WO1997016581A2 - Low-nitrate, manganese-free zinc phosphatization - Google Patents

Low-nitrate, manganese-free zinc phosphatization Download PDF

Info

Publication number
WO1997016581A2
WO1997016581A2 PCT/EP1996/004541 EP9604541W WO9716581A2 WO 1997016581 A2 WO1997016581 A2 WO 1997016581A2 EP 9604541 W EP9604541 W EP 9604541W WO 9716581 A2 WO9716581 A2 WO 9716581A2
Authority
WO
WIPO (PCT)
Prior art keywords
ions
phosphating
zinc
free
phosphating solution
Prior art date
Application number
PCT/EP1996/004541
Other languages
German (de)
French (fr)
Other versions
WO1997016581A3 (en
Inventor
Jan-Willem Brouwer
Jürgen Geke
Karl-Heinz Gottwald
Peter Kuhm
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to AU72960/96A priority Critical patent/AU7296096A/en
Publication of WO1997016581A2 publication Critical patent/WO1997016581A2/en
Publication of WO1997016581A3 publication Critical patent/WO1997016581A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/14Orthophosphates containing zinc cations containing also chlorate anions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/16Orthophosphates containing zinc cations containing also peroxy-compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/17Orthophosphates containing zinc cations containing also organic acids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/362Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also zinc cations

Definitions

  • the invention relates to a process for phosphating metal surfaces with aqueous, acidic phosphating solutions which contain zinc and phosphate ions and accelerators in free or bound form, and to their use as pretreatment of the metal surfaces for subsequent painting, in particular electrocoating.
  • the method can be used for the treatment of surfaces made of steel, galvanized or alloy-galvanized steel, aluminum, aluminized or alloy-aluminized steel.
  • the phosphating of metals pursues the goal of producing firmly adhered metal phosphate layers on the metal surface, which in themselves improve corrosion resistance and, in conjunction with lacquers and other organic coatings, to a substantial increase in adhesion and resistance to migration under corrosion contribute.
  • Such phosphating processes have long been known in the prior art.
  • the low-zinc phosphating processes in which the phosphating solutions are comparatively low in zinc ion contents of z. B. 0.5 to Have 2 g / 1.
  • An important parameter in these low-zinc phosphating baths is the weight ratio of phosphate ions to zinc ions, which is usually in the range> 12 and can take values up to 30.
  • phosphate layers with significantly improved corrosion protection and paint adhesion properties can be formed.
  • z. B. 0.5 to 1.5 g / 1 manganese ions and z. B. 0.3 to 2.0 g / 1 of nickel ions as a so-called trication process for preparing metal surfaces for painting, for example for the cathodic electrocoating of car bodies, widely used.
  • DE-A-39 20 296 describes a phosphating process which dispenses with nickel and uses magnesium ions in addition to zinc and manganese ions.
  • the phosphating baths described here contain, in addition to 0.2 to 10 g / 1 nitrate ions, further oxidizing agents which act as accelerators, selected from nitrite, chlorate or an organic oxidizing agent. Concerns about the accelerators nitrite and nitrate are being raised due to the possible formation of nitrous gases.
  • the phosphating process disclosed in WO 86/04931 works without nitrates.
  • the accelerator system is based on a combination of bromate and m-nitrobenzenesulfonate. Only zinc is given as the essential polyvalent cation, and nickel, manganese or cobalt is given as further optional cations.
  • the phosphating solutions preferably contain at least 2 of these optional metals.
  • DE-A-40 13 483 discloses phosphating processes with which good corrosion protection properties can be achieved as with the trication processes. These processes do without nickel and instead use copper in low concentrations, 0.001 to 0.03 g / 1.
  • Oxygen and / or other oxidizing agents having the same effect are used to oxidize the divalent iron formed in the pickling reaction of steel surfaces to the trivalent stage.
  • Nitrite, chlorate, bromate, peroxy compounds and organic nitro compounds, such as nitrobenzenesulfonate, are specified as such.
  • the German patent application DE 42 10513 modifies this process by adding hydroxylamine, its salts or complexes in an amount of 0.5 to 5 g / 1 hydroxylamine as a modifying agent for the morphology of the phosphate crystals formed.
  • EP-A-315059 specifies as a special effect of the use of hydroxylamine in phosphating baths the fact that on steel the phosphate crystals are still formed in a desired columnar or knot-like form when the zinc concentration in the phosphating bath is the same for low-zinc Ver ⁇ driving exceeds the usual range. This makes it possible to operate the phosphating baths with zinc concentrations of up to 2 g / 1 and with weight ratios of phosphate to zinc down to 3.7. No further statements are made about advantageous cation combinations of these phosphating baths, but nickel is used in all patent examples.
  • Nitrates and nitric acid are also used in the patent examples, even if the description of the presence of nitrate in large amounts is not advised in the description.
  • the required hydroxylamine concentration is given as 0.5 to 50 g / 1, preferably 1 to 10 g / 1.
  • the incorporation of nickel and manganese in the phosphate layers compensated for disadvantages with regard to paint adhesion and corrosion protection, which resulted from the fact that only hopeit crystals, but no phosphophyllite crystals, were formed on galvanized substrates.
  • This object is achieved by a method for phosphating steel, galvanized or alloy-galvanized steel and / or aluminum or its alloys by treatment with a zinc phosphating solution in the immersion, spray or spray immersion process, characterized in that the zinc phosphating solution paints a maximum Has nitrate ion content of 0.5 g / 1 and is free of manganese, nickel and cobalt ions and that they
  • the phosphating baths are free from manganese, nickel and cobalt ions means that these ions are not deliberately added to the phosphating baths.
  • phosphating metal surfaces which contain these metals as alloy components, it cannot be ruled out that small amounts of the corresponding cations may get into the phosphating baths as a result of the pickling attack. This can be the case in particular when steel coated with a zinc-nickel alloy is phosphated. In practice, however, the expectation is placed on the phosphating baths that they contain less than 0.05 g / 1 of the cations mentioned.
  • phosphating baths In addition to zinc ions, phosphating baths generally contain sodium, potassium and / or ammonium ions to adjust the free acid.
  • the term free acid is familiar to those skilled in the phosphating field. The method of determining free acid and total acid selected in this document is given in the example section.
  • the process according to the invention is preferably characterized in that the phosphating solution additionally contains one or more of the following cations:
  • the weight ratio of phosphate ions to zinc ions in the phosphate baths can vary within wide limits, provided it is in the range between 3.7 and 30. A weight ratio between 10 and 20 is particularly preferred.
  • the skilled worker is familiar with the free acid and total acid contents as further parameters for controlling phosphating baths. The method of determining these parameters used in this document is given in the example section. Values of the free acid between about 0.3 and about 1.5 points and the total acid between about 15 and about 35 points are in the technically customary range and are suitable for the purposes of this invention.
  • nitrate content of the phosphating bath When phosphating surfaces containing zinc, it has proven to be advantageous to limit the nitrate content of the phosphating bath to a maximum of 0.5 g / l. This suppresses the problem of so-called speck formation and improves corrosion protection. Phosphating baths containing less than 0.05 g / l and in particular no nitrate are particularly preferred.
  • phosphating baths which are said to be suitable for different substrates, it has become customary to add free and / or complex-bound fluoride in amounts of up to 2.5 g / 1 total fluoride, of which up to 800 mg / l free fluoride.
  • the presence of such amounts of fluoride is also advantageous for the phosphating baths according to the invention.
  • the aluminum content of the bath should not exceed 3 mg / l.
  • the concentration of the non-complexed AI does not exceed 3 mg / l.
  • Suitable accelerators are the substances listed above and known in the prior art. On the one hand, these accelerate the layer formation, since they have a “depolarizing” effect by oxidizing the elemental hydrogen which forms on the metal surface during the pickling attack to water. However, certain accelerators such as hydroxylamine can also influence the shape of the phosphate crystals that are formed. Oxidizing accelerators also lead to the fact that iron (II) ions formed on steel surfaces during the pickling reaction are oxidized to the trivalent stage, so that they precipitate out as iron (III) phosphate.
  • nitrite could also be used within the scope of the invention. However, this is less preferred since the present invention is intended to provide a phosphating process which has particularly few toxicological and disposal problems. From the point of view of occupational safety, however, nitrite is to be assessed as particularly critical, since nitrous gases which are harmful to health can be generated when it is used. Furthermore, when nitrite is used, nitrate could be formed by its oxidation, so that the low nitrate contents according to the invention would be exceeded.
  • the accelerators listed above can be used individually, but in chemical compatibility they can also be used in combination.
  • a preferred embodiment of the invention is that a combination of chlorate ions and hydrogen peroxide is used in the phosphating in the immersion process.
  • the hydrogen peroxide can 7/16581 PO7EP96 / 04541
  • the concentration of chlorate can be, for example, in the range from 2 to 4 g / l, the concentration of hydrogen peroxide in the range from 10 to 50 ppm.
  • reducing sugars as accelerators is known from US-A-5 378 292. In the context of the present invention, they can be used in amounts between about 0.01 and about 10 g / 1, preferably in amounts between about 0.5 and about 1.5 g / 1. Examples of such sugars are galactose, mannose and in particular glucose (dextrose).
  • Hydroxylamine can be used as a free base, as a hydroxylamine complex or in the form of hydroxylammonium salts. If free hydroxylamine is added to the phosphating bath or a phosphating bath concentrate, it will largely be present as a hydroxylammonium cation due to the acidic nature of these solutions.
  • the sulfates and the phosphates are particularly suitable. In the case of the phosphates, the acid salts are preferred because of their better solubility.
  • Hydroxylamine or its compounds are added to the phosphating bath in amounts such that the calculated concentration of the free hydroxylamine is between 0.1 and 10 g / 1, preferably between 0.3 and 5 g / 1. It is preferred that the phosphating baths contain hydroxylamine as the sole accelerator, at most together with a maximum of 0.5 g / l of nitrate. Accordingly, in a preferred Embodiment phosphating baths are used which do not contain any of the other known accelerators such as nitrite, oxo anions of halogens, peroxides or nitrobenzenesulfonate.
  • the accelerator hydroxylamine can be slowly inactivated even if no metal parts to be phosphated are introduced into the phosphating bath. It has surprisingly been found that the inactivation of the hydroxylamine can be significantly slowed down if one or more aliphatic hydroxycarboxylic acids having 3 to 6 carbon atoms in a total amount of 0.5 to 1.5 g / l are added to the phosphating bath .
  • the hydroxycarboxylic acids are preferably selected from lactic acid, gluconic acid, tartronic acid, malic acid, tartaric acid and citric acid, citric acid being particularly preferred.
  • the zinc content of the phosphating bath will be set according to EP-A-315059 to values between 0.45 and 1.1 g / 1.
  • the current zinc content of the working bath is above a value of 1.1 g / l.
  • Zinc levels up to 2 g / l are harmless in the context of the present invention.
  • zinc contents of up to 2 g / l can also reduce the risk of rust formation during phosphating.
  • the form in which the cations are introduced into the phosphating baths is in principle irrelevant. It is particularly useful to use oxides and / or carbonates as the cation source.
  • iron (II) ions When the phosphating process is used on steel surfaces, iron dissolves in the form of iron (II) ions. Since the phosphating baths according to the invention preferably do not contain any substances contain that have an oxidizing effect on iron (II), the divalent iron only changes into the trivalent state as a result of air oxidation, so that it can precipitate out as iron (III) phosphate. Therefore, iron (II) contents can be built up in the phosphate baths according to the invention which are clearly above the contents which contain baths containing oxidizing agents. In this sense, iron (II) concentrations of up to 50 ppm are normal, although values of up to 500 ppm can also occur briefly in the production process.
  • the phosphating baths can further contain the hardness-forming cations Mg (II) and Ca (II) in a total concentration of up to 7 mmol / l.
  • Mg (II) or Ca (II) can also be added to the phosphate bath in amounts of up to 2.5 g / l.
  • a phosphate solution is used which is the only one containing cations with an actual or potential oxidation state of> 1 zinc and copper ions.
  • Zinc and copper ions will generally be present in oxidation level 2 in the phosphate solution.
  • accelerators with a principally reducing action such as, for example, hydroxylamine, can at least partially reduce the copper ions to the monovalent stage.
  • this preferred phosphating solution can also contain sodium, potassium and / or ammonium ions, which, as usual, can be used in the form of their basic compounds to adjust the free acidity of the phosphating solution.
  • the phosphating solution contains 3 to 20 mg / l copper ions when used in the dipping process and 1 to 10 mg / l copper ions when used in the spraying process.
  • the temperature of the phosphating solution is preferably in the range between about 40 and about 60 ° C. It has emerged as a positive side effect of the phosphating process according to the invention that hydroxylamine concentrations above approximately 1.5 g / l significantly reduce the risk of rust formation at insufficiently flooded areas of the components to be phosphated.
  • the method according to the invention is suitable for phosphating surfaces made of steel, galvanized or alloy-galvanized steel, aluminum, aluminized or alloy-aluminized steel.
  • the materials mentioned can also be present side by side, as is becoming increasingly common in automobile construction.
  • Parts of the bodywork can also consist of material that has already been pretreated, such as is produced using the Bonazink R process.
  • the base material is first chromated or phosphated and then coated with an organic resin.
  • the phosphating process according to the invention then leads to phosphating on damaged areas of this pretreatment layer or on untreated rear sides.
  • the method can be used in particular in automotive engineering, where treatment times between 1 and 8 minutes are common. It is intended in particular for the treatment of the metal surfaces mentioned before painting, in particular before cathodic electrocoating, as is customary in automobile construction.
  • the phosphating process is to be seen as a sub-step of the technically usual pretreatment chain. In this chain, the steps of cleaning / degreasing, rinsing and activating are usually preceded by the phosphating, the activation usually being carried out using activating agents containing titanium phosphate.
  • the phosphating according to the invention can be followed, if appropriate after an intermediate rinse, by a passivating aftertreatment. For such a passivating aftertreatment, treatment baths containing chromic acid are widespread.
  • the phosphating processes according to the invention and comparative processes were checked on electrolytically galvanized steel sheets, as are used in automobile construction.
  • the following process step, customary in body production, was carried out as an immersion process:
  • the free acid score is understood to mean the consumption in ml of 0.1 normal sodium hydroxide solution in order to titrate 10 ml of bath solution up to a pH of 3.6. Similarly, the total acid score indicates consumption in ml up to a pH of 8.5.
  • the mass per unit area was determined by dissolving in 5% chromic acid solution in accordance with DIN 50942.
  • the phosphated test sheets were coated with a cathodic dip coating from BASF (FT 85-7042).
  • the corrosion protection effect was tested in an alternating climate test according to VDA 621-415 over 10 rounds.
  • Table 1 also contains the results of a stone chip test according to the VW standard as "K values”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)

