip means any sort of magnetic storage medium that can be attached to a cathode ray tube.
  • Maximum correctable distortion data means the limits of the distortion data for which an aligned video signal can be generated for any particular cathode ray tube using predetermined correction and driver circuitry, and control circuitry.
  • Memory comprises any desired storage medium including, but not limited to, EEPROMS, RAM, EPROMs, PROMs, ROMs, magnetic storage, magnetic floppies, bar codes, serial EEPROMs, flash memory, etc.
  • Non-volatile electronic storage device means an electrical memory device that is capable of storing data that does not require a constant supply of power.
  • Pattern generator means any type of video generator that is capable of generating a video signal that allows measurement of distortion data.
  • Processor means a logic device including, but not limited to, serial EEPROMs, state machines, micro-processors, etc.
  • Production cathode ray tube means a cathode ray tube that is part of a production line.
  • Pulse density modulation means a device for generating pulse density modulation signals in response to one or more data bytes, such as disclosed in U.S. Patent Application Serial No. 08/611,098, filed March 5, 1996 by James R. Webb et al entitled "Method and Apparatus for Making Corrections in a Video Monitor.”
  • Pulse width modulator means a device that generates pulse width modulated signals in response to one or more data bytes, such as disclosed in US-A-5,216,504.
  • Storage disk comprises any type of storage device for storing data including magnetic storage devices such as floppy disks, optical storage devices, magnetic tape storage devices, magneto-optical storage devices, compact disks, etc.
  • Summing amplifiers means devices that are capable of combining a plurality of input signals.
  • Transformation equation means a standard form equation for producing a correction voltage waveform to correct distortion characteristics of a cathode ray tube.
  • Universal monitor board means a device that includes one or more of the following: vertical control circuitry, horizontal control circuitry, electron gun control circuitry, correction and driver circuitry, a logic device and a memory.
  • a universal monitor board may comprise an actual chassis monitor board used with a particular monitor, an ideal chassis board, a chassis board that can be adjusted to match the characteristics or specifications of a monitor board, etc.
  • Video image means the displayed image that appears on the cathode ray tube screen that is produced in response to a video signal.
  • Video pattern is the video image of a pattern that appears on the cathode ray tube as a result of the video signal generated by the pattern generator.
  • Video signal means the electronic signal that is input into the electron guns of the cathode ray tube.
  • US-A-5,216,504 issued to James R. Webb, et al , entitled "Automatic Precision Video Monitor Alignment System” discloses a system that uses a single video camera placed in front of a video monitor to capture a video image which is then supplied to an alignment computer for analysis of the physical characteristics of the video image.
  • the alignment computer generates parametric data that is utilized in transformation equations that are stored in memory in the monitor.
  • the transformation equations are used by the processor in the monitor to generate data that is used to align the monitor.
  • These transformation equations model distortion characteristics using standard parabolic equations or least squares regression equations. Parameters of the transformation equations are stored in the memory in the monitor with the transformation equations.
  • the stored parameters and transformation equations provide correction for typical distortions encountered in a monitor of the same make and model.
  • the vision system provides modified parameters to align each individual monitor.
  • Vision systems have also been used by cathode ray tube manufacturers, as opposed to monitor manufacturers, to generate distortion data. Use of vision systems by both monitor manufacturers and cathode ray tube manufacturers results in a duplication of effort and unnecessary capital expenditures.
  • Cathode ray tube manufacturers unlike monitor manufacturers, are responsible for manually aligning the control and deflection coils on the neck of the tube that provide initial alignment of the video signal.
  • Cathode ray tubes have typically been manually aligned by highly skilled technicians. These highly skilled technicians use various techniques for manually positioning the various deflection and control coils on the neck of the cathode ray tube so that a video signal applied to the cathode ray tube produces a video image that falls within certain alignment specifications.
  • the alignment specifications for a cathode ray tube may require that when an uncorrected video signal is generated on the cathode ray tube, a maximum distortion of only a predetermined number of millimeters of pincushioning be present on each vertical side of the video signal.
  • These cathode ray tube specifications (exit criteria) are often difficult to meet and require skilled technicians to achieve these results. This may limit the production throughput and yield of the cathode ray tube manufacturing plant.
  • the techniques of manually aligning the deflection and control circuitry and electron guns on a tube is time consuming and tedious work that is subject to failure, in the same manner as disclosed above with regard to manually aligning monitors.
  • correction and driver circuitry is capable of producing corrections over a wide range of distortion characteristics, in many instances, the complex mechanical processes of aligning the deflection and control windings, and electron guns is performed with unnecessary precision.
  • the use of standard transformation equations and the generation of parametric data to be used in the transformation equations comprises an effective method of compressing or minimizing the data that is stored in the monitor that is required to generate an aligned video image.
  • the desire to store more parametric data to produce even better aligned monitors has resulted in a proportionally larger amount of program data required to interpret and process the parametric data.
  • This has caused manufacturers to increase the amount of storage in the monitor.
  • 16K to 20K of EEPROM has become prevalent in the industry.
  • monitor manufacturers have been forced to provide higher speed processing devices. such as high speed, robust, micro-processors to process the large amount of correction factor data and program data and instructions that is stored in the monitor in a timely fashion.
  • WO-A-87 02508 discloses an automatic alignment system wherein the parameters stored within the personality memory of the cathode ray tube (CRT) include data describing signal magnitudes for driving the deflection and focus elements of the CRT at a plurality of predetermined screen positions.
  • CRT cathode ray tube
  • US-A-4 654 706 discloses an automatic adjustment system wherein the pattern is used for checking the image quality of the monitor.
  • a method of generating and storing correction factor data relating to the characteristics of a cathode ray tube according to the preamble of claim 15 is also known from US-A-5 216 504.
  • system of the invention is characterized by the features claimed in the characterizing parts of claim 1 and the invention provides a method according to the characterizing part of claim 15.
  • the distortion data is measured at a series of discrete locations on the cathode ray tube, the correction factor data being generated for each of the discrete locations for each correction factor parameter.
  • the alignment computer comprises a frame grabber that captures the image signals and a gain matrix table that predicts correction factor data for aligning the video image by determining interaction of each correction factor parameter with other correction factor parameters.
  • the present invention overcomes the disadvantages and limitations of the prior art by providing, in general, a system for generating and storing correction factor data representative of distortion characteristics of a cathode ray tube to align a video signal on the cathode ray tube comprising, a pattern generator that generates a video pattern that is displayed on the cathode ray tube, an alignment camera that generates image signals representative of the video pattern, an alignment computer that captures the image signals of the video pattern, measures distortion data for a plurality of correction factor parameters at a series of discrete locations on the cathode ray tube and generates correction factor data from the distortion data, a universal monitor board that generates driver signals in response to the correction factor data to align the video pattern, and, a characterization module coupled to the cathode ray tube that stores the correction factor data.
  • the present invention may also comprise an apparatus for generating correction control signals for driving control circuitry to produce an aligned video signal on a cathode ray tube comprising, a memory that stores correction factor data representative of distortion characteristics of the cathode ray tube, and correction and driver circuitry that decodes the correction factor data and generates the correction control signals in response to the correction factor data.
  • the present invention may also comprise a method of generating an aligned video signal on a cathode ray tube comprising the steps of, generating correction factor data from distortion data measured for a plurality of correction factor parameters, storing the correction factor data with the cathode ray tube, reading the correction factor data stored with the cathode ray tube, and, decoding the correction factor data and generating driver signals in response to the correction factor data that produced the aligned video signal on the cathode ray tube.
