EP0817872B1 - Phosphating process with a metalliferous re-rinsing stage - Google Patents

Phosphating process with a metalliferous re-rinsing stage Download PDF

Info

Publication number
EP0817872B1
EP0817872B1 EP96908083A EP96908083A EP0817872B1 EP 0817872 B1 EP0817872 B1 EP 0817872B1 EP 96908083 A EP96908083 A EP 96908083A EP 96908083 A EP96908083 A EP 96908083A EP 0817872 B1 EP0817872 B1 EP 0817872B1
Authority
EP
European Patent Office
Prior art keywords
phosphating
ions
solution used
rinse solution
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96908083A
Other languages
German (de)
French (fr)
Other versions
EP0817872A1 (en
Inventor
Winfried Wichelhaus
Helmut Endres
Karl-Heinz Gottwald
Horst-Dieter Speckmann
Jan-Willem Brouwer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0817872A1 publication Critical patent/EP0817872A1/en
Application granted granted Critical
Publication of EP0817872B1 publication Critical patent/EP0817872B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment

Definitions

  • the invention relates to methods for phosphating metal surfaces with aqueous, acidic zinc-containing phosphating solutions.
  • a rinse with a solution containing lithium, Contains copper and / or silver ions is suitable as a pretreatment of the metal surfaces for a subsequent Painting, especially an electro dip painting.
  • the procedure is applicable for the treatment of surfaces made of steel, galvanized or galvanized steel, aluminum, aluminized or alloy aluminized Steel.
  • the phosphating of metals pursues the goal on the metal surface to produce firmly adherent metal phosphate layers already improve the corrosion resistance and in Connection with paints and other organic coatings too a significant increase in paint adhesion and resistance to Infiltration under corrosion stress contribute.
  • Such phosphating processes have been known for a long time.
  • the low-zinc phosphating processes are particularly suitable, where the phosphating solutions are comparatively low levels of zinc ions of e.g. B. 0.5 to 2 g / l.
  • the weight ratio of phosphate ions to zinc ions which is usually is in the range> 8 and can take values up to 30.
  • phosphate layers have disadvantages in that Nickel and nickel compounds from the point of view of environmental protection and occupational hygiene can be classified as critical.
  • Low zinc phosphating processes are increasingly being described the too qualitative without using nickel similar high-quality phosphate layers as the nickel-containing processes to lead.
  • nitrite and nitrate Concerns have been raised about possible formation of nitrous gases.
  • the phosphating of galvanized steel with nickel-free phosphating baths Corrosion protection and insufficient paint adhesion results if the phosphating baths contain larger quantities (> 0.5 g / l) nitrate.
  • DE-A-39 20 296 describes a phosphating process that dispenses with nickel and besides zinc and manganese ions Magnesium ions used.
  • the phosphating baths described here contain, in addition to 0.2 to 10 g / l nitrate ions, other accelerators acting oxidizing agents selected from nitrite, chlorate or an organic oxidizing agent.
  • EP-A-60 716 discloses low-zinc phosphating baths, which are essential cations zinc and Contain manganese and which contain nickel as an optional component can.
  • the necessary accelerator is preferred selected from nitrite, m-nitrobenzenesulfonate or hydrogen peroxide.
  • Phosphating baths are also described in EP-A-228 151, which contain zinc and manganese as essential cations.
  • the phosphating accelerator is selected from nitrite, nitrate, hydrogen peroxide, m-nitrobenzoate or p-nitrophenol.
  • the process of applying the phosphating solution on the metal surfaces and / or other process parameters the phosphate layer on the metal surfaces is not complete closed. Rather, there are more or less large ones "Pores” whose area is on the order of 0.5 to 2% of phosphated surface is located in the course of a so-called "Post-passivation” must be closed to be corrosive To leave influences on the metal surfaces no point of attack. Post-passivation further improves the liability of one then applied paint.
  • a rinse solution is known from EP-B-410 497 which contains Al, Zr and contains fluoride ions, the solution being a complex mixture Fluoride or as a solution of aluminum hexafluorozirconate can be understood.
  • the total amount of these 3 ions is in the range from 0.1 to 2.0 g / l.
  • DE-A-21 00 497 relates to a method for electrophoretic Applying paints to ferrous surfaces, doing the job should be solved, white on the ferrous surfaces or apply other bright colors without discoloration.
  • This The object is achieved in that the surfaces that have previously been phosphated can be rinsed with copper-containing solutions. Copper concentrations are between for this rinse solution 0.1 and 10 g / l suggested.
  • DE-A-34 00 339 describes also a copper-containing rinse solution for phosphated metal surfaces, with copper contents between 0.01 and 10 g / l is worked. It was not observed that this Rinse solutions in connection with different phosphating processes lead to different results.
  • Nickel-free phosphating process in connection with a Chrome-free rinsing currently does not reach all body materials used reliably in the automotive industry the requirements for paint adhesion and corrosion protection. Therefore there is still a need for rinse aid solutions that are related with a nickel- and nitrite-free phosphating and one subsequent cathodic electrocoating the requirements corrosion protection and paint adhesion for different substrate materials reliably meet.
  • the invention turns the Task, such a combination of methods from a Environmental and occupational safety optimized phosphating processes and a particularly suitable chrome-free rinse before to provide cathodic electrocoating.
  • iron (II) in the concentration range mentioned requires an accelerator that does not react to these ions has an oxidizing effect. Hydroxylamine in particular is an example of this to call.
  • the phosphating baths are free of nickel and preferably also of Cobalt. This means that these elements or ions the phosphating baths not be added deliberately. However, it is in the Practice does not rule out that such constituents go beyond that Treating material entered in traces in the phosphating baths become. In particular, it cannot be ruled out that at Phosphating of steel coated with zinc-nickel alloys Nickel ions are introduced into the phosphating solution. However is the expectation of the phosphating baths that under technical conditions under the nickel concentration in the baths 0.01 g / l, in particular below 0.0001 g / l. Preferably included the phosphating baths also do not contain oxo anions from halogens.
  • accelerators are in the state of the art Technology known as components of zinc phosphating baths. Below are understood substances that are caused by the pickling attack the hydrogen on the metal surface bind chemically so that they themselves are reduced. Oxidizing Accelerators continue to have the effect of pickling Iron (II) ions released on steel surfaces become trivalent Oxidize stage, so that it as iron (III) phosphate can fail.
  • the process sequence according to the invention in the phosphating bath usable accelerators were listed above.
  • nitrate ions can be used as co-accelerators in quantities of up to 10 g / l be present, which is particularly the case with phosphating of steel surfaces can have a favorable effect.
  • the phosphating solution contains as little nitrate as possible.
  • Nitrate concentrations of 0.5 g / l should preferably not be exceeded, since at higher nitrate concentrations the risk of a so-called "Speck formation" exists. These are white, crater-like defects in the phosphate layer meant.
  • hydroxylamine is an accelerator particularly preferred. Sharing these two accelerators however, is not advisable since hydroxylamine is made of hydrogen peroxide is decomposed. If you put hydrogen peroxide in free or bound form as an accelerator, so are concentrations from 0.005 to 0.02 g / l of hydrogen peroxide are particularly preferred. Here the hydrogen peroxide of the phosphating solution as such be added. However, it is also possible to add hydrogen peroxide use bound form in the form of compounds in the phosphating bath deliver hydrogen peroxide by hydrolysis reactions.
  • persalts such as perborates, Percarbonates, peroxosulfates or peroxodisulfates.
  • persalts such as perborates, Percarbonates, peroxosulfates or peroxodisulfates.
  • ionic peroxides such as Alkali metal peroxides into consideration.
  • Hydroxylamine can be used as a free base, as a hydroxylamine complex or in Form of hydroxylammonium salts can be used.
  • the hydroxylammonium salt are the sulfates and the phosphates particularly suitable. In the case of the phosphates are due to the preferred solubility preferred the acid salts.
  • Hydroxylamine or its compounds are added to the phosphating bath in such quantities that the calculated concentration of free hydroxylamine between 0.1 and 10 g / l, preferably between 0.2 and 6 g / l and in particular is between 0.3 and 2 g / l.
  • hydroxylamine as an accelerator on iron surfaces to particularly favorable spherical and / or leads to columnar phosphate crystals.
  • the one to be carried out in sub-step b) Rinsing is a post-passivation of such phosphate layers particularly suitable.
  • lithium-containing phosphating baths the preferred ones Concentrations of lithium ions in the range from 0.4 to 1 g / l. Phosphating baths, lithium, are particularly preferred as the only monovalent cation. Depending on what you want Ratio of phosphate ions to divalent cations and However, lithium ions may be required to adjust the desired free acid the phosphating baths further basic Add substances. In this case, ammonia is preferably used a, so that the lithium-containing phosphating baths in addition Contain ammonium ions in the range from about 0.5 to about 2 g / l can.
  • the use of basic sodium compounds such as in this case sodium hydroxide solution is less preferred because the presence of sodium ions in the lithium-containing phosphating baths the corrosion protection properties of the layers obtained worsened.
  • the free acid preferably by adding basic sodium compounds such as sodium carbonate or sodium hydroxide.
  • phosphating baths obtained which, in addition to zinc and possibly lithium manganese (II) contain The manganese content of the phosphating bath should are between 0.2 and 4 g / l, since the lower the manganese content positive influence on the corrosion behavior of the phosphate layers is no longer available and with higher manganese contents no more positive effect occurs. Contents between 0.3 and 2 g / l and especially between 0.5 and 1.5 g / l are preferred.
  • the zinc content of the phosphating bath is preferably set to values between 0.45 and 2 g / l.
  • the current The zinc content of the working bath increases up to 3 g / l.
  • the zinc and manganese ions in the phosphating baths is basically irrelevant. It offers itself in particular, as the zinc and / or manganese source, the oxides and / or to use the carbonates.
  • iron (II) ions When using the phosphating process on steel surfaces iron dissolves in the form of iron (II) ions. If the phosphating baths do not contain any substances that are have a strong oxidizing effect, the divalent iron mainly goes into Consequence of air oxidation into the trivalent state so that it can precipitate as iron (III) phosphate. Therefore, in the Phosphate baths build up iron (II) contents that are significantly higher than the Laid down containing baths containing oxidizing agents. This is, for example, in the hydroxylamine-containing phosphating baths the case. In this sense, iron (II) concentrations are up to 50 ppm normal, with values up to in the short term in the production process 500 ppm can occur. For the phosphating process according to the invention such iron (II) concentrations are not harmful.
  • the weight ratio of phosphate ions to zinc ions in the phosphating baths can vary within a wide range, provided that it is in the range between 3.7 and 30. A weight ratio between 10 and 20 is particularly preferred.
  • the total phosphorus content of the phosphating bath is considered to be present in the form of phosphate ions PO 4 3- . Accordingly, the known fact that the pH values of the phosphating baths, which are usually in the range from about 3 to about 3.4, is only neglected in the form of the triple negative at the pH values of the phosphating baths charged anions. At these pH values, it is rather to be expected that the phosphate is present primarily as a single negatively charged dihydrogenphosphate anion, together with smaller amounts of non-associated phosphoric acid and double negatively charged hydrogenphosphate anions.
  • the phosphating can be done in spraying, diving or spray diving respectively.
  • the exposure times are in the usual range between about 1 and about 4 minutes.
  • the temperature of the phosphating solution is in the range between about 40 and about 60 ° C.
  • front phosphating are the usual steps in the prior art cleaning and activation, preferably with activation baths containing titanium phosphate.
  • the rinse solution used in sub-step b) preferably has a pH in the range of 3.4 to 6 and a temperature in the range from 20 to 50 ° C.
  • the concentrations of the cations in the The aqueous solution used in sub-step b) is preferably in the following areas: lithium (I) 0.02 to 2, in particular 0.2 to 1.5 g / l, copper (II) 0.002 to 1 g / l, in particular 0.01 to 0.1 g / l and silver (I) 0.002 to 1 g / l, in particular 0.01 to 0.1 g / l.
  • the metal ions mentioned can be used individually or as a mixture with one another available.
  • Rinse solutions containing copper (II) are particularly preferred. contain.
  • metal ions mentioned in the rinse solution are introduced is irrelevant in principle, as long as guaranteed is that the metal compounds in the concentration ranges mentioned the metal ions are soluble.
  • metal connections should with anions that prevent the tendency to corrode known to promote, such as chloride.
  • the metal ions are nitrates or as Carboxylates, especially as acetates.
  • phosphates also suitable, provided that they are below the selected concentration and pH conditions are soluble. The same applies to sulfates.
  • the metal ions of Lithium, copper and / or silver together in the rinse solutions with hexafluorotitanate and / or, particularly preferably, Hexafluoro zirconia It is preferred that the concentrations of the anions mentioned in the range from 100 to 500 ppm lie.
  • the sources of the hexafluoro anions mentioned come from them Acids or their acids under the concentration and pH conditions mentioned water-soluble salts, especially their alkali metal and / or ammonium salts. It is particularly cheap Use hexafluoro anions at least partially in the form of their acids and in the acidic solutions basic compounds of lithium, Dissolve copper and / or silver. For example, come here the hydroxides, oxides or carbonates of the metals mentioned in Consideration. By doing this, you avoid the metals together with any interfering anions.
  • the pH can if necessary, adjust with ammonia.
  • the rinse solutions can also contain the ions of lithium and copper and / or silver together with ions of cerium (III) and / or cerium (IV) included, with the total concentration of cerium ions in the range from 0.01 to 1 g / l.
  • the rinse solution can Copper and / or silver also contain aluminum (III) compounds, the concentration of aluminum in the range of 0.01 to 1 g / l lies.
  • the aluminum compounds in particular come on the one hand Polyaluminium compounds such as polymer Aluminum hydroxychloride or polymeric aluminum hydroxysulfate in Consideration (WO 92/15724), or else complex aluminum-zirconium fluorides, as they are known for example from EP-B-410 497.
  • the metal surfaces phosphated in sub-step a) can Sub-step b) with the rinse solution by spraying, dipping or Spray diving can be brought into contact with the exposure time should be in the range of 0.5 to 10 minutes and preferably about Is 40 to about 120 seconds. Because of the simpler system technology it is preferable to use the rinse solution in the partial step b) sprayed onto the phosphated metal surface in sub-step a).
  • Rinsing off the treatment solution after the end of the exposure period and before the subsequent painting is basically not required.
  • phosphated metal surfaces rinsed in sub-step b) can be dried and varnished without further rinsing, for example with a powder coating.
  • the procedure is however, especially as a pretreatment before a cathodic one Electro dip coating designed.
  • the rinse solution from the metal surfaces rinse off preferably with low salt or desalinated Water.
  • the metal surfaces pretreated according to the invention are dried. In the interest of a faster production cycle, however, is omitted preferably such drying.
  • the cathodic electrodeposition paint FT 85-7042 gray from BASF was used for painting.
  • the corrosion protection test was carried out according to the VDA alternating climate test 621-415.
  • the paint infiltration at the Ritz is entered in Table 5.
  • a paint adhesion test was carried out according to the VW stone impact test, which was assessed according to the K value. Higher K values mean poorer, lower K values better paint adhesion.
  • the results are also shown in Table 5.
  • Corrosion protection values and paint adhesion parameters Rinse solution Paint infiltration (mm) K value steel galvanized steel steel galvanized steel completely desalinated water 1.8 4 - 5 7-8 9 Compare 4 1.3 3-4 6 8th Ex. P 1.2 6 Ex. Q 1.0 2.5 - 3.5 6 8th Ex. R 1.2 2.1 - 3 6 8th Ex 1.1 6

