WO1996022406A1 - Lithium-containing zinc phosphating solution - Google Patents

Lithium-containing zinc phosphating solution Download PDF

Info

Publication number
WO1996022406A1
WO1996022406A1 PCT/EP1996/000039 EP9600039W WO9622406A1 WO 1996022406 A1 WO1996022406 A1 WO 1996022406A1 EP 9600039 W EP9600039 W EP 9600039W WO 9622406 A1 WO9622406 A1 WO 9622406A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphating
phosphating solution
free
solution according
zinc
Prior art date
Application number
PCT/EP1996/000039
Other languages
German (de)
French (fr)
Inventor
Bernd Mayer
Jürgen Geke
Karl-Heinz Gottwald
Karl-Dieter Brands
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Brands, Thomas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien, Brands, Thomas filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to AU44844/96A priority Critical patent/AU4484496A/en
Publication of WO1996022406A1 publication Critical patent/WO1996022406A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/13Orthophosphates containing zinc cations containing also nitrate or nitrite anions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/14Orthophosphates containing zinc cations containing also chlorate anions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/16Orthophosphates containing zinc cations containing also peroxy-compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/362Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also zinc cations

Definitions

  • the invention relates to processes for phosphating metal surfaces with aqueous, acid phosphating solutions which contain zinc and phosphate ions as well as lithium ions, and to their use as pretreatment of the metal surfaces for subsequent painting, in particular electro-dip painting or powder painting.
  • the method can be used for the treatment of surfaces made of steel, galvanized or alloy-galvanized steel, aluminum, aluminized or alloy-aluminized steel.
  • the phosphating of metals pursues the goal of producing metal phosphate layers which are firmly adhered to the metal surface and which in themselves already improve the corrosion resistance and, in conjunction with paints and other organic coatings, lead to a substantial increase in paint adhesion and resistance to infiltration when exposed to corrosion contribution.
  • Such phosphating processes have long been known.
  • the low-zinc phosphating processes in which the phosphating solutions have comparatively low zinc ion contents of e.g. B. 0.5 to 2 g / 1.
  • An essential parameter in these low-zinc phosphating baths is the weight ratio of phosphate ion to zinc ions, which is usually in the range> 8 and can assume values of up to 30.
  • DE-A-3920296 describes a phosphating process which dispenses with nickel and uses magnesium ions in addition to zinc and manganese ions.
  • the phosphating baths described here contain, in addition to 0.2 to 10 g / 1 nitrate ions, further oxidizing agents which act as accelerators, selected from nitrite, chlorate or an organic oxidizing agent.
  • EP-A-60 716 discloses low-zinc phosphating baths which contain zinc and manganese as essential cations and which can contain nickel as an optional component.
  • the necessary accelerator is preferably selected from nitrite, nitrobenzenesulfonate or hydrogen peroxide.
  • EP-A-228 151 also describes phosphating baths which contain zinc and manganese as essential cations.
  • the phosphating accelerator is selected from nitrite, nitrate, hydrogen peroxide, m-nitrobenzenesulfonate, m-nitrobenzoate or p-nitrophenol.
  • the nitrate content is specified at 5 to about 15 g / 1 and an optional nickel content between 0.4 and 4 g / 1.
  • EP-A-321 059 teaches zinc phosphating baths which, in addition to 0.1 to 2.0 g / 1 zinc and an accelerator, also 0.01 to 20 g / 1 tungsten in the form of a soluble tungsten compound, preferably alkali metal or ammonium tungstate or -s licowungstamate, alkaline earth metal silicotungstate or boro- or silicotungstic acid.
  • the accelerator is selected from nitrite, nitrobenzenesulfonate or hydrogen peroxide.
  • Optional components include nickel in amounts of 0.1 - 4 g / 1 and nitrate in amounts of 0.1 - 15 g / 1.
  • DE-C-27 39 006 describes a phosphating process for surfaces made of zinc or zinc alloys which is free of nitrate and ammonium ions.
  • an essential zinc content in amounts between 0.1 and 5 g / 1, 1 to 10 parts by weight of nickel and / or cobalt are required per part by weight of zinc.
  • Hydrogen peroxide is used as an accelerator. From the point of view of workplace hygiene and environmental protection, cobalt is not an alternative to nickel.
  • DE-A-40 13 483 discloses phosphating processes with which similarly good corrosion protection properties can be achieved as with the trication processes. These processes do without nickel and instead use copper in low concentrations, 0.001 to 0.03 g / 1. Oxygen and / or other oxidizing agents having the same effect are used to oxidize the divalent iron formed in the pickling reaction of steel surfaces to the trivalent stage. Nitrite, chlorate, bromate, peroxy compounds and organic nitro compounds such as nitrobenzenesulfonate are specified as such. WO93 / 20259 modifies this process by adding hydroxylamine, its salts or complexes in an amount of 0.5 to 5 g / 1 hydroxylamine as a modifying agent for the morphology of the phosphate crystals formed.