  • the present invention may also comprise a method of determining whether distortions in a video signal displayed on a cathode ray tube can be corrected by modifying driver signals that are used to generate and display the video signal on the cathode ray tube comprising the steps of, measuring distortion data of the video signal for a plurality of correction factor parameters, comparing the distortion data with a set of maximum correctable distortion data that has been generated from similar cathode ray tubes, and rejecting the cathode ray tube if the distortion data is greater than the maximum correctable distortion data.
  • correction factor data that characterizes the distortions of the cathode ray tube is stored in a characterization module with the cathode ray tube, or in some other form, such as a bar code, or magnetic strip.
  • This data is generated by the cathode ray tube manufacturer to insure that the cathode ray tube meets the exit criteria required by the monitor manufacturer.
  • a minimum number of points such as a grid of 25 points, can be used to store the correction factor data for each correction factor parameter.
  • any number of coordinate locations on the.cathode ray tube can be used for any particular correction factor parameter.
  • interpolation engines can be used to provide the desired correction factor data.
  • Such an interpolation engine can of course, be used to interpolate either in a vertical or horizontal direction.
  • FIG. 1 discloses a schematic illustration of a system for generating maximum correctable distortion data, correction factor data, and parametric data.
  • cathode ray tube 10 can comprise a golden tube when maximum correctable distortion data is being generated, and a production cathode ray tube when correction factor data and parametric data is being generated.
  • a vision system 15 is positioned such that alignment camera 16 records a video image of a pattern displayed on cathode ray tube 10.
  • the alignment computer 22 captures the video image and analyses it to produce either correction factor data, parametric data or maximum correctable distortion data that is transmitted to universal monitor board 44 via connector 40.
  • correction factor data is generated by alignment computer 22 depending upon the particular type of monitor board that is going to be used in the monitor chassis in which the cathode ray tube 10 is going to be placed. If the monitor board uses transformation equations, parametric data will be generated as disclosed in U.S. patent 5, 216,504. Correction factor data is generated by alignment computer 22 for the correction and driver circuitry employed in accordance with the present invention.
  • Alignment computer 22 is also coupled to pattern generator 24 that generates a video signal that is transmitted to universal monitor board 44 via connector 35.
  • Universal monitor board 44 generates driver signals 186 that are applied to the cathode ray tube 10 to generate a video image.
  • Universal monitor board 44 also stores correction factor data or parametric data in characterization module 72 that is used for later alignment of cathode ray tube 10.
  • Universal monitor board 44 can also store correction factor data and parametric data on LAN 83 via LAN interface 81 and connector 79, or on a storage medium 80 via recorder 78 and connector 76. In this manner, such data can be made available for later use in aligning the cathode ray tube 10.
  • the system of Figure 2 can be used for generating correction factor data that can be used to align a cathode ray tube.
  • alignment camera 16 of vision system 15 is focused and directed at the screen face 14 of cathode ray tube 10 to generate an image signal 18 that is applied to frame grabber 20 that forms a part of the alignment computer 22, which is more fully described in US-A-5,216,504.
  • Frame grabber 20 captures a single frame of the image signal 18 generated by alignment camera 16 that is representative of the image generated on screen 14.
  • the image generated on screen 14 comprises a video pattern generated by pattern generator 24.
  • Frame grabber 20 captures the single frame in response to a signal from processor 26 that forms part of alignment computer 22.
  • Processor 26 is coupled to RAM 28 which functions to control the operation of processor 26.
  • Input device 30 is coupled to the processor 26 to provide input data and control data for processor 26.
  • Input device 30 can comprise any desired type of input device including a keyboard that is coupled to an I/O device that forms part of the processor 26.
  • Processor 26 is coupled to an output 32 that controls pattern generator 24 so that a pattern is generated at the outputs 34, 36, and 38 of pattern generator 24.
  • Processor 26 also has an output 40 that is coupled to processor 42 of universal monitor board 44. Output 40 transmits correction factor data to processor 42 which processor 42, in turn, loads into the proper decoders of correction and driver circuitry 46.
  • RAM 49 stores data for the operation of processor 42, so that processor 42, for example, can transfer the correction factor data to the proper decoder in the correction and driver circuitry 46.
  • the output of correction and driver circuitry 46 comprises correction control signals 48 that are applied to control circuitry 50.
  • Control circuitry 50 comprises vertical control circuitry 52, that controls the amplitude and gain of vertical driver signal 58 that affects vertical deflections and geometries, horizontal control circuitry 54, that controls the amplitude and gain of horizontal driver signal 60 that affects horizontal deflections and geometries, and electron gun control circuitry 56 that controls the amplitude and gain of the video signal 62 that is applied to the electron guns.
  • pattern generator 24 produces a video pattern signal on outputs 34, 36, 38 that are applied to vertical control circuitry 52, horizontal control circuitry 54, and electron gun control circuitry 56, respectively.
  • the vertical driver signal 58 of vertical control circuitry 52 and the horizontal driver signal 60 of horizontal control circuitry 54 are applied to the various deflection and control windings (coils) 12 that are positioned around the cathode ray tube 10.
  • Coils 12 cause the electron beam generated by the electron guns (not shown) to be deflected, focused, etc., for display on the cathode ray tube screen 14.
  • Electron gun control circuitry 56 generates a video signal output 62 that is applied to the electron guns that adjusts the bias and drive for the electron guns.
  • correction factor data that is transmitted via connector 40 to processor 42 is processed by processor 42 and applied to the correction and driver circuitry 46 via connectors 65.
  • a dual port RAM can be used as RAM 49 so that correction factor data can be transmitted directly to correction and driver circuitry 46 via connectors 64.
  • connectors 63 provide address data to RAM 49 to read the correction factor data from RAM 49.
  • Correction factor data can also be transmitted from RAM 49 to processor 42 via connectors 63.
  • Correction and driver circuitry 46 functions to decode correction factor data received over connectors 64 and 65 and generate a series of analog signals that are correlated to produce correction control signals 48 for application to control circuitry 50.
  • alignment camera 16 when the system of Figure 2 is configured to generate correction factor data in a production operation, alignment camera 16 generates an image signal 18 that is representative of the video pattern produced on screen 14 by pattern generator 24.
  • the image signal 18 is captured in frame grabber 20 and processed by processor 26.
  • Processor 26 measures the distortion of the video pattern in the manner described in US-A-5,216,504. For example, processor 26 may employ edge detection techniques to locate the edge of a captured pattern image and measure the distance of the video pattern from the edge of the screen bezel or shadow mask. From this amount of measured distortion, correction factor data can be calculated by processor 26 to correct the measured amount of distortion.
  • Processor 26 also uses a gain matrix table that defines the interrelationship of various correction factor parameters, so that when a correction is made for one correction factor parameter, such as, for example, horizontal pincushioning, the effect on horizontal size is also determined.
  • the gain matrix table is stored in the characterization module 72 or other storage medium 86.
  • the alignment computer 22 of Figure 2 functions in a manner somewhat different from the alignment computer disclosed in the vision system of US-A-5,216,504, in that the distortion data at a series of discrete locations 66 on screen 14 is measured and correction factor data is generated for each of those discrete locations 66 for each correction factor parameter, as disclosed below.
  • the alignment camera 16 of vision system 15 illustrated in Figure 2 generates an image signal 18 that allows for the measurement of detailed distortion data.
  • the correction factor data is calculated by processor 26 from the measured distortion data, the correction factor data is communicated to micro-processor 42 to generate a new pattern on screen 14 by modification of the correction control signals 48 that are applied to control circuitry 50.
  • Vision system 15 then repeats the process of generating correction factor data if the new video pattern has distortion characteristics that exceed the alignment specifications of the vision system 15. Because the alignment computer 22 uses a gain matrix table that is stored in RAM 28, the number of iterations to achieve alignment of the video image on cathode ray tube 10 is reduced.
  • the processor 42 transmits the correction factor data to a characterization module 72 that is coupled to the cathode ray tube 10.
  • the characterization module 72 may contain a number of different devices for storing the correction factor data, as disclosed below.
  • the correction factor data can be transmitted via connector 76 to a recorder 78 that functions to record the correction factor data on some storage medium 80.