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Chemically Coating (AREA)
  • Removal Of Specific Substances (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

A process for phosphating metal surfaces in which a nitrite- and nickel-free zinc-containing phosphating solution is applied to the metal surfaces which, if desired, are then rinsed and subsequently after-rinsed with an aqueous solution with a pH value of 3 to 7 which contains 0.001 to 10 g/l of one or more of the cations of Li, Cu and Ag.

Description

Die Erfindung betrifft Verfahren zur Phosphatierung von Metalloberflächen mit wäßrigen, sauren zinkhaltigen Phosphatierlösungen. Zur Verbesserung des Korrosionsschutzes und der Lackhaftung folgt auf die Phosphatierung eine Nachspülung mit einer Lösung, die Lithium-, Kupfer- und/oder Silberionen enthält. Das Verfahren eignet sich als Vorbehandlung der Metalloberflächen für eine anschließende Lackierung, insbesondere eine Elektrotauchlackierung. Das Verfahren ist anwendbar zur Behandlung von Oberflächen aus Stahl, verzinktem oder legierungsverzinktem Stahl, Aluminium, aluminiertem oder legierungsaluminiertem Stahl.The invention relates to methods for phosphating metal surfaces with aqueous, acidic zinc-containing phosphating solutions. To improve corrosion protection and paint adhesion follows on the phosphating, a rinse with a solution containing lithium, Contains copper and / or silver ions. The procedure is suitable as a pretreatment of the metal surfaces for a subsequent Painting, especially an electro dip painting. The procedure is applicable for the treatment of surfaces made of steel, galvanized or galvanized steel, aluminum, aluminized or alloy aluminized Steel.

Die Phosphatierung von Metallen verfolgt das Ziel, auf der Metalloberfläche festverwachsene Metallphosphatschichten zu erzeugen, die für sich bereits die Korrosionsbeständigkeit verbessern und in Verbindung mit Lacken und anderen organischen Beschichtungen zu einer wesentlichen Erhöhung der Lackhaftung und der Resistenz gegen Unterwanderung bei Korrosionsbeanspruchung beitragen. Solche Phosphatierverfahren sind seit langem bekannt. Für die Vorbehandlung vor der Lackierung eignen sich insbesondere die Niedrig-Zink-Phosphatierverfahren, bei denen die Phosphatierlösungen vergleichsweise geringe Gehalte an Zinkionen von z. B. 0,5 bis 2 g/l aufweisen. Ein wesentlicher Parameter in diesen Niedrig-Zink-Phosphatierbädern ist das Gewichtsverhältnis Phosphationen zu Zinkionen, das üblicherweise im Bereich > 8 liegt und Werte bis zu 30 annehmen kann.The phosphating of metals pursues the goal on the metal surface to produce firmly adherent metal phosphate layers already improve the corrosion resistance and in Connection with paints and other organic coatings too a significant increase in paint adhesion and resistance to Infiltration under corrosion stress contribute. Such phosphating processes have been known for a long time. For pretreatment Before painting, the low-zinc phosphating processes are particularly suitable, where the phosphating solutions are comparatively low levels of zinc ions of e.g. B. 0.5 to 2 g / l. On is an essential parameter in these low-zinc phosphating baths the weight ratio of phosphate ions to zinc ions, which is usually is in the range> 8 and can take values up to 30.

Es hat sich gezeigt, daß durch die Mitverwendung anderer mehrwertiger Kationen in den Zink-Phosphatierbädern Phosphatschichten mit deutlich verbesserten Korrosionsschutz- und Lackhaftungseigenschaften ausgebildet werden können. Beispielsweise finden Niedrig-Zink-Verfahren mit Zusatz von z. B. 0,5 bis 1,5 g/l Manganionen und z. B. 0,3 bis 2,0 g/l Nickelionen als sogenannte Trikation-Verfahren zur Vorbereitung von Metalloberflächen für die Lackierung, beispielsweise für die kathodische Elektrotauchlackierung von Autokarosserien, weite Anwendung.It has been shown that by using others more valuable Cations in the zinc phosphating baths with phosphate layers significantly improved corrosion protection and paint adhesion properties can be trained. For example, find low zinc processes with the addition of z. B. 0.5 to 1.5 g / l of manganese ions and Z. B. 0.3 to 2.0 g / l of nickel ions as a so-called trication method to prepare metal surfaces for the Painting, for example for the cathodic Electrocoating of car bodies, wide application.

Der hohe Gehalt an Nickelionen in den Phosphatierlösungen der Trikation-Verfahren und von Nickel und Nickelverbindungen in den gebildeten Phosphatschichten bringt jedoch insofern Nachteile, als Nickel und Nickelverbindungen aus der Sicht des Umweltschutzes und der Arbeitsplatzhygiene als kritisch eingestuft werden. In letzter Zeit werden daher zunehmend Niedrig-Zink-Phosphatierverfahren beschrieben, die ohne eine Mitverwendung von Nickel zu qualitativ ähnlich hochwertigen Phosphatschichten wie die nickelhaltigen Verfahren führen. Auch gegen die Beschleuniger Nitrit und Nitrat werden wegen möglicher Bildung Nitroser Gase zunehmend Bedenken geäußert. Darüber hinaus hat sich gezeigt, daß die Phosphatierung von verzinktem Stahl mit nickelfreien Phosphatierbädern zu unzureichendem Korrosionsschutz und unzureichender Lackhaftung führt, wenn die Phosphatierbäder größere Mengen (> 0,5 g/l) Nitrat enthalten.The high content of nickel ions in the phosphating solutions of the trication processes and of nickel and nickel compounds in the formed However, phosphate layers have disadvantages in that Nickel and nickel compounds from the point of view of environmental protection and occupational hygiene can be classified as critical. In the last Low zinc phosphating processes are increasingly being described the too qualitative without using nickel similar high-quality phosphate layers as the nickel-containing processes to lead. Also against the accelerators nitrite and nitrate Concerns have been raised about possible formation of nitrous gases. In addition, it has been shown that the phosphating of galvanized steel with nickel-free phosphating baths Corrosion protection and insufficient paint adhesion results if the phosphating baths contain larger quantities (> 0.5 g / l) nitrate.

Beispielsweise beschreibt die DE-A-39 20 296 ein Phosphatierverfahren, das auf Nickel verzichtet und neben Zink und Manganionen Magnesiumionen verwendet. Die hier beschriebenen Phosphatierbäder enthalten außer 0,2 bis 10 g/l Nitrationen weitere als Beschleuniger wirkende Oxidationsmittel, ausgewählt aus Nitrit, Chlorat oder einem organischen Oxidationsmittel. EP-A-60 716 offenbart Niedrig-Zink-Phosphatierbäder, die als essentielle Kationen Zink und Mangan enthalten und die als fakultativen Bestandteil Nickel beinhalten können. Der notwendige Beschleuniger wird vorzugsweise ausgewählt aus Nitrit, m-Nitrobenzolsulfonat oder Wasserstoffperoxid. Auch in der EP-A-228 151 werden Phosphatierbäder beschrieben, die als essentielle Kationen Zink und Mangan enthalten. Der Phosphatierbeschleuniger wird ausgewählt aus Nitrit, Nitrat, Wasserstoffperoxid, m-Nitrobenzoat oder p-Nitrophenol.For example, DE-A-39 20 296 describes a phosphating process that dispenses with nickel and besides zinc and manganese ions Magnesium ions used. The phosphating baths described here contain, in addition to 0.2 to 10 g / l nitrate ions, other accelerators acting oxidizing agents selected from nitrite, chlorate or an organic oxidizing agent. EP-A-60 716 discloses low-zinc phosphating baths, which are essential cations zinc and Contain manganese and which contain nickel as an optional component can. The necessary accelerator is preferred selected from nitrite, m-nitrobenzenesulfonate or hydrogen peroxide. Phosphating baths are also described in EP-A-228 151, which contain zinc and manganese as essential cations. The phosphating accelerator is selected from nitrite, nitrate, hydrogen peroxide, m-nitrobenzoate or p-nitrophenol.

Die deutsche Patentanmeldung P 43 41 041.3 beschreibt ein Verfahren zur Phosphatierung von Metalloberflächen mit wäßrigen, sauren Phosphatierlösungen, die Zink-, Mangan- und Phosphationen und als Beschleuniger m-Nitrobenzosulfonsäure oder deren wasserlösliche Salze enthalten, wobei man die Metalloberflächen mit einer Phosphatierlösung in Berührung bringt, die frei von Nickel, Kobalt, Kupfer, Nitrit und Oxo-Anionen von Halogenen ist und die

  • 0,3 bis 2 g/l Zn(II)
  • 0,3 bis 4 g/l Mn(II)
  • 5 bis 40 g/l Phosphationen
  • 0,2 bis 2 g/l m-Nitrobenzolsulfonat und
  • 0,2 bis 2 g/l Nitrationen enthält.
  • German patent application P 43 41 041.3 describes a process for phosphating metal surfaces with aqueous, acidic phosphating solutions which contain zinc, manganese and phosphate ions and, as an accelerator, m-nitrobenzosulfonic acid or its water-soluble salts, the metal surfaces being brought into contact with a phosphating solution which is free of nickel, cobalt, copper, nitrite and oxo anions from halogens and which
  • 0.3 to 2 g / l Zn (II)
  • 0.3 to 4 g / l Mn (II)
  • 5 to 40 g / l phosphate ions
  • 0.2 to 2 g / l m-nitrobenzenesulfonate and
  • Contains 0.2 to 2 g / l nitrate ions.
  • Ein ähnliches Verfahren wird in der DE-A-43 30 104 beschrieben, wobei als Beschleuniger anstelle des Nitrobenzolsulfonats 0,1 bis 5 g Hydroxylamin eingesetzt werden.A similar process is described in DE-A-43 30 104, being 0.1 to 5 as the accelerator instead of the nitrobenzenesulfonate g of hydroxylamine can be used.

