EP0889977A1 - Zinc phosphatizing with low quantity of copper and manganese - Google Patents

Zinc phosphatizing with low quantity of copper and manganese

Info

Publication number
EP0889977A1
EP0889977A1 EP97902356A EP97902356A EP0889977A1 EP 0889977 A1 EP0889977 A1 EP 0889977A1 EP 97902356 A EP97902356 A EP 97902356A EP 97902356 A EP97902356 A EP 97902356A EP 0889977 A1 EP0889977 A1 EP 0889977A1
Authority
EP
European Patent Office
Prior art keywords
ions
phosphating
phosphating solution
free
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97902356A
Other languages
German (de)
French (fr)
Other versions
EP0889977B1 (en
Inventor
Karl-Dieter Brands
Jürgen Geke
Peter Kuhm
Bernd Mayer
Karl-Heinz Gottwald
Jan-Willem Brouwer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0889977A1 publication Critical patent/EP0889977A1/en
Application granted granted Critical
Publication of EP0889977B1 publication Critical patent/EP0889977B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/186Orthophosphates containing manganese cations containing also copper cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • C23C22/365Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations

Definitions

  • the invention relates to processes for phosphating metal surfaces with aqueous, acid phosphating solutions which contain zinc and phosphate ions and a maximum of 150 ppm of manganese and 30 ppm of copper ions. Furthermore, the invention relates to the use of such methods as pretreatment of the metal surfaces for a subsequent coating, in particular an electrocoating or a powder coating.
  • the method can be used for the treatment of surfaces made of steel, galvanized or alloy-galvanized steel. Aluminum, aluminized or alloy-aluminized steel.
  • the phosphating of metals pursues the goal of producing firmly adherent metal phosphate layers that already improve the corrosion resistance and, in conjunction with paints or other organic coatings, significantly increase paint adhesion and resistance to infiltration in the event of corrosion. contribute to stress.
  • Such phosphating processes have long been known.
  • the low-zinc phosphating processes in which the phosphating solutions have comparatively low contents of zinc ions of e.g. Have 0.5 to 2 g / l.
  • An important parameter in these low-zinc phosphating baths is the weight ratio of phosphations to zinc ions, which is usually in the range greater than 8 and can assume values of up to 30.
  • phosphate layers with significantly improved corrosion protection and paint adhesion properties can be formed.
  • low-zinc processes with the addition of, for example, 0.5 to 1.5 g / l of manganese ions and, for example, 0.3 to 2.0 g / l of nickel ion They are widely used as a so-called trication process for preparing metal surfaces for painting, for example for the cathodic electrodeposition of car bodies.
  • nickel and the cobalt to be used alternatively are also classified as critical from a toxicological and wastewater technical point of view, there is a need for phosphating processes which have a performance level similar to that of the trication processes, but with significantly lower bath concentrations of nickel and / or Cobalt and preferably manage without these two metals.
  • a phosphating solution is known from DE-A-20 49 350 which contains 3 to 20 g / l phosphate ions, 0.5 to 3 g / l zinc ions, 0.003 to 0.7 g / l cobalt ions or 0.003 to 0 as essential components.
  • This method accordingly describes zinc-magnesium phosphating, the phosphating solution additionally containing one of the ions cobalt, copper or preferably nickel. Such zinc-magnesium phosphating was not able to establish itself in technology.
  • EP-B-18 841 describes a chlorate-nitrite-accelerated zinc phosphating solution, containing, inter alia, 0.4 to 1 g / l of zinc ions, 5 to 40 g / l of phosphate ions and optionally at least 0.2 g / l, preferably 0. 2 to 2 g / l of one or more ions selected from nickel, cobalt. Calcium and manganese. Accordingly, the optional manganese, nickel or cobalt content is at least 0.2 g / l. In the exemplary embodiments, nickel contents of 0.53 and 1.33 g / l are given.
  • EP-A-459 541 describes phosphating solutions which are essentially free of nickel and which, in addition to zinc and phosphate, contain 0.2 to 4 g / l of manganese and 1 to 30 mg / l of copper.
  • DE-A-42 10 513 discloses nickel-free phosphating solutions which, in addition to zinc and Contain phosphate 0.5 to 25 mg / l copper ions and hydroxylamine as accelerator. Optionally, these phosphating solutions additionally contain 0.15 to 5 g / l of manganese.
  • phosphating processes described in the last two documents certainly meet the requirements for corrosion protection.
  • phosphating baths which have a relatively high manganese content of about 1 g / l. These phosphating baths therefore do not meet the modern ecological requirements to work with the lowest possible levels of heavy metals, so that as little metal-containing sludge as possible is obtained in the treatment of the rinsing and waste water.
  • the invention has for its object to provide a low-heavy phosphating process which achieves the performance of the trication phosphating process on the different materials used in automobile construction.
  • This object is achieved by a method for phosphating metal surfaces made of steel, galvanized or galvanized steel and / or aluminum, in which the metal surfaces are in contact with a zinc-containing phosphating solution by spraying or dipping for a time between 3 seconds and 8 minutes brings, characterized in that the phosphating solution
  • the zinc concentration is preferably in the range between about 0.3 and about 2 g / l and in particular between about 0.8 and about 1.6 g / l.
  • Such zinc contents can occur in a working phosphating bath if additional zinc gets into the phosphating bath during the phosphating of galvanized surfaces due to the pickling removal.
  • Nickel and / or cobalt ions in the concentration range of about 1 to about 50 mg / l for Nik ⁇ kei and about 5 to about 100 mg / l for cobalt improve in conjunction with the lowest possible nitrate content of not more than about 0.5 g / l Corrosion protection and paint adhesion compared to phosphating baths which do not contain nickel or cobalt or which have a nitrate content of more than 0.5 g / l. This achieves a favorable compromise between the performance of the phosphating baths on the one hand and the requirements for the wastewater treatment of the rinsing water on the other hand.
  • lithium ions in the quantity range from about 0.2 to about 1.5 g / l improve the corrosion protection which can be achieved with zinc phosphating baths.
  • Lithium contents in the amount range from 0.2 to about 1.5 g / l and in particular from about 0.4 to about 1 g / l also have a favorable effect on the corrosion protection achieved in the low-heavy-metal phosphating process according to the invention.
  • the process according to the invention is to be used as a spray process, copper contents in the range from approximately 0.002 to approximately 0.01 g / l are particularly favorable. When used as an immersion process, copper contents in the range from 0.005 to 0.02 g / l are preferred.
  • the phosphating baths generally contain sodium, potassium and / or ammonium ions for setting the free acid.
  • free acid is familiar to those skilled in the phosphating field. The method of determining free acid and total acid chosen in this document is given in the example section.
  • Free acid and total acid represent an important control parameter for phosphating baths because they have a great influence on the layer weight. Values of the free acid between 0 and 1.5 points in the case of partial phosphating, in the case of band phosphating up to 2.5 points and the total acid between about 15 and about 30 points are within the technically customary range and are suitable for this invention.
  • fluoride-containing baths are therefore advantageous if the surfaces to be phosphated consist at least partially of aluminum or contain aluminum. In these cases, it is favorable not to use any complex-bound fluoride, but only free fluoride, preferably in concentrations in the range from 0.5 to 1.0 g / l.
  • the phosphating baths can contain one or more of the following components as accelerators:
  • the phosphating solution When phosphating galvanized steel, it is necessary that the phosphating solution contain as little nitrate as possible. Nitrate concentrations of 0.5 g / l should not be exceeded, since there is a risk of so-called "speck formation" at higher nitrate concentrations. This means white, crater-like defects in the phosphate layer. In addition, the paint adhesion on galvanized surfaces is impaired.
  • nitrite as an accelerator leads to technically satisfactory results, especially on steel surfaces. For reasons of occupational safety (risk of developing nitrous gases), however, it is recommended not to use nitrite as an accelerator. For phosphating galvanized surfaces, this is also advisable for technical reasons, since nitrite can form from nitrite. which, as explained above, can lead to the problem of speck formation and to reduced paint adhesion on zinc.
  • Hydrogen peroxide is preferred for reasons of environmental friendliness, and hydroxylamine is particularly preferred as an accelerator for technical reasons because of the simplified formulation options for replenishing solutions. However, it is not advisable to use these two accelerators together, since hydroxylamine is decomposed by hydrogen peroxide. If hydrogen peroxide is used as accelerator in free or bound form, concentrations of 0.005 to 0.02 g / l hydrogen peroxide are particularly preferred.
  • the hydrogen peroxide can be added to the phosphating solution as such. However, it is also possible to use hydrogen peroxide in bound form as compounds which give hydrogen peroxide in the phosphate bath by hydrolysis reactions.
  • persalts such as perborates, percarbonates, peroxosulfates or peroxodisulfates.
  • Ionic peroxides such as, for example, alkali metals, are further sources of hydrogen peroxide. tall peroxides into consideration.
  • a preferred embodiment of the invention is that a combination of chlorate ions and hydrogen peroxide is used in the phosphating in the immersion process.
  • the concentration of chlorate can be, for example, in the range from 2 to 4 g / l, the concentration of hydrogen peroxide in the range from 10 to 50 ppm.