  • the storage medium can comprise any desired storage medium such as magnetic strips, bar codes, or other storage media that can be attached to or shipped with the cathode tube ray 10.
  • processor 42 can store the correction factor data on a LAN interface device 81 that is connected to a local area network 83 that provides the correction factor data for use at a different location.
  • correction factor data may be stored on a server connected to LAN 83 and accessed over LAN 83 for storage in memory in a monitor when the cathode ray tube 10 is being placed in the monitor.
  • LAN 83 may also be coupled to a wide area network (WAN) (not shown), the Internet or other communications link, for access at remote locations, such as when the cathode ray tube manufacturer and the monitor manufacturer are not proximately located. This information can be downloaded for storage in the monitor by the monitor manufacturer, a service technician or end user.
  • WAN wide area network
  • the system illustrated in Figure 2 can be used to generate correction factor data for a series of correction factor parameters to characterize the distortion characteristics of the cathode ray tube 10.
  • the correction factor data can then be stored in the characterization module 72, in storage medium 80, which is either coupled to, or shipped with, the cathode ray tube 10, or coupled to a LAN 83.
  • the correction factor data is used to align the cathode ray tube 10 when the cathode ray tube 10 is installed in a monitor, such as a computer monitor or television.
  • the system of Figure 2 can also be used in the manner disclosed in US-A-5,216,504 to generate parametric data that is used as part of transformation equations that produce correction waveforms to correct distortions. So, the system of Figure 1 can be designed to generate different forms of data for storage including parametric data and correction factor data, depending upon the correction and driver circuitry used in the monitor.
  • Figures 3A and 3B disclose a schematic flow diagram of the functions performed by the vision system 15 and universal monitor board 44 to generate correction factor data, as described above.
  • the alignment camera 16 is positioned in front of the cathode ray tube screen 14 to image the video pattern generated by video signal 62 from pattern generator 24.
  • Cathode ray tube 10 may comprise a production cathode ray tube on a production line for which correction factor data is being generated at a series of discrete locations 66.
  • the correction factor data is then stored with the cathode ray tube 10.
  • a video signal 62 is generated by pattern generator 24 on the production CRT 10.
  • a single frame of image signal 18 is captured by frame grabber 20.
  • distortion data is measured for each correction factor parameter at a series of discrete locations 66 on the cathode ray tube screen using the alignment computer 22.
  • the number of discrete locations can, of course, vary for each particular correction factor parameter rather than simply having the 25 discrete points illustrated in Figure 2 for each correction factor parameter.
  • the distortion data can take the form of physical measurements, or encoded data representative of the physical measurements of the distortion characteristics.
  • the distortion data is measured, it is then compared, at step 90, with the maximum correctable distortion data generated in accordance with flow diagram illustrated in Figure 4. If the distortion data is outside of the limits of the maximum correctable distortion data, the cathode ray tube 10 is rejected at step 92.
  • the alignment computer 22 calculates the correction factor data using a gain matrix table to predict the proper values for the correction factor data to produce alignment at step 94.
  • the correction factor data is transmitted from the alignment computer 22 to the universal monitor board 44.
  • the correction and driver circuitry 46 generates analog correction control signals in response to the correction factor data as disclosed in Figure 5.
  • the correction control signals 48 are applied to the control circuitry to generate the driver signals.
  • the driver signals are applied to the deflection and control windings and to the electron guns to modify the image produced on screen 14.
  • the new image is viewed by the alignment camera 16, which generates an image signal 18 that is applied to frame grabber 20, which in turn, captures the new image.
  • the alignment computer measures the distortion data for the modified image.
  • the alignment computer 22 determines whether the distortion data of the modified image meets the alignment specifications.
  • the alignment specifications can comprise any desired set of specifications indicating the amount of allowable distortion to produce a cathode ray tube that is considered to be adequately aligned.
  • the correction factor data is stored in the characterization module 72 or, alternatively, transmitted to recorder 78 for storage on storage medium 80, at step 110.
  • the system illustrated in Figure 2 can also be used for generating the maximum correctable distortion data in a golden tube.
  • the vision system 15 is positioned to image a video pattern generated on the golden tube 10.
  • Golden tube 10 is a cathode ray tube having distortion characteristics that fall within the range of average distortions for other cathode ray tubes of the same make and model.
  • pattern generator 24 generates a video pattern on the golden tube 10.
  • alignment computer 22 generates a first set of correction factor data on output 40 to produce driver signals 186 ( Figure 5) that cause a maximum amount of distortion in a first direction.
  • the maximum amount of distortion in a first direction may be caused by a correction factor data signal of 255.
  • correction factor data to cause a maximum amount of distortion in a second direction may be zero.
  • a single video frame is captured by frame grabber 20. This procedure may be performed for a single correction factor parameter at a time or multiple correction factor parameters, depending upon the interaction of such correction factor parameters.
  • alignment computer 22 then records the amount of distortion (distortion data) caused by the correction factor data that is maximized in a first direction.
  • alignment computer 22 applies a second set of correction factor data, via output 42, to universal monitor board 44, so that driver signals 186 ( Figure 5) cause a maximum amount of deflection in a second direction.
  • driver signals 186 Figure 5
  • the image is captured by frame grabber 20 and the amount of distortion in a second direction is recorded.
  • a gain matrix table is also generated by the alignment computer 22 and stored in RAM 28 by detecting the dependence between correction factor data for different correction factor parameters.
  • the flow diagram of Figure 4 illustrates the manner in which the limits of the distortion data (maximum correctable distortion data) can be generated using the system of Figure 2, and recorded in the alignment computer 22.
  • FIG. 5 is a schematic block diagram that illustrates the components of the correction and driver circuitry 46 that can be employed in a universal monitor board 44, or in a monitor that uses correction factor data to align cathode ray 210.
  • processor 130 is coupled to nonvolatile EEPROM 132 which stores the correction factor data generated by the system illustrated in Figure 2.
  • Processor 130 includes ROM and RAM, as illustrated in Figure 5, that store program data-for operation of processor 130.
  • the nonvolatile memory 132, processor 130, and correction and driver circuitry 46 can comprise components of characterization module 72, illustrated in Figure 2, or, various portions of these components can be supplied with the monitor chassis, as disclosed below.
  • Processor 130 functions to address and transmit the correction factor data stored in nonvolatile memory 132 to various components in the correction and driver circuitry 46 at the proper time via correction factor data connectors 134. Proper timing is provided by horizontal sync signal 131 and vertical sync signal 133. As shown in Figure 5, connector 136 couples correction factor data to pulse width modulator 138. Pulse width modulator 138 decodes the correction factor data that may take the form of, for example, an 8 bit byte that is representative of the width of a pulse to be generated by the correction and driver circuitry 46. Pulse width modulator 138 generates digital correction signal 140 that comprises a digital signal having a width that is representative of the encoded correction factor data applied by micro-processor 130.
  • Pulse width modulators are more fully disclosed in US-A-5,216,504 that is cited above.
  • Processor 130 can take any desired form of logic processing device for transmitting the correction factor data from nonvolatile memory 132 to the proper decoder in the correction and driver circuitry 46 at the proper time, including state machines or simple logic devices including serial EEPROMs, such as an Atmel AT24C01A having 128-8 bit bytes.
  • Digital correction signal 140 generated by the pulse width modulator 138 is applied to integrator/filter 142 that either integrates or filters the digital correction signal 140 and provides an analog correction factor signal 144.
  • Processor 130 also transmits correction factor data stored in nonvolatile memory 132 to pulse density modulator 148 via connector 146.
  • Pulse density modulars are more fully disclosed in US-A-5 504 521 by James R. Webb et al, entitled “Method and Apparatus for Making Corrections in a Video Monitor During Horizontal Scan”.
  • Pulse density modulator 148 also decodes the correction factor data and generates a pulse density signal that is indicative of the correction to be provided as represented by the correction factor data signal input 146.
  • the pulse density signal generated by pulse density modulator 148 comprises the digital correction signal 150 that is transmitted to integrators/filters 152 that integrate or filter the digital correction signal 150 to produce an analog correction factor signal 154.