  • DE-B-23 27 304 describes a peroxide-accelerated phosphating process which is kept very general with regard to its parameters, the phosphating solution containing zinc ions and being essentially free of those components which give water-soluble salts when neutralized with calcium hydroxide, so that the rinsing water can be cleaned by neutralization with calcium hydroxide and returned to the phosphating duct.
  • lithium is stated in amounts of 0.04 to 20 g / l, among many others.
  • US-A-3458364 teaches a phosphating solution which contains 0.02 to 20 g / l of an aliphatic polycarboxylic acid having 2 to 6 carbon atoms to avoid rust formation.
  • phosphating solution Other essential components of the phosphating solution are 1 to 20 g / 1 zinc, 2.5 to 40 g / 1 phosphate and 0.2 to 1 g / 1 iron.
  • the solution preferably additionally contains 2.5 to 80 g / 1 nitrate and 1 to 40 g / 1 lithium, beryllium, magnesium, calcium, strontium, cadmium or barium.
  • DE-B-12 87 412 which also relates to a phosphating solution which contains chelating polycarboxylic acids having 2 to 6 carbon atoms, is closely related to this. In addition to zinc ions, this solution contains 1 to 10 g / 1 iron (II).
  • phosphating solution which, in addition to phosphate and zinc ions, contains one or more of the metals calcium, magnesium, lithium, beryllium, strontium, cadmium and barium as so-called modifying ions.
  • the Exemplary embodiments contain between 1.09 and 1.62 g / 1 zinc, between 4.94 and 12.4 g / 1 phosphate and no lithium.
  • the object of the invention is to provide phosphating baths which are free of nickel or the similarly questionable cobalt, which is dangerous for environmental and workplace hygiene reasons.
  • Lithium is preferably used as a water-soluble salt, in particular as a hydroxide, carbonate, nitrate or sulfate. Since phosphating baths are solutions, all metals, including those listed below as optional, are present as ions.
  • the phosphating baths according to the invention can contain further divalent metal ions, the positive effect of which on the corrosion protection of zinc phosphate layers is known in the prior art. It is therefore preferred that the phosphating solution according to the invention additionally contains one or more of the following cations:
  • the presence of manganese is particularly preferred.
  • the possibility of the presence of divalent iron depends on the accelerator system described below.
  • the presence of iron (II) in the mentioned concentration range requires an accelerator which does not have an oxidizing effect on these ions. Hydroxylamine is an example of this.
  • the phosphating baths are preferably, but not necessarily, free of nickel and cobalt. This means that these elements or ions are not deliberately added to the phosphating baths. In practice, however, it cannot be ruled out that such constituents may be traced into the phosphating baths via the material to be treated. In particular, it cannot be ruled out that when phosphating steel coated with zinc-nickel alloys, nickel ions are introduced into the phosphating solution. However, the expectation of the phosphating baths according to the invention is that under technical conditions the nickel concentration in the baths is below 0.01 g / 1, in particular below 0.0001 g / 1.
  • the presence of soluble compounds of hexavalent tungsten also has advantages in terms of corrosion resistance and paint adhesion in the phosphating baths according to the invention.
  • Phosphating solutions which additionally contain 20 to 800 mg / 1, preferably 50 to 600 mg / 1 of tungsten in the form of water-soluble tungstates, silicotungstates and / or borotungstates can be used in the phosphating processes according to the invention.
  • the anions mentioned can be used in the form of their acids and / or their water-soluble salts, preferably ammonium salts.
  • phosphating baths which are said to be suitable for different substrates, it has become customary to add free and / or complex-bound fluoride in amounts of up to 2.5 g / 1 total fluoride, of which up to 800 mg / 1 free fluoride.
  • the presence of such amounts of fluoride is also advantageous for the phosphating baths according to the invention.
  • the aluminum content of the bath should not exceed 3 mg / 1.
  • higher Al contents are tolerated as a result of the complex formation, provided the concentration of the non-complexed AI does not exceed 3 mg / 1.
  • the use of fluoride-containing baths is therefore advantageous if the surfaces to be phosphated are at least partially Made of aluminum or containing aluminum. In these cases it is expedient not to use any fluoride bound to the complex, but only free fluoride, preferably in concentrations in the range from 0.5 to 1.0 g / l.
  • the phosphating baths For the phosphating of zinc surfaces, it is not absolutely necessary that the phosphating baths contain so-called accelerators.
  • the phosphating solution For the phosphating of steel surfaces, however, it is necessary that the phosphating solution contain one or more accelerators.