    In Abhängigkeit von der Zusammensetzung der für die Phosphatierung verwendeten Lösung, dem für das Phosphatierverfahren verwendeten Beschleuniger, dem Verfahren der Aufbringung der Phosphatierlösung auf die Metalloberflächen und/oder auch weiteren Verfahrensparametern ist die Phosphatschicht auf den Metalloberflächen nicht vollständig geschlossen. Es verbleiben vielmehr mehr oder weniger große "Poren", deren Fläche in der Größenordnung von 0,5 bis 2 % der phosphatierten Fläche liegt und die im Zuge einer sogenannten "Nachpassivierung" geschlossen werden müssen, um korrodierenden Einflüssen auf die Metalloberflächen keinen Angriffspunkt zu lassen. Weiterhin verbessert eine Nachpassivierung die Haftung eines anschließend aufgebrachten Lackes.Depending on the composition of the phosphating used solution, that used for the phosphating process Accelerator, the process of applying the phosphating solution on the metal surfaces and / or other process parameters the phosphate layer on the metal surfaces is not complete closed. Rather, there are more or less large ones "Pores" whose area is on the order of 0.5 to 2% of phosphated surface is located in the course of a so-called "Post-passivation" must be closed to be corrosive To leave influences on the metal surfaces no point of attack. Post-passivation further improves the liability of one then applied paint.

    Es ist seit langer Zeit bekannt, für diese Zwecke Chromsalze enthaltende Lösungen zu verwenden. Insbesondere wird die Korrosionsbeständigkeit der durch Phosphatierung erzeugten Überzüge durch eine Nachbehandlung der Oberflächen mit Lösungen, die Chrom(VI) enthalten, erheblich verbessert. Die Verbesserung des Korrosionsschutzes resultiert in erster Linie daraus, daß ein Teil des auf der Metalloberfläche abgeschiedenen Phosphats in einen Metall(II)-Chrom-Spinell umgewandelt wird.It has long been known to contain chromium salts for these purposes To use solutions. In particular, the corrosion resistance of the coatings produced by phosphating post-treatment of the surfaces with solutions containing chromium (VI) included, significantly improved. Improving corrosion protection results primarily from the fact that part of the of the metal surface deposited phosphate in a metal (II) chromium spinel is converted.

    Ein wesentlicher Nachteil der Verwendung von Chromsalze enthaltenden Lösungen besteht darin, daß derartige Lösungen hochtoxisch sind. Außerdem wird verstärkt eine unerwünschte Blasenbildung bei der nachfolgenden Applikation von Lacken oder anderen Überzugsmaterialien beobachtet.A major disadvantage of using chromium salts containing Solutions is that such solutions are highly toxic are. In addition, unwanted blistering is increased the subsequent application of paints or other coating materials observed.

    Deswegen wurden zahlreiche weitere Möglichkeiten zur Nachpassivierung phosphatierter Metalloberflächen vorgeschlagen, wie z. B. die Verwendung von Zirkoniumsalzen (NL-PS 71 16 498), Cersalzen (EP-A-492 713), polymeren Aluminiumsalzen (WO 92/15724), Oligo- oder Polyphosphorsäureestern des Inosits in Verbindung mit einem wasserlöslichen Alkali- oder Erdalkalimetallsalz dieser Ester (DE-A-24 03 022) oder auch Fluoriden verschiedener Metalle (DE-A-24 28 065).That is why there were numerous other options for re-passivation phosphated metal surfaces proposed such. B. the Use of zirconium salts (NL-PS 71 16 498), cerium salts (EP-A-492 713), polymeric aluminum salts (WO 92/15724), oligo- or Polyphosphoric esters of inosite in combination with a water soluble alkali or alkaline earth metal salt of these esters (DE-A-24 03 022) or fluorides of various metals (DE-A-24 28,065).

    Aus der EP-B-410 497 ist eine Nachspüllösung bekannt, die Al-, Zr- und Fluoridionen enthält, wobei die Lösung als Gemisch komplexer Fluoride oder auch als eine Lösung von Aluminium-hexafluorozirkonat aufgefaßt werden kann. Die Gesamtmenge dieser 3 Ionen liegt im Bereich von 0,1 bis 2,0 g/l.A rinse solution is known from EP-B-410 497 which contains Al, Zr and contains fluoride ions, the solution being a complex mixture Fluoride or as a solution of aluminum hexafluorozirconate can be understood. The total amount of these 3 ions is in the range from 0.1 to 2.0 g / l.

    Die DE-A-21 00 497 betrifft ein Verfahren zum elektrophoretischen Aufbringen von Farben auf eisenhaltige Oberflächen, wobei die Aufgabe gelöst werden soll, auf den eisenhaltigen Oberflächen weiße oder sonstige helle Farben ohne Verfärbung aufzubringen. Diese Aufgabe wird dadurch gelöst, daß die Oberflächen, die zuvor phosphatiert sein können, mit kupferhaltigen Lösungen gespült werden. Dabei werden für diese Nachspüllösung Kupferkonzentrationen zwischen 0,1 und 10 g/l vorgeschlagen. Die DE-A-34 00 339 beschreibt ebenfalls eine kupferhaltige Nachspüllösung für phosphatierte Metalloberflächen, wobei mit Kupfergehalten zwischen 0,01 und 10 g/l gearbeitet wird. Dabei wurde jeweils nicht beachtet, daß diese Nachspüllösungen in Verbindung mit unterschiedlichen Phosphatierverfahren zu unterschiedlichen Ergebnissen führen.DE-A-21 00 497 relates to a method for electrophoretic Applying paints to ferrous surfaces, doing the job should be solved, white on the ferrous surfaces or apply other bright colors without discoloration. This The object is achieved in that the surfaces that have previously been phosphated can be rinsed with copper-containing solutions. Copper concentrations are between for this rinse solution 0.1 and 10 g / l suggested. DE-A-34 00 339 describes also a copper-containing rinse solution for phosphated metal surfaces, with copper contents between 0.01 and 10 g / l is worked. It was not observed that this Rinse solutions in connection with different phosphating processes lead to different results.

    Von den vorstehend zitierten Verfahren zur Nachspülung von Phosphatschichten haben sich - außer chromhaltigen Nachspüllösungen - nur solche Verfahren durchgesetzt, bei denen mit Lösungen komplexer Fluoride von Titan und/oder Zirkon gearbeitet wird. Daneben werden organisch-reaktive Nachspüllösungen auf der Basis von aminsubstituierten Polyvinylphenolen eingesetzt. In Verbindung mit einem nickelhaltigen Phosphatierverfahren erfüllen diese chromfreien Nachspüllösungen die hohen Anforderungen, die beispielsweise in der Automobilindustrie an Lackhaftung und Korrosionsschutz gestellt werden. Aus Umwelt- und Arbeitsschutzgründen ist man jedoch bestrebt, Phosphatierprozesse einzuführen, bei denen in allen Behandlungsstufen sowohl auf den Einsatz von Nickel- als auch von Chromverbindungen verzichtet werden kann. Nickelfreie Phosphatierverfahren in Verbindung mit einer chromfreien Nachspülung erreichen derzeit noch nicht auf allen in der Automobilindustrie verwendeten Karosseriematerialien zuverlässig die Anforderungen an Lackhaftung und Korrosionsschutz. Daher besteht immer noch ein Bedarf an Nachspüllösungen, die in Verbindung mit einer nickel- und nitritfreien Phosphatierung und einer nachfolgenden kathodischen Elektrotauchlackierung die Anforderungen an Korrosionsschutz und Lackhaftung für unterschiedliche Substratmaterialien zuverlässig erfüllen. Die Erfindung stellt sich die Aufgabe, eine derartige Verfahrenskombination aus einem hinsichtlich Umwelt- und Arbeitsschutz optimierten Phosphatierverfahren und einer hierfür besonders geeigneten chromfreien Nachspülung vor einer kathodischen Elektrotauchlackierung zur Verfügung zu stellen.Of the methods cited above for rinsing phosphate layers have - apart from chrome-containing rinse solutions - enforced only those procedures where solutions are more complex Fluoride of titanium and / or zircon is worked. Besides become organic reactive rinse solutions based on amine-substituted polyvinylphenols used. Combined with a nickel-containing phosphating process meet these Chrome-free rinse solutions meet the high requirements, for example in the automotive industry on paint adhesion and Corrosion protection can be provided. For environmental and occupational safety reasons however, efforts are being made to introduce phosphating processes, in which both the use of Nickel and chrome compounds can be dispensed with. Nickel-free phosphating process in connection with a Chrome-free rinsing currently does not reach all body materials used reliably in the automotive industry the requirements for paint adhesion and corrosion protection. Therefore there is still a need for rinse aid solutions that are related with a nickel- and nitrite-free phosphating and one subsequent cathodic electrocoating the requirements corrosion protection and paint adhesion for different substrate materials reliably meet. The invention turns the Task, such a combination of methods from a Environmental and occupational safety optimized phosphating processes and a particularly suitable chrome-free rinse before to provide cathodic electrocoating.

    Diese Aufgabe wird gelöst durch ein Verfahren zur Phosphatierung von Oberflächen aus Stahl, verzinktem Stahl und/oder Aluminium und/oder aus Legierungen, die zu mindestens 50 Gew.-% aus Eisen, Zink oder Aluminium bestehen, wobei man mit einer zinkhaltigen sauren Phosphatierlösung phosphatiert und anschließend mit einer Nachspüllösung nachspült, dadurch gekennzeichnet, daß man

  • a) zur Phosphatierung eine Lösung mit einem pH-Wert im Bereich von 2,7 bis 3,6 verwendet, die frei ist von Nitrit und Nickel und die
  • 0,3 bis 3 g/l Zn(II),
  • 5 bis 40 g/l Phosphationen
  • und mindestens einen der folgenden Beschleuniger enthält:
  • 0,2 bis 2 g/l m-Nitrobenzolsulfonationen,
  • 0,1 bis 10 g/l Hydroxylamin in freier oder gebundener Form,
  • 0,05 bis 2 g/l m-Nitrobenzoationen,
  • 0,05 bis 2 g/l p-Nitrophenol,
  • 1 bis 70 mg/l Wasserstoffperoxid in freier oder gebundener Form,
  • und nach der Phosphatierung mit oder ohne Zwischenspülung mit Wasser
  • b) mit einer wäßrigen Lösung mit einem pH-Wert im Bereich von 3 bis 7 nachspült, die 0,001 bis 10 g/l eines oder mehrerer der folgenden Kationen enthält: Lithiumionen, Kupferionen und/oder Silberionen.
  • This object is achieved by a method for phosphating surfaces made of steel, galvanized steel and / or aluminum and / or alloys which consist of at least 50% by weight of iron, zinc or aluminum, phosphating with a zinc-containing acidic phosphating solution and then rinsed with a rinse solution, characterized in that
  • a) used for phosphating a solution with a pH in the range of 2.7 to 3.6, which is free of nitrite and nickel and the
  • 0.3 to 3 g / l Zn (II),
  • 5 to 40 g / l phosphate ions
  • and contains at least one of the following accelerators:
  • 0.2 to 2 g / l m-nitrobenzenesulfonate ions,
  • 0.1 to 10 g / l hydroxylamine in free or bound form,
  • 0.05 to 2 g / l m-nitrobenzoate ions,
  • 0.05 to 2 g / l p-nitrophenol,
  • 1 to 70 mg / l hydrogen peroxide in free or bound form,
  • and after phosphating with or without intermediate rinsing with water
  • b) rinsed with an aqueous solution with a pH in the range from 3 to 7, which contains 0.001 to 10 g / l of one or more of the following cations: lithium ions, copper ions and / or silver ions.
  • Die im Teilschritt a) der erfindungsgemäßen Verfahrensabfolge eingesetzte Phosphatierlösung enthält vorzugsweise eines oder mehrere weitere Metallionen, deren positive Wirkung auf den Korrosionsschutz von Zinkphosphatschichten im Stand der Technik bekannt ist. Hierbei kann die Phosphatierlösung eines oder mehrere der folgenden Kationen enthalten:

  • 0,2 bis 4 g/l Mangan(II),
  • 0,2 bis 2,5 g/l Magnesium(II),
  • 0,2 bis 2,5 g/l Calcium(II),
  • 0,01 bis 0,5 g/l Eisen(II),
  • 0,2 bis 1,5 g/l Lithium(I),
  • 0,02 bis 0,8 g/l Wolfram(VI),
  • 0,001 bis 0,03 g/l Kupfer(II).
  • The phosphating solution used in partial step a) of the process sequence according to the invention preferably contains one or more further metal ions, the positive effect of which on the corrosion protection of zinc phosphate layers is known in the prior art. The phosphating solution can contain one or more of the following cations:
  • 0.2 to 4 g / l manganese (II),
  • 0.2 to 2.5 g / l magnesium (II),
  • 0.2 to 2.5 g / l calcium (II),
  • 0.01 to 0.5 g / l iron (II),
  • 0.2 to 1.5 g / l lithium (I),
  • 0.02 to 0.8 g / l tungsten (VI),
  • 0.001 to 0.03 g / l copper (II).
  • Dabei ist die Anwesenheit von Mangan und/oder Lithium besonders bevorzugt. Die Möglichkeit der Anwesenheit von zweiwertigem Eisen hängt von dem weiter unten beschriebenen Beschleunigersystem ab. The presence of manganese and / or lithium is special prefers. The possibility of the presence of divalent iron depends on the accelerator system described below.