  • Processor 130 also transmits correction factor data from nonvolatile memory 132 to digital to analog converter 156 via connector 158.
  • the digital to analog converter 156 can comprise any device that is capable of reading one or more bytes of encoded correction factor data and generating a digital correction signal 158 that is applied to integrator filters 160.
  • Integrator/filters 160 integrate or filter the digital correction signal 158 to produce an analog correction factor signal 162.
  • Digital to analog converter 156 essentially functions as a decoder for decoding the correction factor data bytes and generating a digitized correction signal 158.
  • processor 130 transmits correction factor data from nonvolatile memory 132 via connector 164 to interpolation engine 166.
  • Interpolation engine 166 is capable of generating a series of digital correction signals 168 that are applied to integrators/filters 170.
  • the digital correction signals 168 from interpolation engine 166 are integrated or filtered, if necessary, by integrator/filters 170 to produce an analog correction factor signal 172.
  • Each of the correction factor signals 145 from the integrator/filters are applied to summing amplifiers 174, 176, 178.
  • Various logic may be used including tri-state gates, etc. to combine the various outputs of integrator filters 142, 152, 160 and 170 in the proper manner.
  • enable lines (not shown) can be employed as part of input logic to summing amplifiers 174, 176, 178 that are activated by processor 130 so that the proper signals are added together in the summing amplifiers.
  • Control circuitry 50 utilizes the analog correction control signals 48 to generate the proper driver signals 186.
  • Horizontal control circuitry 180 conditions the correction control signals 148 to produce driver signal 188 to drive various horizontal deflection and control windings.
  • vertical control circuitry 182 conditions the correction control signals 48 to produce driver signal 190 to drive various vertical deflection and control windings 192.
  • Electron gun control circuitry 184 conditions the correction control signal 48 to produce video signal 62 that is applied to electron guns 194 to drive the electron guns with the proper amplitude and gain.
  • the components illustrated in Figure 5 comprise one manner of implementing a device for decoding correction factor data that is stored in the nonvolatile memory 132 and aligning a cathode ray tube monitor. Any number of different components could be used for implementing the device of Figure 5. For example, any one or more of the decoder devices that includes the pulse width modulators 138, the pulse density modulators 148, the DACs 156 and the interpolation engine 166 could be eliminated. Moreover, any method of combining the correction factor signals and conditioning these signals to generate driver signals for the deflection and control windings 192 and electron guns 194 could be employed. Also, any one of the integrators/filters can be removed if appropriate.
  • FIG. 6 is a schematic block diagram illustrating a monitor 200.
  • the monitor 200 includes a cathode ray tube 10, a series of deflection and control windings illustrated by coils 202, a characterization module 204 coupled to coils 202, vertical control circuitry 206, electron gun control circuitry 208 and horizontal control circuitry 210. Horizontal sync signal 212 and vertical sync signal 214 are applied to characterization module 204. Characterization module 204 generates three outputs 216, 218, 220 that are applied to vertical control circuitry 206, electron gun control circuitry 208 and horizontal control circuitry 210, respectively. Vertical control circuitry 206 generates driver signals that are applied by connectors 222 to coils 202.
  • Electron gun control circuitry 208 generates a video signal 224 that is applied to the electron guns of the cathode ray 210.
  • Horizontal control circuitry 210 generates a driver signal that is coupled to coils 202 via connectors 226.
  • Characterization module 204 can comprise a nonvolatile memory 132, a processor 130 and correction and driver circuitry 46, all of which are illustrated in Figure 5.
  • the monitor 200 of Figure 6 has correction factor data stored in a device such as an EEPROM in the characterization module 204.
  • the characterization module produces correcticn factor signals 228 that are connected to the control circuitry via connectors 216, 218, 220.
  • Horizontal sync signal 212 and vertical sync signal 214 provide the timing signals for transmission of the proper correction factor signals 226 to the control circuitry.
  • the correction factor data stored in the characterization module 204 indicates the distortion characteristics of the particular cathode ray 210 that have been derived in a cathode ray tube production facility using a system such as illustrated in Figure 2.
  • the various components of the characterization module 204 read the correction factor data and generate correction control signals 228 that cause the control circuitry 206, 208, 210 to generate an aligned image on cathode ray 210.
  • the manner in which this is performed is more fully disclosed in the flow diagram of Figure 7.
  • FIG. 7 is a flow diagram illustrating the manner in which the processor 130 ( Figure 5) that is included in characterization module 204 ( Figure 6) functions to read the correction factor data stored in nonvolatile memory 132 ( Figure 5) to generate an aligned video signal on cathode ray tube 210 ( Figure 6).
  • processor 130 reads the correction factor data from nonvolatile memory 132 at the correct time during the scanning process at step 230. As mentioned above, the timing is determined by the horizontal sync signals 131 and vertical sync signals 133.
  • processor 130 transfers the correction factor data to the proper pulse width modulator, pulse density modulator, DAC and/or interpolation engine to generate the digital correction signals 140, 150, 158 and 168, respectively.
  • the various integrators/filters 142, 152, 160, 170 either integrate or filter the digital correction signals, if necessary, to produce the analog correction factor signals 145.
  • the correction factor signals 145 are combined to generate the correction control signals 48.
  • the correction control signals are applied to the control circuitry 50.
  • the correction signals 186 are generated in the control circuitry 50.
  • the driver signals 186 are applied to the deflection and control windings 192 and the electron guns 194.
  • FIG 8 is a schematic block diagram illustrating another configuration of a monitor 244.
  • monitor 244 has a cathode ray tube 246 that includes a series of deflection and control windings that are embodied in coils 248.
  • Attached to coils 248 is a characterization module 250 that includes a logic circuit or logic chip and some form of nonvolatile electronic storage device such as an EEPROM, a EPROM, a PROM or ROM that stores the correction factor data that is representative of the distortion characteristics of the particular cathode ray tube 246.
  • the vertical sync signal 252 and horizontal sync signal 254 are applied to the characterization module 250 to provide timing to the logic chip.
  • the monitor 244 of Figure 8 differs from the monitor 200 of Figure 6 in that the correction and driver circuitry forms part of the chassis of the monitor 244.
  • the characterization module 250 is therefore reduced in complexity and only contains a nonvolatile electronic storage device and a logic device.
  • the logic device can comprise any number of different types of logic devices for transferring correction factor data to the correction and driver circuitry 256 at the proper time, as mentioned previously, including a micro-processor, state machine or a simple serial EEPROM.
  • correction and driver circuitry 256 can comprise circuitry that forms part of plug and play modules that are provided within monitors to provide the proper video signal 264 to monitor 244.
  • FIG 9 is a schematic block diagram of another embodiment of a monitor 266 that can be employed in accordance with the present invention.
  • Monitor 266 includes a cathode ray tube 268 having coils 270 that comprise various deflection and control windings.
  • a characterization module 272 is coupled to coils 270 in the same manner as described above.
  • Characterization module 272, in the embodiment of Figure 9, only comprises a memory device such as a nonvolatile electronic storage device, or other device for storing correction factor data.
  • the embodiment of Figure 9 differs from the embodiment of Figures 8 and 6 in that the chassis of monitor 266 includes processor 274 or other logic device, as described above, correction and driver circuitry 276, as well as vertical control circuitry 278, electron gun control circuitry 280 and horizontal control circuitry 282.
  • Horizontal sync signals 284 and vertical sync signals 286 are applied to the processor 274 in the same manner as indicated in the other embodiments.
  • the characterization module 272 consists of only a memory device. All of the other components are provided as part of the chassis of monitor 266.
  • Figure 10 is a schematic illustration of a characterization module 288 that includes a logic chip 290 and some form of memory device 292.
  • the logic chip can take any form including a serial EEPROM, in which case memory 292 may not be required.
  • Figure 11 is a schematic illustration of a characterization module 294 that includes a logic chip 296 and an EEPROM 298 that is used for storing correction factor data.
  • Figure 12 is an illustration of another characterization module 300 that utilizes logic chip 302 and an EPROM 304.
  • Figure 13 is a schematic block diagram of a characterization module 306 that includes a logic chip 308 and a PROM 310 for storing the correction factor data.
  • FIG 14 is a schematic block diagram illustrating a universal monitor board 312 and various storage devices for storing the correction factor data to be included with the cathode ray tube monitor 10.