  • reducing sugar as an accelerator is known from US Pat. No. 5,378,292. In the context of the present invention, they can be used in amounts between about 0.01 and about 10 g / l, preferably in amounts between about 0.5 and about 2.5 g / l.
  • sugars are galactose, mannose and in particular glucose (dextrose).
  • hydroxylamine can be used as a free base, as a hydroxylamine complex, as an oxime, which is a condensation product of hydroxylamine with a ketone, or in the form of hydroxylammonium salts. If free hydroxylamine is added to the phosphating bath or a phosphating bath concentrate, it will largely exist as a hydroxylammonium cation due to the acidic nature of these solutions.
  • hydroxylammonium salt the sulfates and the phosphates are particularly suitable. In the case of the phosphates, the acid salts are preferred because of their better solubility.
  • Hydroxylamine or its compounds are added to the phosphating bath in amounts such that the calculated concentration of the free hydroxyamine is between 0.1 and 10 g / l, preferably between 0.3 and 5 g / l. It is preferred that the phosphating baths contain hydroxylamine as the only accelerator, at most together with a maximum of 0.5 g / l nitrate. Accordingly, in a preferred embodiment, phosphating baths are used which do not contain any of the other known accelerators such as, for example, nitrite, oxo anions of halogens, peroxides or nitrobenzenesulfonate. As a positive side effect, hydroxylamine concentrations above approximately 1.5 g / l reduce the risk of rust formation in insufficiently flooded areas of the components to be phosphated.
  • the hydroxylamine accelerator can be slowly inactivated even if no metal parts to be phosphated are introduced into the phosphating bath. It has surprisingly been found that the inactivation of the hy droxylamine can be significantly slowed down if one or more aliphatic hydroxy or aminocarboxylic acids with 2 to 6 carbon atoms in a total amount of 0.01 to 1.5 g / l are added to the phosphating bath.
  • the carboxylic acids are preferably selected from glycine, lactic acid, giuconic acid, tartronic acid, malic acid, tartaric acid and citric acid. citric acid, lactic acid and glycine are particularly preferred.
  • iron (II) ions When the phosphating process is used on steel surfaces, iron dissolves in the form of iron (II) ions. If the phosphating baths according to the invention do not contain any substances which have an oxidizing effect on iron (II), the divalent iron only changes to the trivalent state as a result of air oxidation, so that it can precipitate out as iron (III) phosphate. This is the case, for example, when using hydroxylamine. As a result, iron (II) contents can be built up in the phosphating baths which are significantly higher than the contents which contain baths containing oxidizing agents. In this sense, iron (II) concentrations of up to 50 ppm are normal, although values of up to 500 ppm can also appear briefly in the production process.
  • the phosphate baths may further contain the hardness-forming cations Mg (II) and Ca (II) in a total concentration of up to 7 mmol / 1.
  • Mg (II) or Ca (II) can also be added to the phosphating bath in amounts of up to 2.5 g / l.
  • the weight ratio of phosphate ions to zinc ions in the phosphating baths can vary within a wide range, provided it is in the range between 3.7 and 30. A weight ratio between 10 and 20 is particularly preferred.
  • the total phosphorus content of the phosphating bath is considered to be PO43 in the form of phosphate ions. viewed here. Accordingly, the known fact that the pH values of the phosphating baths, which are usually in the range from about 3 to about 3.6, only a very small part of the phosphate is actually in the form of the triple negatively charged anions.
  • Phosphating baths are usually sold in the form of aqueous concentrates which are adjusted to the application concentrations on site by adding water. For reasons of stability, these concentrates can contain an excess of free phosphoric acid, so that when diluted to a bath concentration, the value of the free acid is initially too high or the pH is too low. By adding alkalis such as sodium hydroxide, sodium carbonate or ammonia, the value of the free acid is reduced to the desired range.
  • the free acid content during use of the phosphating baths can increase over time due to the consumption of the layer-forming cations and, if appropriate, through decomposition reactions of the accelerator. In these cases it is necessary to readjust the value of the free acid to the desired range from time to time by adding alkalis. This means that the levels of alkali metal or ammonium ions in the phosphating baths can fluctuate within wide limits and tend to increase over the course of the service life of the phosphating baths due to the bluntness of the free acid.
  • the weight ratio of alkali metal and / or ammonium ions to zinc ions can therefore be very low in freshly prepared phosphating baths, for example ⁇ 0.5 and in extreme cases even 0, while it usually increases over time as a result of bath maintenance measures, so that this Ratio> 1 and can assume values up to 10 and larger.
  • Low-zinc phosphating baths generally require additions of alkali metal or ammonium ions in order to obtain the desired PO43 weight ratio.
  • Zn> 8 to be able to set the free acid to the setpoint range.
  • Analogous considerations can also be made about the quantitative ratios of alkali metal and / or ammonium ions to other bath components, for example to phosphations.
  • lithium-containing phosphating baths the use of sodium compounds to adjust the free acid is preferably avoided since excess sodium concentrations suppress the favorable effect of lithium on the corrosion protection.
  • basic lithium compounds are preferably used to adjust the free acid.
  • potassium compounds are also suitable.
  • the metal ions are preferably used in the form of those compounds which do not introduce any foreign ions into the phosphating solution. Therefore, it is most convenient to use the metals in the form of their oxides or their carbonates. Lithium can also be used as sulfate, copper preferably as acetate.
  • Phosphating baths according to the invention are suitable for phosphating surfaces made of steel, galvanized or alloy-galvanized steel, aluminum, aluminized or alloy-aluminized steel.
  • aluminum includes the technically customary aluminum alloys such as AlMgO, 5Sil, 4. The materials mentioned can also be present side by side, as is becoming increasingly common in automobile construction.
  • Parts of the body can also consist of material that has already been pretreated, such as is produced using the Bonazink process.
  • the base material is first chromated or phosphated and then coated with an organic resin.
  • the phosphating process according to the invention then leads to phosphating on damaged areas of this pretreatment layer or on untreated rear sides.
  • the process is suitable for use in immersion, spray or spray / immersion processes. It can be used in particular in automobile construction, where treatment times between 1 and 8 minutes, in particular 2 to 5 minutes, are common. However, it can also be used for strip phosphating in the steel mill, with treatment times between 3 and 12 seconds. When used in tape phosphating processes, it is advisable to set the bath concentrations in the upper half of the ranges preferred according to the invention.
  • the zinc content can range from 1.5 to 2.5 g / l and the free acid content can range from 1.5 to 2.5 points.
  • a particularly suitable substrate for strip phosphating is galvanized steel, in particular electrolytically galvanized steel.
  • the suitable bath temperatures are between 30 and 70 ° C., regardless of the field of application, with the temperature range between 45 and 60 ° C. being preferred.
  • the phosphating process according to the invention is intended in particular for the treatment of the metal surfaces mentioned before painting, for example before cathodic electrical painting, as is customary in automobile construction. It is also suitable as a pretreatment before a powder coating, such as that used for household appliances.
  • the phosphating process is part of the technically usual pretreatment chain to see. In this chain, the steps of cleaning / degreasing, rinsing and activating are usually preceded by the phosphating, the activation usually being carried out with titanium phosphate-containing activating agents.
  • the phosphating according to the invention can, with or without intermediate rinsing, optionally be followed by a passivating aftertreatment. Treatment baths containing chromic acid are widely used for such a passivating aftertreatment.
  • Such rinsing is also suitable for improving the corrosion protection of the phosphating process according to the invention.
  • an aqueous solution is preferably used which contains 0.002 to 1 g / l of copper ions.
  • the copper is preferably used as acetate.
  • Such a rinse solution is particularly preferred which has a pH in the range from 3.4 to 6 and a temperature in the range from 20 to 50.degree.
  • An intermediate rinse with deionized water is usually carried out between this post-passivation and the subsequent coating.
  • the phosphating processes and comparative processes according to the invention were checked on ST 1405 steel sheets and on electrolytically galvanized steel sheets, as are used in automobile construction.
  • the free acid score was 1.0-1.1, the total acid 23-25.
  • the free acid score is understood to mean the consumption in ml of 0.1 normal sodium hydroxide solution in order to titrate 10 ml of bath solution up to a pH of 3.6. Similarly, the total acid score indicates consumption in ml up to a pH of 8.2.
  • the mass per unit area (“layer weight”) was determined by dissolving in 5% chromic acid solution in accordance with DIN 50942. It was in the range 2.5-4.5 g / m 2
  • the phosphated test panels were coated with a cathodic dip coating from BASF (FT 85-7042).
  • the corrosion protection effect for electrolytically galvanized steel was tested in an alternating climate test according to VDA 621-415 over 5 laps.
  • VDA 621-415 the paint infiltration at the scratch (half scratch width) is shown in Table 1.
  • Table 1 also contains the results of a stone chip test according to the VW standard as "K values" (the smaller K, the better the paint adhesion).