    Die Gegenwart von Eisen(II) im genannten Konzentrationsbereich setzt einen Beschleuniger voraus, der gegenüber diesen Ionen nicht oxidierend wirkt. Hierfür ist insbesondere Hydroxylamin als Beispiel zu nennen.The presence of iron (II) in the concentration range mentioned requires an accelerator that does not react to these ions has an oxidizing effect. Hydroxylamine in particular is an example of this to call.

    Die Phosphatierbäder sind frei von Nickel und vorzugsweise auch von Kobalt. Dies bedeutet, daß diese Elemente bzw. Ionen den Phosphatierbädern nicht bewußt zugesetzt werden. Es ist jedoch in der Praxis nicht auszuschließen, daß solche Bestandteile über das zu behandelnde Material in Spuren in die Phosphatierbäder eingetragen werden. Insbesondere ist es nicht auszuschließen, daß bei der Phosphatierung von mit Zink-Nickel-Legierungen beschichtetem Stahl Nickelionen in die Phosphatierlösung eingetragen werden. Jedoch wird an die Phosphatierbäder die Erwartung gestellt, daß unter technischen Bedingungen die Nickelkonzentration in den Bädern unter 0,01 g/l, insbesondere unter 0,0001 g/l liegt. Vorzugsweise enthalten die Phosphatierbäder auch keine Oxoanionen von Halogenen.The phosphating baths are free of nickel and preferably also of Cobalt. This means that these elements or ions the phosphating baths not be added deliberately. However, it is in the Practice does not rule out that such constituents go beyond that Treating material entered in traces in the phosphating baths become. In particular, it cannot be ruled out that at Phosphating of steel coated with zinc-nickel alloys Nickel ions are introduced into the phosphating solution. However is the expectation of the phosphating baths that under technical conditions under the nickel concentration in the baths 0.01 g / l, in particular below 0.0001 g / l. Preferably included the phosphating baths also do not contain oxo anions from halogens.

    Ähnlich wie in der EP-A-321 059 beschrieben, bringt auch in der erfindungsgemäßen Verfahrensfolge die Gegenwart löslicher Verbindungen des sechswertigen Wolframs im Phosphatierbad Vorteile hinsichtlich Korrosionswiderstand und Lackhaftung. In den erfindungsgemäßen Phosphatierverfahren können Phosphatierlösungen Verwendung finden, die 20 bis 800 mg/l, vorzugsweise 50 bis 600 mg/l, Wolfram in Form wasserlöslicher Wolframate, Silicowolframate und/oder Borowolframate enthalten. Dabei können die genannten Anionen in Form ihrer Säuren und/oder ihrer wasserlöslichen Salze, vorzugsweise Ammoniumsalze, eingesetzt werden. Die Verwendung von Cu(II) ist aus der EP-A-459 541 bekannt.Similar to that described in EP-A-321 059, also brings in the sequence of processes according to the invention the presence of soluble compounds advantages of the hexavalent tungsten in the phosphating bath Corrosion resistance and paint adhesion. In the Phosphating processes according to the invention can use phosphating solutions Find the use of 20 to 800 mg / l, preferably 50 to 600 mg / l, tungsten in the form of water-soluble tungstates, silicotungstates and / or contain borotungstates. The anions mentioned can in the form of their acids and / or their water-soluble salts, preferably ammonium salts can be used. The use of Cu (II) is known from EP-A-459 541.

    Bei Phosphatierbädern, die für unterschiedliche Substrate geeignet sein sollen, ist es üblich geworden, freies und/oder komplexgebundenes Fluorid in Mengen bis zu 2,5 g/l Gesamtfluorid, davon bis zu 800 mg/l freies Fluorid zuzusetzen. Die Anwesenheit solcher Fluoridmengen ist auch für die Phosphatierbäder im Rahmen der Erfindung von Vorteil. Bei Abwesenheit von Fluorid soll der Aluminiumgehalt des Bades 3 mg/l nicht überschreiten. Bei Gegenwart von Fluorid werden infolge der Komplexbildung höhere Al-Gehalte toleriert, sofern die Konzentration des nicht komplexierten Al 3 mg/l nicht übersteigt. Die Verwendung fluoridhaltiger Bäder ist daher vorteilhaft, wenn die zu phosphatierenden Oberflächen zumindest teilweise aus Aluminium bestehen oder Aluminium enthalten. In diesen Fällen ist es günstig, kein komplexgebundenes, sondern nur freies Fluorid, vorzugsweise in Konzentrationen im Bereich 0,5 bis 1,0 g/l, einzusetzen.For phosphating baths that are suitable for different substrates , it has become common, free and / or complex-bound fluoride in amounts up to 2.5 g / l total fluoride, Add up to 800 mg / l of free fluoride. The presence such amounts of fluoride is also within the scope of the phosphating baths the invention of advantage. In the absence of fluoride, the The aluminum content of the bath should not exceed 3 mg / l. In the present Due to the complex formation of fluoride, higher Al contents tolerated, provided the concentration of the non-complexed Al 3 mg / l does not exceed. The use of fluoride baths is therefore advantageous if the surfaces to be phosphated at least partly consist of aluminum or contain aluminum. In In these cases it is favorable, not complex, but only free fluoride, preferably in concentrations in the range 0.5 to 1.0 g / l.

    Für die Phosphatierung von Zinkoberflächen ist es nicht zwingend erforderlich, daß die Phosphatierbäder sogenannte Beschleuniger enthalten. Für die Phosphatierung von Stahloberflächen ist es jedoch erforderlich, daß die Phosphatierlösung einen oder mehrere Beschleuniger enthält. Solche Beschleuniger sind im Stand der Technik als Komponenten von Zinkphosphatierbädern geläufig. Hierunter werden Substanzen verstanden, die den durch den Beizangriff der Säure an der Metalloberfläche entstehenden Wasserstoff dadurch chemisch binden, daß sie selbst reduziert werden. Oxidierend wirkende Beschleuniger haben weiterhin den Effekt, durch den Beizangriff auf Stahloberflächen freigesetzte Eisen(II)-Ionen zur dreiwertigen Stufe zu oxidieren, so daß sie als Eisen(III)-Phosphat ausfallen können. Die im Phosphatierbad der erfindungsgemäßen Verfahrensfolge einsetzbaren Beschleuniger wurden weiter oben aufgeführt.It is not mandatory for the phosphating of zinc surfaces required that the phosphating baths so-called accelerators contain. However, it is for the phosphating of steel surfaces required that the phosphating solution one or more Contains accelerator. Such accelerators are in the state of the art Technology known as components of zinc phosphating baths. Below are understood substances that are caused by the pickling attack the hydrogen on the metal surface bind chemically so that they themselves are reduced. Oxidizing Accelerators continue to have the effect of pickling Iron (II) ions released on steel surfaces become trivalent Oxidize stage, so that it as iron (III) phosphate can fail. The process sequence according to the invention in the phosphating bath usable accelerators were listed above.

    Als Cobeschleuniger können zusätzlich Nitrationen in Mengen bis zu 10 g/l zugegen sein, was sich insbesondere bei der Phosphatierung von Stahloberflächen günstig auswirken kann. Bei der Phosphatierung von verzinktem Stahl ist es jedoch vorzuziehen, daß die Phosphatierlösung möglichst wenig Nitrat enthält. Nitratkonzentrationen von 0,5 g/l sollten vorzugsweise nicht überschritten werden, da bei höheren Nitratkonzentrationen die Gefahr einer sogenannten "Stippenbildung" besteht. Hiermit sind weiße, kraterartige Fehlstellen in der Phosphatschicht gemeint.Additional nitrate ions can be used as co-accelerators in quantities of up to 10 g / l be present, which is particularly the case with phosphating of steel surfaces can have a favorable effect. When phosphating of galvanized steel, however, it is preferable that the phosphating solution contains as little nitrate as possible. Nitrate concentrations of 0.5 g / l should preferably not be exceeded, since at higher nitrate concentrations the risk of a so-called "Speck formation" exists. These are white, crater-like defects in the phosphate layer meant.

    Aus Gründen der Umweltfreundlichkeit ist Wasserstoffperoxid, aus den technischen Gründen der vereinfachten Formulierungsmöglichkeiten für Nachdosierlösungen ist Hydroxylamin als Beschleuniger besonders bevorzugt. Die gemeinsame Verwendung dieser beiden Beschleuniger ist jedoch nicht ratsam, da Hydroxylamin von Wasserstoffperoxid zersetzt wird. Setzt man Wasserstoffperoxid in freier oder gebundener Form als Beschleuniger ein, so sind Konzentrationen von 0,005 bis 0,02 g/l Wasserstoffperoxid besonders bevorzugt. Dabei kann das Wasserstoffperoxid der Phosphatierlösung als solches zugegeben werden. Es ist jedoch auch möglich, Wasserstoffperoxid in gebundener Form in Form von Verbindungen einzusetzen, die im Phosphatierbad durch Hydrolysereaktionen Wasserstoffperoxid liefern. Beispiele solcher Verbindungen sind Persalze, wie Perborate, Percarbonate, Peroxosulfate oder Peroxodisulfate. Als weitere Quellen für Wasserstoffperoxid kommen ionische Peroxide wie beispielsweise Alkalimetallperoxide in Betracht.For environmental reasons, hydrogen peroxide is off the technical reasons for the simplified formulation options for replenishing solutions, hydroxylamine is an accelerator particularly preferred. Sharing these two accelerators however, is not advisable since hydroxylamine is made of hydrogen peroxide is decomposed. If you put hydrogen peroxide in free or bound form as an accelerator, so are concentrations from 0.005 to 0.02 g / l of hydrogen peroxide are particularly preferred. Here the hydrogen peroxide of the phosphating solution as such be added. However, it is also possible to add hydrogen peroxide use bound form in the form of compounds in the phosphating bath deliver hydrogen peroxide by hydrolysis reactions. Examples of such compounds are persalts, such as perborates, Percarbonates, peroxosulfates or peroxodisulfates. As another Sources of hydrogen peroxide come from ionic peroxides such as Alkali metal peroxides into consideration.

    Hydroxylamin kann als freie Base, als Hydroxylaminkomplex oder in Form von Hydroxylammoniumsalzen eingesetzt werden. Fügt man freies Hydroxylamin dem Phosphatierbad oder einem Phosphatierbad-Konzentrat zu, wird es aufgrund des sauren Charakters dieser Lösungen weitgehend als Hydroxylammonium-Kation vorliegen. Bei einer Verwendung als Hydroxylammonium-Salz sind die Sulfate sowie die Phosphate besonders geeignet. Im Falle der Phosphate sind aufgrund der besseren Löslichkeit die sauren Salze bevorzugt. Hydroxylamin oder seine Verbindungen werden dem Phosphatierbad in solchen Mengen zugesetzt, daß die rechnerische Konzentration des freien Hydroxylamins zwischen 0,1 und 10 g/l, vorzugsweise zwischen 0,2 und 6 g/l und insbesondere zwischen 0,3 und 2 g/l liegt. Aus der EP-B-315 059 ist bekannt, daß die Verwendung von Hydroxylamin als Beschleuniger auf Eisenoberflächen zu besonders günstigen kugelartigen und/oder säulenartigen Phosphatkristallen führt. Die im Teilschritt b) auszuführende Nachspülung ist als Nachpassivierung solcher Phosphatschichten besonders geeignet.Hydroxylamine can be used as a free base, as a hydroxylamine complex or in Form of hydroxylammonium salts can be used. One adds free Hydroxylamine the phosphating bath or a phosphating bath concentrate too, it becomes due to the acidic nature of these solutions largely present as a hydroxylammonium cation. When using the hydroxylammonium salt are the sulfates and the phosphates particularly suitable. In the case of the phosphates are due to the preferred solubility preferred the acid salts. Hydroxylamine or its compounds are added to the phosphating bath in such quantities that the calculated concentration of free hydroxylamine between 0.1 and 10 g / l, preferably between 0.2 and 6 g / l and in particular is between 0.3 and 2 g / l. From EP-B-315 059 is known to use hydroxylamine as an accelerator on iron surfaces to particularly favorable spherical and / or leads to columnar phosphate crystals. The one to be carried out in sub-step b) Rinsing is a post-passivation of such phosphate layers particularly suitable.