  • the universal monitor board 312 includes a processor 314, RAM 316, drivers and correction circuitry 318, electron gun control circuitry 320, horizontal control circuitry 322 and vertical control circuitry 324 in a configuration similar to the universal monitor board 44 in Figure 2.
  • the processor 314 is coupled to any one of a series of different storage devices via connector 326.
  • processor 314 can be coupled to a recording device 330 via connector 326 to store the correction factor data in EEPROM 328.
  • recording device 332 can be connected to connector 326 to store the correction factor data in an EPROM 34.
  • recording device 336 can be coupled to connector 326 for recording the correction factor data in a PROM 338.
  • a disk recorder 340 can be coupled to the connector 326 for recording the correction factor data on a removable disk 342 which can be shipped with the cathode ray tube.
  • a disk may comprise a magnetic floppy disk, other magnetic storage media, a magneto-optical disk, a CD ROM, or any other desired storage device.
  • other software can be included with the disk 342, if desired, which can include test condition parameters relating to the universal monitor board.
  • a bar code generator 34 can be coupled to connector 326 for generating a bar code sticker 346 that can be attached directly to the cathode ray tube 10.
  • the bar code sticker can include the encoded correction factor data.
  • a magnetic strip generator 348 can be connected to connector 326 to generate a magnetic strip 350 that can store the correction factor data. The magnetic strip can then be attached directly to the cathode ray tube 10.
  • Processor 314 can also be coupled to a local area network (LAN) 351 via a LAN interface 349. In this manner, correction factor data can be stored on a node on the LAN for use at a later time.
  • LAN local area network
  • the correction factor data for the cathode ray tube can be placed on the factory LAN.
  • the correction factor data can be read from the LAN and stored in the memory provided with the monitor.
  • the monitor can then be activated using the correction factor data to provide alignment.
  • a vision system can then be used with the monitor at that point to provide a final trim of the alignment, if desired.
  • FIG. 15 is a schematic block diagram of a monitor 352 having a storage medium 354 attached to the cathode ray tube 356.
  • the storage medium 354 can comprise any sort of storage medium for storing the correction factor data on the cathode ray tube.
  • the storage medium 354 can comprise an optical or magnetic storage medium, or other desired alternative.
  • the storage medium 354 may comprise a bar code which is scanned manually by a detector 358 and transmitted through a connector 360 to a bar code reader 362.
  • the bar code reader 362 reads the bar code that comprises the storage medium 354 and decodes the information to produce the correction factor data that is transmitted to a processor 364 that is included within monitor 352.
  • the correction factor data is processed by processor 364 which is coupled to EEPROM 366 and correction and driver circuitry 368, which is, in turn, coupled to vertical control circuitry 370, electron gun control circuitry 372 and horizontal control circuitry 374.
  • EEPROM 366, processor 364 and correction and driver circuitry 368 are all provided as part of the chassis of monitor 352.
  • Figure 15 also illustrates the manner in which storage medium 354 can comprise a magnetic storage medium such as a magnetic strip that is attached directly to the cathode ray tube 56.
  • detector 358 reads the magnetic information stored on the magnetic strip 354 and transmits the information via connector 360 to magnetic strip reader 376.
  • the magnetic strip reader 376 reads the magnetic information and generates correction factor data that is transmitted to processor 364, as described above.
  • storage medium 354 may also just contain an identification number that is transmitted to processor 364.
  • Processor 364 may then access LAN 379 via LAN interface 377 to retrieve correction factor data. Also, the identification number may be entered by hand via manual input 381 and processor 364 can access LAN 379 in the manner described above to retrieve the correction factor data.
  • Figure 15 also illustrates the manner in which correction factor data can be stored on a separate storage medium that is shipped with the cathode ray tube 356 or otherwise made available.
  • the correction factor data and any other desired software can be included on storage medium 378 which is read by drive 380.
  • Drive 380 generates correction factor data that is transmitted to processor 364 that forms a part of the chassis of monitor 352.
  • storage medium 378 can comprise any magnetic or optical storage medium, or other storage medium, while drive 380 can comprise a suitable reader for the particular medium of storage that has been selected.
  • Figure 16 is a schematic illustration of a particular implementation of a digital to analog converter (DAC) 156 such as disclosed in Figure 5.
  • the processor 130 generates a correction factor data signal 158 that can comprise a 8-bit byte as shown in Figure 16.
  • Processor 130 may also generate a latch signal 390 which is applied to latch 392 that holds the value of the correction factor data 158.
  • These values are applied to resistors 394 that all have the same resistance value 2R.
  • Each of the resistors 394 is coupled in series to resistors 396 that have a value R, so that each of the inputs of the correction factor data 158 is weighted separately.
  • the resultant output 398 is a digitized signal that is a decoded version of the 8-bit byte correction factor data signal 158.
  • the digitized signal 398 can then be filtered in a filter 400 to produce an analog output 402, or integrated in an integrator 404 to produce an analog output 406. In this manner, the correction factor data signal 158 from processor 130 is decoded to form an analog output signal.
  • FIG 17 is a schematic diagram illustrating a monitor 410.
  • monitor 410 has a screen 412 that has a series of 25 discrete physical locations 414 that have been selected on the face of the screen.
  • the 25 discrete locations 414 are distributed evenly over the surface of screen 412, but can be arranged in any desired order.
  • correction factor data is generated for each of the discrete locations 414.
  • a video image 416 is generated on the screen 14 in the manner illustrated in Figure 17.
  • the video image 416 is positioned on the screen 412 so that it does not coincide with the 25 discrete locations 414.
  • the video image 416 is generated and displayed on screen 412 so that the size of the video image 416 coincides with the discrete locations 414.
  • the correction factor data that is stored for the discrete locations 414 can be directly utilized to align the video image 416.
  • the video image 416 is positioned in a manner that does not directly coincide with the discrete locations 414.
  • correction factor data must be generated for a series of interpolation points 418 that can be selected to correspond with the physical location of the video image 416.
  • any number of interpolation points 418 can be selected to coincide with the desired amount of correction factor data to be utilized by the correction and driver circuitry 46 ( Figure 5).
  • the number of interpolation points can also be different for each of the correction factor parameters.
  • Processor 130 can utilize standard two-dimensional interpolation processes to generate the interpolation points from the correction factor data at the 25 discrete locations 414.
  • the techniques disclosed in "Interpolation in Two or More Dimension," Section 3.6, Numerical Recipes in C, the Art of Scientific Computing , Second Edition, William H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery, Cambridge University Press, 1995 can be used to provide a method for generating the values of the correction favor data at interpolation points 418.
  • the video image 416 can be generated from correction factor data that is calculated by processor 130 and stored in nonvolatile storage 132 ( Figure 5) to provide an aligned image.
  • correction factor data can be generated and utilized by the correction and driver circuitry 46 ( Figure 5) for any desired location of the video image 416 on screen 412 without the necessity of storing a large amount of data.
  • a much smaller set of correction factor data for a plurality of correction factor parameters can be stored with the cathode ray tube 10 and later utilized to generate a much larger set of correction factor data to generate a precisely aligned video image 416.
  • Present invention provides a novel and unique method and apparatus for generating correction factor data that is representative of the distortions of a cathode ray tube and storing the correction factor data with the cathode ray tube.
  • This data can be generated at the factory where the cathode ray tube and coils are joined to prevent duplication of effort at the monitor factory.
  • Exit criteria for cathode ray tubes can be easily determined at the cathode ray tube factory. Unnecessarily stringent exit criteria for cathode ray tubes can be eliminated to lessen costs of the cathode ray tube and provide greater throughput.
  • Exit criteria can be generated with a vision system using a golden tube standard so that a set of highly reliable exit criteria data can be selected.
  • Gain matrix tables can be employed in the vision system when generating the correction factor data to lessen the number of iterations to generate the correction factor data.
  • Correction factor data representative of the distortion characteristics for the entire tube surface, including areas such as corners of the tube that have large distortion factors, can be generated so that a video image can be aligned on any portion of the screen surface, in a simple and easy manner using a minimal amount of stored data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Details Of Television Scanning (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Claims (37)