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

Process for phosphatizing metal surfaces of steel, zinc coated or zinc-alloy coated steel and/or of aluminium where the metal surfaces are brought into contact with a phosphatizing solution containing zinc through spraying or immersion for a time between 3 seconds and 8 minutes; the solution contains 0.2 to 3 g/l zinc ions, 3 to 50 g/l phosphate ions, calculated as PO4, 1 to 150 mg/l manganese ions, 1 to 30 mg/l copper ions and one or several accelerators.

Description

.Zinkphosphatierung mit gerinnen Gehalten an Kupfer und Mangan' .Zinc phosphating with coagulated copper and manganese contents'
Die Erfindung betrifft Verfahren zur Phosphatierung von Metalloberflächen mit wäßrigen, sauren Phosphatierlösungen, die Zink- und Phosphationen sowie maximal 150 ppm Mangan- und 30 ppm Kupferionen enthalten. Weiterhin betrifft die Erfindung die Anwendung derarti¬ ger Verfahren als Vorbehandlung der Metalloberflächen für eine anschließende Lackierung, insbesondere eine Elektrotauchlackierung oder eine Pulverlackierung. Das Verfahren ist an¬ wendbar zur Behandlung von Oberflächen aus Stahl, verzinktem oder legierungsverzinktem Stahl. Aluminium, aluminiertem oder legierungsaluminiertem Stahl.The invention relates to processes for phosphating metal surfaces with aqueous, acid phosphating solutions which contain zinc and phosphate ions and a maximum of 150 ppm of manganese and 30 ppm of copper ions. Furthermore, the invention relates to the use of such methods as pretreatment of the metal surfaces for a subsequent coating, in particular an electrocoating or a powder coating. The method can be used for the treatment of surfaces made of steel, galvanized or alloy-galvanized steel. Aluminum, aluminized or alloy-aluminized steel.
Die Phosphatierung von Metallen verfolgt das Ziel, auf der Metalloberfläche festverwachsene Metallphosphatschichten zu erzeugen, die für sich bereits die Korrosionsbeständigkeit verbes¬ sern und in Verbindung mit Lacken oder anderen organischen Beschichtungen zu einer we¬ sentlichen Erhöhung der Lackhaftung und der Resistenz gegen Unterwanderung bei Korrosi- onsbeanspruchung beitragen. Solche Phosphatierverfahren sind seit langem bekannt. Für die Vorbehandlung vor der Lackierung, insbesondere der Elektrotauchlackierung, eignen sich insbesondere die Niedrig-Zink-Phosphatierverfahren, bei denen die Phosphatierlösungen ver¬ gleichsweise geringe Gehalte an Zinkionen von z.B. 0.5 bis 2 g/l aufweisen. Ein wesentlicher Parameter in diesen Niedrig-Zink-Phosphatierbädern ist das Gewichtsverhältnis Phosphatio¬ nen zu Zinkionen, das üblicherweise im Bereich größer 8 liegt und Werte bis zu 30 annehmen kann.The phosphating of metals pursues the goal of producing firmly adherent metal phosphate layers that already improve the corrosion resistance and, in conjunction with paints or other organic coatings, significantly increase paint adhesion and resistance to infiltration in the event of corrosion. contribute to stress. Such phosphating processes have long been known. The low-zinc phosphating processes, in which the phosphating solutions have comparatively low contents of zinc ions of e.g. Have 0.5 to 2 g / l. An important parameter in these low-zinc phosphating baths is the weight ratio of phosphations to zinc ions, which is usually in the range greater than 8 and can assume values of up to 30.
Es hat sich gezeigt, daß durch die Mitverwendung anderer mehrwertiger Kationen in den Zink-Phosphatierbädem Phosphatschichten mit deutlich verbesserten Korrosionsschutz- und Lackhaftungseigenschaften ausgebildet werden können. Beispielsweise finden Niedrig-Zink- Verfahren mit Zusatz von z.B. 0,5 bis 1,5 g/l Manganionen und z.B. 0,3 bis 2,0 g/l Nickelio- nen als sogenannte Trikation-Verfahren zur Vorbereitung von Metalloberflächen für die Lak- kierung, beispielsweise für die kathodische Elektrotauchlackierung von Autokarosserien, weite Anwendung.It has been shown that by using other polyvalent cations in the zinc phosphating baths, phosphate layers with significantly improved corrosion protection and paint adhesion properties can be formed. For example, low-zinc processes with the addition of, for example, 0.5 to 1.5 g / l of manganese ions and, for example, 0.3 to 2.0 g / l of nickel ion They are widely used as a so-called trication process for preparing metal surfaces for painting, for example for the cathodic electrodeposition of car bodies.
Da Nickel und das alternativ einzusetzende Cobalt auch aus toxikologischer und abwasser¬ technischer Sicht als kritisch eingestuft werden, besteht ein Bedarf nach Phosphatierverfahren, die ein ähnliches Leistungsniveau wie die Trikation-Verfahren aufweisen, jedoch mit wesent¬ lich geringeren Badkonzentrationen von Nickel- und/oder Cobalt und vorzugsweise ohne die¬ se beiden Metalle auskommen.Since nickel and the cobalt to be used alternatively are also classified as critical from a toxicological and wastewater technical point of view, there is a need for phosphating processes which have a performance level similar to that of the trication processes, but with significantly lower bath concentrations of nickel and / or Cobalt and preferably manage without these two metals.
Aus der DE-A-20 49 350 ist eine Phosphatierlösung bekannt, die als essentielle Bestandteile 3 bis 20 g/l Phosphationen, 0,5 bis 3 g/l Zinkionen, 0,003 bis 0,7 g/l Cobaltionen oder 0,003 bis 0,04 g/l Kupferionen oder vorzugsweise 0,05 bis 3 g/l Nickelionen, 1 bis 8 g/l Magnesiumio¬ nen. 0.01 bis 0.25 g/l Nitritionen und 0,1 bis 3 g/l Fluorionen und/oder 2 bis 30 g/l Chlorionen enthält. Dieses Verfahren beschreibt demnach eine Zink-Magnesium-Phosphatierung, wobei die Phosphatierlösung zusätzlich eines der Ionen Cobalt, Kupfer oder vorzugsweise Nickel enthält. Eine derartige Zink-Magnesium-Phosphatierung konnte sich in der Technik nicht durchsetzen.A phosphating solution is known from DE-A-20 49 350 which contains 3 to 20 g / l phosphate ions, 0.5 to 3 g / l zinc ions, 0.003 to 0.7 g / l cobalt ions or 0.003 to 0 as essential components. 04 g / l copper ions or preferably 0.05 to 3 g / l nickel ions, 1 to 8 g / l magnesium ions. Contains 0.01 to 0.25 g / l nitrite ions and 0.1 to 3 g / l fluorine ions and / or 2 to 30 g / l chlorine ions. This method accordingly describes zinc-magnesium phosphating, the phosphating solution additionally containing one of the ions cobalt, copper or preferably nickel. Such zinc-magnesium phosphating was not able to establish itself in technology.
Die EP-B-18 841 beschreibt eine Chlorat-Nitrit-beschleunigte Zinkphosphatierlösung, enthal¬ tend unter anderem 0,4 bis 1 g/l Zinkionen, 5 bis 40 g/l Phosphationen sowie fakultativ min¬ destens 0.2 g/l vorzugsweise 0,2 bis 2 g/l eines oder mehrere Ionen, ausgewählt aus Nickel, Cobalt. Calcium und Mangan. Demnach beträgt der fakultative Mangan-, Nickel- oder Cobalt-Gehalt mindestens 0,2 g/l. In den Ausführungsbeispielen werden Nickelgehalte von 0,53 und 1,33 g/l angegeben.EP-B-18 841 describes a chlorate-nitrite-accelerated zinc phosphating solution, containing, inter alia, 0.4 to 1 g / l of zinc ions, 5 to 40 g / l of phosphate ions and optionally at least 0.2 g / l, preferably 0. 2 to 2 g / l of one or more ions selected from nickel, cobalt. Calcium and manganese. Accordingly, the optional manganese, nickel or cobalt content is at least 0.2 g / l. In the exemplary embodiments, nickel contents of 0.53 and 1.33 g / l are given.
Die EP-A-459 541 beschreibt Phosphatierlösungen, die im wesentlichen frei von Nickel sind und die neben Zink und Phosphat 0,2 bis 4 g/l Mangan und 1 bis 30 mg/l Kupfer enthalten. Aus der DE-A-42 10 513 sind nickelfreie Phosphatierlösungen bekannt, die neben Zink und Phosphat 0,5 bis 25 mg/l Kupferionen sowie als Beschleuniger Hydroxylamin enthalten. Fa¬ kultativ enthalten diese Phosphatierlösungen zusätzlich 0, 15 bis 5 g/l Mangan.EP-A-459 541 describes phosphating solutions which are essentially free of nickel and which, in addition to zinc and phosphate, contain 0.2 to 4 g / l of manganese and 1 to 30 mg / l of copper. DE-A-42 10 513 discloses nickel-free phosphating solutions which, in addition to zinc and Contain phosphate 0.5 to 25 mg / l copper ions and hydroxylamine as accelerator. Optionally, these phosphating solutions additionally contain 0.15 to 5 g / l of manganese.
Die in den beiden letztgenannten Dokumenten beschriebenen Phosphatierverfahren erfüllen durchaus die Ansprüche an den Korrosionsschutz. Dabei werden in der Praxis jedoch Phos¬ phatierbäder eingesetzt, die einen relativ hohen Gehalt an Mangan von etwa 1 g/l aufweisen. Diese Phosphatierbäder erfüllen daher nicht die modernen ökologischen Anfroderungen, mit möglichst geringen Gehalten an Schwermetallen zu arbeiten, so daß bei der Behandlung der Spül- und Abwässer möglichst wenig metallhaltiger Schlamm anfallt.The phosphating processes described in the last two documents certainly meet the requirements for corrosion protection. In practice, however, phosphating baths are used which have a relatively high manganese content of about 1 g / l. These phosphating baths therefore do not meet the modern ecological requirements to work with the lowest possible levels of heavy metals, so that as little metal-containing sludge as possible is obtained in the treatment of the rinsing and waste water.
Der Erfindung liegt die Aufgabe zugrunde, ein schwermetall-armes Phosphatierverfahren zur Verfügung zu steilen, das die Leistungsfähigkeit der Trikation-Phosphatierverfahren auf den unterschiedlichen im Automobilbau verwendeten Materialien erreicht. Diese Aufgabe wird gelöst durch ein Verfahren zum Phosphatieren von Metalloberflächen aus Stahl, verzinktem oder iegierungsverzinktem Stahl und/oder aus Aluminium, bei dem man die Metalloberflä¬ chen durch Spritzen oder Tauchen für eine Zeit zwischen 3 Sekunden und 8 Minuten mit einer zinkhaltigen Phosphatierlösung in Berührung bringt, dadurch gekennzeichnet, daß die Phos¬ phatierlösungThe invention has for its object to provide a low-heavy phosphating process which achieves the performance of the trication phosphating process on the different materials used in automobile construction. This object is achieved by a method for phosphating metal surfaces made of steel, galvanized or galvanized steel and / or aluminum, in which the metal surfaces are in contact with a zinc-containing phosphating solution by spraying or dipping for a time between 3 seconds and 8 minutes brings, characterized in that the phosphating solution
0,2 bis 3 g/l Zinkionen0.2 to 3 g / l zinc ions
3 bis 50 g/l Phosphationen, berechnet als PO4,3 to 50 g / l phosphate ions, calculated as PO 4 ,
1 bis 150 mg/l Manganionen,1 to 150 mg / l manganese ions,