  • accelerators are known in the prior art as components of zinc phosphate baths. These are substances that chemically bind the hydrogen generated by the acid pickling on the metal surface by reducing them themselves.
  • Oxidizing accelerators also have the effect of oxidizing released iron (II) ions to the trivalent stage by the pickling attack on steel surfaces, so that they can precipitate out as iron (III) phosphate.
  • the phosphating baths according to the invention can contain one or more of the following components as accelerators:
  • nitrate ions in amounts of up to 10 g / l can be present as co-accelerators, which can have a particularly favorable effect on the phosphating of steel surfaces.
  • the phosphating solution contain as little nitrate as possible.
  • Nitrate concentrations of 0.5 g / l should preferably not be exceeded, since at higher nitrate concentrations there is a risk of so-called "speck formation". This means white, crater-like defects in the phosphate layer.
  • the use of nitrite as an accelerator leads to technically satisfactory results, in particular on steel surfaces. For reasons of occupational safety (risk of developing nitrous gases), however, it is advisable to avoid nitrite as an accelerator. For the phosphating of galvanized surfaces, this is also advisable for technical reasons, since nitrite can form from nitrite, which, as explained above, can lead to the problem of speck formation.
  • Hydrogen peroxide is preferred for reasons of environmental friendliness, and hydroxylamine is particularly preferred as an accelerator for technical reasons because of the simplified formulation options for replenishing solutions. However, using these two accelerators together is not advisable since hydroxylamine is decomposed by hydrogen peroxide. If hydrogen peroxide in free or bound form is used as an accelerator, concentrations of 0.005 to 0.02 g / l of hydrogen peroxide are particularly preferred.
  • the hydrogen peroxide can be added as such to the phosphating solution. However, it is also possible to use hydrogen peroxide in bound form as compounds which give hydrogen peroxide in the phosphating bath by hydrolysis reactions.
  • Examples of such compounds are persalts such as perborates, percarbonates, peroxosulfates or peroxodisulfates.
  • Ionic peroxides such as, for example, alkali metal peroxides, are suitable as further sources of hydrogen peroxide.
  • Hydroxylamine can be used as a free base, as a hydroxylamine complex or in the form of hydroxylammonium salts. If free hydroxylamine is added to the phosphating bath or a phosphating bath concentrate, it will largely exist as a hydroxylammonium cation due to the acid character of these solutions.
  • the sulfates and the phosphates are particularly suitable. In the case of the phosphates, the acid salts are preferred due to the better solubility.
  • Hydroxylamine or its compounds are added to the phosphating bath in such quantities that the calculated concentration of the free hydroxylamine is between 0.1 and 10 g / 1, preferably between 0.2 and 6 g / 1 and in particular between 0. 3 and 2 g / 1.
  • Preferred concentrations of lithium ions in the phosphating baths according to the invention are in the range from 0.4 to 1 g / l.
  • Phosphate baths which contain lithium as the only monovalent cation are particularly preferred.
  • ammonia is preferably used, so that the lithium-containing phosphating baths can additionally contain ammonium ions in the range from about 0.5 to about 2 g / l.
  • the use of basic sodium compounds such as sodium hydroxide solution is less preferred since the presence of sodium ions in the lithium-containing phosphating baths deteriorates the corrosion protection properties of the layers obtained.
  • phosphating baths that contain manganese (II) in addition to zinc and lithium.
  • the manganese content of the phosphating bath should be between 0.2 and 4 g / l, since with lower manganese contents the positive influence on the corrosion behavior of the phosphate layers is no longer given and with higher manganese contents there is no further positive effect. Contents between 0.3 and 2 g / 1 and in particular between 0.5 and 1.5 g / 1 are preferred.
  • the zinc content of the phosphating bath is preferably set to values between 0.45 and 1.5 g / l.
  • the current zinc content of the working bath rises to up to 3 g / l.
  • the form in which the zinc and manganese ions are introduced into the phosphating baths is in principle irrelevant. It is particularly advisable to use the oxides and / or the carbonates as the zinc and / or manganese source.
  • iron in the form of iron (II) ions dissolves. If the phosphating baths according to the invention do not contain any substances which have a strong oxidizing effect on iron (II), the divalent iron changes to the trivalent state primarily as a result of air oxidation, so that it can precipitate out as iron (III) phosphate. Therefore, egg II) contents can be built up in the phosphating baths which are clearly above the contents which Baths containing oxidizing agents. In this sense, iron (II) concentrations of up to 50 ppm are normal, although values of up to 500 ppm can also occur briefly in the production process. Such iron (II) concentrations are not detrimental to the phosphating process according to the invention.
  • the weight ratio of phosphate ions to zinc ions in the phosphating baths can vary within a wide range, provided that it is in the range between 3.7 and 30. A weight ratio between 10 and 20 is particularly preferred.