  1. Système pour générer et stocker des données de facteurs de correction représentatives de caractéristiques de distorsion d'un tube à rayons cathodiques (10) dans le but de cadrer une image vidéo sur ledit tube à rayons cathodiques (10), comprenant :
    un générateur de configuration (24) qui génère une configuration d'image vidéo qui est affichée sur ledit tube à rayons cathodiques (10) ;
    une caméra de cadrage (16) qui génère des signaux d'images vidéo (18) représentatifs de ladite configuration vidéo ;
    un ordinateur de cadrage (22) qui reçoit lesdits signaux d'images vidéo (18) de ladite configuration vidéo, mesure les données de distorsion pour plusieurs paramètres de facteurs de correction et génère des données de facteurs de correction à partir desdites données de distorsion ;
    un panneau de surveillance universel (44) pour commander ledit tube à rayons cathodiques (10) et pour générer des signaux de gestionnaires de périphériques (186) en réponse auxdites données de facteurs de correction dans le but de cadrer ladite configuration vidéo ; et
    un module de caractérisation (72) couplé audit tube à rayons cathodiques (10), qui mémorise lesdites données de facteurs de correction ;
       caractérisé en ce que lesdites données de distorsion sont mesurées à une série d'endroits discrets (66) sur ledit tube à rayons cathodiques (10), lesdites données de facteurs de correction étant générées pour chacun desdits endroits discrets (66) pour chaque paramètre de facteur de correction ; et
       en ce que ledit ordinateur de cadrage (22) comprend:
    un dispositif d'acquisition d'images (20) qui saisit lesdits signaux d'images vidéo (18) ; et
    une table matricielle de degrés d'amplification qui contient des données indiquant la façon dont un changement en ce qui concerne des données de facteurs de correction pour un paramètre de facteur de correction influence le changement en ce qui concerne les données de facteurs de correction pour d'autres paramètres de facteurs de correction.
  2. Système selon la revendication 1, caractérisé en ce que ledit panneau de surveillance universel (44) possède une circuiterie de correction et de gestionnaires de périphériques (46), ainsi que des circuits de commande (50) qui sont réglés pour correspondre à des panneaux de surveillance à utiliser avec ledit tube à rayons cathodiques (10).
  3. Système selon la revendication 1, caractérisé en ce que ledit panneau de surveillance universel (44) comprend un panneau de surveillance effectif utilisé avec ledit tube à rayons cathodiques (10) dans un moniteur.
  4. Système selon la revendication 1, caractérisé en ce qu'il comprend :
    un appareil pour générer des signaux de gestionnaires de périphériques de correction (48) pour la circuiterie de commande dans le but de produire une image vidéo cadrée sur le tube à rayons cathodiques (10), ledit appareil comprenant :
    une mémoire (80) associée audit tube à rayons cathodiques (10), qui mémorise lesdites données de facteurs de correction ;
    un décodeur (46) qui transforme lesdites données de facteurs de correction en signaux de correction (48) ;
    un dispositif logique (42) qui transfère lesdites données de facteurs de correction audit décodeur (46) ; et
    une circuiterie de commande (50) qui génère lesdits signaux de gestionnaires de périphériques (186) en réponse auxdits signaux de correction (48) dans le but de produire un signal d'image vidéo cadrée (62) sur le tube à rayons cathodiques (10).
  5. Système selon la revendication 1, caractérisé en ce qu'il comprend :
    un appareil pour générer des signaux de commande de correction (48) pour la circuiterie de commande dans le but de produire une image vidéo cadrée sur le tube à rayons cathodiques (10), ledit appareil comprenant :
    une mémoire (80) qui mémorise des données de facteurs de correction représentatives des caractéristiques de distorsion dudit tube à rayons cathodiques (10) ; et
    une circuiterie de correction et de gestionnaires de périphériques (46) qui décode lesdites données de facteurs de correction et qui génèrent lesdits signaux de commande de correction (48) en réponse auxdites données de facteurs de correction.
  6. Appareil selon la revendication 5, caractérisé en ce qu'il comprend en outre :
    un processeur (42) qui lit lesdites données de facteurs de correction provenant de ladite mémoire (80) et qui transfère lesdites données de facteurs de correction à ladite circuiterie de correction et de gestionnaires de périphériques (46).
  7. Appareil selon la revendication 5, caractérisé en ce qu'il comprend en outre :
    des décodeurs (138, 148, 156) qui transforment lesdites données de facteurs de correction en signaux de correction (48).
  8. Appareil selon la revendication 7, caractérisé en ce que ladite circuiterie de correction et de gestionnaires de périphériques (46) comprend en outre :
    des intégrateurs (142, 152, 160, 170) qui intègrent lesdits signaux de correction (140, 150, 153, 168) pour produire des signaux de facteurs de correction (144, 154, 162, 172).
  9. Appareil selon la revendication 8, caractérisé en ce que ladite circuiterie de correction et de gestionnaires de périphériques (46) comprend en outre :
    des amplificateurs d'addition (174, 176, 178) qui combinent lesdits facteurs de correction (144, 154, 160, 172) pour produire lesdits signaux de commande de correction (48).
  10. Appareil selon la revendication 7, caractérisé en ce que lesdits décodeurs comprennent :
    des dispositifs de modulation d'impulsions en largeur (138) qui génèrent des signaux de modulation d'impulsions en largeur (136) possédant une largeur d'impulsion prédéterminée en réponse auxdites données de facteurs de correction.
  11. Appareil selon la revendication 7, caractérisé en ce que lesdits décodeurs comprennent :
    des dispositifs de modulation d'impulsions en densité (148) qui génèrent des signaux de modulation d'impulsions en densité (146) possédant une densité d'impulsion prédéterminée en réponse auxdites données de facteurs de correction.
  12. Appareil selon la revendication 6, caractérisé en ce que ledit processeur (30) comprend une machine d'état logique.
  13. Appareil selon la revendication 6, caractérisé en ce que ledit processeur (130) comprend un microprocesseur.
  14. Appareil selon la revendication 6, caractérisé en ce que ledit processeur 130 et ladite mémoire 132 comprennent une mémoire EEPROM à accès série.
  15. Procédé pour générer et mémoriser des données de facteurs de correction concernant les caractéristiques d'un tube à rayons cathodiques (10) comprenant les étapes consistant à :
    générer des signaux d'image vidéo (18) représentatifs d'une configuration vidéo qui est affichée sur le tube à rayons cathodiques (10) en utilisant un système vidéo ;
    mesurer des données de distorsion pour plusieurs paramètres de facteurs de correction et générer à partir de là des données de facteurs de correction en utilisant ledit système vidéo (15), en réponse auxdits signaux d'images vidéo (18) ;
    générer des signaux de gestionnaires de périphériques (186) pour ledit tube à rayons cathodiques (10), en utilisant lesdites données de facteurs de correction dans le but de cadrer ladite configuration vidéo sur ledit tube à rayons cathodiques (10), et
    mettre en mémoire (80) lesdites données de facteurs de correction avec ledit tube à rayons cathodiques (10) pour une utilisation ultérieure lors du cadrage des signaux vidéo (62) sur ledit tube à rayons cathodiques (10) ;
       caractérisé en ce que lesdites données de facteurs de correction pour lesdits plusieurs paramètres de facteurs de correction sont générées à plusieurs endroits discrets (66) sur ledit tube à rayons cathodiques (10) ; et
       en ce qu'il comprend l'étape consistant à générer une table matricielle de degrés d'amplification à partir desdites données de facteurs de correction et desdites données de distorsion, contenant des données indiquant la façon dont un changement en ce qui concerne des données de facteurs de correction pour un paramètre de facteur de correction influence le changement en ce qui concerne les données de facteurs de correction pour d'autres paramètres de facteurs de correction.
  16. Procédé selon la revendication 15, caractérisé en ce qu'il comprend en outre l'étape consistant à procurer lesdites données de facteurs de correction sur un disque.
  17. Procédé selon la revendication 15, caractérisé en ce qu'il comprend en outre l'étape consistant à procurer lesdites données de facteurs de correction sur un réseau (83).
  18. Procédé selon la revendication 16, caractérisé en ce qu'il comprend en outre l'étape consistant à extraire lesdits facteurs de correction dudit disque en utilisant un numéro d'identification identifiant ledit tube à rayons cathodiques (10).
  19. Procédé selon la revendication 16, caractérisé en ce qu'il comprend en outre l'étape consistant à extraire lesdits facteurs de correction dudit réseau (83) en utilisant un numéro d'identification identifiant ledit tube à rayons cathodiques (10).
  20. Procédé selon la revendication 15, caractérisé en ce qu'il comprend les étapes consistant à :
    mémoriser lesdites données de facteurs de correction avec ledit tube à rayons cathodiques (10) ;
    lire lesdites données de facteurs de correction qui ont été mémorisées avec ledit tube à rayons cathodiques (10) ;
    décoder (138, 148, 156) lesdites données de facteurs de correction qui produisent lesdits signaux vidéo cadrés (62) sur ledit tube à rayons cathodiques (10).
  21. Procédé selon la revendication 20, caractérisé en ce que ladite étape consistant à mémoriser lesdites données de facteurs de correction comprend l'étape consistant à :
    mémoriser des données sur un dispositif de mémorisation électronique non volatil (72) monté sur ledit tube à rayons cathodiques (10).
  22. Procédé selon la revendication 20, caractérisé en ce que ladite étape consistant à mémoriser lesdites données de facteurs de correction comprend l'étape consistant à :
    mémoriser des données sur un disque de mémoire.
  23. Procédé selon la revendication 20, caractérisé en ce que ladite étape consistant à mémoriser lesdites données de facteurs de correction comprend l'étape consistant à :
    mémoriser des données sur une bande magnétique.
  24. Procédé selon la revendication 20, caractérisé en ce que ladite étape consistant à mémoriser lesdites données de facteurs de correction comprend l'étape consistant à :
    mémoriser des données sur un code à barres.
  25. Procédé selon la revendication 20, caractérisé en ce que ladite étape consistant à décoder lesdites données de facteurs de correction et à générer des signaux de gestionnaires de périphériques (186) comprend les étapes consistant à :