1 bis 30 mg/l Kupferionen und einen oder mehrere Beschleuniger ausgewählt aus1 to 30 mg / l copper ions and one or more accelerators selected from
0,3 bis 4 g/l Chlorationen,0.3 to 4 g / l chlorate ions,
0,01 bis 0,2 g/l Nitritionen,0.01 to 0.2 g / l nitrite ions,
0.05 bis 2 g/l m-Nitrobenzolsulfonationen,0.05 to 2 g / l m-nitrobenzenesulfonate ions,
0,05 bis 2 g/l m-Nitrobenzoationen,0.05 to 2 g / l m-nitrobenzoate ions,
0,05 bis 2 g/l p-Nitrophenol,0.05 to 2 g / l p-nitrophenol,
0,005 bis 0, 15 g/l Wasserstoffperoxid in freier oder gebundener Form, 0, 1 bis 10 g/l Hydroxy lamin in freier oder gebundener Form, 0, 1 bis 10 g/l eines reduzierenden Zuckers enthält.0.005 to 0.15 g / l hydrogen peroxide in free or bound form, Contains 0.1 to 10 g / l hydroxy lamin in free or bound form, 0.1 to 10 g / l of a reducing sugar.
Die Zink-Konzentration liegt vorzugsweise im Bereich zwischen etwa 0,3 und etwa 2 g/l und insbesondere zwischen etwa 0,8 und etwa 1,6 g/l. Zinkgehalte oberhalb 1 ,6 g/l, beispielsweise zwischen 2 und 3 g/l bringen für das Verfahren nur noch geringe Vorteile, können aber ande¬ rerseits den Schlammanfall im Phosphatierbad erhöhen. Derartige Zinkgehalte können sich in einem arbeitenden Phosphatierbad einstellen, wenn bei der Phosphatierung verzinkter Ober¬ flächen durch den Beizabtrag zusätzliches Zink in das Phosphatierbad gelangt. Nickel- und/oder Cobaltionen im Konzentrationsbereich von jeweils etwa 1 bis etwa 50 mg/l für Nik¬ kei und etwa 5 bis etwa 100 mg/l für Cobalt verbessern in Verbindung mit einem möglichst geringem Nitratgehalt von nicht mehr als etwa 0,5 g/l Korrosionsschutz und Lackhaftung ge¬ genüber Phosphatierbädem, die kein Nickel oder Cobalt enthalten oder die einen Nitratgehalt von mehr als 0,5 g/l aufweisen. Hierdurch wird ein günstiger Kompromiß zwischen der Lei¬ stung der Phosphatierbäder einerseits und den Anforderungen an die abwassertechnische Be¬ handlung der Spülwässer andererseits erreicht.The zinc concentration is preferably in the range between about 0.3 and about 2 g / l and in particular between about 0.8 and about 1.6 g / l. Zinc levels above 1.6 g / l, for example between 2 and 3 g / l, bring only slight advantages for the process, but on the other hand can increase the amount of sludge in the phosphating bath. Such zinc contents can occur in a working phosphating bath if additional zinc gets into the phosphating bath during the phosphating of galvanized surfaces due to the pickling removal. Nickel and / or cobalt ions in the concentration range of about 1 to about 50 mg / l for Nik¬ kei and about 5 to about 100 mg / l for cobalt improve in conjunction with the lowest possible nitrate content of not more than about 0.5 g / l Corrosion protection and paint adhesion compared to phosphating baths which do not contain nickel or cobalt or which have a nitrate content of more than 0.5 g / l. This achieves a favorable compromise between the performance of the phosphating baths on the one hand and the requirements for the wastewater treatment of the rinsing water on the other hand.
Aus der deutschen Patentanmeldung mit dem Aktenzeichen 195 00 927.4 ist bekannt, daß Lithiumionen im Mengenbereich von etwa 0,2 bis etwa 1 ,5 g/l den mit Zinkphosphatierbädern erreichbaren Korrosionsschutz verbessern. Lithiumgehalte im Mengenbereich von 0,2 bis et¬ wa 1.5 g/l und insbesondere von etwa 0,4 bis etwa 1 g/l wirken sich auch bei dem erfindungs¬ gemäßen schwermetall -armen Phosphatierverfahren günstig auf den erreichten Korrosions¬ schutz aus.From the German patent application with the file number 195 00 927.4 it is known that lithium ions in the quantity range from about 0.2 to about 1.5 g / l improve the corrosion protection which can be achieved with zinc phosphating baths. Lithium contents in the amount range from 0.2 to about 1.5 g / l and in particular from about 0.4 to about 1 g / l also have a favorable effect on the corrosion protection achieved in the low-heavy-metal phosphating process according to the invention.
Soll das erfindungsgemäße Verfahren als Spritzverfahren eingesetzt werden, sind Kupferge¬ halte im Bereich von etwa 0,002 bis etwa 0,01 g/l besonders günstig. Bei der Anwendung als Tauchverfahren sind Kupfergehalte im Bereich von 0,005 bis 0,02 g/l bevorzugt. Außer den vorstehend genannten Kationen, die in die Phosphatschicht mit eingebaut werden oder die zumindest das Kristallwachstum der Phosphatschicht positiv beeinflussen, enthalten die Phosphatierbäder in der Regel Natrium-, Kalium- und/oder Ammoniumionen zur Einstel¬ lung der freien Säure. Der Begriff der freien Säure ist dem Fachmann auf dem Phosphatier- gebiet geläufig. Die in dieser Schrift gewählte Bestimmungsmethode der freien Säure sowie der Gesamtsäure wird im Beispielteil angegeben. Freie Säure und Gesamtsäure stellen einen wichtigen Regelungsparameter für Phosphatierbäder dar, da sie einen großen Einfluß auf das Schichtgewicht haben. Werte der freien Säure zwischen 0 und 1,5 Punkten bei Teilephospha- tierung, bei Bandphosphatierung bis zu 2,5 Punkten und der Gesamtsäure zwischen etwa 15 und etwa 30 Punkten liegen im technisch üblichen Bereich und sind im Rahmen dieser Erfin¬ dung geeignet.If the process according to the invention is to be used as a spray process, copper contents in the range from approximately 0.002 to approximately 0.01 g / l are particularly favorable. When used as an immersion process, copper contents in the range from 0.005 to 0.02 g / l are preferred. In addition to the cations mentioned above, which are incorporated into the phosphate layer or which at least have a positive effect on the crystal growth of the phosphate layer, the phosphating baths generally contain sodium, potassium and / or ammonium ions for setting the free acid. The term free acid is familiar to those skilled in the phosphating field. The method of determining free acid and total acid chosen in this document is given in the example section. Free acid and total acid represent an important control parameter for phosphating baths because they have a great influence on the layer weight. Values of the free acid between 0 and 1.5 points in the case of partial phosphating, in the case of band phosphating up to 2.5 points and the total acid between about 15 and about 30 points are within the technically customary range and are suitable for this invention.
Bei Phosphatierbädern, die für unterschiedliche Substrate geeignet sein sollen, ist es üblich geworden, freies und/oder komplexgebundenes Fluorid in Mengen bis zu 2,5 g/l Gesamtflu- orid. davon bis zu 1 g/l freies Fluorid zuzusetzen. Die Anwesenheit solcher Fluoridmengen ist auch für die erfindungsgemäßen Phosphatierbäder von Vorteil. Bei Abwesenheit von Fluorid soll der Aluminiumgehalt des Bades 3 mg/l nicht überschreiten. Bei Gegenwart von Fluorid werden infolge der Komplexbildung höhere Al-Gehalte toleriert, sofern die Konzentration des nicht komplexierten AI 3 mg/l nicht übersteigt. Die Verwendung fluoridhaltiger Bäder ist da¬ her vorteilhaft, wenn die zu phosphatierenden Oberflächen zumindest teilweise aus Alumini¬ um bestehen oder Aluminium enthalten. In diesen Fällen ist es günstig, kein komplexgebun¬ denes, sondern nur freies Fluorid, vorzugsweise in Konzentrationen im Bereich 0.5 bis 1 ,0 g/l, einzusetzen.In the case of phosphating baths which are said to be suitable for different substrates, it has become common to use free and / or complex-bound fluoride in amounts of up to 2.5 g / l of total fluoride. add up to 1 g / l free fluoride. The presence of such amounts of fluoride is also advantageous for the phosphating baths according to the invention. In the absence of fluoride, the aluminum content of the bath should not exceed 3 mg / l. In the presence of fluoride, higher Al contents are tolerated as a result of the complex formation, provided the concentration of the non-complexed AI does not exceed 3 mg / l. The use of fluoride-containing baths is therefore advantageous if the surfaces to be phosphated consist at least partially of aluminum or contain aluminum. In these cases, it is favorable not to use any complex-bound fluoride, but only free fluoride, preferably in concentrations in the range from 0.5 to 1.0 g / l.
Für die Phosphatierung von Zinkoberflächen wäre es nicht zwingend erforderlich, daß die Phosphatierbäder sogenannte Beschleuniger enthalten. Für die Phosphatierung von Stahloberflächen ist es jedoch erforderlich, daß die Phosphatierlösung einen oder mehrere Beschleuniger enthält. Solche Beschleuniger sind im Stand der Technik als Komponenten von Zinkphosphatierbädern geläufig. Hierunter werden Substanzen verstanden, die den durch den Beizangriff der Säure an der Metalloberfläche entstehenden Wasserstoff dadurch chemisch binden, daß sie selbst reduziert werden. Oxidierend wirkende Beschleuniger haben weiterhin den Effekt, durch den Beizangriff auf Stahloberflächen freigesetzte Eisen(II)-Ionen zur drei¬ wertigen Stufe zu oxidieren, so daß sie als Eisen(III)-Phosphat ausfallen können. Die erfindungsgemäßen Phosphatierbäder können als Beschleuniger eine oder mehrere der folgenden Komponenten enthalten:For the phosphating of zinc surfaces, it would not be absolutely necessary that the phosphating baths contain so-called accelerators. For the phosphating of steel surfaces, however, it is necessary that the phosphating solution contain one or more accelerators. Such accelerators are known in the prior art as components of zinc phosphating baths. These are understood to mean substances which chemically bind the hydrogen generated by the acid pickling on the metal surface by reducing them themselves. Oxidizing accelerators also have the effect of oxidizing released iron (II) ions to the trivalent stage by the pickling attack on steel surfaces, so that they can precipitate out as iron (III) phosphate. The phosphating baths according to the invention can contain one or more of the following components as accelerators:
0,3 bis 4 g/l Chlorationen,0.3 to 4 g / l chlorate ions,
0,01 bis 0,2 g/l Nitritionen,0.01 to 0.2 g / l nitrite ions,
0,05 bis 2 g/l m-Nitrobenzolsulfonationen,0.05 to 2 g / l m-nitrobenzenesulfonate ions,
0,05 bis 2 g/l m-Nitrobenzoationen,0.05 to 2 g / l m-nitrobenzoate ions,
0,05 bis 2 g/l p-Nitrophenol,0.05 to 2 g / l p-nitrophenol,
0,005 bis 0,15 g/I Wasserstoffperoxid in freier oder gebundener Form,0.005 to 0.15 g / l hydrogen peroxide in free or bound form,
0,1 bis 10 g/l Hydroxylamin in freier oder gebundener Form,0.1 to 10 g / l hydroxylamine in free or bound form,
0, 1 bis 10 g/l eines reduzierenden Zuckers0.1 to 10 g / l of a reducing sugar