    Wählt man lithiumhaltige Phosphatierbäder, so liegen die bevorzugten Konzentrationen an Lithiumionen im Bereich von 0,4 bis 1 g/l. Dabei sind Phosphatierbäder besonders vorzuziehen, die Lithium als einziges einwertiges Kation enthalten. Je nach gewünschtem Verhältnis von Phosphationen zu den zweiwertigen Kationen und den Lithiumionen kann es jedoch erforderlich sein, zum Einstellen der erwünschten freien Säure den Phosphatierbädern weitere basische Substanzen zuzugeben. In diesem Falle setzt man vorzugsweise Ammoniak ein, so daß die lithiumhaltigen Phosphatierbäder zusätzlich Ammoniumionen im Bereich von etwa 0,5 bis etwa 2 g/l enthalten können. Die Verwendung basischer Natriumverbindungen wie beispielsweise Natronlauge ist in diesem Fall weniger bevorzugt, da die Gegenwart von Natriumionen in den lithiumhaltigen Phosphatierbädern die Korrosionsschutzeigenschaften der erhaltenen Schichten verschlechtert. Bei lithiumfreien Phosphatierbädern stellt man die freie Säure vorzugsweise durch Zugabe basischer Natriumverbindungen wie Natriumcarbonat oder Natriumhydroxid ein.If one chooses lithium-containing phosphating baths, the preferred ones Concentrations of lithium ions in the range from 0.4 to 1 g / l. Phosphating baths, lithium, are particularly preferred as the only monovalent cation. Depending on what you want Ratio of phosphate ions to divalent cations and However, lithium ions may be required to adjust the desired free acid the phosphating baths further basic Add substances. In this case, ammonia is preferably used a, so that the lithium-containing phosphating baths in addition Contain ammonium ions in the range from about 0.5 to about 2 g / l can. The use of basic sodium compounds such as In this case, sodium hydroxide solution is less preferred because the presence of sodium ions in the lithium-containing phosphating baths the corrosion protection properties of the layers obtained worsened. In the case of lithium-free phosphating baths, the free acid preferably by adding basic sodium compounds such as sodium carbonate or sodium hydroxide.

    Besonders gute Korrosionsschutzergebnisse werden mit Phosphatierbädern erhalten, die außer Zink und gegebenenfalls Lithium Mangan(II) enthalten. Der Mangangehalt des Phosphatierbades soll zwischen 0,2 und 4 g/l liegen, da bei geringeren Mangangehalten der positive Einfluß auf das Korrosionsverhalten der Phosphatschichten nicht mehr gegeben ist und bei höheren Mangangehalten kein weiterer positiver Effekt eintritt. Gehalte zwischen 0,3 und 2 g/l und insbesondere zwischen 0,5 und 1,5 g/l sind bevorzugt. Den Zinkgehalt des Phosphatierbades stellt man vorzugsweise auf Werte zwischen 0,45 und 2 g/l ein. Infolge des Beizabtrages bei der Phosphatierung zinkhaltiger Oberflächen ist es jedoch möglich, daß der aktuelle Zinkgehalt des arbeitenden Bades auf bis zu 3 g/l ansteigt. In welcher Form die Zink- und Manganionen in die Phosphatierbäder eingebracht werden, ist prinzipiell ohne Belang. Es bietet sich insbesondere an, als Zink- und/oder Manganquelle die Oxide und/oder die Carbonate zu verwenden.Particularly good corrosion protection results are achieved with phosphating baths obtained which, in addition to zinc and possibly lithium manganese (II) contain. The manganese content of the phosphating bath should are between 0.2 and 4 g / l, since the lower the manganese content positive influence on the corrosion behavior of the phosphate layers is no longer available and with higher manganese contents no more positive effect occurs. Contents between 0.3 and 2 g / l and especially between 0.5 and 1.5 g / l are preferred. The zinc content of the phosphating bath is preferably set to values between 0.45 and 2 g / l. As a result of the pickling removal during phosphating zinc-containing surfaces, however, it is possible that the current The zinc content of the working bath increases up to 3 g / l. In what form the zinc and manganese ions in the phosphating baths is basically irrelevant. It offers itself in particular, as the zinc and / or manganese source, the oxides and / or to use the carbonates.

    Bei der Anwendung des Phosphatierverfahrens auf Stahloberflächen geht Eisen in Form von Eisen(II)-Ionen in Lösung. Falls die Phosphatierbäder keine Substanzen enthalten, die gegenüber Eisen(II) stark oxidierend wirken, geht das zweiwertige Eisen vornehmlich in Folge von Luftoxidation in den dreiwertigen Zustand über, so daß es als Eisen(III)-Phosphat ausfallen kann. Daher können sich in den Phosphatierbädern Eisen(II)-Gehalte aufbauen, die deutlich über den Gehalten liegen, die Oxidationsmittel-haltige Bäder enthalten. Dies ist beispielsweise in den Hydroxylamin-haltigen Phosphatierbädern der Fall. In diesem Sinne sind Eisen(II)-Konzentrationen bis zu 50 ppm normal, wobei kurzfristig im Produktionsablauf auch Werte bis zu 500 ppm auftreten können. Für das erfindungsgemäße Phosphatierverfahren sind solche Eisen(II)-Konzentrationen nicht schädlich.When using the phosphating process on steel surfaces iron dissolves in the form of iron (II) ions. If the phosphating baths do not contain any substances that are have a strong oxidizing effect, the divalent iron mainly goes into Consequence of air oxidation into the trivalent state so that it can precipitate as iron (III) phosphate. Therefore, in the Phosphate baths build up iron (II) contents that are significantly higher than the Laid down containing baths containing oxidizing agents. This is, for example, in the hydroxylamine-containing phosphating baths the case. In this sense, iron (II) concentrations are up to 50 ppm normal, with values up to in the short term in the production process 500 ppm can occur. For the phosphating process according to the invention such iron (II) concentrations are not harmful.

    Das Gewichtsverhältnis Phosphationen zu Zinkionen in den Phosphatierbädern kann in weiten Grenzen schwanken, sofern es im Bereich zwischen 3,7 und 30 liegt. Ein Gewichtsverhältnis zwischen 10 und 20 ist besonders bevorzugt. Für diese Berechnung wird der gesamte Phosphorgehalt des Phosphatierbades als in Form von Phosphationen PO4 3- vorliegend angesehen. Demnach wird bei der Berechnung des Mengenverhältnisses die bekannte Tatsache außer acht gelassen, daß bei den pH-Werten der Phosphatierbäder, die üblicherweise im Bereich von etwa 3 bis etwa 3,4 liegen, nur ein sehr geringer Teil des Phosphats tatsächlich in Form der dreifach negativ geladenen Anionen vorliegt. Bei diesen pH-Werten ist vielmehr zu erwarten, daß das Phosphat vornehmlich als einfach negativ geladenes Dihydrogenphosphat-Anion vorliegt, zusammen mit geringeren Mengen an undisoziierter Phosphorsäure und an zweifach negativ geladenen Hydrogenphosphat-Anionen.The weight ratio of phosphate ions to zinc ions in the phosphating baths can vary within a wide range, provided that it is in the range between 3.7 and 30. A weight ratio between 10 and 20 is particularly preferred. For this calculation, the total phosphorus content of the phosphating bath is considered to be present in the form of phosphate ions PO 4 3- . Accordingly, the known fact that the pH values of the phosphating baths, which are usually in the range from about 3 to about 3.4, is only neglected in the form of the triple negative at the pH values of the phosphating baths charged anions. At these pH values, it is rather to be expected that the phosphate is present primarily as a single negatively charged dihydrogenphosphate anion, together with smaller amounts of non-associated phosphoric acid and double negatively charged hydrogenphosphate anions.

    Als weitere Parameter zur Steuerung von Phosphatierbädern sind dem Fachmann die Gehalte an freier Säure und an Gesamtsäure bekannt. Die in dieser Schrift verwendete Bestimmungsmethode dieser Parameter ist im Beispielteil angegeben. Werte der freien Säure zwischen 0 und 1,5 Punkten und der Gesamtsäure zwischen etwa 15 und etwa 30 Punkten liegen im technisch üblichen Bereich und sind im Rahmen dieser Erfindung geeignet.This is another parameter for controlling phosphating baths Those skilled in the art know the free acid and total acid contents. The method of determining these parameters used in this document is given in the example section. Free acid values between 0 and 1.5 points and the total acidity between about 15 and about 30 Points are in the technically usual range and are in the frame this invention.

    Die Phosphatierung kann im Spritzen, im Tauchen oder im Spritztauchen erfolgen. Die Einwirkungszeiten liegen dabei im üblichen Bereich zwischen etwa 1 und etwa 4 Minuten. Die Temperatur der Phosphatierlösung liegt im Bereich zwischen etwa 40 und etwa 60 °C. Vor der Phosphatierung sind die im Stand der Technik üblichen Schritte der Reinigung und der Aktivierung, vorzugsweise mit titanphosphathaltigen Aktivierbädern, vorzunehmen.The phosphating can be done in spraying, diving or spray diving respectively. The exposure times are in the usual range between about 1 and about 4 minutes. The temperature of the phosphating solution is in the range between about 40 and about 60 ° C. In front phosphating are the usual steps in the prior art cleaning and activation, preferably with activation baths containing titanium phosphate.

    Zwischen der Phosphatierung gemäß Teilschritt a) und der Nachspülung gemäß Teilschritt b) kann eine Zwischenspülung mit Wasser erfolgen. Diese ist jedoch nicht erforderlich und es kann sogar Vorteile bieten, auf diese Zwischenspülung zu verzichten, da dann eine Reaktion der Nachspüllösung mit der an der phosphatierten Oberfläche noch anhaftenden Phosphatierlösung erfolgen kann, die sich günstig auf den Korrosionsschutz auswirkt.Between the phosphating according to sub-step a) and the rinsing According to sub-step b), an intermediate rinse with water can take place. However, this is not necessary and it can even have advantages offer to do without this intermediate rinse, because then a Reaction of the rinse solution with that on the phosphated surface still adhering phosphating solution can take place has a positive effect on corrosion protection.

    Vorzugsweise weist die im Teilschritt b) verwendete Nachspüllösung einen pH-Wert im Bereich von 3,4 bis 6 und eine Temperatur im Bereich von 20 bis 50 °C auf. Die Konzentrationen der Kationen in der im Teilschritt b) eingesetzten wäßrigen Lösung liegen vorzugsweise in folgenden Bereichen: Lithium(I) 0,02 bis 2, insbesondere 0,2 bis 1,5 g/l, Kupfer(II) 0,002 bis 1 g/l, insbesondere 0,01 bis 0,1 g/l und Silber(I) 0,002 bis 1 g/l, insbesondere 0,01 bis 0,1 g/l. Dabei können die genannten Metallionen einzeln oder im Gemisch miteinander vorliegen. Besonders bevorzugt sind Nachspüllösungen, die Kupfer(II) enthalten.The rinse solution used in sub-step b) preferably has a pH in the range of 3.4 to 6 and a temperature in the range from 20 to 50 ° C. The concentrations of the cations in the The aqueous solution used in sub-step b) is preferably in the following areas: lithium (I) 0.02 to 2, in particular 0.2 to 1.5 g / l, copper (II) 0.002 to 1 g / l, in particular 0.01 to 0.1 g / l and silver (I) 0.002 to 1 g / l, in particular 0.01 to 0.1 g / l. Here the metal ions mentioned can be used individually or as a mixture with one another available. Rinse solutions containing copper (II) are particularly preferred. contain.

    In welcher Form die genannten Metallionen in die Nachspüllösung eingebracht werden, ist prinzipiell unerheblich, so lange gewährleistet ist, daß die Metallverbindungen in den genannten Konzentrationsbereichen der Metallionen löslich sind. Jedoch sollten Metallverbindungen mit Anionen vermieden werden, die die Korrosionsneigung bekanntermaßen fördern, wie beispielsweise Chlorid. Besonders bevorzugt ist es, die Metallionen als Nitrate oder als Carboxylate, insbesondere als Acetate einzusetzen. Phosphate sind ebenfalls geeignet, sofern sie unter den gewählten Konzentrations- und pH-Bedingungen löslich sind. Gleiches gilt für Sulfate.In what form the metal ions mentioned in the rinse solution are introduced is irrelevant in principle, as long as guaranteed is that the metal compounds in the concentration ranges mentioned the metal ions are soluble. However, metal connections should with anions that prevent the tendency to corrode known to promote, such as chloride. Especially it is preferred to use the metal ions as nitrates or as Carboxylates, especially as acetates. Are phosphates also suitable, provided that they are below the selected concentration and pH conditions are soluble. The same applies to sulfates.