Abstract

A process is disclosed for phosphatizing steel, galvanized or alloy galvanized steel and/or aluminium or its alloys by treatment with a zinc phosphatizing solution applied in a dip, spray or spray/dip process. The process is characterized in that the zinc phosphatization solution has a maximum nitrate ion content of 0.5 g/l, is free of manganese, nickel and cobalt ions, contains 0.3-2 g/l zinc ions, 5-40 g/l phosphate ions and one or more accelerators.

Description

Nitratame, nanganfreie Zinkphosphatierung Nitrate, nangane-free zinc phosphating
Die Erfindung betrifft ein Verfahren zur Phosphatierung von Me¬ talloberflachen mit wäßrigen, sauren Phosphatierlösungen, die Zink- und Phosphationen sowie Beschleuniger in freier oder gebundener Form enthalten, sowie deren Anwendung als Vorbehandlung der Me¬ talloberflachen für eine anschließende Lackierung, insbesondere eine Elektrotauchlackierung. Das Verfahren ist anwendbar zur Be¬ handlung von Oberflächen aus Stahl, verzinktem oder legierungsverzinktem Stahl, Aluminium, aluminiertem oder legierungsaluminiertem Stahl.The invention relates to a process for phosphating metal surfaces with aqueous, acidic phosphating solutions which contain zinc and phosphate ions and accelerators in free or bound form, and to their use as pretreatment of the metal surfaces for subsequent painting, in particular electrocoating. The method can be used for the treatment of surfaces made of steel, galvanized or alloy-galvanized steel, aluminum, aluminized or alloy-aluminized steel.
Die Phosphatierung von Metallen verfolgt das Ziel, auf der Metall¬ oberfläche festverwachsene Metallphosphatschichten zu erzeugen, die für sich bereits Korrosionsbeständigkeit verbessern und in Verbin¬ dung mit Lacken und anderen organischen Beschichtungen zu einer wesentlichen Erhöhung der Haftung und der Resistenz gegen Unter¬ wanderung bei Korrosionsbeanspruchung beitragen. Solche Phospha- tierverfahren sind seit langem im Stand der Technik bekannt. Für die Vorbehandlung vor der Lackierung eigenen sich insbesondere die Niedrig-Zink-Phosphatierverfahren, bei denen die Phosphatierlösun¬ gen vergleichsweise geringe Gehalte an Zinkionen von z. B. 0,5 bis 2 g/1 aufweisen. Ein wesentlicher Parameter in diesen Niedrig- Zink-Phosphatierbädern ist das Gewichtsverhältnis Phosphationen zu Zinkionen, das üblicherweise im Bereich > 12 liegt und Werte bis zu 30 annehmen kann.The phosphating of metals pursues the goal of producing firmly adhered metal phosphate layers on the metal surface, which in themselves improve corrosion resistance and, in conjunction with lacquers and other organic coatings, to a substantial increase in adhesion and resistance to migration under corrosion contribute. Such phosphating processes have long been known in the prior art. The low-zinc phosphating processes, in which the phosphating solutions are comparatively low in zinc ion contents of z. B. 0.5 to Have 2 g / 1. An important parameter in these low-zinc phosphating baths is the weight ratio of phosphate ions to zinc ions, which is usually in the range> 12 and can take values up to 30.
Es hat sich gezeigt, daß durch die Mitverwendung anderer mehrwer¬ tiger Kationen als Zink in den Phosphatierbädern Phosphatschichten mit deutlich verbesserten Korrosionsschutz- und Lackhaftungseigen¬ schaften ausgebildet werden können. Beispielsweise finden Niedrig- Zink-Verfahren mit Zusatz von z. B. 0,5 bis 1,5 g/1 Manganionen und z. B. 0,3 bis 2,0 g/1 Nickelionen als sogenannte Trikation-Verfah- ren zur Vorbereitung von Metalloberflachen für die Lackierung, beispielsweise für die kathodische Elektrotauchlackierung von Au¬ tokarosserien, weite Anwendung.It has been shown that by using other polyvalent cations than zinc in the phosphating baths, phosphate layers with significantly improved corrosion protection and paint adhesion properties can be formed. For example, find low-zinc processes with the addition of z. B. 0.5 to 1.5 g / 1 manganese ions and z. B. 0.3 to 2.0 g / 1 of nickel ions as a so-called trication process for preparing metal surfaces for painting, for example for the cathodic electrocoating of car bodies, widely used.
Die DE-A-39 20 296 beschreibt ein Phosphatierverfahren, das auf Nickel verzichtet und neben Zink und Manganionen Magnesiumionen verwendet. Die hier beschriebenen Phosphatierbäder enthalten außer 0,2 bis 10 g/1 Nitrationen weitere als Beschleuniger wirkende Oxi¬ dationsmittel, ausgewählt aus Nitrit, Chlorat oder einem organi¬ schen Oxidationsmittel. Gegen die Beschleuniger Nitrit und Nitrat werden wegen möglicher Bildung Nitroser Gase zunehmend Bedenken geäußert.DE-A-39 20 296 describes a phosphating process which dispenses with nickel and uses magnesium ions in addition to zinc and manganese ions. The phosphating baths described here contain, in addition to 0.2 to 10 g / 1 nitrate ions, further oxidizing agents which act as accelerators, selected from nitrite, chlorate or an organic oxidizing agent. Concerns about the accelerators nitrite and nitrate are being raised due to the possible formation of nitrous gases.
Nitratfrei arbeitet das in WO 86/04931 offengelegte Phosphatier- verfahren. Hier beruht das Beschleunigersystem auf einer Kombina¬ tion von Bromat und m-Nitrobenzolsulfonat. Als essentielles mehr¬ wertiges Kation wird lediglich Zink, als weitere fakultative Kat¬ ionen Nickel, Mangan oder Kobalt angegeben. Vorzugsweise enthalten die Phosphatierlösungen neben Zink mindestens 2 dieser fakultativen Metalle. DE-A-40 13 483 macht Phosphatierverfahren bekannt, mit denen ähn¬ lich gute Korrosionsschutzeigenschaften wie mit den Trikation-Ver- fahren erzielt werden können. Diese Verfahren verzichten auf Nickel und verwenden statt dessen Kupfer in niedrigen Konzentrationen, 0,001 bis 0,03 g/1. Zur Oxidation des bei der Beizreaktion von Stahloberflächen gebildeten zweiwertigen Eisens in die dreiwertige Stufe dient Sauerstoff und/oder andere gleichwirkende Oxidations¬ mittel. Als solche werden Nitrit, Chlorat, Bromat, Peroxy-Verbin¬ dungen sowie organische Nitroverbindungen, wie Nitrobenzolsulfonat, angegeben. Die deutsche Patentanmeldung DE 42 10513 modifiziert diesen Prozeß dadurch, daß als modifizierendes Agens für die Mor¬ phologie der gebildeten Phosphatkristalle Hydroxylamin, dessen Salze oder Komplexe in einer Menge von 0,5 bis 5 g/1 Hydroxylamin zugegeben werden.The phosphating process disclosed in WO 86/04931 works without nitrates. Here the accelerator system is based on a combination of bromate and m-nitrobenzenesulfonate. Only zinc is given as the essential polyvalent cation, and nickel, manganese or cobalt is given as further optional cations. In addition to zinc, the phosphating solutions preferably contain at least 2 of these optional metals. DE-A-40 13 483 discloses phosphating processes with which good corrosion protection properties can be achieved as with the trication processes. These processes do without nickel and instead use copper in low concentrations, 0.001 to 0.03 g / 1. Oxygen and / or other oxidizing agents having the same effect are used to oxidize the divalent iron formed in the pickling reaction of steel surfaces to the trivalent stage. Nitrite, chlorate, bromate, peroxy compounds and organic nitro compounds, such as nitrobenzenesulfonate, are specified as such. The German patent application DE 42 10513 modifies this process by adding hydroxylamine, its salts or complexes in an amount of 0.5 to 5 g / 1 hydroxylamine as a modifying agent for the morphology of the phosphate crystals formed.
Die Verwendung von Hydroxylamin und/oder seinen Verbindungen zum Beeinflussen der Form der Phosphatkristalle ist aus einer Reihe von Offenlegungsschriften bekannt. Die EP-A-315059 gibt als besonderen Effekt der Verwendung von Hydroxylamin in Phosphatierbädern die Tatsache an, daß auf Stahl auch dann noch die Phosphatkristalle in einer erwünschten säulen- oder knotenartigen Form entstehen, wenn die Zinkkonzentration im Phosphatierbad den für Niedrig-Zink-Ver¬ fahren üblichen Bereich übersteigt. Hierdurch wird es möglich, die Phosphatierbäder mit Zinkkonzentrationen bis zu 2 g/1 und mit Ge¬ wichtsverhältnissen Phosphat zu Zink bis hinab zu 3,7 zu betreiben. Über vorteilhafte Kationenkombinationen dieser Phosphatierbäder werden keine näheren Aussagen gemacht, in den Patentbeispielen wird jedoch in allen Fällen Nickel eingesetzt. Ebenfalls werden in den Patentbeispielen Nitrate und Salpetersäure verwendet, auch wenn in der Beschreibung von der Anwesenheit von Nitrat in größeren Mengen abgeraten wird. Die erforderliche Hydroxylamin-Konzentration wird mit 0,5 bis 50 g/1, vorzugsweise 1 bis 10 g/1 angegeben. Trikation-Phosphatierverfahren, bei denen die Phosphatierlösungen Zink-, Nickel- und Manganionen enthalten, wurden insbesondere für die Phosphatierung von verzinktem Stahl entwickelt. Durch den Ein¬ bau von Nickel und Mangan in die Phosphatschichten konnten Nach¬ teile hinsichtlich Lackhaftung und Korrosionsschutz ausgeglichen werden, die sich daraus ergaben, daß auf verzinkten Substraten le¬ diglich Hopeit-, jedoch keine Phosphophyllitkristalle gebildet werden. Aus der Phosphatierung von unverzinktem Stahl ist bekannt, daß Phosphorphyllit-reiche Schichten gegenüber Hopeit-reichen Schichten Vorteile hinsichtlich Lackhaftung und Korrosionsschutz bieten. Da im Automobilbau verbreitet verzinkter Stahl Verwendung findet, sind derzeit Trikation-Phosphatierverfahren für dieses An¬ wendungsgebiet weit verbreitet. Die Anwesenheit von Nickel und Mangan