Bei der Phosphatierung von verzinktem Stahl ist es erforderlich, daß die Phosphatierlösung möglichst wenig Nitrat enthält. Nitratkonzentrationen von 0,5 g/l sollten nicht überschritten werden, da bei höheren Nitratkonzentrationen die Gefahr einer sogenannten "Stippenbildung" besteht. Hiermit sind weiße, kraterartige Fehlstellen in der Phosphatschicht gemeint. Außer¬ dem wird die Lackhaftung auf verzinkten Oberflächen beeinträchtigt.When phosphating galvanized steel, it is necessary that the phosphating solution contain as little nitrate as possible. Nitrate concentrations of 0.5 g / l should not be exceeded, since there is a risk of so-called "speck formation" at higher nitrate concentrations. This means white, crater-like defects in the phosphate layer. In addition, the paint adhesion on galvanized surfaces is impaired.
Die Verwendung von Nitrit als Beschleuniger führt insbesondere auf Stahloberflächen zu technisch befriedigenden Ergebnissen. Aus Gründen der Arbeitssicherheit (Gefahr der Ent¬ wicklung nitroser Gase) ist es jedoch empfehlenswert, auf Nitrit als Beschleuniger zu verzich¬ ten. Für die Phosphatierung verzinkter Oberflächen ist dies auch aus technischen Gründen rat¬ sam, da sich aus Nitrit Nitrat bilden kann, was, wie vorstehend erläutert, zum Problem der Stippenbildung und zu verringerter Lackhaftung auf Zink führen kann.The use of nitrite as an accelerator leads to technically satisfactory results, especially on steel surfaces. For reasons of occupational safety (risk of developing nitrous gases), however, it is recommended not to use nitrite as an accelerator. For phosphating galvanized surfaces, this is also advisable for technical reasons, since nitrite can form from nitrite. which, as explained above, can lead to the problem of speck formation and to reduced paint adhesion on zinc.
Aus Gründen der Umweltfreundlichkeit ist Wasserstoffperoxid, aus den technischen Gründen der vereinfachten Formulierungsmöglichkeiten für Nachdosierlösungen ist Hydroxylamin als Beschleuniger besonders bevorzugt. Die gemeinsame Verwendung dieser beiden Beschleuni¬ ger ist jedoch nicht ratsam, da Hydroxylamin von Wasserstoffperoxid zersetzt wird. Setzt man Wasserstoffperoxid in freier oder gebundener Form als Beschleuniger ein, so sind Konzentra¬ tionen von 0,005 bis 0,02 g/l Wasserstoffperoxid besonders bevorzugt. Dabei kann das Was¬ serstoffperoxid der Phosphatierlösung als solches zugegeben werden. Es ist jedoch auch mög¬ lich, Wasserstoffperoxid in gebundener Form als Verbindungen einzusetzen, die im Phospha¬ tierbad durch Hydrolysereaktionen Wasserstoffperoxid liefern. Beispiele solcher Verbindun¬ gen sind Persalze wie Perborate, Percarbonate, Peroxosulfate oder Peroxodisulfate. Als weite¬ re Quellen für Wasserstoffperoxid kommen ionische Peroxide wie beispielsweise Alkalime- tallperoxide in Betracht. Eine bevorzugte Ausführungsform der Erfindung besteht darin, daß bei der Phosphatierung im Tauchverfahren eine Kombination aus Chlorationen und Wasser¬ stoffperoxid eingesetzt wird. In dieser Ausführungsform kann die Konzentration an Chlorat beispielsweise im Bereich von 2 bis 4 g/l, die Konzentration von Wasserstoffperoxid im Be¬ reich von 10 bis 50 ppm liegen.Hydrogen peroxide is preferred for reasons of environmental friendliness, and hydroxylamine is particularly preferred as an accelerator for technical reasons because of the simplified formulation options for replenishing solutions. However, it is not advisable to use these two accelerators together, since hydroxylamine is decomposed by hydrogen peroxide. If hydrogen peroxide is used as accelerator in free or bound form, concentrations of 0.005 to 0.02 g / l hydrogen peroxide are particularly preferred. The hydrogen peroxide can be added to the phosphating solution as such. However, it is also possible to use hydrogen peroxide in bound form as compounds which give hydrogen peroxide in the phosphate bath by hydrolysis reactions. Examples of such compounds are persalts such as perborates, percarbonates, peroxosulfates or peroxodisulfates. Ionic peroxides such as, for example, alkali metals, are further sources of hydrogen peroxide. tall peroxides into consideration. A preferred embodiment of the invention is that a combination of chlorate ions and hydrogen peroxide is used in the phosphating in the immersion process. In this embodiment, the concentration of chlorate can be, for example, in the range from 2 to 4 g / l, the concentration of hydrogen peroxide in the range from 10 to 50 ppm.
Die Verwendung reduzierender Zucker als Beschleuniger ist aus der US-A-5 378 292 be¬ kannt. Sie können im Rahmen der vorliegenden Erfindung in Mengen zwischen etwa 0,01 und etwa 10 g/l, bevorzugt in Mengen zwischen etwa 0,5 und etwa 2,5 g/l eingesetzt werden. Bei¬ spiele derartiger Zucker sind Galaktose, Mannose und insbesondere Glucose (Dextrose).The use of reducing sugar as an accelerator is known from US Pat. No. 5,378,292. In the context of the present invention, they can be used in amounts between about 0.01 and about 10 g / l, preferably in amounts between about 0.5 and about 2.5 g / l. Examples of such sugars are galactose, mannose and in particular glucose (dextrose).
Eine weitere bevorzugte Ausführungsform der Erfindung besteht darin, als Beschleuniger Hydroxylamin zu verwenden. Hydroxylamin kann als freie Base, als Hydroxylaminkomplex, als Oxim, das ein Kondensationsprodukt von Hydroxylamin mit einem Keton darstellt, oder in Form von Hydroxylammoniumsalzen eingesetzt werden. Fügt man freies Hydroxylamin dem Phosphatierbad oder einem Phosphatierbad-Konzentrat zu, wird es aufgrund des sauren Charakters dieser Lösungen weitgehend als Hydroxylammonium-Kation vorliegen. Bei einer Verwendung als Hydroxylammonium-Salz sind die Sulfate sowie die Phosphate besonders geeignet. Im Falle der Phosphate sind aufgrund der besseren Löslichkeit die sauren Salze be¬ vorzugt. Hydroxylamin oder seine Verbindungen werden dem Phosphatierbad in solchen Mengen zugesetzt, daß die rechnerische Konzentration des freien Hydroxyiamins zwischen 0.1 und 10 g/l, vorzugsweise zwischen 0,3 und 5 g/l liegt. Dabei ist es bevorzugt, daß die Phosphatierbäder als einzigen Beschleuniger Hydroxylamin, allenfalls zusammen mit maxi¬ mal 0,5 g/l Nitrat, enthalten. Demnach werden in einer bevorzugten Ausführungsform Phos¬ phatierbäder eingesetzt, die keine der sonstigen bekannten Beschleuniger wie beispielsweise Nitrit, Oxoanionen von Halogenen, Peroxide oder Nitrobenzolsulfonat enthalten. Als positiver Nebeneffekt verringern Hydroxylamin-Konzentrationen oberhalb von etwa 1 ,5 g/l die Gefahr einer Rostbildung an ungenügend umfluteten Stellen der zu phosphatierenden Bauteile.Another preferred embodiment of the invention is to use hydroxylamine as an accelerator. Hydroxylamine can be used as a free base, as a hydroxylamine complex, as an oxime, which is a condensation product of hydroxylamine with a ketone, or in the form of hydroxylammonium salts. If free hydroxylamine is added to the phosphating bath or a phosphating bath concentrate, it will largely exist as a hydroxylammonium cation due to the acidic nature of these solutions. When used as a hydroxylammonium salt, the sulfates and the phosphates are particularly suitable. In the case of the phosphates, the acid salts are preferred because of their better solubility. Hydroxylamine or its compounds are added to the phosphating bath in amounts such that the calculated concentration of the free hydroxyamine is between 0.1 and 10 g / l, preferably between 0.3 and 5 g / l. It is preferred that the phosphating baths contain hydroxylamine as the only accelerator, at most together with a maximum of 0.5 g / l nitrate. Accordingly, in a preferred embodiment, phosphating baths are used which do not contain any of the other known accelerators such as, for example, nitrite, oxo anions of halogens, peroxides or nitrobenzenesulfonate. As a positive side effect, hydroxylamine concentrations above approximately 1.5 g / l reduce the risk of rust formation in insufficiently flooded areas of the components to be phosphated.
In der Praxis hat es sich gezeigt, daß der Beschleuniger Hydroxylamin auch dann langsam inaktiviert werden kann, wenn in das Phosphatierbad keine zu phosphatierenden Metallteile eingebracht werden. Es hat sich überraschend gezeigt, daß die Inaktivierung des Hy- droxylamins deutlich verlangsamt werden kann, wenn man dem Phosphatierbad zusätzlich eine oder mehrere aliphatische Hydroxy- oder Aminocarbonsäuren mit 2 bis 6 Kohlenstoffa¬ tomen in einer Gesamtmenge von 0,01 bis 1,5 g/l zusetzt. Dabei sind die Carbonsäuren vor¬ zugsweise ausgewählt aus Glycin, Milchsäure, Giuconsäure, Tartronsäure, Äpfelsäure, Wein¬ säure und Citronensäure. wobei Citronensäure, Milchsäure und Glycin besonders bevorzugt sind.In practice, it has been found that the hydroxylamine accelerator can be slowly inactivated even if no metal parts to be phosphated are introduced into the phosphating bath. It has surprisingly been found that the inactivation of the hy droxylamine can be significantly slowed down if one or more aliphatic hydroxy or aminocarboxylic acids with 2 to 6 carbon atoms in a total amount of 0.01 to 1.5 g / l are added to the phosphating bath. The carboxylic acids are preferably selected from glycine, lactic acid, giuconic acid, tartronic acid, malic acid, tartaric acid and citric acid. citric acid, lactic acid and glycine are particularly preferred.
Bei der Anwendung des Phosphatierverfahrens auf Stahloberflächen geht Eisen in Form von Eisen(II)-Ionen in Lösung. Falls die erfindungsgemäßen Phosphatierbäder keine Substanzen enthalten, die gegenüber Eisen(II) oxidierend wirken, geht das zweiwertige Eisen lediglich in Folge von Luftoxidation in den dreiwertigen Zustand über, so daß es als Eisen(III)-Phosphat ausfallen kann. Dies ist beispielsweise bei der Verwendung von Hydroxylamin der Fall. Da¬ her können sich in den Phosphatierbädern Eisen(II)-Gehalte aufbauen, die deutlich über den Gehalten liegen, die Oxidationsmittel-haltige Bäder enthalten. In diesem Sinne sind Eisen(II)- Konzentrationen bis zu 50 ppm normal, wobei kurzfristig im Produktionsablauf auch Werte bis zu 500 ppm auftreten können. Für das erfindungsgemäße Phosphatierverfahren sind solche Eisen(II)-Konzentrationen nicht schädlich. Bei Ansatz in hartem Wasser können die Phospha¬ tierbäder weiterhin die Härtebildner-Kationen Mg(II) und Ca(II) in einer Gesamtkonzentration von bis zu 7 mmol/1 enthalten. Mg(II) oder Ca(II) können dem Phosphatierbad auch in Men¬ gen bis zu 2,5 g/l zugesetzt werden.When the phosphating process is used on steel surfaces, iron dissolves in the form of iron (II) ions. If the phosphating baths according to the invention do not contain any substances which have an oxidizing effect on iron (II), the divalent iron only changes to the trivalent state as a result of air oxidation, so that it can precipitate out as iron (III) phosphate. This is the case, for example, when using hydroxylamine. As a result, iron (II) contents can be built up in the phosphating baths which are significantly higher than the contents which contain baths containing oxidizing agents. In this sense, iron (II) concentrations of up to 50 ppm are normal, although values of up to 500 ppm can also appear briefly in the production process. Such iron (II) concentrations are not detrimental to the phosphating process according to the invention. When prepared in hard water, the phosphate baths may further contain the hardness-forming cations Mg (II) and Ca (II) in a total concentration of up to 7 mmol / 1. Mg (II) or Ca (II) can also be added to the phosphating bath in amounts of up to 2.5 g / l.