  • the total phosphorus content of the phosphating bath is considered to be present in the form of phosphate ions P0_; 3 ⁇ .
  • the pH values of the phosphating baths which are usually in the range from about 3 to about 3.6, only a very small part of the phosphate in the form of the triple negative is disregarded when calculating the quantitative ratio charged anions. At these pH values, it is rather to be expected that the phosphate is present primarily as a single negatively charged dihydrogenphosphate anion, together with smaller amounts of undisociated phosphoric acid and double negatively charged hydrogenphosphate anions.
  • the free acid and total acid contents are known to the person skilled in the art.
  • the method of determining these parameters used in this document is given in the example section. Values of the free acid between 0 and 1.5 points in the case of partial phosphating, in the case of band phosphating up to 2.5 points and the total acid between about 15 and about 30 points are within the technically customary range and are suitable for the purposes of this invention.
  • Phosphating baths are usually sold in the form of aqueous concentrates which are adjusted to the application concentrations on site by adding water. For reasons of stability, these concentrates can contain an excess of free phosphoric acid, so that when diluted to a bath concentration, the value of the free acid is initially too high or the pH is too low. By adding alkalis such as preferably lithium hydroxide, lithium carbonate or ammonia, optionally also basic potassium or (less preferred) sodium compounds, the Free acid value lowered to the desired range. Furthermore, it is known that the free acid content during use of the phosphating baths can increase over time due to the consumption of the layer-forming cations and, if appropriate, through decomposition reactions of the accelerator.
  • alkalis such as preferably lithium hydroxide, lithium carbonate or ammonia, optionally also basic potassium or (less preferred) sodium compounds
  • Low-zinc phosphate baths generally require the addition of alkali metal or ammonium ions in order to be able to adjust the free acid to the desired value range at the desired weight ratio POt -: Zn> 8.
  • Analogous considerations can also be made regarding the proportions of alkali metal and / or ammonium ions to other bath components, for example phosphate ions.
  • Phosphating baths according to the invention are suitable for phosphating surfaces made of steel, galvanized or alloy-galvanized steel, aluminum, aluminized or alloy-alloyed steel.
  • aluminum includes the technically customary aluminum alloys such as AlMg0.5Sil, 4.
  • the materials mentioned can - as is becoming increasingly common in automotive engineering - also coexist.
  • the method is suitable for use in immersion, spraying or spray / immersion processes. It can be used in particular in automobile construction, where treatment times between 1 and 8 minutes, in particular 2 to 5 minutes, are common. However, it can also be used for strip phosphating in the steel mill, with treatment times between 3 and 12 seconds.
  • the bath concentrations in the upper half of the ranges preferred according to the invention.
  • the Zinc content in the range from 1.5 to 2.5 g / 1 the lithium content in the range from 0.5 to 1.5 g / 1
  • the manganese content in the range from 1.5 to 3 g / 1 and the content of free acid are in the range of 1.5 to 2.5 points.
  • a particularly suitable substrate for strip phosphating is galvanized steel, in particular electrolytically galvanized steel.
  • the suitable bath temperatures are between 30 and 70 ° C. regardless of the field of application, the temperature range between 45 and 60 ° C. being preferred.
  • the phosphating process according to the invention is intended in particular for treating the metal surfaces mentioned before painting, for example before cathodic electrocoating, as is customary in automobile construction. It is also suitable as a pre-treatment before a powder coating, such as that used for household appliances.
  • the phosphating process is to be seen as a sub-step of the technically customary pretreatment chain. In this chain, the steps of cleaning / degreasing, rinsing and activating are usually preceded by the phosphating, the activation usually being carried out using activating agents containing titanium phosphate. After intermediate rinsing, the phosphating according to the invention can optionally be followed by a passivating aftertreatment.
  • Treatment baths containing chromic acid are widely used for such a passivating aftertreatment. For reasons of work and environmental protection and for reasons of disposal, however, there is a tendency to replace these chromium-containing passivation baths with chromium-free treatment baths. Purely inorganic bath solutions, in particular based on zirconium compounds, or also organic-reactive bath solutions, for example based on poly (vinylphenols), are known for this. An intermediate rinse with demineralized water is generally carried out between this post-passivation and the usually subsequent coating.
  • the phosphating baths contained 0.5 to 2 g / 1 ammonium ions to adjust the free acid and Fe (II ) in the range 50 - 60 ppm. Sodium and hydroxylamine were used as sulfate. Demineralized water was used for all baths.
  • the bath of Example 1 was obtained by dissolving the following substances in completely deionized water in the order given: 16.56 g / 1 85% phosphoric acid
  • Example 2 The bath of Example 2 additionally contained 4.57 g / l LiSO 4 x H 2 0.