in nahezu gleich hohen Konzentrationen wie Zink führt bei der abwassertechnischen Aufarbeitung von Spülwässern zu einer ver¬ mehrten Bildung schwermetallhaltiger Schlämme, die als Sondermüll entsorgt werden müssen. Beim Nacharbeiten nickelhaltiger Phosphat¬ schichten können sich außerdem nickelhaltige Stäube bilden, die als karzinogen eingestuft werden.The use of hydroxylamine and / or its compounds to influence the shape of the phosphate crystals is known from a number of published publications. EP-A-315059 specifies as a special effect of the use of hydroxylamine in phosphating baths the fact that on steel the phosphate crystals are still formed in a desired columnar or knot-like form when the zinc concentration in the phosphating bath is the same for low-zinc Ver ¬ driving exceeds the usual range. This makes it possible to operate the phosphating baths with zinc concentrations of up to 2 g / 1 and with weight ratios of phosphate to zinc down to 3.7. No further statements are made about advantageous cation combinations of these phosphating baths, but nickel is used in all patent examples. Nitrates and nitric acid are also used in the patent examples, even if the description of the presence of nitrate in large amounts is not advised in the description. The required hydroxylamine concentration is given as 0.5 to 50 g / 1, preferably 1 to 10 g / 1. Trication-phosphating processes, in which the phosphating solutions contain zinc, nickel and manganese ions, were developed especially for the phosphating of galvanized steel. The incorporation of nickel and manganese in the phosphate layers compensated for disadvantages with regard to paint adhesion and corrosion protection, which resulted from the fact that only hopeit crystals, but no phosphophyllite crystals, were formed on galvanized substrates. It is known from the phosphating of non-galvanized steel that layers rich in phosphorphyllite have advantages over layers rich in hopite in terms of paint adhesion and corrosion protection. Since galvanized steel is widely used in automobile construction, trication-phosphating processes are currently widespread for this area of application. The presence of nickel and manganese in almost the same concentrations as zinc leads to an increased formation of sludge containing heavy metals in the wastewater treatment of rinsing water, which must be disposed of as special waste. When refinishing nickel-containing phosphate layers, nickel-containing dusts can also form, which are classified as carcinogenic.
Daher besteht seit einigen Jahren das Bestreben, Phosphatierver- fahren zu entwickeln, bei denen ohne Leistungseinbußen auf das be¬ sonders kritisch gewertete Nickel verzichtet werden kann. Dabei wurde unter anderem in Erwägung gezogen, Nickel durch Cobalt zu ersetzen. Zumindest unter abwassertechnischen und toxikologischen Gesichtspunkten stellt Cobalt jedoch keine Alternative zu Nickel dar. Im vorstehenden wurde bereits auf einige Dokumente hingewie¬ sen, in denen anstelle von Nickel beispielsweise Magnesium oder Kupfer, letzteres in sehr geringen Konzentrationen, eingesetzt werden. Die vorliegende Erfindung stellt sich nunmehr die Aufgabe, Phos- phatierverfahren zur Verfügung zu stellen, bei denen nicht nur auf die toxikologisch bedenklichen Metalle Nickel und Cobalt, sondern auch auf Mangan verzichtet wird. Hierdurch kann der Schwermetall¬ gehalt der bei der Aufbereitung der Spülwässer anfallenden Schlämme deutlich verringert werden. Selbstverständlich wird an das neue Phosphatierverfahren die Forderung gestellt, daß sich damit Phos¬ phatschichten als Grundlage für eine nachfolgende Lackierung er¬ zeugen lassen, deren Eigenschaften nicht hinter denjenigen manganhaltiger Verfahren und speziell von Trikation-Verfahren zu¬ rückstehen.For this reason, efforts have been made for a number of years to develop phosphating processes in which the particularly critically rated nickel can be dispensed with without sacrificing performance. Among other things, consideration was given to replacing nickel with cobalt. However, at least from the point of view of wastewater technology and toxicology, cobalt is not an alternative to nickel. In the above, reference has already been made to some documents in which, for example, magnesium or copper, the latter in very low concentrations, is used instead of nickel. The object of the present invention is now to provide phosphating processes in which not only the toxicologically questionable metals nickel and cobalt are dispensed with, but also manganese. As a result, the heavy metal content of the sludge obtained in the treatment of the rinse water can be significantly reduced. Of course, the new phosphating process demands that phosphate layers can be produced as a basis for subsequent painting, the properties of which do not lag behind those of manganese-containing processes and especially trication processes.
Diese Aufgabe wird gelöst durch ein Verfahren zum Phosphatieren von Stahl, verzinktem oder legierungsverzinktem Stahl und/oder von Aluminium oder dessen Legierungen durch Behandeln mit einer Zink¬ phosphatierlösung im Tauch-, Spritz- oder Spritztauchverfahren, dadurch gekennzeichnet, daß die Zinkphosphatierlösung einen maxi¬ malen Gehalt an Nitrationen von 0,5 g/1 aufweist und frei ist von Mangan- , Nickel- und Cobaltionen und daß sieThis object is achieved by a method for phosphating steel, galvanized or alloy-galvanized steel and / or aluminum or its alloys by treatment with a zinc phosphating solution in the immersion, spray or spray immersion process, characterized in that the zinc phosphating solution paints a maximum Has nitrate ion content of 0.5 g / 1 and is free of manganese, nickel and cobalt ions and that they
0,3 bis 2 g/1 Zinkionen, 5 bis 40 g/1 Phosphationen0.3 to 2 g / 1 zinc ions, 5 to 40 g / 1 phosphate ions
sowie einen oder mehrere der folgenden Beschleuniger enthält:and one or more of the following accelerators:
0,1 bis 10 g/1 Hydroxylamin in freier, ionischer oder komplex gebundener Form,0.1 to 10 g / 1 hydroxylamine in free, ionic or complex-bound form,
0, 3 bis 5 g/1 Chlorationen,0.3 to 5 g / 1 chlorate ions,
0,05 bis 2 g/1 m-Nitrobenzolsulfonationen,0.05 to 2 g / 1 m-nitrobenzenesulfonate ions,
0,05 bis 2 g/1 m-Nitrobenzoationen0.05 to 2 g / 1 m nitrobenzoate ions
0,05 bis 2 g/1 p-Nitrophenol 0,005 bis 0,15 g/1 Wasserstoffperoxid in freier oder gebundener0.05 to 2 g / 1 p-nitrophenol 0.005 to 0.15 g / 1 hydrogen peroxide in free or bound
Form, 0,01 bis 10 g/1 eines reduzierenden Zuckers.Form, 0.01 to 10 g / 1 of a reducing sugar.
Daß die Phosphatierbäder frei sind von Mangan-, Nickel- und Cobaltionen bedeutet dabei, daß diese Ionen den Phosphatierbädern nicht bewußt zugesetzt werden. Bei der Phosphatierung von Metall- oberflächen, die diese Metalle als Legierungskomponenten enthalten, ist es jedoch nicht auszuschließen, daß durch den Beizangriff ge¬ ringe Mengen der entsprechenden Kationen in die Phosphatierbäder gelangen. Dies kann insbesondere dann der Fall sein, wenn mit einer Zink-Nickel-Legierung beschichteter Stahl phosphatiert wird. In der Praxis wird an die Phosphatierbäder jedoch die Erwartung gestellt, daß sie weniger als 0,05 g/1 der genannten Kationen enthalten.The fact that the phosphating baths are free from manganese, nickel and cobalt ions means that these ions are not deliberately added to the phosphating baths. When phosphating metal surfaces which contain these metals as alloy components, it cannot be ruled out that small amounts of the corresponding cations may get into the phosphating baths as a result of the pickling attack. This can be the case in particular when steel coated with a zinc-nickel alloy is phosphated. In practice, however, the expectation is placed on the phosphating baths that they contain less than 0.05 g / 1 of the cations mentioned.
Phosphatierbäder enthalten außer Zinkionen in der Regel Natrium-, Kalium- und/oder Ammoniumionen zur Einstellung der freien Säure. Der Begriff der freien Säure ist dem Fachmann auf dem Phosphatier- gebiet geläufig. Die in dieser Schrift gewählte Bestimmungsmethode der freien Säure sowie der Gesamtsäure wird im Beispielteil ange¬ geben. Vorzugsweise werden in dem erfindungsgemäßen Phosphatier- verfahren Phosphatierlösungen eingesetzt, die weitere ein- oder zweiwertige Metallionen enthalten, die wegen ihrer chemischen Ei¬ genschaften und/oder ihrer geringeren Einsatzkonzentrationen we¬ niger problematisch sind als Nickel und Mangan und die sich erfah¬ rungsgemäß günstig auf die Lackhaftung und den Korrosionsschutz der hiermit erzeugten Phosphatschichten auswirken. Demgemäß ist das erfindungsgemäße Verfahren vorzugsweise dadurch gekennzeichnet, daß die Phosphatierlösung zusätzlich eines oder mehrere der folgenden Kationen enthält:In addition to zinc ions, phosphating baths generally contain sodium, potassium and / or ammonium ions to adjust the free acid. The term free acid is familiar to those skilled in the phosphating field. The method of determining free acid and total acid selected in this document is given in the example section. In the phosphating process according to the invention, preference is given to using phosphating solutions which contain further mono- or divalent metal ions which, owing to their chemical properties and / or their lower use concentrations, are less problematic than nickel and manganese and which, according to experience, are favorable affect the paint adhesion and the corrosion protection of the phosphate layers produced with it. Accordingly, the process according to the invention is preferably characterized in that the phosphating solution additionally contains one or more of the following cations:
0,2 bis 2,5 g/1 Magnesium(II), 0,2 bis 2,5 g/1 Calcium(II),0.2 to 2.5 g / 1 magnesium (II), 0.2 to 2.5 g / 1 calcium (II),
0,01 bis 0,5 g/1 Eisen(II),0.01 to 0.5 g / 1 iron (II),
0,001 bis 0,03 g/1 Kupfer(I) und/oder Kupfer(II),0.001 to 0.03 g / 1 copper (I) and / or copper (II),
0,2 bis 1,5 g/1 Lithium(I),0.2 to 1.5 g / 1 lithium (I),
0,02 bis 0,8 g/1 Wolfram(VI).0.02 to 0.8 g / 1 tungsten (VI).
Das Gewichtsverhältnis Phosphationen zu Zinkionen in den Phospha- tierbädern kann in weiten Grenzen schwanken, sofern es im Bereich zwischen 3,7 und 30 liegt. Ein Gewichtsverhältnis zwischen 10 und 20 ist besonders bevorzugt. Als weitere Parameter zur Steuerung von Phosphatierbädern sind dem Fachmann die Gehalte an freier Säure und an Gesamtsäure bekannt. Die in dieser Schrift verwendete Bestim¬ mungsmethode dieser Parameter ist im Beispielteil angegeben. Werte der freien Säure zwischen etwa 0,3 und etwa 1,5 Punkten und der Gesamtsäure zwischen etwa 15 und etwa 35 Punkten liegen im tech¬ nisch üblichen Bereich und sind im Rahmen dieser Erfindung geeig¬ net.The weight ratio of phosphate ions to zinc ions in the phosphate baths can vary within wide limits, provided it is in the range between 3.7 and 30. A weight ratio between 10 and 20 is particularly preferred. The skilled worker is familiar with the free acid and total acid contents as further parameters for controlling phosphating baths. The method of determining these parameters used in this document is given in the example section. Values of the free acid between about 0.3 and about 1.5 points and the total acid between about 15 and about 35 points are in the technically customary range and are suitable for the purposes of this invention.
Bei der Phosphatierung zinkhaltiger Oberflächen hat es sich als günstig erwiesen, den Nitratgehalt des Phosphatierbads auf maximal 0,5 g/1 zu begrenzen. Hierdurch wird das Problem der sogenannten Stippenbildung unterdrückt und der Korrosionsschutz verbessert. Besonders bevorzugt sind Phosphatierbäder, die weniger als 0,05 g/1 und insbesondere kein Nitrat enthalten.When phosphating surfaces containing zinc, it has proven to be advantageous to limit the nitrate content of the phosphating bath to a maximum of 0.5 g / l. This suppresses the problem of so-called speck formation and improves corrosion protection. Phosphating baths containing less than 0.05 g / l and in particular no nitrate are particularly preferred.
Bei Phosphatierbädern, die für unterschiedliche Substrate geeignet sein sollen, ist es üblich geworden, freies und/oder komplexgebun¬ denes Fluorid in Mengen bis zu 2,5 g/1 Gesamtfluorid, davon bis zu 800 mg/l freies Fluorid zuzusetzen. Die Anwesenheit solcher Fluo- ridmengen ist auch für die erfindungsgemäßen Phosphatierbäder von Vorteil. Bei Abwesenheit von Fluorid soll der Aluminiumgehalt des Bades 3 mg/l nicht überschreiten. Bei Gegenwart von Fluorid werden infolge der Komplexbildung höhere AI-Gehalte toleriert, sofern die Konzentration des nicht komplexierten AI 3 mg/l nicht übersteigt.In phosphating baths which are said to be suitable for different substrates, it has become customary to add free and / or complex-bound fluoride in amounts of up to 2.5 g / 1 total fluoride, of which up to 800 mg / l free fluoride. The presence of such amounts of fluoride is also advantageous for the phosphating baths according to the invention. In the absence of fluoride, the aluminum content of the bath should not exceed 3 mg / l. In the presence of fluoride tolerated higher AI contents due to the formation of the complex, provided the concentration of the non-complexed AI does not exceed 3 mg / l.
Als Beschleuniger kommen die vorstehend aufgeführten, im Stand der Technik bekannten Substanzen in Betracht. Diese beschleunigen zum einen die Schichtausbildung, da sie "depolarisierend" wirken, indem sie den beim Beizangriff an der Metalloberflache entstehenden ele¬ mentaren Wasserstoff zu Wasser oxidieren. Bestimmte Beschleuniger wie beispielsweise Hydroxylamin können jedoch auch die Form der entstehenden Phosphatkristalle beeinflussen. Oxidierend wirkende Beschleuniger führen weiterhin dazu, daß bei der Beizreaktion an Stahloberflächen entstehende Eisen(II)-Ionen zur dreiwertigen Stufe oxidiert werden, so daß sie als Eisen(III)-Phosphat ausfallen.Suitable accelerators are the substances listed above and known in the prior art. On the one hand, these accelerate the layer formation, since they have a “depolarizing” effect by oxidizing the elemental hydrogen which forms on the metal surface during the pickling attack to water. However, certain accelerators such as hydroxylamine can also influence the shape of the phosphate crystals that are formed. Oxidizing accelerators also lead to the fact that iron (II) ions formed on steel surfaces during the pickling reaction are oxidized to the trivalent stage, so that they precipitate out as iron (III) phosphate.
Außer den vorstehend aufgeführten Beschleunigern könnte im Rahmen der Erfindung auch Nitrit eingesetzt werden. Dies ist jedoch we¬ niger bevorzugt, da durch die vorliegende Erfindung ein Phospha- tierverfahren bereitgestellt werden soll, das besonders wenige to¬ xikologische und entsorgungstechnische Probleme aufweist. Unter dem Gesichtspunkt der Arbeitssicherheit ist jedoch Nitrit als besonders kritisch zu bewerten, da bei seiner Verwendung gesundheitsschädliche Nitrose Gase entstehen können. Weiterhin könnte bei Verwendung von Nitrit durch dessen Oxidation Nitrat entstehen, so daß die erfindungsgemäß geringen Nitratgehalte über¬ schritten würden.In addition to the accelerators listed above, nitrite could also be used within the scope of the invention. However, this is less preferred since the present invention is intended to provide a phosphating process which has particularly few toxicological and disposal problems. From the point of view of occupational safety, however, nitrite is to be assessed as particularly critical, since nitrous gases which are harmful to health can be generated when it is used. Furthermore, when nitrite is used, nitrate could be formed by its oxidation, so that the low nitrate contents according to the invention would be exceeded.
Die weiter oben aufgezählten Beschleuniger können einzeln, bei chemischer Verträglichkeit jedoch auch in Kombination miteinander eingesetzt werden. Beispielsweise besteht eine bevorzugte Ausfüh¬ rungsform der Erfindung darin, daß bei der Phosphatierung im Tauchverfahren eine Kombination aus Chlorationen und Wasserstoff¬ peroxid eingesetzt wird. Dabei kann das Wasserstoffperoxid als 7/16581 PO7EP96/04541The accelerators listed above can be used individually, but in chemical compatibility they can also be used in combination. For example, a preferred embodiment of the invention is that a combination of chlorate ions and hydrogen peroxide is used in the phosphating in the immersion process. The hydrogen peroxide can 7/16581 PO7EP96 / 04541
solches d. h. in freier Form, oder auch in gebundener Form, bei¬ spielsweise als ionisches Peroxid oder in Form von Peroxoverbindungen wie beispielsweise Peroxoschwefelsäure, Carosche Säure oder auch Peroxophosphorsäure eingesetzt werden. Als weiterer Träger für Wasserstoffperoxid in gebundener Form kommt Natriumper¬ borat in Betracht. In dieser Ausführungsform kann die Konzentration an Chlorat beispielsweise im Bereich von 2 bis 4 g/1, die Konzen¬ tration von Wasserstoffperoxid im Bereich von 10 bis 50 ppm liegen.such d. H. in free form or in bound form, for example as ionic peroxide or in the form of peroxo compounds such as peroxosulphuric acid, Caro's acid or also peroxophosphoric acid. Sodium perborate can be used as a further carrier for hydrogen peroxide in bound form. In this embodiment, the concentration of chlorate can be, for example, in the range from 2 to 4 g / l, the concentration of hydrogen peroxide in the range from 10 to 50 ppm.
Die Verwendung reduzierender Zucker als Beschleuniger ist aus der US-A-5 378 292 bekannt. Sie können im Rahmen der vorliegenden Er¬ findung in Mengen zwischen etwa 0,01 und etwa 10 g/1, bevorzugt in Mengen zwischen etwa 0,5 und etwa 1,5 g/1 eingesetzt werden. Bei¬ spiele derartiger Zucker sind Galaktose, Mannose und insbesondere Glucose (Dextrose).The use of reducing sugars as accelerators is known from US-A-5 378 292. In the context of the present invention, they can be used in amounts between about 0.01 and about 10 g / 1, preferably in amounts between about 0.5 and about 1.5 g / 1. Examples of such sugars are galactose, mannose and in particular glucose (dextrose).