Das Gewichtsverhältnis Phosphationen zu Zinkionen in den Phosphatierbädern kann in weiten Grenzen schwanken, sofern es im Bereich zwischen 3,7 und 30 liegt. Ein Gewichtsverhältnis zwischen 10 und 20 ist besonders bevorzugt. Für die Angabe der Phosphatkonzentration wird der gesamte Phosphorgehalt des Phosphatierbades als in Form von Phosphationen PO43. vor¬ liegend angesehen. Demnach wird bei der Berechnung des Mengenverhältnisses die bekannte Tatsache außer acht gelassen, daß bei den pH-Werten der Phosphatierbäder, die üblicherweise im Bereich von etwa 3 bis etwa 3,6 liegen, nur ein sehr geringer Teil des Phosphats tatsäch¬ lich in Form der dreifach negativ geladenen Anionen vorliegt. Bei diesen pH-Werten ist viel¬ mehr zu erwarten, daß das Phosphat vornehmlich als einfach negativ geladenes Dihydrogen- phosphat-Anion vorliegt, zusammen mit geringeren Mengen an undissoziierter Phosphorsäure und an zweifach negativ geladenen Hydrogenphosphat-Anionen. Phosphatierbäder werden üblicherweise in Form von wäßrigen Konzentraten vertrieben, die vor Ort durch Zugabe von Wasser auf die Anwendungskonzentrationen eingestellt werden. Aus Stabilitätsgründen können diese Konzentrate einen Überschuß an freier Phosphorsäure enthalten, so daß beim Verdünnen auf Badkonzentration der Wert der freien Säure zunächst zu hoch bzw. der pH- Wert zu niedrig liegt. Durch Zugabe von Alkalien wie Natriumhydroxid, Natriumcarbonat oder Ammoniak wird der Wert der freien Säure auf den erwünschten Be¬ reich abgesenkt. Weiterhin ist es bekannt, daß der Gehalt an freier Säure während des Ge¬ brauchs der Phosphatierbäder durch den Verbrauch der schichtbildenden Kationen und gege¬ benenfalls durch Zersetzungsreaktionen des Beschleunigers mit der Zeit ansteigen kann. In diesen Fällen ist es erforderlich, den Wert der freien Säure durch Alkalienzugabe von Zeit zu Zeit auf den erwünschten Bereich wieder einzustellen. Dies bedeutet, daß die Gehalte der Phosphatierbäder an Alkalimetall- oder Ammoniumionen in weiten Grenzen schwanken kön¬ nen und im Laufe der Gebrauchsdauer der Phosphatierbäder durch das Abstumpfen der freien Säure tendenziell ansteigen. Das Gewichtsverhältnis von Alkalimetall- und/oder Ammoniu¬ mionen zu beispielsweise Zinkionen kann demnach bei frisch angesetzten Phosphatierbädern sehr niedrig liegen, beispielsweise < 0,5 sein und im Extremfall sogar 0 betragen, während es mit der Zeit durch Badpflegemaßnahmen üblicherweise ansteigt, so daß das Verhältnis > 1 werden und Werte bis zu 10 und größer annehmen kann. Niedrigzink-Phosphatierbäder erfor¬ dern in der Regel Zusätze von Alkalimetall- oder Ammoniumionen, um bei dem erwünschten Gewichtsverhältnis PO43. : Zn > 8 die freie Säure auf den Sollwert-Bereich einstellen zu können. Analoge Betrachtungen lassen sich auch über die Mengenverhältnisse von Alkalime¬ tall- und/oder Ammoniumionen zu anderen Badbestandteilen, beispielsweise zu Phosphatio¬ nen, anstellen.The weight ratio of phosphate ions to zinc ions in the phosphating baths can vary within a wide range, provided it is in the range between 3.7 and 30. A weight ratio between 10 and 20 is particularly preferred. To indicate the phosphate concentration, the total phosphorus content of the phosphating bath is considered to be PO43 in the form of phosphate ions. viewed here. Accordingly, the known fact that the pH values of the phosphating baths, which are usually in the range from about 3 to about 3.6, only a very small part of the phosphate is actually in the form of the triple negatively charged anions. At these pH values, it is rather to be expected that the phosphate is present primarily as a single negatively charged dihydrogen phosphate anion, together with smaller amounts of undissociated phosphoric acid and double negatively charged hydrogen phosphate anions. Phosphating baths are usually sold in the form of aqueous concentrates which are adjusted to the application concentrations on site by adding water. For reasons of stability, these concentrates can contain an excess of free phosphoric acid, so that when diluted to a bath concentration, the value of the free acid is initially too high or the pH is too low. By adding alkalis such as sodium hydroxide, sodium carbonate or ammonia, the value of the free acid is reduced to the desired range. Furthermore, it is known that the free acid content during use of the phosphating baths can increase over time due to the consumption of the layer-forming cations and, if appropriate, through decomposition reactions of the accelerator. In these cases it is necessary to readjust the value of the free acid to the desired range from time to time by adding alkalis. This means that the levels of alkali metal or ammonium ions in the phosphating baths can fluctuate within wide limits and tend to increase over the course of the service life of the phosphating baths due to the bluntness of the free acid. The weight ratio of alkali metal and / or ammonium ions to zinc ions, for example, can therefore be very low in freshly prepared phosphating baths, for example <0.5 and in extreme cases even 0, while it usually increases over time as a result of bath maintenance measures, so that this Ratio> 1 and can assume values up to 10 and larger. Low-zinc phosphating baths generally require additions of alkali metal or ammonium ions in order to obtain the desired PO43 weight ratio. : Zn> 8 to be able to set the free acid to the setpoint range. Analogous considerations can also be made about the quantitative ratios of alkali metal and / or ammonium ions to other bath components, for example to phosphations.
Bei Lithium-haltigen Phosphatierbädern vermeidet man vorzugsweise die Verwendung von Natriumverbindungen zum Einstellen der freien Säure, da durch zu hohe Natriumkonzentra¬ tionen die günstige Wirkung von Lithium auf den Korrosionsschutz unterdrückt wird. In die¬ sem Falle verwendet man zur Einstellung der freien Säure vorzugsweise basische Lithium¬ verbindungen. Hilfsweise sind auch Kaliumverbindungen geeignet.In the case of lithium-containing phosphating baths, the use of sodium compounds to adjust the free acid is preferably avoided since excess sodium concentrations suppress the favorable effect of lithium on the corrosion protection. In this case, basic lithium compounds are preferably used to adjust the free acid. In the alternative, potassium compounds are also suitable.
Prinzipiell ist es gleichgültig in welcher Form die schichtbildenden oder schichtbeeinflussen¬ den Kationen in die Phosphatierbäder eingebracht werden. Nitrate sind jedoch zu vermeiden, um die bevorzugte Obergrenze des Nitratgehalts nicht zu überschreiten. Vorzugsweise setzt man die Metallionen in Form solcher Verbindungen ein, die keine Fremdionen in die Phos¬ phatierlösung eintragen. Daher ist es am günstigsten, die Metalle in Form ihrer Oxide oder ihrer Carbonate einzusetzen. Lithium kann auch als Sulfat, Kupfer vorzugsweise als Acetat eingesetzt werden.In principle, it does not matter in what form the layer-forming or layer-influencing cations are introduced into the phosphating baths. However, nitrates should be avoided in order not to exceed the preferred upper limit of the nitrate content. The metal ions are preferably used in the form of those compounds which do not introduce any foreign ions into the phosphating solution. Therefore, it is most convenient to use the metals in the form of their oxides or their carbonates. Lithium can also be used as sulfate, copper preferably as acetate.
Erfindungsgemäße Phosphatierbäder sind geeignet zur Phosphatierung von Oberflächen aus Stahl, verzinktem oder legierungsverzinktem Stahl, Aluminium, aluminiertem oder legierung- saluminiertem Stahl. Der Begriff "Aluminium" schließt dabei die technisch üblichen Alumi¬ niumlegierungen wie beispielsweise AlMgO,5Sil,4 mit ein. Die genannten Materialien kön¬ nen - wie es im Automobilbau zunehmend üblich wird - auch nebeneinander vorliegen.Phosphating baths according to the invention are suitable for phosphating surfaces made of steel, galvanized or alloy-galvanized steel, aluminum, aluminized or alloy-aluminized steel. The term "aluminum" includes the technically customary aluminum alloys such as AlMgO, 5Sil, 4. The materials mentioned can also be present side by side, as is becoming increasingly common in automobile construction.
Dabei können Teile der Karosserie auch aus bereits vorbehandeltem Material bestehen, wie es beispielsweise nach dem Bonazink - Verfahren entsteht. Hierbei wird das Grundmaterial zu¬ nächst chromatiert oder phosphatiert und anschließend mit einem organischen Harz beschich¬ tet. Das erfindungsgemäße Phosphatierverfahren führt dann zu einer Phosphatierung an Schadstellen dieser Vorbehandlungsschicht oder an unbehandelten Rückseiten.Parts of the body can also consist of material that has already been pretreated, such as is produced using the Bonazink process. The base material is first chromated or phosphated and then coated with an organic resin. The phosphating process according to the invention then leads to phosphating on damaged areas of this pretreatment layer or on untreated rear sides.
Das Verfahren ist für die Anwendung im Tauch-, Spritz- oder Spritz/Tauchverfahren geeignet. Es kann insbesondere im Automobilbau eingesetzt werden, wo Behandlungszeiten zwischen 1 und 8 Minuten, insbesondere 2 bis 5 Minuten, üblich sind. Der Einsatz bei der Bandphospha- tierung im Stahlwerk, wobei die Behandlungszeiten zwischen 3 und 12 Sekunden liegen, ist jedoch ebenfalls möglich. Bei der Verwendung in Bandphosphatierverfahren ist es empfeh¬ lenswert, die Badkonzentrationen jeweils in der oberen Hälfte der erfindungsgemäß bevorzug¬ ten Bereiche einzustellen. Beispielsweise kann der Zinkgehalt im Bereich von 1 ,5 bis 2,5 g/l und der Gehalt von freier Säure im Bereich von 1,5 bis 2,5 Punkten liegen. Als Substrat für die Bandphosphatierung eignet sich besonders verzinkter Stahl, insbesondere elektrolytisch verzinkter Stahl.The process is suitable for use in immersion, spray or spray / immersion processes. It can be used in particular in automobile construction, where treatment times between 1 and 8 minutes, in particular 2 to 5 minutes, are common. However, it can also be used for strip phosphating in the steel mill, with treatment times between 3 and 12 seconds. When used in tape phosphating processes, it is advisable to set the bath concentrations in the upper half of the ranges preferred according to the invention. For example, the zinc content can range from 1.5 to 2.5 g / l and the free acid content can range from 1.5 to 2.5 points. A particularly suitable substrate for strip phosphating is galvanized steel, in particular electrolytically galvanized steel.