  • the free acid score is understood to mean the consumption in ml of 0.1 normal sodium hydroxide solution in order to titrate 10 ml of bath solution up to a pH of 3.6. Similarly, the total acid score indicates consumption in ml up to a pH of 8.2.
  • a standard mercury electrode with a normal potential EQ - 0.68 volts was used as the reference electrode.
  • the samples were first immersed in the electrolyte solution for 5 minutes without applying an external potential. Then cyclic Voltamograms between -0.7 and 1.3 volts compared to the standard mercury electrode with a potential change of 20 mV / s were recorded.
  • Negative current densities at a potential of -0.3 volts indicate a reduction in layer components. High current densities in the measuring ranges from 0 to 0.8 volts and from 0.5 to 1.3 volts indicate a poor barrier effect, low current densities indicate a good barrier effect of the phosphate layers against corrosive currents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

An acid, aqueous phosphating solution containing 0.2 to 3 g/l zinc(II) and 3 to 50 g/l phosphate, calculated as PO43-, additionally containing 0.2 to 1.5 g/l lithium(I).

Description

'Lithiumhaitiqe Zinkphosphatierlösuno" 'Lithiumhaitiqe zinc phosphating solution'
Die Erfindung betrifft Verfahren zur Phosphatierung von MetallOberflächen mit wäßrigen, sauren Phosphatierlösungen, die Zink- und Phosphationen so¬ wie Lithiumionen enthalten, sowie deren Anwendung als Vorbehandlung der MetallOberflächen für eine anschließende Lackierung, insbesondere eine Elektrotauchlackierung oder eine Pulverlackierung. Das Verfahren ist an¬ wendbar zur Behandlung von Oberflächen aus Stahl, verzinktem oder legie- rungsverzinktem Stahl, Aluminium, aluminiertem oder legierungsaluminiertem Stahl.The invention relates to processes for phosphating metal surfaces with aqueous, acid phosphating solutions which contain zinc and phosphate ions as well as lithium ions, and to their use as pretreatment of the metal surfaces for subsequent painting, in particular electro-dip painting or powder painting. The method can be used for the treatment of surfaces made of steel, galvanized or alloy-galvanized steel, aluminum, aluminized or alloy-aluminized steel.
Die Phosphatierung von Metallen verfolgt das Ziel, auf der MetallOberflä¬ che festverwachsene Meta11phosphatschichten zu erzeugen, die für sich be¬ reits die Korrosionsbeständigkeit verbessern und in Verbindung mit Lacken und anderen organischen Beschichtungen zu einer wesentlichen Erhöhung der Lackhaftung und der Resistenz gegen Unterwanderung bei Korrosionsbean¬ spruchung beitragen. Solche Phosphatierverfahren sind seit langem bekannt. Für die Vorbehandlung vor der Lackierung , insbesondere der Elektrotauchlackierung, eignen sich insbesondere die Niedrig-Zink-Phos- phatierverfahren, bei denen die Phosphatierlösungen vergleichsweise ge¬ ringe Gehalte an Zinkionen von z. B. 0,5 bis 2 g/1 aufweisen. Ein wesent¬ licher Parameter in diesen Niedrig-Zink-Phosphatierbädern ist das Ge¬ wichtsverhältnis Phosphationeπ zu Zinkionen, das üblicherweise im Bereich > 8 liegt und Werte bis zu 30 annehmen kann.The phosphating of metals pursues the goal of producing metal phosphate layers which are firmly adhered to the metal surface and which in themselves already improve the corrosion resistance and, in conjunction with paints and other organic coatings, lead to a substantial increase in paint adhesion and resistance to infiltration when exposed to corrosion contribution. Such phosphating processes have long been known. The low-zinc phosphating processes, in which the phosphating solutions have comparatively low zinc ion contents of e.g. B. 0.5 to 2 g / 1. An essential parameter in these low-zinc phosphating baths is the weight ratio of phosphate ion to zinc ions, which is usually in the range> 8 and can assume values of up to 30.
Es hat sich gezeigt, daß durch die Mitverwendung anderer mehrwertiger Ka¬ tionen in den Zink-Phosphatierbädern Phosphatschichten mit deutlich ver¬ besserten Korrosionsschutz- und Lackhaftungseigenschaften ausgebildet werden können. Beispielsweise finden Niedrig-Zink-Verfahren mit Zusatz von z. B. 0,5 bis 1,5 g/1 Manganionen und z. B. 0,3 bis 2,0 g/1 Nickelionen als sogenannte Trikation-Verfahren zur Vorbereitung von MetallOberflächen für die Lackierung, beispielsweise für die kathodische Elektrotauchlackierung von Autokarosserien, weite Anwendung.It has been shown that by using other polyvalent cations in the zinc phosphating baths, phosphate layers with significantly improved corrosion protection and paint adhesion properties can be formed. For example, find low-zinc processes with the addition of z. B. 0.5 to 1.5 g / 1 manganese ions and z. B. 0.3 to 2.0 g / 1 nickel ions widely used as a so-called trication process for the preparation of metal surfaces for painting, for example for the cathodic electrodeposition of car bodies.