    générer (138) des signaux de modulation d'impulsions en largeur (140) à partir desdites données de facteurs de correction ; et
    intégrer (142) lesdits signaux de modulation d'impulsions en largeur (140) pour produire des signaux analogiques de facteurs de correction (144) qui sont appliqués à la circuiterie de commande (180, 182, 184) qui génère lesdits signaux de gestionnaires de périphériques (186).
  26. Procédé selon la revendication 20, caractérisé en ce que ladite étape consistant à décoder lesdites données de facteurs de correction et à générer des signaux de gestionnaires de périphériques (186) comprend les étapes consistant à :
    générer (148) des signaux de modulation d'impulsions en densité (150) à partir desdites données de facteurs de correction ; et
    intégrer (152) lesdits signaux de modulation d'impulsions en densité (150) pour produire des signaux analogiques de facteurs de correction (154) qui sont appliqués à la circuiterie de commande (180, 182, 194) qui génère lesdits signaux de gestionnaires de périphériques (186).
  27. Procédé selon la revendication 20, caractérisé en ce que ladite étape consistant à décoder lesdites données de facteurs de correction et à générer des signaux de gestionnaires de périphériques comprend les étapes consistant à :
    générer (156) un signal numérisé (158) à partir desdites données de facteurs de correction ; et
    filtrer (160) lesdits signaux numérisés (159) pour produire des signaux analogiques de facteurs de correction (162) qui sont appliqués à la circuiterie de commande (180, 182, 184) qui génère lesdits signaux de gestionnaires de périphériques (186).
  28. Procédé selon la revendication 15, caractérisé en ce qu'il comprend les étapes consistant à :
    mémoriser lesdites données de facteurs de correction avec ledit tube à rayons cathodiques (10) ;
    lire lesdites données de facteurs de correction qui ont été mémorisées avec ledit tube à rayons cathodiques (10).
  29. Procédé selon la revendication 15, comprenant, avant ladite étape de mémorisation, une étape consistant à déterminer le fait de savoir si des distorsions dans une image vidéo affichée sur un tube à rayons cathodiques (10) peuvent être corrigées en modifiant les signaux de gestionnaires de périphériques que l'on utilise pour générer et afficher ladite image vidéo sur ledit tube à rayons cathodiques (10), comprenant les étapes consistant à :
    mesurer les données de distorsion de l'image vidéo (18) pour lesdits plusieurs paramètres de facteurs de correction ;
    comparer lesdites données de distorsion à un groupe de données de distorsion maximales aptes à être corrigées qui a été généré à partir de tube à rayons cathodiques similaires (10) ; et
    rejeter ledit tube à rayons cathodiques (10) lorsque lesdites données de distorsion sont supérieures auxdites données de distorsions maximales aptes à être corrigées.
  30. Procédé selon la revendication 15, comprenant en outre l'étape consistant à déterminer l'amplitude des caractéristiques de distorsions qui peuvent être corrigées dans une image vidéo (18) affichée sur un tube à rayons cathodiques (10), comprenant les étapes consistant à :
    générer un premier groupe de données de facteurs de correction qui produisent des signaux de gestionnaires de périphériques (186) qui donnent lieu à une distorsion de ladite image vidéo (18) d'importance prédéterminée dans une première direction ;
    mesurer et mémoriser un premier groupe desdites données de distorsion qui sont représentatives de l'ampleur desdites caractéristiques de distorsion qui peuvent être corrigées dans la première direction ;
    générer un deuxième groupe de données de facteurs de correction qui produisent des signaux de gestionnaires de périphériques (186) qui donnent lieu à une distorsion de ladite image vidéo (18) d'importance prédéterminée dans une deuxième direction ;
    mesurer et mémoriser un deuxième groupe desdites données de distorsion qui sont représentatives de l'ampleur desdites caractéristiques de distorsion qui peuvent être corrigées dans ladite deuxième direction ;
    sélectionner un groupe de données de distorsion maximales qui peuvent être corrigées à partir desdits premier et deuxième groupes mémorisés de données de distorsion, qui représente des caractéristiques de distorsions maximales qui peuvent être corrigées dans une image vidéo (18) affichée sur ledit tube à rayons cathodiques (10).
  31. Procédé selon la revendication 30, caractérisé en ce qu'il comprend en outre l'étape consistant à :
    mémoriser ladite table matricielle de degrés d'amplification comme partie desdites données de facteurs de correction.
  32. Procédé selon la revendication 30, caractérisé en ce qu'il comprend en outre les étapes consistant à :
    générer un signal vidéo (18) sur un tube à rayons cathodiques de production (10) ;
    mesurer des distorsions dudit signal vidéo sur ledit tube à rayons cathodiques de production ;
    comparer lesdites distorsions dudit signal vidéo (18) auxdites données de distorsion maximales aptes à être corrigées ; et
    rejeter ledit tube à rayons cathodiques de production (10) lorsque lesdites distorsions du tube à rayons cathodiques de production sont supérieures auxdites données de distorsion maximales aptes à être corrigées.
  33. Procédé selon la revendication 15, à utiliser dans le cadrage du tube à rayons cathodiques (10), ledit procédé étant caractérisé en ce qu'il comprend les étapes consistant à :
    a. mesurer des données de distorsion d'un signal vidéo (18) généré sur ledit tube à rayons cathodiques (10) ;
    b. générer des données de facteurs de correction à partir desdites données de distorsion ;
    c. générer un signal vidéo modifié (18) en utilisant lesdites données de facteurs de correction ;
    d. mesurer les données de distorsion dudit signal vidéo modifié (18) et comparer lesdites données de distorsion à des spécifications de cadrage prédéterminées,
    e. répéter les étapes b à d lorsque lesdites données de distorsion dudit signal vidéo modifié (18) ne répondent pas auxdites spécifications de cadrage prédéterminées ; et
    f. mémoriser lesdites données de facteurs de correction lorsque lesdites données de distorsion répondent auxdites spécifications de cadrage prédéterminées.
  34. Procédé selon la revendication 33, caractérisé en ce que ladite étape consistant à générer des données de facteurs de correction comprend l'étape consistant à:
    utiliser ladite table matricielle de degrés d'amplification pour prédire des données de facteurs de correction en générant des valeurs escomptées desdites données de facteurs de correction à partir des valeurs matricielles de degrés d'amplification qui indiquent la relation de données de facteurs de correction pour plusieurs paramètres de facteurs de correction.
  35. Procédé selon la revendication 15, caractérisé en ce qu'il comprend les étapes consistant à :
    a. générer un signal vidéo (18) sur ledit tube à rayons cathodiques (10) ;
    b. saisir une image unique dudit signal vidéo (10) ;
    c. mesurer les données de distorsion dudit signal vidéo (10) pour lesdits plusieurs paramètres de facteurs de correction auxdites séries d'endroits discrets (66) sur ledit tube à rayons cathodiques (10) ;
    d. générer des données de facteurs de correction à partir des données de distorsion qui ont été mesurées audit tube à rayons cathodiques (10) ;
    e. générer des signaux de facteurs de correction (140, 150, 159) à partir desdites données de facteurs de correction ;
    f. combiner lesdits signaux de facteurs de correction (140, 150, 159) pour produire des signaux de commande de correction (145) ;
    g. générer les signaux de gestionnaires de périphériques (186) dans des circuits de commande en réponse auxdits signaux de commande de correction (145) pour entraíner des enroulements de réflexion et de commande (192) et des canons à électrons (62) ;
    h. appliquer lesdits signaux de gestionnaires de périphériques (186) sur lesdits enroulements de réflexion et de commande (192) et sur lesdits canons à électrons (62) pour produire un signal vidéo modifié sur ledit tube à rayons cathodiques (10) ;
    i. saisir une image vidéo dudit signal vidéo modifié (18) ;
    j. mesurer les données de distorsion dudit signal vidéo modifié (18) pour détecter lesdits plusieurs paramètres de facteurs de correction ;
    k. comparer lesdites données de distorsion dudit signal vidéo modifié (18) à des spécifications de distorsion de cadrage prédéterminées ;
    j. répéter les étapes d à k lorsque lesdites données de distorsion dudit signal vidéo modifié ne soutiennent pas la comparaison avec lesdites spécifications de cadrage prédéterminées ; et
    l. mémoriser lesdites données de facteurs de correction à utiliser dans le cadrage dudit tube à rayons cathodiques (10) lorsque lesdites données de distorsion dudit signal vidéo modifié (18) soutiennent la comparaison avec lesdites spécifications de cadrage prédéterminées.
  36. Procédé selon la revendication 15, comprenant en outre l'étape consistant à générer des données de facteurs de correction pour un nombre prédéterminé de points d'interpolation en utilisant les données de facteurs de correction pour un nombre prédéterminé inférieur d'endroits discrets, comprenant les étapes consistant à :
    générer des données de facteurs de correction pour lesdits plusieurs paramètres de facteurs de correction audit nombre prédéterminé d'endroits discrets (416) à partir des données de distorsion qui ont été mesurées auxdits endroits discrets (414) en utilisant le système vidéo (15) ;
    déterminer la position de chacun desdits nombres prédéterminés de points d'interpolation (418) par rapport auxdits endroits discrets (414) ; et
    générer des données de facteurs de correction pour lesdits plusieurs paramètres de facteurs de correction audit nombre prédéterminé de points d'interpolation (418) par interpolation en utilisant lesdites positions desdits points d'interpolation (418) par rapport auxdits endroits discrets (414) et les valeurs desdites données de facteurs de correction auxdits endroits discrets (214).
  37. Procédé selon la revendication 36, caractérisé en ce que ladite position dudit nombre prédéterminé de point d'interpolation (418) ne correspond pas à la position desdits endroits discrets (414).
EP97916992A 1996-04-26 1997-03-25 Mappage d'ecran d'un tube cathodique Expired - Lifetime EP0895698B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/638,222 US6014168A (en) 1996-04-26 1996-04-26 Screen mapping of a cathode ray tube
US638222 1996-04-26
PCT/US1997/004854 WO1997041694A1 (fr) 1996-04-26 1997-03-25 Mappage d'ecran d'un tube cathodique