    In einer besonderen Ausführungsform setzt man die Metallionen von Lithium, Kupfer und/oder Silber in den Nachspüllösungen zusammen mit Hexafluorotitanat- und/oder, besonders bevorzugt, Hexafluorozirkonationen ein. Dabei ist es bevorzugt, daß die Konzentrationen der genannten Anionen im Bereich von 100 bis 500 ppm liegen. Als Quelle der genannten Hexafluoro-Anionen kommen deren Säuren oder deren unter den genannten Konzentrations- und pH-Bedingungen wasserlösliche Salze, insbesondere deren Alkalimetall- und/oder Ammoniumsalze in Betracht. Besonders günstig ist es, die Hexafluoro-Anionen zumindest teilweise in Form ihrer Säuren einzusetzen und in den sauren Lösungen basische Verbindungen von Lithium, Kupfer und/oder Silber aufzulösen. Hierfür kommen beispielsweise die Hydroxide, Oxide oder Carbonate der genannten Metalle in Betracht. Durch dieses Vorgehen vermeidet man, die Metalle zusammen mit gegebenenfalls störenden Anionen einzusetzen. Der pH-Wert kann, falls erforderlich, mit Ammoniak eingestellt werden.In a special embodiment, the metal ions of Lithium, copper and / or silver together in the rinse solutions with hexafluorotitanate and / or, particularly preferably, Hexafluoro zirconia. It is preferred that the concentrations of the anions mentioned in the range from 100 to 500 ppm lie. The sources of the hexafluoro anions mentioned come from them Acids or their acids under the concentration and pH conditions mentioned water-soluble salts, especially their alkali metal and / or ammonium salts. It is particularly cheap Use hexafluoro anions at least partially in the form of their acids and in the acidic solutions basic compounds of lithium, Dissolve copper and / or silver. For example, come here the hydroxides, oxides or carbonates of the metals mentioned in Consideration. By doing this, you avoid the metals together with any interfering anions. The pH can if necessary, adjust with ammonia.

    Weiterhin können die Nachspüllösungen die Ionen von Lithium, Kupfer und/oder Silber zusammen mit Ionen von Cer(III) und/oder Cer(IV) enthalten, wobei die Gesamtkonzentration der Cerionen im Bereich von 0,01 bis 1 g/l liegt.The rinse solutions can also contain the ions of lithium and copper and / or silver together with ions of cerium (III) and / or cerium (IV) included, with the total concentration of cerium ions in the range from 0.01 to 1 g / l.

    Weiterhin kann die Nachspüllösung außer den Ionen von Lithium, Kupfer und/oder Silber auch Aluminium(III)-Verbindungen enthalten, wobei die Konzentration an Aluminium im Bereich von 0,01 bis 1 g/l liegt. Als Aluminiumverbindungen kommen dabei insbesondere einerseits Polyaluminiumverbindungen wie beispielsweise polymeres Aluminiumhydroxychlorid oder polymeres Aluminiumhydroxysulfat in Betracht (WO 92/15724), oder aber komplexe Aluminium-Zirkon-Fluoride, wie sie beispielsweise aus der EP-B-410 497 bekannt sind.In addition to the ions of lithium, the rinse solution can Copper and / or silver also contain aluminum (III) compounds, the concentration of aluminum in the range of 0.01 to 1 g / l lies. The aluminum compounds in particular come on the one hand Polyaluminium compounds such as polymer Aluminum hydroxychloride or polymeric aluminum hydroxysulfate in Consideration (WO 92/15724), or else complex aluminum-zirconium fluorides, as they are known for example from EP-B-410 497.

    Die im Teilschritt a) phosphatierten Metalloberflächen können im Teilschritt b) mit der Nachspüllösung durch Spritzen, Tauchen oder Spritztauchen in Kontakt gebracht werden, wobei die Einwirkungszeit im Bereich von 0,5 bis 10 Minuten liegen soll und vorzugsweise etwa 40 bis etwa 120 Sekunden beträgt. Aufgrund der einfacheren Anlagentechnik ist es vorzuziehen, die Nachspüllösung im Teilschritt b) auf die im Teilschritt a) phosphatierte Metalloberfläche aufzuspritzen.The metal surfaces phosphated in sub-step a) can Sub-step b) with the rinse solution by spraying, dipping or Spray diving can be brought into contact with the exposure time should be in the range of 0.5 to 10 minutes and preferably about Is 40 to about 120 seconds. Because of the simpler system technology it is preferable to use the rinse solution in the partial step b) sprayed onto the phosphated metal surface in sub-step a).

    Ein Abspülen der Behandlungslösung nach dem Ende der Einwirkungsdauer und vor der nachfolgenden Lackierung ist prinzipiell nicht erforderlich. Beispielsweise können die erfindungsgemäß im Teilschritt a) phosphatierten und im Teilschritt b) nachgespülten Metalloberflächen ohne weitere Spülung getrocknet und lackiert werden, beispielsweise mit einer Pulverbeschichtung. Das Verfahren ist jedoch insbesondere als Vorbehandlung vor einer kathodischen Elektrotauchlackierung konzipiert. Um eine Verunreinigung des Lackbades zu vermeiden, ist es hierbei vorzuziehen, nach der Nachspülung gemäß Teilschritt b) die Nachspüllösung von den Metalloberflächen abzuspülen, vorzugsweise mit salzarmem oder entsalztem Wasser. Vor dem Einbringen in das Elektrotauchlackbecken können die erfindungsgemäß vorbehandelten Metalloberflächen getrocknet werden. Im Interesse eines rascheren Produktionszyklus unterbleibt jedoch vorzugsweise eine derartige Trocknung.Rinsing off the treatment solution after the end of the exposure period and before the subsequent painting is basically not required. For example, according to the invention in the substep a) phosphated metal surfaces rinsed in sub-step b) can be dried and varnished without further rinsing, for example with a powder coating. The procedure is however, especially as a pretreatment before a cathodic one Electro dip coating designed. To avoid contamination of the To avoid lacquer bath, it is preferable to do this after rinsing according to sub-step b) the rinse solution from the metal surfaces rinse off, preferably with low salt or desalinated Water. Before they are placed in the electrocoat, the metal surfaces pretreated according to the invention are dried. In the interest of a faster production cycle, however, is omitted preferably such drying.

    AusführungsbeispieleEmbodiments

    Die erfindungsgemäße Verfahrensfolge wurde an Stahlblechen, wie sie im Automobilbau Verwendung finden, überprüft. Dabei wurde folgender in der Karosseriefertigung gebräuchlicher Verfahrensgang im Tauchverfahren ausgeführt:

  • 1. Reinigen mit einem alkalischen Reiniger (RidolineR 1558, Henkel KGaA), Ansatz 2 % in Brauchwasser, 55 °C, 5 Minuten.
  • 2. Spülen mit Brauchwasser, Raumtemperatur, 1 Minute.
  • 3. Aktivieren mit einem flüssigen Titanphosphat-haltigen Aktiviermittel im Tauchen (FixodineR L, Henkel KGaA), Ansatz 0,5 % in vollentsalztem Wasser, Raumtemperatur, 1 Minute.
  • 4. Teilschritt a): Phosphatieren mit Phosphatierbädern gemäß Tabelle 1 (Ansatz in vollentsalztem Wasser). Außer den in Tabelle 1 genannten Kationen enthielten die Phosphatierbäder gegebenenfalls Natrium- oder Ammoniumionen zum Einstellen der freien Säure. Die Bäder enthielten kein Nitrit und keine Oxo-Anionen von Halogenen. Temperatur: 56 °C, Zeit: 3 Minuten. Unter der Punktzahl der freien Säure wird der Verbrauch in ml an 0,1-normaler Natronlauge verstanden, um 10 ml Badlösung bis zu einem pH-Wert von 3,6 zu titrieren. Analog gibt die Punktzahl der Gesamtsäure den Verbrauch in ml bis zu einem pH-Wert von 8,5 an.
  • 5. Gegebenenfalls (vgl. Tabelle 3) Spülen mit Brauchwasser, Raumtemperatur, 1 Minute.
  • 6. Teilschritt b): Nachspülung im Spritzen mit einer Lösung gemäß Tabelle 2.
  • 7. Spülen mit vollentsalztem Wasser.
  • 8. Trockenblasen mit Preßluft für Prüfungen an unlackierten Blechen, ansonsten in feuchtem Zustand Beschichten mit einem kathodischen Elektrotauchlack.
  • The sequence of processes according to the invention was checked on steel sheets as used in automobile construction. The following procedure, commonly used in body production, was carried out using the immersion method:
  • 1.Clean with an alkaline cleaner (Ridoline R 1558, Henkel KGaA), batch 2% in process water, 55 ° C, 5 minutes.
  • 2. Rinse with domestic water, room temperature, 1 minute.
  • 3. Activation with a liquid titanium phosphate-containing activating agent in diving (Fixodine R L, Henkel KGaA), approach 0.5% in deionized water, room temperature, 1 minute.
  • 4. Sub-step a): Phosphating with phosphating baths according to Table 1 (batch in deionized water). In addition to the cations listed in Table 1, the phosphating baths optionally contained sodium or ammonium ions to adjust the free acid. The baths contained no nitrite and no oxo anions from halogens. Temperature: 56 ° C, time: 3 minutes. The free acid score is understood to mean the consumption in ml of 0.1 normal sodium hydroxide solution in order to titrate 10 ml of bath solution up to a pH of 3.6. Similarly, the total acid score indicates consumption in ml up to a pH of 8.5.
  • 5. If necessary (see Table 3), rinse with process water, room temperature, 1 minute.
  • 6. Sub-step b): rinsing in spraying with a solution according to Table 2.
  • 7. Rinse with deionized water.
  • 8. Dry blowing with compressed air for tests on unpainted metal sheets, otherwise when wet, coating with a cathodic electrocoat.
  • Als Kurztest für die Korrosionsschutzwirkung der Schichten wurden Stromdichte-/Potentialmessungen durchgeführt. Dieses Verfahren ist beispielsweise beschrieben in A.Losch, J.W.Schultze, D.Speckmann: "A New Electrochemical Method for the Determination of the Free Surface of Phosphate Layers", Appl. Surf. Sci. 52, 29-38 (1991). Hierzu wurden die phosphatierten Probebleche unlackiert in einen Probenhalter aus Polyamid eingeklemmt, der eine zu untersuchende Oberfläche von 43 cm2 frei ließ. Die Messungen erfolgten unter sauerstofffreien Bedingungen (Spülung mit Stickstoff) in einem Elektrolyten mit pH = 7,1, der 0,32 M H3BO3, 0,026 M Na2B4O7·10H2O und 0,5 M NaNO3 enthielt. Als Referenzelektrode wurde eine Standard-Quecksilber-Elektrode mit einem Normalpotential E0 = 0,68 Volt verwendet. Die Proben wurden zunächst ohne Anlegen eines äußeren Potentials für 5 Minuten in die Elektrolytlösung getaucht. Danach wurden cyclische Voltamogramme zwischen -0,7 und 1,3 Volt gegenüber der Standard-Quecksilber-Elektrode mit einer Potentialänderung von 20 mV/s aufgenommen. Zur Auswertung wurde die Stromdichte bei einem Potential von -0,3 Volt, bezogen auf die Standard-Quecksilber-Elektrode, abgelesen. Negative Stromdichten bei einem Potential von -0,3 Volt zeigen eine Reduktion von Schichtbestandteilen an. Hohe Stromdichten zeigen eine schlechte Barrierewirkung, geringe Stromdichten eine gute Barrierwirkung der Phosphatschichten gegenüber korrosiven Strömen an.Current density / potential measurements were carried out as a short test for the corrosion protection effect of the layers. This method is described, for example, in A.Losch, JW Schulze, D. Speckmann: "A New Electrochemical Method for the Determination of the Free Surface of Phosphate Layers", Appl. Surf. Sci. 52: 29-38 (1991). For this purpose, the phosphated sample sheets were clamped unpainted in a sample holder made of polyamide, which left a surface of 43 cm 2 to be examined free. The measurements were carried out under oxygen-free conditions (flushing with nitrogen) in an electrolyte with pH = 7.1, which contained 0.32 MH 3 BO 3 , 0.026 M Na 2 B 4 O 7 .10H 2 O and 0.5 M NaNO 3 . A standard mercury electrode with a normal potential E 0 = 0.68 volts was used as the reference electrode. The samples were first immersed in the electrolyte solution for 5 minutes without applying an external potential. Then cyclic voltamograms between -0.7 and 1.3 volts compared to the standard mercury electrode with a potential change of 20 mV / s were recorded. For the evaluation, the current density was read at a potential of -0.3 volts, based on the standard mercury electrode. Negative current densities at a potential of -0.3 volts indicate a reduction in layer components. High current densities indicate a poor barrier effect, low current densities indicate a good barrier effect of the phosphate layers against corrosive currents.

    Schichtgewichte wurden durch Wiegen der phosphatierten Bleche, Ablösen der Phosphatschicht in 0,5 Gew.-%iger Chromsäurelösung und erneutes Wiegen bestimmt.Layer weights were obtained by weighing the phosphated sheets, peeling them off the phosphate layer in 0.5 wt .-% chromic acid solution and determined again.