Eine weitere bevorzugte Ausführungsform der Erfindung besteht dar¬ in, als Beschleuniger Hydroxylamin zu verwenden. Hydroxylamin kann als freie Base, als Hydroxylaminkomplex oder in Form von Hydroxyl- ammoniumsalzen eingesetzt werden. Fügt man freies Hydroxylamin dem Phosphatierbad oder einem Phosphatierbad-Konzentrat zu, wird es aufgrund des sauren Charakters dieser Lösungen weitgehend als Hy¬ droxylammonium-Kation vorliegen. Bei einer Verwendung als Hydro¬ xylammonium-Salz sind die Sulfate sowie die Phosphate besonders geeignet. Im Falle der Phosphate sind aufgrund der besseren Lös¬ lichkeit die sauren Salze bevorzugt. Hydroxylamin oder seine Ver¬ bindungen werden dem Phosphatierbad in solchen Mengen zugesetzt, daß die rechnerische Konzentration des freien Hydroxylamins zwi¬ schen 0,1 und 10 g/1, vorzugsweise zwischen 0,3 und 5 g/1 liegt. Dabei ist es bevorzugt, daß die Phosphatierbäder als einzigen Be¬ schleuniger Hydroxylamin, allenfalls zusammen mit maximal 0,5 g/1 Nitrat, enthalten. Demnach werden in einer bevorzugten Ausführungsform Phosphatierbäder eingesetzt, die keine der son¬ stigen bekannten Beschleuniger wie beispielsweise Nitrit, Oxoanionen von Halogenen, Peroxide oder Nitrobenzolsulfonat ent¬ halten.Another preferred embodiment of the invention consists in using hydroxylamine as accelerator. Hydroxylamine can be used as a free base, as a hydroxylamine complex or in the form of hydroxylammonium salts. If free hydroxylamine is added to the phosphating bath or a phosphating bath concentrate, it will largely be present as a hydroxylammonium cation due to the acidic nature of these solutions. When used as a hydroxylammonium salt, the sulfates and the phosphates are particularly suitable. In the case of the phosphates, the acid salts are preferred because of their better solubility. Hydroxylamine or its compounds are added to the phosphating bath in amounts such that the calculated concentration of the free hydroxylamine is between 0.1 and 10 g / 1, preferably between 0.3 and 5 g / 1. It is preferred that the phosphating baths contain hydroxylamine as the sole accelerator, at most together with a maximum of 0.5 g / l of nitrate. Accordingly, in a preferred Embodiment phosphating baths are used which do not contain any of the other known accelerators such as nitrite, oxo anions of halogens, peroxides or nitrobenzenesulfonate.
In der Praxis hat es sich gezeigt, daß der Beschleuniger Hydroxyl¬ amin auch dann langsam inaktiviert werden kann, wenn in das Phos¬ phatierbad keine zu phosphatierenden Metallteile eingebracht wer¬ den. Es hat sich überraschend gezeigt, daß die Inaktivierung des Hydroxylamins deutlich verlangsamt werden kann, wenn man dem Phos¬ phatierbad zusätzlich eine oder mehrere aliphatische Hydroxycarbonsäuren mit 3 bis 6 Kohlenstoffatomen in einer Gesamt¬ menge von 0,5 bis 1,5 g/1 zusetzt. Dabei sind die Hydroxycarbonsäuren vorzugsweise ausgewählt aus Milchsäure, Gluconsäure, Tartronsäure, Äpfelsäure, Weinsäure und Citronensaure, wobei Citronensaure besonders bevorzugt wird.In practice it has been shown that the accelerator hydroxylamine can be slowly inactivated even if no metal parts to be phosphated are introduced into the phosphating bath. It has surprisingly been found that the inactivation of the hydroxylamine can be significantly slowed down if one or more aliphatic hydroxycarboxylic acids having 3 to 6 carbon atoms in a total amount of 0.5 to 1.5 g / l are added to the phosphating bath . The hydroxycarboxylic acids are preferably selected from lactic acid, gluconic acid, tartronic acid, malic acid, tartaric acid and citric acid, citric acid being particularly preferred.
Den Zinkgehalt des Phosphatierbades wird man gemäß EP-A-315059 auf Werte zwischen 0,45 und 1,1 g/1 einstellen. Infolge des Beizabtra¬ ges bei der Phosphatierung zinkhaltiger Oberflächen ist es jedoch möglich, daß der aktuelle Zinkgehalt des arbeitenden Bades oberhalb eines Wertes von 1,1 g/1 liegt. Zinkgehalte bis zu 2 g/1 sind im Rahmen der vorliegenden Erfindung unschädlich. Je nach Anlagen¬ technik können Zinkgehalte bis zu 2 g/1 auch die Gefahr einer Rostbildung während der Phosphatierung verringern. In welcher Form die Kationen in die Phosphatierbäder eingebracht werden, ist prin¬ zipiell ohne Belang. Es bietet sich insbesondere an, als Kationen¬ quelle Oxide und/oder Carbonate zu verwenden.The zinc content of the phosphating bath will be set according to EP-A-315059 to values between 0.45 and 1.1 g / 1. As a result of the pickling removal in the phosphating of zinc-containing surfaces, however, it is possible that the current zinc content of the working bath is above a value of 1.1 g / l. Zinc levels up to 2 g / l are harmless in the context of the present invention. Depending on the plant technology, zinc contents of up to 2 g / l can also reduce the risk of rust formation during phosphating. The form in which the cations are introduced into the phosphating baths is in principle irrelevant. It is particularly useful to use oxides and / or carbonates as the cation source.
Bei der Anwendung des Phosphatierverfahrens auf Stahloberflächen geht Eisen in Form von Eisen(II)-Ionen in Lösung. Da die erfin¬ dungsgemäßen Phosphatierbäder vorzugsweise keine Substanzen enthalten, die gegenüber Eisen(II) oxidierend wirken, geht das zweiwertige Eisen lediglich in Folge von Luftoxidation in den dreiwertigen Zustand über, so daß es als Eisen(III)-Phosphat aus¬ fallen kann. Daher können sich in den erfindungsgemäßen Phospha¬ tierbädern Eisen(II)-Gehalte aufbauen, die deutlich über den Ge¬ halten liegen, die Oxidationsmittel-haltige Bäder enthalten. In diesem Sinne sind Eisen(II)-Konzentrationen bis zu 50 ppm normal, wobei kurzfristig im Produktionsablauf auch Werte bis zu 500 ppm auftreten können. Für das erfindungsgemäße Phosphatierverfahren sind solche Eisen(II)-Konzentrationen nicht schädlich. Bei Ansatz in hartem Wasser können die Phosphatierbäder weiterhin die Härte¬ bildner-Kationen Mg(II) und Ca(II) in einer Gesamtkonzentration von bis zu 7 mmol/l enthalten. Mg(II) oder Ca(II) können dem Phospha¬ tierbad auch in Mengen bis zu 2,5 g/1 zugesetzt werden.When the phosphating process is used on steel surfaces, iron dissolves in the form of iron (II) ions. Since the phosphating baths according to the invention preferably do not contain any substances contain that have an oxidizing effect on iron (II), the divalent iron only changes into the trivalent state as a result of air oxidation, so that it can precipitate out as iron (III) phosphate. Therefore, iron (II) contents can be built up in the phosphate baths according to the invention which are clearly above the contents which contain baths containing oxidizing agents. In this sense, iron (II) concentrations of up to 50 ppm are normal, although values of up to 500 ppm can also occur briefly in the production process. Such iron (II) concentrations are not detrimental to the phosphating process according to the invention. When prepared in hard water, the phosphating baths can further contain the hardness-forming cations Mg (II) and Ca (II) in a total concentration of up to 7 mmol / l. Mg (II) or Ca (II) can also be added to the phosphate bath in amounts of up to 2.5 g / l.
In einer weiteren bevorzugten Ausführungsform wird eine Phospha¬ tierlösung eingesetzt, die als einzige Kationen mit einer tatsäch¬ lichen oder potentiellen Oxidationsstufe von >1 Zink- und Kupferionen enthält. Zink- und Kupferionen werden in der Phospha¬ tierlösung in der Regel in der Oxidationsstufe 2 vorliegen. Es ist jedoch denkbar, daß prinzipiell reduzierend wirkende Beschleuniger wie beispielsweise Hydroxylamin die Kupferionen zumindest teilweise zur einwertigen Stufe reduzieren können. Neben Zink- und Kupferionen kann diese bevorzugte Phosphatierlösung noch Natrium-, Kalium- und/oder Ammoniumionen enthalten, die wie üblich in Form ihrer basischen Verbindungen zum Einstellen der freien Säure der Phosphatierlösung verwendet worden sein können. Dabei ist es be¬ sonders bevorzugt, daß die Phosphatierlösung bei Anwendung im Tauchverfahren 3 bis 20 mg/l Kupferionen, bei Anwendung im Spritz¬ verfahren 1 bis 10 mg/l Kupferionen enthält. Die Temperatur der Phosphatierlösung liegt vorzugsweise im Bereich zwischen etwa 40 und etwa 60 °C. Dabei hat es sich als positiver Nebeneffekt des erfindungsgemäßen Phosphatierverfahrens herausge¬ stellt, daß Hydroxylamin-Konzentrationen oberhalb etwa 1,5 g/1 die Gefahr einer Rostbildung an ungenügend umfluteten Stellen der zu phosphatierenden Bauteile deutlich herabsetzen.In a further preferred embodiment, a phosphate solution is used which is the only one containing cations with an actual or potential oxidation state of> 1 zinc and copper ions. Zinc and copper ions will generally be present in oxidation level 2 in the phosphate solution. However, it is conceivable that accelerators with a principally reducing action, such as, for example, hydroxylamine, can at least partially reduce the copper ions to the monovalent stage. In addition to zinc and copper ions, this preferred phosphating solution can also contain sodium, potassium and / or ammonium ions, which, as usual, can be used in the form of their basic compounds to adjust the free acidity of the phosphating solution. It is particularly preferred that the phosphating solution contains 3 to 20 mg / l copper ions when used in the dipping process and 1 to 10 mg / l copper ions when used in the spraying process. The temperature of the phosphating solution is preferably in the range between about 40 and about 60 ° C. It has emerged as a positive side effect of the phosphating process according to the invention that hydroxylamine concentrations above approximately 1.5 g / l significantly reduce the risk of rust formation at insufficiently flooded areas of the components to be phosphated.