Publications (3)

Publication Number Publication Date
EP0895698A1 EP0895698A1 (fr) 1999-02-10
EP0895698A4 EP0895698A4 (fr) 1999-11-03
EP0895698B1 true EP0895698B1 (fr) 2003-02-26

Family

ID=24559124

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97916992A Expired - Lifetime EP0895698B1 (fr) 1996-04-26 1997-03-25 Mappage d'ecran d'un tube cathodique

Country Status (4)

Country Link
US (1) US6014168A (fr)
EP (1) EP0895698B1 (fr)
AU (1) AU2545997A (fr)
WO (1) WO1997041694A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2313677B (en) * 1996-06-01 2000-05-17 Ibm Method and apparatus for manufacturing cathode ray tube display devices
US6285397B1 (en) * 1997-01-16 2001-09-04 Display Laboratories, Inc. Alignment of cathode ray tube video displays using a host computer processor
KR200172693Y1 (ko) * 1997-07-31 2000-03-02 윤종용 래스터의 수평 위치 조절회로
US6348944B1 (en) * 1997-10-24 2002-02-19 Sony Corporation Selective aging for monitor production
TW417133B (en) * 1998-11-25 2001-01-01 Koninkl Philips Electronics Nv Method of manufacturing a cathode ray tube, in which a display screen is inspected
KR100303656B1 (ko) * 1999-01-26 2001-09-26 윤종용 프로젝션 텔레비전의 컨버젼스 보정 방법 및 그 장치
WO2000067190A1 (fr) * 1999-04-30 2000-11-09 Sony Electronics Inc. Fabrication repartie avec retroaction
US6292235B1 (en) * 1999-09-29 2001-09-18 Thomson Licensing S.A. Distortion correction system with switchable digital filter
US6369780B2 (en) 1999-09-30 2002-04-09 Thomson Licensing S.A. Auxiliary deflection winding driver disabling arrangement
US6473139B1 (en) * 1999-09-30 2002-10-29 Thomson Licensing S.A. Data error recovery for digital beam landing error correction arrangement
JP2002100291A (ja) * 2000-09-21 2002-04-05 Hitachi Ltd カラーブラウン管の電子ビーム強度分布測定方法およびその装置並びにカラーブラウン管の製造方法
KR100392450B1 (ko) * 2000-12-27 2003-07-22 삼성전자주식회사 컬러crt모니터의 컨버젼스 조정장치 및 방법
US6798446B2 (en) * 2001-07-09 2004-09-28 Logitech Europe S.A. Method and system for custom closed-loop calibration of a digital camera
US6686707B1 (en) 2002-08-14 2004-02-03 Genesis Microchip Inc. Method and apparatus for providing a dynamic rotational alignment of a cathode ray tube raster
US7170550B2 (en) * 2003-07-03 2007-01-30 Sony Corporation Television data management system
US20050012820A1 (en) * 2003-07-03 2005-01-20 Sony Corporation Data management process for television assembly
KR100744516B1 (ko) * 2005-09-06 2007-08-01 엘지전자 주식회사 영상기기의 화면 왜곡 보정 장치 및 방법
JP5018409B2 (ja) * 2007-11-07 2012-09-05 コニカミノルタオプティクス株式会社 光量測定装置
JP2018026696A (ja) * 2016-08-10 2018-02-15 富士ゼロックス株式会社 画像処理装置、画像処理方法、画像処理システムおよびプログラム

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995269A (en) * 1974-11-29 1976-11-30 Sanders Associates, Inc. Alignment of a video display system having multiple inputs
US4058826A (en) * 1976-04-15 1977-11-15 Seymour Schneider Method and system for generating oscillographic displays of analog signals upon a TV
US4817038A (en) * 1977-12-21 1989-03-28 Siemens Gammasonics, Inc. Radiation signal processing system
US4506292A (en) * 1982-06-14 1985-03-19 Motorola, Inc. Video driver circuit and method for automatic gray scale adjustment and elimination of contrast tracking errors
US4523188A (en) * 1982-10-25 1985-06-11 The United States Of America As Represented By The Secretary Of The Army Automated map and display alignment
JPS6178294A (ja) * 1984-09-25 1986-04-21 Sony Corp デイジタルコンバ−ジエンス補正装置
FR2579051B1 (fr) * 1985-03-15 1988-06-24 Loire Electronique Dispositif de reglage de convergence pour videoprojecteur
JP2634401B2 (ja) * 1985-05-10 1997-07-23 ソニー株式会社 カラーテレビ受像機のコンバーゼンス測定装置
US4654706A (en) * 1985-06-03 1987-03-31 International Business Machines Corp. Automatic front of screen adjustment, testing system and method
US4757239A (en) * 1985-10-18 1988-07-12 Hilliard-Lyons Patent Management, Inc. CRT display system with automatic alignment employing personality memory
CA1294702C (fr) * 1987-02-26 1992-01-21 Teruo Kataoka Dispositif automatique d'alignement de la convergence des couleurs primaires pour televiseur a projection
US4772948A (en) * 1987-10-26 1988-09-20 Tektronix, Inc. Method of low cost self-test in a video display system system
US4897721A (en) * 1988-05-16 1990-01-30 Apple Computer Automated testing apparatus for screen alignment
FR2648954B1 (fr) * 1989-06-23 1991-10-11 Delta Electronique Systeme d'assistance au reglage des tubes cathodiques
DE58909454D1 (de) * 1989-07-06 1995-11-02 Itt Ind Gmbh Deutsche Digitale Steuerschaltung für Abstimmsysteme.
US5081523A (en) * 1989-07-11 1992-01-14 Texas Instruments Incorporated Display image correction system and method
US4952851A (en) * 1989-12-13 1990-08-28 Hughes Aircraft Company Electronic CRT centering alignment apparatus
US5020116A (en) * 1989-12-13 1991-05-28 Hughes Aircraft Company Image registration method and apparatus
EP0448267A3 (en) * 1990-03-19 1992-02-19 Capetronic Usa (Hk) Inc. Interactive monitor control system
US5276458A (en) * 1990-05-14 1994-01-04 International Business Machines Corporation Display system
US5216504A (en) * 1991-09-25 1993-06-01 Display Laboratories, Inc. Automatic precision video monitor alignment system
KR940004058B1 (ko) * 1992-02-20 1994-05-11 삼성전자 주식회사 인쇄배선판의 파형조정 및 동작검사장치
US5440340A (en) * 1992-06-19 1995-08-08 Minolta Co., Ltd. Device for measuring characteristics of a color cathode ray tube
WO1994003920A1 (fr) * 1992-08-03 1994-02-17 Capetronic Computer Usa (Hk) Inc. Systeme d'alignement automatique de moniteur
JP3034751B2 (ja) * 1993-05-07 2000-04-17 三菱電機株式会社 ディジタルコンバージェンス装置
IL109674A0 (en) * 1993-05-24 1994-08-26 Hughes Aircraft Co System and method for automatically correcting X-Y image distortion in a display
US5504521A (en) * 1994-06-13 1996-04-02 Display Laboratories, Inc. Method and apparatus for making corrections in a video monitor during horizontal scan
US5510833A (en) * 1994-06-13 1996-04-23 Display Laboratories Inc. Method and apparatus for transforming coordinate systems in an automated video monitor alignment system
JPH089405A (ja) * 1994-06-22 1996-01-12 Toshiba Corp ディジタルコンバーゼンス装置

Also Published As

Publication number Publication date
US6014168A (en) 2000-01-11
AU2545997A (en) 1997-11-19
WO1997041694A1 (fr) 1997-11-06
EP0895698A4 (fr) 1999-11-03
EP0895698A1 (fr) 1999-02-10

Similar Documents

Publication Publication Date Title
EP0895698B1 (fr) Mappage d'ecran d'un tube cathodique
EP0204112B1 (fr) Méthode et système automatique de réglage et de test de la force avant d'un écran
US4439735A (en) Method and apparatus for testing line screen CRT registration
US4472740A (en) Television camera system
US20040223025A1 (en) System and method for compensating for non-functional ink cartridge ink jet nozzles
US20040046811A1 (en) System and method for compensating for non-functional ink cartridge ink jet nozzles
CA2014817C (fr) Appareil capteur d'images fixes
US5426500A (en) Illuminance measurement of vehicle lamp
US6760097B2 (en) Lens evaluation method and lens-evaluating apparatus
JP3056491B2 (ja) 三色陰極線管のコンバーゼンスを自動測定し偏向器に加えるべき修正を決定する方法
US6384917B1 (en) Tooth color measurement system
WO1999041545A1 (fr) Dispositif et procede de mise au point et de montage semi-automatiques et informatises
US5327226A (en) Method and system for automatically adjusting color balance of a TV camera
JPH11510973A (ja) 内視鏡用ビデオシステム
US4193086A (en) Convergence detecting device for color picture tube
US5896170A (en) Dynamic alignment of cathode ray tube rasters
CA2277844A1 (fr) Alignement de moniteurs de visualisation a tube cathodique, au moyen d'un processeur d'ordinateur central
CA2249308A1 (fr) Mappage d'ecran d'un tube cathodique
EP1397001B1 (fr) Mesure automatique de paramètres vidéo
US4955680A (en) Method and apparatus for automatically adjusting the focus of cathode ray tubes
US4674877A (en) Opto-electronic color sensor
EP0718623A2 (fr) Procédé et dispositif pour établir des zones d'observation et l'inspection des produits employant de telles zones
JPH06229872A (ja) 解像度検査方法及び装置
EP0428626B1 (fr) Systeme automatique pour tester un capteur d'imagerie
Glad Color temperature alignment using machine vision

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): GB IE

A4 Supplementary search report drawn up and despatched

Effective date: 19990921

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): GB IE

RIC1 Information provided on ipc code assigned before grant

Free format text: 6H 04N 17/04 A, 6H 01J 9/44 B

17Q First examination report despatched

Effective date: 20001027

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): GB IE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20070111

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070202

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080325

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080325