Der hohe Gehalt an Nickelionen in den Phosphatierlösungen der Trikation- Verfahren und von Nickel und Nickelverbindungen in den gebildeten Phos¬ phatschichten bringt jedoch insofern Nachteile, als Nickel und Nickelver¬ bindungen aus der Sicht des Umweltschutzes und der Arbeitsplatzhygiene als kritisch eingestuft werden. In letzter Zeit werden daher zunehmend Nie- drig-Zink-Phosphatierverfahren beschrieben, die ohne eine Mitverwendung von Nickel zu qualitativ ähnlich hochwertigen Phosphatschichten wie die nickelhaltigen Verfahren führen. Auch gegen die Beschleuniger Nitrit und Nitrat werden wegen möglicher Bildung nitroser Gase zunehmend Bedenken geäußert.However, the high content of nickel ions in the phosphating solutions of the trication processes and of nickel and nickel compounds in the phosphate layers formed has disadvantages insofar as nickel and nickel compounds are classified as critical from the point of view of environmental protection and workplace hygiene. Lately, low-zinc phosphating processes have therefore been increasingly described which, without the use of nickel, lead to high-quality phosphate layers similar to the nickel-containing processes. Concerns about the accelerators nitrite and nitrate are also being raised due to the possible formation of nitrous gases.
Beispielsweise beschreibt die DE-A-3920296 ein Phosphatierverfahren, das auf Nickel verzichtet und neben Zink und Manganionen Magnesiumionen ver¬ wendet. Die hier beschriebenen Phosphatierbäder enthalten außer 0,2 bis 10 g/1 Nitrationen weitere als Beschleuniger wirkende Oxidationsmittel, aus¬ gewählt aus Nitrit, Chlorat oder einem organischen Oxidationsmittel.For example, DE-A-3920296 describes a phosphating process which dispenses with nickel and uses magnesium ions in addition to zinc and manganese ions. The phosphating baths described here contain, in addition to 0.2 to 10 g / 1 nitrate ions, further oxidizing agents which act as accelerators, selected from nitrite, chlorate or an organic oxidizing agent.
EP-A-60 716 offenbart Niedrig-Zink-Phosphatierbäder, die als essentielle Kationen Zink und Mangan enthalten und die als fakultativen Bestandteil Nickel beinhalten können. Der notwendige Beschleuniger wird vorzugsweise ausgewählt aus Nitrit, -Nitrobenzolsulfonat oder Wasserstoffperoxid.EP-A-60 716 discloses low-zinc phosphating baths which contain zinc and manganese as essential cations and which can contain nickel as an optional component. The necessary accelerator is preferably selected from nitrite, nitrobenzenesulfonate or hydrogen peroxide.
Auch in der EP-A-228 151 werden Phosphatierbäder beschrieben, die als es¬ sentielle Kationen Zink und Mangan enthalten. Der Phosphatierbeschleuniger wird ausgewählt aus Nitrit, Nitrat, Wasserstoffperoxid, m-Nitrobenzolsul¬ fonat, m-Nitrobenzoat oder p-Nitrophenol. In abhängigen Ansprüchen wird der Nitratgehalt auf 5 bis etwa 15 g/1 sowie ein fakultativer Nickelgehalt zwischen 0,4 und 4 g/1 spezifiziert. Die Ausführungsbeispiele hierzu ent¬ halten alle sowohl Nickel als auch Nitrat.EP-A-228 151 also describes phosphating baths which contain zinc and manganese as essential cations. The phosphating accelerator is selected from nitrite, nitrate, hydrogen peroxide, m-nitrobenzenesulfonate, m-nitrobenzoate or p-nitrophenol. In dependent claims, the nitrate content is specified at 5 to about 15 g / 1 and an optional nickel content between 0.4 and 4 g / 1. The exemplary embodiments for this all contain both nickel and nitrate.