    Bei den Nachspüllösungen gemäß Tabelle 2 wurden Li als Carbonat, Cu als Acetat und Ag als Sulfat eingesetzt, TiF6 2- und ZrF6 2- als freie Säuren. Ce(III) wurde als Nitrat, Ce(IV) als Sulfat und Al(III) als Polyaluminiumhydroxychlorid der ungefähren Zusammensetzung Al(OH)2,5Cl eingesetzt. pH-Werte wurden nach unten mit Phosphorsäure, nach oben mit Ammoniaklösung korrigiert.

    Figure 00190001
    Figure 00200001
    Figure 00210001
    Figure 00220001
    In the rinse solutions according to Table 2, Li was used as carbonate, Cu as acetate and Ag as sulfate, TiF 6 2- and ZrF 6 2- as free acids. Ce (III) was used as nitrate, Ce (IV) as sulfate and Al (III) as polyaluminium hydroxychloride with the approximate composition Al (OH) 2.5 Cl. pH values were corrected downwards with phosphoric acid and upwards with ammonia solution.
    Figure 00190001
    Figure 00200001
    Figure 00210001
    Figure 00220001

    Für Korrosionsschutzprüfungen wurden Probebleche aus Stahl (St 1405) und elektrolytisch verzinktem Stahl im vorstehend beschriebenen allgemeinen Verfahrensgang mit einer Phosphatierlösung mit folgenden Badparametern im Tauchverfahren phosphatiert:

  • Zn 1,2 g/l
  • Mn 1,0 g/l
  • PO4 3- 14,6 g/l
  • Hydroxylammoniumsulfat 1,8 g/l
  • SiF6 - 0,8 g/l
  • Freie Säure 0,7 Punkte
  • Gesamtsäure 23,0 Punkte
  • Badtemperatur 50 °C
  • Behandlungszeit 3 Minuten.
  • For corrosion protection tests, test sheets made of steel (St 1405) and electrolytically galvanized steel were phosphated in the general process described above with a phosphating solution with the following bath parameters using the immersion method:
  • Zn 1.2 g / l
  • Mn 1.0 g / l
  • PO 4 3-14.6 g / l
  • Hydroxylammonium sulfate 1.8 g / l
  • SiF 6 - 0.8 g / l
  • Free acidity 0.7 points
  • Total acidity 23.0 points
  • Bath temperature 50 ° C
  • Treatment time 3 minutes.
  • Die Probebleche wurden nach Zwischenspülung mit Stadtwasser für eine Minute bei einer Temperatur von 40 °C in folgende Nachspüllösungen in vollentsalztem Wasser (Tabelle 4) eingetaucht. Danach wurden die Bleche mit vollentsalztem Wasser gespült, getrocknet und lackiert. Nachspüllösungen Vergl.y Beisp.p Beisp.q Beisp.r Beisp.s ZrF6 2- (ppm) 225 - - 225 225 Cu2+ (ppm) - 10 50 10 50 pH 4,0 3,6 3,6 3,6 3,6 After intermediate rinsing with city water, the sample sheets were immersed for one minute at a temperature of 40 ° C. in the following rinse solutions in deionized water (Table 4). The sheets were then rinsed with deionized water, dried and painted. Rinse solutions Compare y Ex. P Ex. Q Ex. R Ex ZrF 6 2- (ppm) 225 - - 225 225 Cu 2+ (ppm) - 10th 50 10th 50 pH 4.0 3.6 3.6 3.6 3.6

    Zur Lackierung wurde der kathodische Elektrotauchlack FT 85-7042 grau der Firma BASF verwendet. Die Korrosionsschutzprüfung erfolgte nach dem VDA-Wechselklimatest 621-415. Als Ergebnis ist in Tabelle 5 die Lackunterwanderung am Ritz eingetragen. Zusätzlich erfolgte eine Lackhaftungsprüfung nach VW Steinschlagtest, die nach K-Wert beurteilt wurde. Höhere K-Werte bedeuten schlechtere, niedrige K-Werte bessere Lackhaftung. Die Ergebnisse sind ebenfalls in Tabelle 5 enthalten. Korrosionsschutzwerte und Lackhaftungskennwerte Nachspüllösung Lackunterwanderung (mm) K-Wert Stahl verzinkter Stahl Stahl verzinkter Stahl vollentsalztes Wasser 1,8 4 - 5 7 - 8 9 Vergl.4 1,3 3 - 4 6 8 Beisp.p 1,2 6 Beisp.q 1,0 2,5 - 3,5 6 8 Beisp.r 1,2 2,1 - 3 6 8 Beisp.s 1,1 6 The cathodic electrodeposition paint FT 85-7042 gray from BASF was used for painting. The corrosion protection test was carried out according to the VDA alternating climate test 621-415. As a result, the paint infiltration at the Ritz is entered in Table 5. In addition, a paint adhesion test was carried out according to the VW stone impact test, which was assessed according to the K value. Higher K values mean poorer, lower K values better paint adhesion. The results are also shown in Table 5. Corrosion protection values and paint adhesion parameters Rinse solution Paint infiltration (mm) K value steel galvanized steel steel galvanized steel completely desalinated water 1.8 4 - 5 7-8 9 Compare 4 1.3 3-4 6 8th Ex. P 1.2 6 Ex. Q 1.0 2.5 - 3.5 6 8th Ex. R 1.2 2.1 - 3 6 8th Ex 1.1 6

    Weiterhin wurde ein Freibewitterungstest nach VDE 621-414 durchgeführt. Hierzu wurde auf den KTL-beschichteten Probeblechen ein Lack-Komplettaufbau (VW weiß) aufgebracht. Nach 6 Monaten Auslagerungszeit wurden folgende Lackunterwanderungen (halbe Ritzbreite) gefunden (Tabelle 6): Lackunterwanderung (U/2, mm) nach Freibewitterung Nachspüllösung Stahl verzinkter Stahl vollentsalztes Wasser 1,8 0,1 Vergl.4 1,2 0,1 Beisp.p 1,2 0,1 Beisp.q 0,9 0,1 Beisp.r 1,3 Beisp.s 1,0 0,1 An outdoor weathering test was also carried out in accordance with VDE 621-414. For this purpose, a complete paint structure (VW white) was applied to the KTL-coated test panels. After 6 months of aging, the following paint infiltration (half the scratch width) was found (Table 6): Paint infiltration (U / 2, mm) after outdoor exposure Rinse solution steel galvanized steel completely desalinated water 1.8 0.1 Compare 4 1.2 0.1 Ex. P 1.2 0.1 Ex. Q 0.9 0.1 Ex. R 1.3 Ex 1.0 0.1

    Claims (12)

    1. A process for phosphating surfaces of steel, galvanized steel and/or aluminium and/or of alloys of which at least 50% by weight consist of iron, zinc or aluminium, the surfaces in question being phosphated with a zinc-containing acidic phosphating solution and then rinsed with an after-rinse solution, characterized in that
      a) a nitrite- and nickel-free solution with a pH value of 2.7 to 3.6 which contains 0.3 to 3 g/l of Zn(II), 5 to 40 g/l of phosphate ions and at least one of the following accelerators: 0.2 to 2 g/l of m-nitrobenzene sulfonate ions, 0.1 to 10 g/l of hydroxylamine in free or bound form, 0.05 to 2 g/l of m-nitrobenzoate ions, 0.05 to 2 g/l of p-nitrophenol, 1 to 70 mg/l of hydrogen peroxide in free or bound form is used for phosphating
      and, after phosphating with or without intermediate rinsing with water,
      b) the surface thus phosphated is rinsed with an aqueous solution with a pH value of 3 to 7 which contains 0.001 to 10 g/l of one or more of the following cations: lithium ions, copper ions and/or silver ions.
    2. A process as claimed in claim 1, characterized in that the phosphating solution used in step a) additionally contains one or more of the following cations: 0.2 to 4 g/l of manganese(II), 0.2 to 2.5 g/l of magnesium(II), 0.2 to 2.5 g/l of calcium(II), 0.01 to 0.5 g/l of iron(11), 0.2 to 1.5 g/l of lithium(I), 0.02 to 0.8 g/l of tungsten(VI), 0.001 to 0.03 g/l of copper(II).
    3. A process as claimed in one or both of claims 1 and 2, characterized in that the phosphating solution used in step a) additionally contains up to 2.5 g/l of total fluoride, including up to 0.8 g/l of free fluoride.
    4. A process as claimed in one or more of claims 1 to 3, characterized in that the after-rinse solution used in step b) has a pH value of 3.4 to 6.
    5. A process as claimed in one or more of claims 1 to 4, characterized in that the after-rinse solution used in step b) has a temperature of 20 to 50°C.
    6. A process as claimed in one or more of claims 1 to 5, characterized in that the after-rinse solution used in step b) contains the metal ions in the following quantity ranges: lithium(I) 0.02 to 2 g/l and/or copper(II) 0.002 to 1 g/l and/or silver(I) 0.002 to 1 g/l.
    7. A process as claimed in one or more of claims 1 to 6, characterized in that the after-rinse solution used in step b) additionally contains 100 to 500 mg/l of hexafluorotitanate and/or hexafluorozirconate ions.
    8. A process as claimed in one or more of claims 1 to 6, characterized in that the after-rinse solution used in step b) additionally contains 0.01 to 1 g/l of cerium(III) and/or cerium(IV) ions.
    9. A process as claimed in one or more of claims 1 to 6, characterized in that the after-rinse solution used in step b) additionally contains aluminium(III) in a quantity of 0.01 to 1 g/l.
    10. A process as claimed in one or more of claims 1 to 9, characterized in that the after-rinse solution used in step b) is sprayed onto the metal surface phosphated in step a).
    11. A process as claimed in one or more of claims 1 to 10, characterized in that the after-rinse solution used in step b) is allowed to act on the phosphated metal surface for 0.5 to 10 minutes.
    12. A process as claimed in one or more of claims 1 to 11, characterized in that no intermediate rinsing is carried out between steps a) and b).
    EP96908083A 1995-03-29 1996-03-20 Phosphating process with a metalliferous re-rinsing stage Expired - Lifetime EP0817872B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19511573A DE19511573A1 (en) 1995-03-29 1995-03-29 Process for phosphating with metal-containing rinsing
    DE19511573 1995-03-29
    PCT/EP1996/001196 WO1996030559A1 (en) 1995-03-29 1996-03-20 Phosphating process with a metalliferous re-rinsing stage

    Publications (2)

    Publication Number Publication Date
    EP0817872A1 EP0817872A1 (en) 1998-01-14
    EP0817872B1 true EP0817872B1 (en) 2000-01-19

    Family

    ID=7758087

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96908083A Expired - Lifetime EP0817872B1 (en) 1995-03-29 1996-03-20 Phosphating process with a metalliferous re-rinsing stage

    Country Status (19)

    Country Link
    US (2) US6090224A (en)
    EP (1) EP0817872B1 (en)
    JP (1) JP3883571B2 (en)
    KR (1) KR100362549B1 (en)
    CN (1) CN1079845C (en)
    AT (1) ATE189010T1 (en)
    AU (1) AU697424B2 (en)
    BR (1) BR9607767A (en)
    CA (1) CA2216925A1 (en)
    CZ (1) CZ287867B6 (en)
    DE (2) DE19511573A1 (en)
    ES (1) ES2143186T3 (en)
    HU (1) HUP9802380A3 (en)
    PL (1) PL179316B1 (en)
    PT (1) PT817872E (en)
    SK (1) SK128997A3 (en)
    TR (1) TR199701061T1 (en)
    WO (1) WO1996030559A1 (en)
    ZA (1) ZA962504B (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2009020794A2 (en) * 2007-08-03 2009-02-12 Ppg Industries Ohio, Inc. Pretreatment compositions and methods for coating a metal substrate