Das erfindungsgemäße Verfahren ist geeignet zur Phosphatierung von Oberflächen aus Stahl, verzinktem oder legierungsverzinktem Stahl, Aluminium, aluminiertem oder legierungsaluminiertem Stahl. Die ge¬ nannten Materialien können - wie es im Automobilbau zunehmend üblich wird - auch nebeneinander vorliegen. Dabei können Teile der Karosserie auch aus bereits vorbehandeltem Material bestehen, wie es beispielsweise nach dem BonazinkR-Verfahren entsteht. Hier¬ bei wird das Grundmaterial zunächst chromatiert oder phosphatiert und anschließend mit einem organischen Harz beschichtet. Das erfindungsgemäße Phosphatierverfahren führt dann zu einer Phosphatierung an Schadstellen dieser Vorbehandlungsschicht oder an unbehandelten Rückseiten.The method according to the invention is suitable for phosphating surfaces made of steel, galvanized or alloy-galvanized steel, aluminum, aluminized or alloy-aluminized steel. The materials mentioned can also be present side by side, as is becoming increasingly common in automobile construction. Parts of the bodywork can also consist of material that has already been pretreated, such as is produced using the Bonazink R process. In this case, the base material is first chromated or phosphated and then coated with an organic resin. The phosphating process according to the invention then leads to phosphating on damaged areas of this pretreatment layer or on untreated rear sides.
Das Verfahren kann insbesondere im Automobilbau eingesetzt werden, wo Behandlungszeiten zwischen 1 und 8 Minuten üblich sind. Es ist insbesondere zur Behandlung der genannten Meta11oberflachen vor einer Lackierung, insbesondere vor einer kathodischen Elektrotauchlackierung gedacht, wie sie im Automobilbau üblich ist. Das Phosphatierverfahren ist als Teilschritt der technisch üblichen Vorbehandlungskette zu sehen. In dieser Kette sind der Phosphatierung üblicherweise die Schritte Reinigen/Entfetten, Zwi¬ schenspülen und Aktivieren vorgeschaltet, wobei die Aktivierung üblicherweise mit titanphosphat-haltigen Aktiviermitteln erfolgt. Der erfindungsgemäßen Phosphatierung kann, gegebenenfalls nach ei¬ ner Zwischenspülung, eine passivierende Nachbehandlung folgen. Für eine solche passivierende Nachbehandlung sind chromsäure-haltige Behandlungsbäder weit verbreitet. Aus Gründen des Arbeits- und Um¬ weltschutzes sowie aus Entsorgungsgründen besteht jedoch die Ten¬ denz, diese chromhaltigen Passivierbäder durch chromfreie Behand¬ lungsbäder zu ersetzen. Hierfür sind rein anorganische Bäder, ins¬ besondere auf der Basis von Zirkonverbindungen, oder auch orga¬ nische Bäder, beispielsweise auf Basis von Poly(vinylphenolen), bekannt. Zwischen dieser Nachpassivierung und der sich üblicher¬ weise anschließenden Elektrotauchlackierung wird in der Regel eine Zwischenspülung mit vollentsalztem Wasser durchgeführt. The method can be used in particular in automotive engineering, where treatment times between 1 and 8 minutes are common. It is intended in particular for the treatment of the metal surfaces mentioned before painting, in particular before cathodic electrocoating, as is customary in automobile construction. The phosphating process is to be seen as a sub-step of the technically usual pretreatment chain. In this chain, the steps of cleaning / degreasing, rinsing and activating are usually preceded by the phosphating, the activation usually being carried out using activating agents containing titanium phosphate. The phosphating according to the invention can be followed, if appropriate after an intermediate rinse, by a passivating aftertreatment. For such a passivating aftertreatment, treatment baths containing chromic acid are widespread. For reasons of occupational and environmental protection and for reasons of disposal, however, there is a tendency to replace these chromium-containing passivation baths with chromium-free treatment baths. Purely inorganic baths, in particular based on zirconium compounds, or also organic baths, for example based on poly (vinylphenols), are known for this. An intermediate rinse with demineralized water is generally carried out between this post-passivation and the subsequent electro-dip coating.
Ausführungsbeispieleembodiments
Die erfindungsgemäßen Phosphatierverfahren sowie Vergleichsverfah¬ ren wurden an elektrolytisch verzinkten Stahlblechen, wie sie im Automobilbau Verwendung finden, überprüft. Dabei wurde folgender, in der Karosseriefertigung üblicher, Verfahrensgang als Tauchver¬ fahren ausgeführt:The phosphating processes according to the invention and comparative processes were checked on electrolytically galvanized steel sheets, as are used in automobile construction. The following process step, customary in body production, was carried out as an immersion process:
1. Reinigen mit einem alkalischen Reiniger (RidolineR 1559, Henkel KGaA), Ansatz 2 % in Stadtwasser, 55 °C, 4 Minuten.1.Clean with an alkaline cleaner (Ridoline R 1559, Henkel KGaA), mix 2% in city water, 55 ° C, 4 minutes.
2. Spülen mit Stadtwasser, Raumtemperatur, 1 Minute.2. Rinse with city water, room temperature, 1 minute.
3. Aktivieren mit einem Titanphosphat-haltigen Aktiviermittel (FixodineR C9112, Henkel KGaA), Ansatz 0,1 H in volleπtsalztem Wasser, Raumtemperatur, 1 Minute.3. Activation with an activating agent containing titanium phosphate (Fixodine R C9112, Henkel KGaA), mixture 0.1 H in fully salted water, room temperature, 1 minute.
4. Phosphatieren mit Phosphatierbädern gemäß Tabelle 1. Temperatur 55 °C. Außer den in Tabelle 1 genannten Kationen enthielten die Phosphatierbäder lediglich Natriumionen zum Einstellen der freien Säure. Die Bäder enthielten kein Nitrit oder Nitrat.4. Phosphating with phosphating baths according to Table 1. Temperature 55 ° C. In addition to the cations listed in Table 1, the phosphating baths only contained sodium ions to adjust the free acid. The baths contained no nitrite or nitrate.
Unter Punktzahl der freien Säure wird der Verbrauch in ml an 0,1-normaler Natronlauge verstanden, um 10 ml Badlösung bis zu einem pH-Wert von 3,6 zu titrieren. Analog gibt die Punktzahl der Gesamtsäure den Verbrauch in ml bis zu einem pH-Wert von 8,5 an.The free acid score is understood to mean the consumption in ml of 0.1 normal sodium hydroxide solution in order to titrate 10 ml of bath solution up to a pH of 3.6. Similarly, the total acid score indicates consumption in ml up to a pH of 8.5.
5. Spülen mit Stadtwasser, Raumtemperatur, 1 Minute. 6. Nachpassivieren mit einem chromfreien Nachpassivierungsmittel auf Basis komplexer Zirkonfluoride (DeoxylyteR 54 NC, Henkel KGaA) 0,25 %-ig in vollentsalztem Wasser, pH 4,0, Temperatur 40 °C, 1 Minute.5. Rinse with city water, room temperature, 1 minute. 6. Post-passivation with a chrome-free post-passivation agent based on complex zirconium fluoride (Deoxylyte R 54 NC, Henkel KGaA) 0.25% in deionized water, pH 4.0, temperature 40 ° C, 1 minute.
7. Spülen mit vollentsalztem Wasser.7. Rinse with deionized water.
8. Trockenblasen mit Preßluft8. Blow dry with compressed air
Die flächenbezogene Masse ("Schichtgewicht") wurde durch Ablösen in 5 %-iger Chromsäurelösung bestimmt gemäß DIN 50942.The mass per unit area ("layer weight") was determined by dissolving in 5% chromic acid solution in accordance with DIN 50942.
Die phosphatierten Prüfbleche wurden mit einem kathodischen Tauch¬ lack der Firma BASF (FT 85-7042) beschichtet. Die Korrosions¬ schutzwirkung wurde in einem Wechselklimatest nach VDA 621-415 über 10 Runden getestet. Als Ergebnis ist die Lackunterwanderung am Ritz (halbe Ritzbreite) in Tabelle 1 aufgenommen. Tabelle 1 enthält ebenfalls als "K-Werte" die Ergebnisse eines Steinschlagtests nach VW-Norm. The phosphated test sheets were coated with a cathodic dip coating from BASF (FT 85-7042). The corrosion protection effect was tested in an alternating climate test according to VDA 621-415 over 10 rounds. As a result, the paint infiltration at the scratch (half scratch width) is shown in Table 1. Table 1 also contains the results of a stone chip test according to the VW standard as "K values".
Tabelle 1 Phosphatierbäder und PrüfergebnisseTable 1 Phosphating baths and test results
Vergl.l Vergl.2 Beisp.1 Beisp.2Comp. 1 Comp. 2 Ex. 1 Ex. 2
Zn (g/1) 1,1 1,1 1,1 1,1Zn (g / 1) 1.1 1.1 1.1 1.1
Mn (g/1) 0,9 0,9 - -Mn (g / 1) 0.9 0.9 - -
Cu (g/1) - 0,01 0,01 -Cu (g / 1) - 0.01 0.01 -
PO4 3- (g/D 20 15 15 15PO 4 3 - (g / D 20 15 15 15
CIO3- (g/1) 3 - 3 -CIO3- (g / 1) 3 - 3 -
H202 (g/D 0,03 - 0,03 -H 2 0 2 (g / D 0.03 - 0.03 -
Hydroxylammoni- - 2,0 - 2,0 umsulfat (g/1)Hydroxylammonium - 2.0 - 2.0 umulfate (g / 1)
SiF62" (g/1) 1,0 1,0 1,0 1,0SiF 6 2 "(g / 1) 1.0 1.0 1.0 1.0
Freie Säure (Punkte) 1,1 1,1 1,1 1,1Free acid (points) 1.1 1.1 1.1 1.1
Gesamtsäure (Punkte) 28 23 22 23Total acidity (points) 28 23 22 23
Tauchzeit (Minuten) 3 3 3 3Dive time (minutes) 3 3 3 3
Schichtgewicht (g/m2) 3,5 3,5 3,5 3,9Layer weight (g / m2) 3.5 3.5 3.5 3.9
Lackunterwande¬ 2,4-3,1 n.b.*) 2,6-3,1 n.b.*) rung (mm)Lacquer base wall 2.4-3.1 n.b. *) 2.6-3.1 n.b. *) tion (mm)
Steinschlag-Kenn¬ 8/8 n.b.*) 8/8 n.b.*) wert (K)Rockfall code 8/8 n / a *) 8/8 n / a *) worth (K)
n.b.*) = nicht bestimmt Tabelle 1 - Fortsetzungnb *) = not determined Table 1 - continued
Beisp.3Ex. 3
Zn (g/1) 1.1Zn (g / 1) 1.1
Mn (g/1) -Mn (g / 1) -
Cu (g/1) 0,01Cu (g / 1) 0.01
P04 3" (g/D 15P0 4 3 " (g / D 15
CIO3- (g/1) -CIO3- (g / 1) -
H202 (g/1) -H 2 0 2 (g / 1) -
Hydroxylammoni- 2,0 umsulfat (g/1)Hydroxylammonium 2.0 um sulfate (g / 1)
SiF62- (g/1) 1,0SiF 6 2- (g / 1) 1.0
Freie Säure (Punkte) 1.1Free acidity (points) 1.1
Gesamtsäure (Punkte) 23Total acidity (points) 23
Tauchzeit (Minuten) 3Diving time (minutes) 3
Schichtgewicht (g/m2) 2,9Layer weight (g / m2) 2.9
Lackunterwande¬ n.b.*) rung (mm)Lacquer base wall *) (mm)
Steinschlag-Kenn¬ n.b.*) wert (K)Rockfall characteristic n.b. *) value (K)
n.b.*) = nicht bestimmt n.b. *) = not determined