EP-A-321 059 lehrt Zink-Phosphatierbäder, die neben 0,1 bis 2,0 g/1 Zink und einem Beschleuniger außerdem 0,01 bis 20 g/1 Wolfram in Form einer löslichen Wolframverbindung, vorzugsweise Alkalimetall- oder Ammoniumwol- framat oder -s licowolframat, Erdalkali etallsilicowolframat oder Boro- oder Silicowolframsäure. Der Beschleuniger ist ausgewählt aus Nitrit, - Nitrobenzolsulfonat oder Wasserstoffperoxid. Als fakultative Bestandteile werden unter anderem Nickel in Mengen von 0,1 - 4 g/1 und Nitrat in Mengen von 0,1 - 15 g/1 angegeben.EP-A-321 059 teaches zinc phosphating baths which, in addition to 0.1 to 2.0 g / 1 zinc and an accelerator, also 0.01 to 20 g / 1 tungsten in the form of a soluble tungsten compound, preferably alkali metal or ammonium tungstate or -s licowungstamate, alkaline earth metal silicotungstate or boro- or silicotungstic acid. The accelerator is selected from nitrite, nitrobenzenesulfonate or hydrogen peroxide. Optional components include nickel in amounts of 0.1 - 4 g / 1 and nitrate in amounts of 0.1 - 15 g / 1.
DE-C-27 39 006 beschreibt ein Phosphatierverfahren für Oberflächen aus Zink oder Zinklegierungen, das frei von Nitrat und Ammoniumionen ist. Ne¬ ben einem essentiellen Gehalt an Zink in Mengen zwischen 0,1 und 5 g/1 sind 1 bis 10 Gewichtsteile Nickel und/oder Kobalt pro Gewichtsteil Zink erforderlich. Als Beschleuniger wird Wasserstoffperoxid verwendet. Aus der Sicht der Arbeitsplatzhygiene und des Umweltschutzes stellt Kobalt keine Alternative zu Nickel dar.DE-C-27 39 006 describes a phosphating process for surfaces made of zinc or zinc alloys which is free of nitrate and ammonium ions. In addition to an essential zinc content in amounts between 0.1 and 5 g / 1, 1 to 10 parts by weight of nickel and / or cobalt are required per part by weight of zinc. Hydrogen peroxide is used as an accelerator. From the point of view of workplace hygiene and environmental protection, cobalt is not an alternative to nickel.
DE-A-40 13 483 macht Phosphatierverfahren bekannt, mit denen ähnlich gute Korrosionsschutzeigenschaften wie mit den Trikation-Verfahren erzielt werden können. Diese Verfahren verzichten auf Nickel und verwenden statt dessen Kupfer in niedrigen Konzentrationen, 0,001 bis 0,03 g/1. Zur Oxi- dation des bei der Beizreaktion von Stahloberflächen gebildeten zweiwer¬ tigen Eisens in die dreiwertige Stufe dienen Sauerstoff und/oder andere gleichwirkende Oxidationsmittel. Als solche werden Nitrit, Chlorat, Bro- mat, Peroxi-Verbindungen sowie organische Nitroverbindungen, wie Nitrobenzolsulfonat, angegeben. Die W093/20259 modifiziert diesen Prozeß dadurch, daß als modifizierendes Agens für die Morphologie der gebildeten Phosphatkristalle Hydroxylamin, dessen Salze oder Komplexe in einer Menge von 0,5 bis 5 g/1 Hydroxylamin zugegeben werden.DE-A-40 13 483 discloses phosphating processes with which similarly good corrosion protection properties can be achieved as with the trication processes. These processes do without nickel and instead use copper in low concentrations, 0.001 to 0.03 g / 1. Oxygen and / or other oxidizing agents having the same effect are used to oxidize the divalent iron formed in the pickling reaction of steel surfaces to the trivalent stage. Nitrite, chlorate, bromate, peroxy compounds and organic nitro compounds such as nitrobenzenesulfonate are specified as such. WO93 / 20259 modifies this process by adding hydroxylamine, its salts or complexes in an amount of 0.5 to 5 g / 1 hydroxylamine as a modifying agent for the morphology of the phosphate crystals formed.
Die Verwendung von Hydroxylamin und/oder seinen Verbindungen zum Beein¬ flussen der Form der Phosphatkristalle ist aus einer Reihe von Offenle- gungsschriften bekannt. Die EP-A-315 059 gibt als besonderen Effekt der Verwendung von Hydroxylamin in Phosphatierbädern die Tatsache an, daß auf Stahl auch dann noch die Phosphatkristalle in einer erwünschten säulen- oder knollenartigen Form entstehen, wenn die Zinkkonzentration im Phos- phatierbad den für Niedrig-Zink-Verfahren üblichen Bereich übersteigt. Hierdurch wird es möglich, die Phosphatierbäder mit Zinkkonzentrationen bis zu 2 g/1 und mit Gewichtsverhältnissen Phosphat zu Zink bis hinab zu 3,7 zu betreiben. Über vorteilhafte Kationenkombinationen dieser Phospha¬ tierbäder werden keine näheren Aussagen gemacht, in den Patentbeispielen wird jedoch in allen Fällen Nickel eingesetzt.The use of hydroxylamine and / or its compounds to influence the shape of the phosphate crystals is known from a number of published publications. EP-A-315 059 specifies the particular effect of the use of hydroxylamine in phosphating baths in the fact that the phosphate crystals still form in steel in a desired columnar or bulbous form when the zinc concentration in the phosphating bath corresponds to that for low Zinc process exceeds the usual range. This makes it possible to use phosphate baths with zinc concentrations up to 2 g / 1 and with weight ratios of phosphate to zinc down to 3.7. No further statements are made about advantageous cation combinations of these phosphate baths, but nickel is used in all cases in the patent examples.