Wie bei anderen Phosphatierbädern des Standes der Technik ebenfalls üblich, liegen die ge¬ eigneten Badtemperaturen unabhängig vom Anwendungsgebiet zwischen 30 und 70 °C, wo¬ bei der Temperaturbereich zwischen 45 und 60 °C bevorzugt wird.As is also common with other phosphating baths of the prior art, the suitable bath temperatures are between 30 and 70 ° C., regardless of the field of application, with the temperature range between 45 and 60 ° C. being preferred.
Das erfindungsgemäße Phosphatierverfahren ist insbesondere zur Behandlung der genannten Metalloberflächen vor einer Lackierung, beispielsweise vor einer kathodischen Elektrot¬ auchlackierung gedacht, wie sie im Automobilbau üblich ist. Es eignet sich weiterhin als Vor¬ behandlung vor einer Pulverlackienmg, wie sie beispielsweise für Haushaltsgeräte eingesetzt wird. Das Phosphatierverfahren ist als Teilschritt der technisch üblichen Vorbehandlungskette zu sehen. In dieser Kette sind der Phosphatierung üblicherweise die Schritte Reini¬ gen/Entfetten, Zwischenspülen und Aktivieren vorgeschaltet, wobei die Aktivierung übli¬ cherweise mit Titanphosphat-haltigen Aktiviermitteln erfolgt. Der erfindungsgemäßen Phos¬ phatierung kann, mit oder ohne Zwischenspülung, gegebenenfalls eine passivierende Nach¬ behandlung folgen. Für eine solche passivierende Nachbehandlung sind chromsäure-haltige Behandlungsbäder weit verbreitet. Aus Gründen des Arbeits- und Umweltschutzes sowie aus Entsorgungsgründen besteht jedoch die Tendenz, diese chromhaltigen Passivierbäder durch chromfreie Behandlungsbäder zu ersetzen. Hierfür sind rein anorganische Badlösungen, ins¬ besondere auf der Basis von Zirkonverbindungen, oder auch organisch-reaktive Badlösungen, beispielsweise auf Basis von Poly(vinylphenolen), bekannt. Aus der deutschen Patentanmel¬ dung mit dem Aktenzeichen 195 1 1 573.2 ist bekannt, bestimmten Phosphatierverfahren eine passivierende Nachspülung mit einer wäßrigen Lösung mit einem pH- Wert im Bereich von etwa 3 bis etwa 7 nachfolgen zu lassen, die 0,001 bis 10 g/l eines oder mehrerer der folgenden Kationen enthält: Lithiumionen, Kupferionen und/oder Silberionen. Eine derartige Nachspü¬ lung eignet sich auch zur Verbesserung des Korrosionsschutzes des erfindungsgemäßen Phos- phatierverfahrens. Vorzugsweise setzt man hierfür eine wäßrige Lösung ein, die 0,002 bis 1 g/I Kupferionen enthält. Dabei wird das Kupfer vorzugsweise als Acetat eingesetzt. Besonders bevorzugt ist eine derartige Nachspül lösung, die einen pH-Wert im Bereich von 3,4 bis 6 und eine Temperatur im Bereich von 20 bis 50 °C aufweist.The phosphating process according to the invention is intended in particular for the treatment of the metal surfaces mentioned before painting, for example before cathodic electrical painting, as is customary in automobile construction. It is also suitable as a pretreatment before a powder coating, such as that used for household appliances. The phosphating process is part of the technically usual pretreatment chain to see. In this chain, the steps of cleaning / degreasing, rinsing and activating are usually preceded by the phosphating, the activation usually being carried out with titanium phosphate-containing activating agents. The phosphating according to the invention can, with or without intermediate rinsing, optionally be followed by a passivating aftertreatment. Treatment baths containing chromic acid are widely used for such a passivating aftertreatment. For reasons of work and environmental protection and for disposal reasons, however, there is a tendency to replace these chromium-containing passivation baths with chromium-free treatment baths. Purely inorganic bath solutions, in particular based on zirconium compounds, or also organic reactive bath solutions, for example based on poly (vinylphenols), are known for this. From the German patent application with the file number 195 1 1 573.2 it is known that certain phosphating processes are followed by a passivating rinsing with an aqueous solution with a pH in the range from about 3 to about 7, which is 0.001 to 10 g / l of a or contains more of the following cations: lithium ions, copper ions and / or silver ions. Such rinsing is also suitable for improving the corrosion protection of the phosphating process according to the invention. For this purpose, an aqueous solution is preferably used which contains 0.002 to 1 g / l of copper ions. The copper is preferably used as acetate. Such a rinse solution is particularly preferred which has a pH in the range from 3.4 to 6 and a temperature in the range from 20 to 50.degree.
Zwischen dieser Nachpassivierung und der sich üblicherweise anschließenden Lackierung wird in der Regel eine Zwischenspülung mit vollentsalztem Wasser durchgeführt.An intermediate rinse with deionized water is usually carried out between this post-passivation and the subsequent coating.
A ttsführungsheispieleExecution examples
Die erfindungsgemäßen Phosphatierverfahren sowie Vergleichsverfahren wurden an Stahlble¬ chen ST 1405 sowie an elektrolytisch verzinkten Stahlblechen, wie sie im Automobilbau Ver¬ wendung finden, überprüft. Dabei wurde folgender, in der Karosseriefertigung üblicher, Ver¬ fahrensgang als Tauchverfahren ausgeführt:The phosphating processes and comparative processes according to the invention were checked on ST 1405 steel sheets and on electrolytically galvanized steel sheets, as are used in automobile construction. The following process step, customary in body production, was carried out as a dipping process:
1. Reinigen mit einem alkalischen Reiniger (Ridoline^ 1501, Henkel KGaA), Ansatz 2 % in Stadtwasser, 55 °C, 4 Minuten. 2. Spülen mit Stadtwasser, Raumtemperatur. 1 Minute.1. Clean with an alkaline cleaner (Ridoline ^ 1501, Henkel KGaA), mix 2% in city water, 55 ° C, 4 minutes. 2. Rinse with city water, room temperature. 1 minute.
3. Aktivieren mit einem Titanphosphat-haltigen Aktiviermittel (Fixodine^- 950, Henkel KGaA), Ansatz 0,1 % in vollentsalztem Wasser, Raumtemperatur, 1 Minute.3. Activation with an activating agent containing titanium phosphate (Fixodine ^ - 950, Henkel KGaA), approach 0.1% in deionized water, room temperature, 1 minute.
4. Phosphatieren mit Phosphatierbädern gemäß Tabelle 1 , 4 Minuten, Temperatur 55 °C. Außer den in Tabelle 1 genannten Kationen enthielten die nitratfreien Phosphatierbäder 0,1 g/l Eisen (II) und erforderlichenfalls Natriumionen zum Einstellen der freien Säure. Li-haltige Phosphatierbäder enthielten kein Natrium. Alle Bäder enthielten 0,95 g/l SiF6- und 0,2 g/l F' sowie als Beschleuniger 1 ,7 g/l Hydroxylammoniumsulfat.4. Phosphating with phosphating baths according to Table 1, 4 minutes, temperature 55 ° C. In addition to the cations listed in Table 1, the nitrate-free phosphating baths contained 0.1 g / l of iron (II) and, if necessary, sodium ions to adjust the free acid. Li-containing phosphating baths did not contain sodium. All baths contained 0.95 g / l SiF 6 - and 0.2 g / l F ' as well as 1.7 g / l hydroxylammonium sulfate as accelerator.
Die Punktzahl der freien Säure betrug 1,0 - 1,1, der Gesamtsäure 23-25. Unter Punktzahl der freien Säure wird der Verbrauch in ml an 0,1 -normaler Natronlauge verstanden, um 10 ml Badlösung bis zu einem pH- Wert von 3,6 zu titrieren. Analog gibt die Punktzahl der Gesamtsäure den Verbrauch in ml bis zu einem pH-Wert von 8,2 an.The free acid score was 1.0-1.1, the total acid 23-25. The free acid score is understood to mean the consumption in ml of 0.1 normal sodium hydroxide solution in order to titrate 10 ml of bath solution up to a pH of 3.6. Similarly, the total acid score indicates consumption in ml up to a pH of 8.2.
5. Spülen mit Stadtwasser, Raumtemperatur, 1 Minute.5. Rinse with city water, room temperature, 1 minute.
6. Nachpassivieren mit einem chromfreien Nachpassivierungsmittel auf Basis komplexer Zirkonfluoride (Deoxylyte^ 54 NC, Henkel KGaA) 0.25 %-ig in vollentsalztem Wasser, pH 4,0, Temperatur 40 °C, 1 Minute.6. Post-passivation with a chrome-free post-passivation agent based on complex zirconium fluoride (Deoxylyte ^ 54 NC, Henkel KGaA) 0.25% in deionized water, pH 4.0, temperature 40 ° C, 1 minute.
7. Spülen mit vollentsalztem Wasser.7. Rinse with deionized water.
8. Trockenblasen mit Preßluft8. Blow dry with compressed air
Die flächenbezogene Masse ("Schichtgewicht") wurde durch Ablösen in 5 %-iger Chromsäu¬ relösung bestimmt gemäß DIN 50942. Sie lag im Bereich 2,5 - 4,5 g/mThe mass per unit area (“layer weight”) was determined by dissolving in 5% chromic acid solution in accordance with DIN 50942. It was in the range 2.5-4.5 g / m 2
Die phosphatierten Prüfbleche wurden mit einem kathodischen Tauchlack der Firma BASF (FT 85-7042) beschichtet. Die Korrosionsschutzwirkung für elektrolytisch verzinkten Stahl wurde in einem Wechselklimatest nach VDA 621-415 über 5 Runden getestet. Als Ergebnis ist die Lackunterwanderung am Ritz (halbe Ritzbreite) in Tabelle 1 aufgenommen. Tabelle 1 enthält ebenfalls als "K- Werte" die Ergebnisse eines Steinschlagtests nach VW-Norm (je klei¬ ner K, desto besser die Lackhaftung).The phosphated test panels were coated with a cathodic dip coating from BASF (FT 85-7042). The corrosion protection effect for electrolytically galvanized steel was tested in an alternating climate test according to VDA 621-415 over 5 laps. As a result, the paint infiltration at the scratch (half scratch width) is shown in Table 1. Table 1 also contains the results of a stone chip test according to the VW standard as "K values" (the smaller K, the better the paint adhesion).
Der Korrosionsschutz für Stahlbleche wurden mit einem Salzsprühtest nach DIN 50021 ( 1008 Stunden) geprüft. Tabelle 1 enthält die Lackunterwanderung am Ritz (halbe Ritzbreite). The corrosion protection for steel sheets was tested with a salt spray test according to DIN 50021 (1008 hours). Table 1 shows the paint infiltration at the Ritz (half the width of the Ritz).
Tabelle 1 : Phosphatierbäder, Nachpassivierung und Korrosionsschutzergebnisse o (Stahl: Salzsprühtest; verzinkter Stahl: Wechselklimatest)Table 1: Phosphating baths, post-passivation and corrosion protection results o (steel: salt spray test; galvanized steel: alternating climate test)
H vo δH vo δ
9 o\ 9 o \