Claims

Patentansprüche claims
1. Verfahren zum Phosphatieren von Stahl, verzinktem oder legierungsverzinktem Stahl und/oder von Aluminium oder dessen Legierungen durch Behandeln mit einer Zinkphosphatierlösung im Tauch-, Spritz- oder Spritztauchverfahren, dadurch gekenn¬ zeichnet, daß die Zinkphosphatierlösung einen maximalen Gehalt an Nitrationen von 0,5 g/1 aufweist und frei ist von Mangan- , Nickel- und Cobaltionen und daß sie1. A process for phosphating steel, galvanized or alloy galvanized steel and / or aluminum or its alloys by treatment with a zinc phosphating solution in the immersion, spray or spray immersion process, characterized in that the zinc phosphating solution has a maximum nitrate ion content of 0. 5 g / 1 and is free of manganese, nickel and cobalt ions and that they
0,3 bis 2 g/1 Zinkionen, 5 bis 40 g/1 Phosphationen0.3 to 2 g / 1 zinc ions, 5 to 40 g / 1 phosphate ions
sowie einen oder mehrere der folgenden Beschleuniger enthält:and one or more of the following accelerators:
0,1 bis 10 g/1 Hydroxylamin in freier, ionischer oder komplex gebundener Form,0.1 to 10 g / 1 hydroxylamine in free, ionic or complex-bound form,
0,3 bis 5 g/1 Chlorationen,0.3 to 5 g / 1 chlorate ions,
0,05 bis 2 g/1 m-Nitrobenzolsulfonationen,0.05 to 2 g / 1 m-nitrobenzenesulfonate ions,
0,05 bis 2 g/1 m-Nitrobenzoationen0.05 to 2 g / 1 m nitrobenzoate ions
0,05 bis 2 g/1 p-Nitrophenol0.05 to 2 g / 1 p-nitrophenol
0,005 bis 0,15 g/1 Wasserstoffperoxid in freier oder ge¬ bundener Form0.005 to 0.15 g / 1 hydrogen peroxide in free or bound form
0,01 bis 10 g/1 eines reduzierenden Zuckers.0.01 to 10 g / 1 of a reducing sugar.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Phosphatierlösung zusätzlich eines oder mehrere der folgenden Kationen enthält:2. The method according to claim 1, characterized in that the phosphating solution additionally contains one or more of the following cations:
0,2 bis 2,5 g/1 Magnesium(II), 0,2 bis 2,5 g/1 Calcium(II), 0,01 bis 0,5 g/1 Eisen(II),0.2 to 2.5 g / 1 magnesium (II), 0.2 to 2.5 g / 1 calcium (II), 0.01 to 0.5 g / 1 iron (II),
0,001 bis 0,03 g/1 Kupfer(I) und/oder Kupfer(II),0.001 to 0.03 g / 1 copper (I) and / or copper (II),
0,2 bis 1,5 g/1 Lithium(I),0.2 to 1.5 g / 1 lithium (I),
0,02 bis 0,8 g/1 Wolfram(VI).0.02 to 0.8 g / 1 tungsten (VI).
3. Verfahren nach einem oder beiden der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Phosphatierlösung nicht mehr als 0,05g/l Nitrationen enthält.3. The method according to one or both of claims 1 and 2, characterized in that the phosphating solution contains no more than 0.05g / l nitrate ions.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, da¬ durch gekennzeichnet, daß die Phosphatierlösung zusätzlich Fluorid in freier und/oder komplex gebundener Form in Mengen bis zu 2,5 g/1 Gesamtfluorid, davon bis zu 0,8 g/1 freies Fluorid enthält.4. The method according to one or more of claims 1 to 3, characterized in that the phosphating solution additionally fluoride in free and / or complex-bound form in amounts up to 2.5 g / 1 total fluoride, of which up to 0.8 g / 1 contains free fluoride.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, da¬ durch gekennzeichnet, daß die Phosphatierlösung bei Anwendung im Tauchverfahren als Beschleuniger eine Kombination aus Chlorationen und Wasserstoffperoxid in freier oder gebundener Form enthält.5. The method according to one or more of claims 1 to 4, characterized in that the phosphating solution when used in the immersion process as an accelerator contains a combination of chlorate ions and hydrogen peroxide in free or bound form.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, da¬ durch gekennzeichnet, daß die Phosphatierlösung als einzigen Beschleuniger Hydroxylamin in einer Konzentration im Bereich 0,3 bis 5 g/1 enthält.6. The method according to one or more of claims 1 to 4, da¬ characterized in that the phosphating solution as the only accelerator contains hydroxylamine in a concentration in the range 0.3 to 5 g / 1.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Phosphatierlösung zusätzlich eine oder mehrere aliphatische Hydroxycarbonsäuren mit 3 bis 6 C-Atomen in einer Gesamtmenge von 0,5 bis 1,5 g/1 enthält. 7. The method according to claim 6, characterized in that the phosphating solution additionally contains one or more aliphatic hydroxycarboxylic acids with 3 to 6 carbon atoms in a total amount of 0.5 to 1.5 g / 1.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Hydroxycarbonsäuren ausgewählt sind aus Milchsäure, Gluconsäure, Tartronsäure, Äpfelsäure, Weinsäure und Citronensaure8. The method according to claim 7, characterized in that the hydroxycarboxylic acids are selected from lactic acid, gluconic acid, tartronic acid, malic acid, tartaric acid and citric acid
9. Verfahren nach einem oder mehreren der Ansprüche 2 bis 8, da¬ durch gekennzeichnet, daß die Phosphatierlösung als einzige Kationen mit einer tatsächlichen oder potentiellen Oxidations¬ stufe von größer als 1 Zink- und Kupferionen enthält.9. The method according to one or more of claims 2 to 8, characterized in that the phosphating solution contains as the only cations with an actual or potential Oxidations¬ stage of greater than 1 zinc and copper ions.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Phosphatierlösung bei Anwendung im Tauchverfahren 3 bis 20 mg/l Kupferionen, bei Anwendung im Spritzverfahren 1 bis 10 mg/l Kupferionen enthält.10. The method according to claim 9, characterized in that the phosphating solution contains 3 to 20 mg / l copper ions when used in the dipping process, and 1 to 10 mg / l copper ions when used in the spraying process.
11. Verwendung des Verfahrens nach einem oder mehreren der Ansprü¬ che 1 bis 9 zur Vorbehandlung der Metalloberflächen vor einer Lackierung. 11. Use of the method according to one or more of claims 1 to 9 for pretreating the metal surfaces before painting.
PCT/EP1996/004541 1995-10-27 1996-10-18 Low-nitrate, manganese-free zinc phosphatization WO1997016581A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU72960/96A AU7296096A (en) 1995-10-27 1996-10-18 Low-nitrate, manganese-free zinc phosphatization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19540085.2 1995-10-27
DE1995140085 DE19540085A1 (en) 1995-10-27 1995-10-27 Low nitrate, manganese-free zinc phosphating