    Families Citing this family (24)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19511573A1 (en) * 1995-03-29 1996-10-02 Henkel Kgaa Process for phosphating with metal-containing rinsing
    ZA983867B (en) * 1997-05-16 1998-11-13 Henkel Corp Lithium and vanadium containing sealing composition and process therewith
    US6315823B1 (en) 1998-05-15 2001-11-13 Henkel Corporation Lithium and vanadium containing sealing composition and process therewith
    DE19834796A1 (en) 1998-08-01 2000-02-03 Henkel Kgaa Process for phosphating, rinsing and cathodic electrocoating
    DE19933189A1 (en) * 1999-07-15 2001-01-18 Henkel Kgaa Process for the protection against corrosion or aftertreatment of metal surfaces
    DE10056628B4 (en) * 2000-11-15 2004-07-22 Henkel Kgaa Fractional regeneration of a weakly acidic ion exchanger loaded with nickel ions
    DE102005047424A1 (en) * 2005-09-30 2007-04-05 Henkel Kgaa Phosphating solution used as a pre-treatment for metal surfaces contains zinc irons, phosphate ions, hydrogen peroxide or an equivalent amount of a hydrogen peroxide-splitting substance and aliphatic chelate-forming carboxylic acid
    DE102006052919A1 (en) * 2006-11-08 2008-05-15 Henkel Kgaa Zr / Ti-containing phosphating solution for the passivation of metal composite surfaces
    JP5526664B2 (en) * 2009-09-03 2014-06-18 マツダ株式会社 Method for surface treatment of metal members
    US8506728B2 (en) * 2009-09-03 2013-08-13 Mazda Motor Corporation Surface treatment method of metal material
    DE102010001686A1 (en) 2010-02-09 2011-08-11 Henkel AG & Co. KGaA, 40589 Composition for the alkaline passivation of zinc surfaces
    JP5481705B2 (en) * 2010-03-19 2014-04-23 富士化学株式会社 Non-chromic acid anticorrosive for steel materials and method for anticorrosion treatment of steel materials using the anticorrosive agent
    DE102010030697A1 (en) * 2010-06-30 2012-01-05 Henkel Ag & Co. Kgaa Process for the selective phosphating of a composite metal construction
    EP2405031A1 (en) * 2010-07-07 2012-01-11 Mattthias Koch Method for coating shaped bodies and coated shaped body
    EP2503025B1 (en) 2011-03-22 2013-07-03 Henkel AG & Co. KGaA Multi-step corrosion-resistant treatment of metallic workpieces having at least partially zinc or zinc alloy surfaces
    US9273399B2 (en) * 2013-03-15 2016-03-01 Ppg Industries Ohio, Inc. Pretreatment compositions and methods for coating a battery electrode
    DE102014210708A1 (en) * 2014-06-05 2015-12-17 Siemens Aktiengesellschaft Process for corrosion protection treatment
    CN104313562B (en) * 2014-09-30 2017-12-26 泰州龙谷信息科技有限公司 A kind of normal-temperature phosphorizing liquid and preparation method thereof
    WO2016162423A1 (en) 2015-04-07 2016-10-13 Chemetall Gmbh Method for nickel-free phosphating metal surfaces
    US10435806B2 (en) 2015-10-12 2019-10-08 Prc-Desoto International, Inc. Methods for electrolytically depositing pretreatment compositions
    US11124880B2 (en) 2016-04-07 2021-09-21 Chemetall Gmbh Method for nickel-free phosphating metal surfaces
    DE102016206417A1 (en) * 2016-04-15 2017-10-19 Henkel Ag & Co. Kgaa PROMOTION TREATMENT FOR SUPPRESSING PLANT-ORIENTED PHOSPHATOR TRANSPORT IN A PROCESS FOR DIVING LACQUER
    CN111065761A (en) * 2017-08-31 2020-04-24 凯密特尔有限责任公司 Improved method for nickel-free phosphating of metal surfaces
    MX2022014404A (en) * 2020-05-18 2022-12-07 Nippon Steel Corp Al-PLATED HOT STAMPED STEEL MATERIAL.

    Family Cites Families (30)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3579429A (en) * 1967-04-14 1971-05-18 Amchem Prod Process for applying a white paint electrophoretically
    CA950402A (en) * 1970-01-06 1974-07-02 Amchem Products Process for applying a white paint electrophoretically
    US3695942A (en) * 1970-12-02 1972-10-03 Amchem Prod Zirconium rinse for phosphate coated metal surfaces
    JPS535622B2 (en) * 1973-02-12 1978-03-01
    US3895970A (en) * 1973-06-11 1975-07-22 Pennwalt Corp Sealing rinse for phosphate coatings of metal
    JPS5292836A (en) * 1976-01-30 1977-08-04 Nippon Packaging Kk Zinc or its alloys subjected to chemical conversion
    US4153478A (en) * 1976-04-21 1979-05-08 The Diversey Corporation Process for treatment of metallic surfaces by means of fluorophosphate salts
    FR2352895A1 (en) * 1976-04-21 1977-12-23 Diversey France NEW PROCESS FOR TREATMENT OF METAL SURFACES BY MEANS OF OXYFLUORINE COMPOUNDS OF PHOSPHORUS 5
    US4110129A (en) * 1977-02-03 1978-08-29 Oxy Metal Industries Corporation Post treatment of conversion-coated zinc surfaces
    SU914652A1 (en) * 1980-04-07 1982-03-23 Inst Mekhaniki Metallopolimern Method of additional treatment of porous phosphate coatings
    JPS57152472A (en) * 1981-03-16 1982-09-20 Nippon Paint Co Ltd Phosphating method for metallic surface for cation type electrodeposition painting
    DE3400339A1 (en) * 1984-01-07 1985-08-29 Gerhard Collardin GmbH, 5000 Köln METHOD FOR REPASSIVATING PHOSPHATED METAL SURFACES USING SOLUTIONS CONTAINING NICKEL AND / OR COPPER CATIONS
    SG52645A1 (en) * 1985-08-27 1998-09-28 Henkel Corp A process for phosphate-coating metal surfaces
    US4865653A (en) * 1987-10-30 1989-09-12 Henkel Corporation Zinc phosphate coating process
    EP0321059B1 (en) * 1987-12-18 1992-10-21 Nippon Paint Co., Ltd. Process for phosphating metal surfaces
    DE3920296A1 (en) * 1989-06-21 1991-01-10 Henkel Kgaa METHOD FOR PRODUCING ZINC PHOSPHATE CONTAINING MANGANE AND MAGNESIUM
    DE3924984A1 (en) * 1989-07-28 1991-01-31 Metallgesellschaft Ag METHOD FOR PASSIVATING RINSING OF PHOSPHATE LAYERS
    US5294266A (en) * 1989-07-28 1994-03-15 Metallgesellschaft Aktiengesellschaft Process for a passivating postrinsing of conversion layers
    US5268041A (en) * 1990-04-27 1993-12-07 Metallgesellschaft Ag Process for phosphating metal surfaces
    DE4013483A1 (en) * 1990-04-27 1991-10-31 Metallgesellschaft Ag METHOD FOR PHOSPHATING METAL SURFACES
    US5209788A (en) * 1990-11-21 1993-05-11 Ppg Industries, Inc. Non-chrome final rinse for phosphated metal
    DE4041091A1 (en) * 1990-12-21 1992-06-25 Metallgesellschaft Ag METHOD FOR REFILLING CONVERSION LAYERS
    US5128211A (en) * 1991-02-28 1992-07-07 Diversey Corporation Aluminum based phosphate final rinse
    CA2150545A1 (en) * 1992-12-22 1994-07-07 Robert W. Miller Substantially nickel-free phosphate conversion coating composition and process
    ATE162233T1 (en) * 1993-09-06 1998-01-15 Henkel Kgaa NICKEL-FREE PHOSPHATING PROCESS
    DE4341041A1 (en) * 1993-12-02 1995-06-08 Henkel Kgaa Phosphating solns contg hydroxylamine and/or nitrobenzene sulphonate
    DE4330104A1 (en) * 1993-09-06 1995-03-09 Henkel Kgaa Nickel- and copper-free phosphating process
    JPH07278891A (en) * 1994-04-12 1995-10-24 Nippon Parkerizing Co Ltd Pretreatment for coating of metal material
    MX9605901A (en) * 1994-05-27 1997-12-31 Herberts & Co Gmbh Process for coating phosphatized metal substrates.
    DE19511573A1 (en) * 1995-03-29 1996-10-02 Henkel Kgaa Process for phosphating with metal-containing rinsing

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2009020794A2 (en) * 2007-08-03 2009-02-12 Ppg Industries Ohio, Inc. Pretreatment compositions and methods for coating a metal substrate
    WO2009020794A3 (en) * 2007-08-03 2009-03-26 Ppg Ind Ohio Inc Pretreatment compositions and methods for coating a metal substrate
    RU2447193C2 (en) * 2007-08-03 2012-04-10 Ппг Индастриз Огайо, Инк. Pretreatment composition and method of applying coat on metal substrate

    Also Published As

    Publication number Publication date
    CA2216925A1 (en) 1996-10-03
    ES2143186T3 (en) 2000-05-01
    CN1079845C (en) 2002-02-27
    SK128997A3 (en) 1998-12-02
    PL321960A1 (en) 1998-01-05
    CN1179183A (en) 1998-04-15
    WO1996030559A1 (en) 1996-10-03
    ZA962504B (en) 1996-09-30
    DE19511573A1 (en) 1996-10-02
    CZ306197A3 (en) 1998-03-18
    AU697424B2 (en) 1998-10-08
    PT817872E (en) 2000-07-31
    DE59604232D1 (en) 2000-02-24
    MX9707328A (en) 1998-07-31
    KR100362549B1 (en) 2003-02-11
    BR9607767A (en) 1999-01-19
    ATE189010T1 (en) 2000-02-15
    JP3883571B2 (en) 2007-02-21
    PL179316B1 (en) 2000-08-31
    US6090224A (en) 2000-07-18
    US6395105B1 (en) 2002-05-28
    HUP9802380A2 (en) 1999-02-01
    CZ287867B6 (en) 2001-02-14
    KR19980702742A (en) 1998-08-05
    EP0817872A1 (en) 1998-01-14
    TR199701061T1 (en) 1998-01-21
    JPH11502569A (en) 1999-03-02
    AU5146496A (en) 1996-10-16
    HUP9802380A3 (en) 1999-03-29

    Similar Documents

    Publication Publication Date Title
    EP0817872B1 (en) Phosphating process with a metalliferous re-rinsing stage
    DE60226078T2 (en) TREATMENT LIQUID FOR THE SURFACE TREATMENT OF ALUMINUM OR MAGNESIUM BASED METAL AND SURFACE TREATMENT METHOD
    DE19834796A1 (en) Process for phosphating, rinsing and cathodic electrocoating
    EP0633950B1 (en) Nickel-free phosphatization process
    EP0717787B1 (en) Nickel-free phosphatization process
    WO2012000894A1 (en) Method for selectively phosphating a composite metal construction
    DE19705701A1 (en) Phosphating metal surfaces for subsequent lacquering
    EP0931179B1 (en) Method for phosphating a steel band
    EP0889977B1 (en) Zinc phosphatizing with low quantity of copper and manganese
    WO2001038605A2 (en) Method for phosphatization with rinsing using a metal-containing agent
    DE4330104A1 (en) Nickel- and copper-free phosphating process
    DE19606018A1 (en) Zinc phosphating with low levels of nickel and / or cobalt
    EP1019564A1 (en) Method for phosphatizing a steel strip
    DE19958192A1 (en) Process for phosphating, rinsing and cathodic electrocoating
    WO1997014821A1 (en) Layer weight-adjustment in hydroxylamine-accelerated phosphatisation systems
    WO1999045171A1 (en) Method for controlling the coating weight for strip-phosphating
    WO1993022474A1 (en) Copper-containing, nickel-free phosphatizing process
    DE19540085A1 (en) Low nitrate, manganese-free zinc phosphating
    WO1996022406A1 (en) Lithium-containing zinc phosphating solution
    DE19723350A1 (en) Passivating-rinsing process for phosphate layers
    EP1433879B1 (en) Process for metal surface coating with an alkali phosphate solution, aqueous concentrate and use of such coated metal surfaces
    DE19500562A1 (en) Phosphating solution
    WO2001016397A1 (en) Zinc phosphatizing using epoxides
    DE19634732A1 (en) Zinc phosphating containing ruthenium
    DE19716075A1 (en) Phosphating process accelerated with hydroxylamine and chlorate

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19970922

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE DE ES FR GB IT NL PT SE

    AX Request for extension of the european patent

    Free format text: SI PAYMENT 970922

    17Q First examination report despatched

    Effective date: 19980916

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE DE ES FR GB IT NL PT SE

    AX Request for extension of the european patent

    Free format text: SI PAYMENT 19970922

    REF Corresponds to:

    Ref document number: 189010

    Country of ref document: AT

    Date of ref document: 20000215

    Kind code of ref document: T

    REF Corresponds to:

    Ref document number: 59604232

    Country of ref document: DE

    Date of ref document: 20000224

    ET Fr: translation filed
    ITF It: translation for a ep patent filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2143186

    Country of ref document: ES

    Kind code of ref document: T3

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20000417

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20000414

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20020228

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20020306

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20020313

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20020328

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030320

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030321

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20030903

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031001

    EUG Se: european patent has lapsed
    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20031001

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20030930

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20040318

    Year of fee payment: 9

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040320

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20040519

    Year of fee payment: 9

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20040320

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20050317

    Year of fee payment: 10

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050320

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050321

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050331

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20050926

    Year of fee payment: 10

    BERE Be: lapsed

    Owner name: *HENKEL K.G.A.A.

    Effective date: 20050331

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20050321

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061003

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20061130

    BERE Be: lapsed

    Owner name: *HENKEL K.G.A.A.

    Effective date: 20050331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060331