Claims

Pa t e n t a n s p r ü c h e Patent claims
1. Verfahren zum Phosphatieren von Metalloberflächen aus Stahl, verzinktem oder legie- rungsverzinktem Stahl und/oder aus Aluminium, bei dem man die Metalloberflächen durch Spritzen oder Tauchen für eine Zeit zwischen 3 Sekunden und 8 Minuten mit einer zink¬ haltigen Phosphatierlösung in Berührung bringt, dadurch gekennzeichnet, daß die Phos¬ phatierlösung1. Process for phosphating metal surfaces made of steel, galvanized or alloy-galvanized steel and / or aluminum, in which the metal surfaces are brought into contact with a zinc-containing phosphating solution by spraying or dipping for a time between 3 seconds and 8 minutes, characterized in that the phosphating solution
0,2 bis 3 g/l Zinkionen0.2 to 3 g / l zinc ions
3 bis 50 g/I Phosphationen, berechnet als PO4,3 to 50 g / l phosphate ions, calculated as PO 4 ,
1 bis 150 mg/l Manganionen,1 to 150 mg / l manganese ions,
1 bis 30 mg/l Kupferionen und einen oder mehrere Beschleuniger ausgewählt aus1 to 30 mg / l copper ions and one or more accelerators selected from
0.3 bis 4 g/l Chlorationen,0.3 to 4 g / l chlorate ions,
0.01 bis 0.2 g/l Nitritionen,0.01 to 0.2 g / l nitrite ions,
0,05 bis 2 g/l m-Nitrobenzolsulfonationen,0.05 to 2 g / l m-nitrobenzenesulfonate ions,
0,05 bis 2 g/l m-Nitrobenzoationen,0.05 to 2 g / l m-nitrobenzoate ions,
0,05 bis 2 g/l p-Nitrophenol,0.05 to 2 g / l p-nitrophenol,
0,005 bis 0,15 g/l Wasserstoffperoxid in freier oder gebundener Form,0.005 to 0.15 g / l hydrogen peroxide in free or bound form,
0,1 bis 10 g/I Hydroxylamin in freier oder gebundener Form,0.1 to 10 g / l hydroxylamine in free or bound form,
0, 1 bis 10 g/l eines reduzierenden Zuckers enthält.Contains 0.1 to 10 g / l of a reducing sugar.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Phosphatierlösung zusätz¬ lich! bis 50 mg/l Nickelionen und/oder 5 bis 100 mg/l Cobaltionen enthält. 2. The method according to claim 1, characterized in that the phosphating solution additional Lich! contains up to 50 mg / l nickel ions and / or 5 to 100 mg / l cobalt ions.
3. Verfahren nach einem oder beiden der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Phosphatierlösung zusätzlich 0,2 bis 1,5 g/l Lithiumionen enthält.3. The method according to one or both of claims 1 and 2, characterized in that the phosphating solution additionally contains 0.2 to 1.5 g / l of lithium ions.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Phosphatierlösung bei Anwendung im Tauchverfahren 5 bis 20 mg/l Kupferionen, bei anwendung im Spritzverfahren 2 bis 10 mg/l Kupferionen enthält.4. The method according to one or more of claims 1 to 3, characterized in that the phosphating solution contains 5 to 20 mg / l copper ions when used in the dipping process, and 2 to 10 mg / l copper ions when used in the spraying process.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Phosphatierlösung zusätzlich Fluorid in Mengen von bis zu 2,5 g/l Gesamtfluorid, da¬ von bis zu 1 g/l freies Fluorid, jeweils gerechnet als F" , enthält.5. The method according to one or more of claims 1 to 4, characterized in that the phosphating solution in addition fluoride in amounts of up to 2.5 g / l of total fluoride, da¬ up to 1 g / l of free fluoride, each calculated as F " contains.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Phosphatierlösung als Beschleuniger 5 bis 150 mg/l Wasserstoffperoxid in freier oder gebundener Form enthält.6. The method according to one or more of claims 1 to 5, characterized in that the phosphating solution as accelerator contains 5 to 150 mg / l hydrogen peroxide in free or bound form.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Phosphatierlösung als Beschleuniger 0,1 bis 10 g/l Hydroxylamin in freier oder gebun¬ dener Form enthält.7. The method according to one or more of claims 1 to 5, characterized in that the phosphating solution as an accelerator contains 0.1 to 10 g / l hydroxylamine in free or bundled form.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Phosphatierlösung zusätz¬ lich insgesamt 0,01 bis 1,5 g/l einer oder mehrerer aliphatischer Hydroxy- oder Aminocar- bonsäuren mit 2 bis 6 Kohlenstofatomen enthält.8. The method according to claim 7, characterized in that the phosphating solution additionally contains a total of 0.01 to 1.5 g / l of one or more aliphatic hydroxy or aminocarboxylic acids having 2 to 6 carbon atoms.
9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Phosphatierlösung nicht mehr als 0,5 g/l Nitrat enthält. 9. The method according to one or more of claims 1 to 8, characterized in that the phosphating solution contains no more than 0.5 g / l nitrate.
10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß nach der Behandlung der Metalloberflächen mit der Phosphatierlösung und vor der Lackie¬ rung eine passivierende Nachspülung mit einer wäßrigen Lösung mit einem pH- Wert im Bereich von 3 bis 7 erfolgt, die insgesamt 0,001 bis 10 g/l eines oder mehrerer der folgen¬ den Kationen enthält: Lithiumionen, Kupferionen und/oder Silberionen. 10. The method according to one or more of claims 1 to 9, characterized in that after the treatment of the metal surfaces with the phosphating solution and before the Lackie¬ tion, a passivating rinsing with an aqueous solution with a pH in the range from 3 to 7 takes place , which contains a total of 0.001 to 10 g / l of one or more of the following cations: lithium ions, copper ions and / or silver ions.
EP97902356A 1996-02-19 1997-02-10 Zinc phosphatizing with low quantity of copper and manganese Expired - Lifetime EP0889977B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19606017 1996-02-19
DE19606017A DE19606017A1 (en) 1996-02-19 1996-02-19 Zinc phosphating with low copper and manganese contents
PCT/EP1997/000603 WO1997030190A1 (en) 1996-02-19 1997-02-10 Zinc phosphatizing with low quantity of copper and manganese

Publications (2)

Publication Number Publication Date
EP0889977A1 true EP0889977A1 (en) 1999-01-13
EP0889977B1 EP0889977B1 (en) 2000-08-23

Family

ID=7785748

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97902356A Expired - Lifetime EP0889977B1 (en) 1996-02-19 1997-02-10 Zinc phosphatizing with low quantity of copper and manganese

Country Status (20)

Country Link
EP (1) EP0889977B1 (en)
KR (1) KR19990082154A (en)
CN (1) CN1064415C (en)
AR (1) AR005908A1 (en)
AT (1) ATE195769T1 (en)
AU (1) AU708141B2 (en)
BR (1) BR9707563A (en)
CA (1) CA2247141A1 (en)
CZ (1) CZ262498A3 (en)
DE (2) DE19606017A1 (en)
ES (1) ES2149570T3 (en)
HU (1) HUP9901001A3 (en)
ID (1) ID15964A (en)
MX (1) MX9806348A (en)
PL (1) PL327291A1 (en)
PT (1) PT889977E (en)
SK (1) SK112598A3 (en)
TR (1) TR199801606T2 (en)
WO (1) WO1997030190A1 (en)
ZA (1) ZA971375B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19700326A1 (en) * 1997-01-08 1998-07-09 Henkel Kgaa Stabilizers for hydroxylamine in copper-containing phosphating solutions
US6720032B1 (en) 1997-09-10 2004-04-13 Henkel Kommanditgesellschaft Auf Aktien Pretreatment before painting of composite metal structures containing aluminum portions
DE19754109A1 (en) 1997-12-05 1999-06-10 Henkel Kgaa Wastewater treatment during phosphating
KR100784819B1 (en) * 2007-01-30 2007-12-14 정세근 Surface treatment composition for aluminum and aluminum alloy
DE102010001686A1 (en) 2010-02-09 2011-08-11 Henkel AG & Co. KGaA, 40589 Composition for the alkaline passivation of zinc surfaces
ES2428290T3 (en) 2011-03-22 2013-11-06 Henkel Ag & Co. Kgaa Multi-step anticorrosive treatment for metal components, which at least partially have zinc or zinc alloy surfaces
DE102016206417A1 (en) * 2016-04-15 2017-10-19 Henkel Ag & Co. Kgaa PROMOTION TREATMENT FOR SUPPRESSING PLANT-ORIENTED PHOSPHATOR TRANSPORT IN A PROCESS FOR DIVING LACQUER
CN109612978B (en) * 2018-10-30 2022-02-25 欣旺达电子股份有限公司 Lithium ion battery electrode diaphragm lithium supplement amount detection method
CN112816399B (en) * 2020-12-30 2023-06-20 盛明 Standard sample for vehicle steel plate circulating salt spray corrosion test and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3090709A (en) * 1953-08-10 1963-05-21 Lubrizol Corp Phosphate coating of metals
IT975560B (en) * 1972-10-20 1974-08-10 Sec Accomandita Semplice Fosfa PROCEDURE FOR PHOSPHATING ON METALLIC SURFACES INTENDED FOR PAINTING ESPECIALLY FOR ELETROPHORESIS AND SOLUTION RELATING TO THIS PROCEDURE
US3895970A (en) * 1973-06-11 1975-07-22 Pennwalt Corp Sealing rinse for phosphate coatings of metal
DE4013483A1 (en) * 1990-04-27 1991-10-31 Metallgesellschaft Ag METHOD FOR PHOSPHATING METAL SURFACES
DE4210513A1 (en) * 1992-03-31 1993-10-07 Henkel Kgaa Nickel-free phosphating process
US5328526A (en) * 1992-04-03 1994-07-12 Nippon Paint Co., Ltd. Method for zinc-phosphating metal surface
DE4214992A1 (en) * 1992-05-06 1993-11-11 Henkel Kgaa Copper-containing nickel-free phosphating process
DE4232292A1 (en) * 1992-09-28 1994-03-31 Henkel Kgaa Process for phosphating galvanized steel surfaces
SG55084A1 (en) * 1992-12-22 1998-12-21 Henkel Corp Substantially nickel-free phosphate conversion coating composition and process
JPH07278891A (en) * 1994-04-12 1995-10-24 Nippon Parkerizing Co Ltd Pretreatment for coating of metal material
MX9605901A (en) * 1994-05-27 1997-12-31 Herberts & Co Gmbh Process for coating phosphatized metal substrates.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9730190A1 *

Also Published As

Publication number Publication date
HUP9901001A2 (en) 1999-07-28
TR199801606T2 (en) 1998-11-23
PL327291A1 (en) 1998-12-07
DE59702240D1 (en) 2000-09-28
ZA971375B (en) 1997-08-19
ES2149570T3 (en) 2000-11-01
CZ262498A3 (en) 1999-01-13
EP0889977B1 (en) 2000-08-23
AU1602397A (en) 1997-09-02
CN1211289A (en) 1999-03-17
AR005908A1 (en) 1999-07-21
AU708141B2 (en) 1999-07-29
HUP9901001A3 (en) 2000-04-28
PT889977E (en) 2001-01-31
CA2247141A1 (en) 1997-08-21
WO1997030190A1 (en) 1997-08-21
KR19990082154A (en) 1999-11-15
SK112598A3 (en) 1999-01-11
ATE195769T1 (en) 2000-09-15
ID15964A (en) 1997-08-21
MX9806348A (en) 1998-10-31
CN1064415C (en) 2001-04-11
BR9707563A (en) 1999-07-27
DE19606017A1 (en) 1997-08-21

Similar Documents

Publication Publication Date Title
EP0817872B1 (en) Phosphating process with a metalliferous re-rinsing stage
EP0958402A1 (en) Zinc phosphating with integrated subsequent passivation
EP0717787B1 (en) Nickel-free phosphatization process
EP1114202A1 (en) Method for phosphatizing, rerinsing and cathodic electro-dipcoating
EP1929070A1 (en) Phosphatising solution with hydrogen peroxide and chelating carboxylic acids
EP0889977B1 (en) Zinc phosphatizing with low quantity of copper and manganese
EP0931179B1 (en) Method for phosphating a steel band
DE19705701A1 (en) Phosphating metal surfaces for subsequent lacquering
WO2001006035A1 (en) Method for the anticorrosive treatment or post-treatment of metal surfaces
WO1997030189A1 (en) Zinc-phosphatizing method using low nickel and/or cobalt concentrations
WO2001038605A2 (en) Method for phosphatization with rinsing using a metal-containing agent
DE4330104A1 (en) Nickel- and copper-free phosphating process
WO1997014821A1 (en) Layer weight-adjustment in hydroxylamine-accelerated phosphatisation systems
WO1997016581A2 (en) Low-nitrate, manganese-free zinc phosphatization
DE4341041A1 (en) Phosphating solns contg hydroxylamine and/or nitrobenzene sulphonate
WO2001040546A1 (en) Method for phosphatation, rinsing and cathodic electrophoretic enamelling
WO1996022406A1 (en) Lithium-containing zinc phosphating solution
WO1998009000A1 (en) Ruthenium-containing zinc phosphate treatment
EP1208246A1 (en) Zinc phosphatizing using epoxides
WO2000068154A1 (en) Method for carrying out zinc phophatization with reduced quantities of nickel, with subsequent water treatment
DE19500562A1 (en) Phosphating solution
DE19716075A1 (en) Phosphating process accelerated with hydroxylamine and chlorate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980808

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT PT SE

17Q First examination report despatched

Effective date: 19990212

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT PT SE

REF Corresponds to:

Ref document number: 195769

Country of ref document: AT

Date of ref document: 20000915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59702240

Country of ref document: DE

Date of ref document: 20000928

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2149570

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20001123

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20001017

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20020205

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020206

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020212

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020213

Year of fee payment: 6

Ref country code: ES

Payment date: 20020213

Year of fee payment: 6

Ref country code: AT

Payment date: 20020213

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020227

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020418

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030210

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030211

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030902

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050210