Publications (2)

Publication Number Publication Date
WO1997016581A2 true WO1997016581A2 (en) 1997-05-09
WO1997016581A3 WO1997016581A3 (en) 1997-06-19

Family

ID=7775975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/004541 WO1997016581A2 (en) 1995-10-27 1996-10-18 Low-nitrate, manganese-free zinc phosphatization

Country Status (3)

Country Link
AU (1) AU7296096A (en)
DE (1) DE19540085A1 (en)
WO (1) WO1997016581A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6179934B1 (en) 1997-01-24 2001-01-30 Henkel Corporation Aqueous phosphating composition and process for metal surfaces
JPH10204649A (en) * 1997-01-24 1998-08-04 Nippon Parkerizing Co Ltd Aqueous phosphate treating solution for metallic surface and its treatment
DE10006338C2 (en) * 2000-02-12 2003-12-04 Chemetall Gmbh Process for coating metal surfaces, aqueous concentrate therefor and use of the coated metal parts
DE102008017523A1 (en) 2008-03-20 2009-09-24 Henkel Ag & Co. Kgaa Optimized electrocoating of assembled and partially pre-phosphated components
CN107937892A (en) * 2017-12-26 2018-04-20 廊坊京磁精密材料有限公司 The phosphatization antirust method of high-efficiency environment friendly neodymium iron boron magnetic body

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE860307C (en) * 1942-10-17 1952-12-18 Parker Rust Proof Company Process for the preparation of iron sheets for the manufacture of containers
FR1312108A (en) * 1961-11-29 1962-12-14 Parker Ste Continentale Process for the regeneration of chlorated and brominated zinc phosphate solutions for the phosphating of iron and steel
CH391420A (en) * 1959-09-23 1965-04-30 Metallgesellschaft Ag Process for applying phosphate coatings with phosphating solutions containing chlorate
DE1941489A1 (en) * 1968-08-16 1970-02-19 Ici Ltd Phosphating solutions and their use
EP0123980A1 (en) * 1979-05-02 1984-11-07 Amchem Products, Inc. Composition and process for zinc phosphate coating a metal surface and a process for painting the coated surface
WO1986004931A1 (en) * 1985-02-22 1986-08-28 Henkel Kommanditgesellschaft Auf Aktien Process for the phosphating of metal surfaces
EP0258922A1 (en) * 1986-09-05 1988-03-09 Metallgesellschaft Ag Process for producing phosphate coatings and their use
EP0315059A1 (en) * 1987-10-30 1989-05-10 HENKEL CORPORATION (a Delaware corp.) Process and composition for zinc phosphate coating
DE4210513A1 (en) * 1992-03-31 1993-10-07 Henkel Kgaa Nickel-free phosphating process
WO1993022474A1 (en) * 1992-05-06 1993-11-11 Henkel Kommanditgesellschaft Auf Aktien Copper-containing, nickel-free phosphatizing process
WO1994014999A1 (en) * 1992-12-22 1994-07-07 Henkel Corporation Substantially nickel-free phosphate conversion coating composition and process
DE19500562A1 (en) * 1995-01-11 1996-07-18 Henkel Kgaa Phosphating solution
DE19500927A1 (en) * 1995-01-16 1996-07-18 Henkel Kgaa Lithium-containing zinc phosphating solution
WO1996027692A1 (en) * 1995-03-07 1996-09-12 Henkel Corporation Composition and process for forming an underpaint coating on metals

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU30515A1 (en) *
JPS52119435A (en) * 1976-04-01 1977-10-06 Nippon Packaging Kk Phosphating process

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE860307C (en) * 1942-10-17 1952-12-18 Parker Rust Proof Company Process for the preparation of iron sheets for the manufacture of containers
CH391420A (en) * 1959-09-23 1965-04-30 Metallgesellschaft Ag Process for applying phosphate coatings with phosphating solutions containing chlorate
FR1312108A (en) * 1961-11-29 1962-12-14 Parker Ste Continentale Process for the regeneration of chlorated and brominated zinc phosphate solutions for the phosphating of iron and steel
DE1941489A1 (en) * 1968-08-16 1970-02-19 Ici Ltd Phosphating solutions and their use
EP0123980A1 (en) * 1979-05-02 1984-11-07 Amchem Products, Inc. Composition and process for zinc phosphate coating a metal surface and a process for painting the coated surface
WO1986004931A1 (en) * 1985-02-22 1986-08-28 Henkel Kommanditgesellschaft Auf Aktien Process for the phosphating of metal surfaces
EP0258922A1 (en) * 1986-09-05 1988-03-09 Metallgesellschaft Ag Process for producing phosphate coatings and their use
EP0315059A1 (en) * 1987-10-30 1989-05-10 HENKEL CORPORATION (a Delaware corp.) Process and composition for zinc phosphate coating
DE4210513A1 (en) * 1992-03-31 1993-10-07 Henkel Kgaa Nickel-free phosphating process
WO1993020259A1 (en) * 1992-03-31 1993-10-14 Henkel Kommanditgesellschaft Auf Aktien Nickel-free phosphatization process
WO1993022474A1 (en) * 1992-05-06 1993-11-11 Henkel Kommanditgesellschaft Auf Aktien Copper-containing, nickel-free phosphatizing process
WO1994014999A1 (en) * 1992-12-22 1994-07-07 Henkel Corporation Substantially nickel-free phosphate conversion coating composition and process
DE19500562A1 (en) * 1995-01-11 1996-07-18 Henkel Kgaa Phosphating solution
DE19500927A1 (en) * 1995-01-16 1996-07-18 Henkel Kgaa Lithium-containing zinc phosphating solution
WO1996027692A1 (en) * 1995-03-07 1996-09-12 Henkel Corporation Composition and process for forming an underpaint coating on metals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 89, no. 4, 24.Juli 1978 Columbus, Ohio, US; abstract no. 28870v, TAKAHASHI: "Phosphate conversion coating" Seite 279; XP002029926 & JP 52 119 435 A (NIHON PARKERIZING) 6.Oktober 1977 *

Also Published As

Publication number Publication date
WO1997016581A3 (en) 1997-06-19
DE19540085A1 (en) 1997-04-30
AU7296096A (en) 1997-05-22

Similar Documents

Publication Publication Date Title
EP0717787B1 (en) Nickel-free phosphatization process
EP0817872A1 (en) Phosphating process with a metalliferous re-rinsing stage
EP1114202A1 (en) Method for phosphatizing, rerinsing and cathodic electro-dipcoating
EP0931179B1 (en) Method for phosphating a steel band
DE19705701A1 (en) Phosphating metal surfaces for subsequent lacquering
EP0889977B1 (en) Zinc phosphatizing with low quantity of copper and manganese
DE19933189A1 (en) Process for the protection against corrosion or aftertreatment of metal surfaces
EP1005578B1 (en) Phosphating method accelerated by n-oxides
DE19606018A1 (en) Zinc phosphating with low levels of nickel and / or cobalt
DE4330104A1 (en) Nickel- and copper-free phosphating process
WO1997016581A2 (en) Low-nitrate, manganese-free zinc phosphatization
DE19956383A1 (en) Process for phosphatizing surfaces made of steel, galvanized steel and/or aluminum (alloy) comprises phosphatizing using a phosphatizing solution and post-rinsing with a solution containing copper ions and silanes
WO1997014821A1 (en) Layer weight-adjustment in hydroxylamine-accelerated phosphatisation systems
DE4341041A1 (en) Phosphating solns contg hydroxylamine and/or nitrobenzene sulphonate
DE19958192A1 (en) Process for phosphating, rinsing and cathodic electrocoating
EP0866888B1 (en) Method of phosphating metal surfaces
DE19500927A1 (en) Lithium-containing zinc phosphating solution
DE19733978A1 (en) Acid phosphating solution, stable in presence of copper ions
WO1998009000A1 (en) Ruthenium-containing zinc phosphate treatment
WO2001016397A1 (en) Zinc phosphatizing using epoxides
DE10310680A1 (en) Phosphating by spraying with an aqueous acid phosphating solution useful for phosphating metal surfaces
DE19716075A1 (en) Phosphating process accelerated with hydroxylamine and chlorate
DE19500562A1 (en) Phosphating solution
DE19750301A1 (en) Aqueous acid, phosphatising solution containing an organic N-oxide accelerator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU BR CA CN CZ JP KR MX PL SK TR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): AU BR CA CN CZ JP KR MX PL SK TR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase in:

Ref country code: JP

Ref document number: 97517024

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: CA