Die Verwendung von Lithiumionen in Phosphatierbädern wurde vereinzelt in der Literatur beschrieben. In einer Monographie aus dem Jahre 1950 (W. Machu: "Die Phosphatierung" Verlag Chemie Weinheim 1950, S. 146) wird er¬ wähnt, daß die Zugabe von LiNÜ3 zu Phospatierbäder die freie Säure er¬ niedrigt. Aus der Gasentwicklung wird geschlossen, daß Li die Geschwin¬ digkeit der (Beiz?-)Reaktion erhöht.The use of lithium ions in phosphating baths has occasionally been described in the literature. In a monograph from 1950 (W. Machu: "The Phosphating" Verlag Chemie Weinheim 1950, p. 146) it is mentioned that the addition of LiNÜ3 to phosphating baths lowers the free acid. From the gas evolution it is concluded that Li increases the speed of the (pickling? -) reaction.
In der DE-B-23 27 304 wird ein hinsichtlich seiner Parameter sehr allge¬ mein gehaltenes, peroxidbeschleunigtes Phosphatierverfahren beschrieben, wobei die Phosphatierlösung Zinkionen enthält und im wesentlichen frei ist von solchen Komponenten, die bei einer Neutralisation mit Calciumhydroxid wasserlösliche Salze ergeben, so daß man das Spülwasser durch Neutralisa¬ tion mit Calciumhydroxid reinigen und in den Phosphatierungsgang zurück¬ führen kann. Als potentieller Bestandteil eines derartigen Phosphatierbades ist unter vielen anderen Lithium in Mengen von 0,04 bis 20 g/1 angegeben. Die US-A-3458364 lehrt eine Phosphatierlösung, die zur Vermeidung von Rostbildung 0,02 bis 20 g/1 einer aliphatischen Polycarbonsäure mit 2 bis 6 Kohlenstoffatomen enthält. Weitere essentielle Bestandteile der Phosphatierlösung sind 1 bis 20 g/1 Zink, 2,5 bis 40 g/1 Phosphat und 0,2 bis 1 g/1 Eisen. Vorzugsweise enthält die Lösung zusätz¬ lich 2,5 bis 80 g/1 Nitrat und 1 bis 40 g/1 Lithium, Beryllium, Magnesium, Calcium, Strontium, Cadmium oder Barium. Eng verwandt hiermit ist die DE-B-12 87 412, die ebenfalls eine Phosphatierlösung zum Gegenstand hat, die chelatbildende Polycarbonsäuren mit 2 bis 6 C-Atomen enthält. Neben Zinkionen enthält diese Lösung 1 bis 10 g/1 Eisen(II). Weitere fakultative Bestandteile sind Nickel, Kobalt, Lithium, Wismut, Cer und Mangan in Men¬ gen bis zu 0,5 g/1. In einem Ausführungsbeispiel werden 4,7 mg/1 Lithium eingesetzt. Ohne nähere Konzentrationsangaben wird in der US-A-3 676 224 eine Phosphatierlösung beansprucht, die neben Phosphat- und Zinkionen als sogenannte modifizierende Ionen eines oder mehrere der Metalle Calcium, Magnesium, Lithium, Beryllium, Strontium, Cadmium und Barium enthält. Die Ausführungsbeispiele hierzu enthalten zwischen 1,09 und 1,62 g/1 Zink, zwischen 4,94 und 12,4 g/1 Phosphat und kein Lithium.DE-B-23 27 304 describes a peroxide-accelerated phosphating process which is kept very general with regard to its parameters, the phosphating solution containing zinc ions and being essentially free of those components which give water-soluble salts when neutralized with calcium hydroxide, so that the rinsing water can be cleaned by neutralization with calcium hydroxide and returned to the phosphating duct. As a potential constituent of such a phosphating bath, lithium is stated in amounts of 0.04 to 20 g / l, among many others. US-A-3458364 teaches a phosphating solution which contains 0.02 to 20 g / l of an aliphatic polycarboxylic acid having 2 to 6 carbon atoms to avoid rust formation. Other essential components of the phosphating solution are 1 to 20 g / 1 zinc, 2.5 to 40 g / 1 phosphate and 0.2 to 1 g / 1 iron. The solution preferably additionally contains 2.5 to 80 g / 1 nitrate and 1 to 40 g / 1 lithium, beryllium, magnesium, calcium, strontium, cadmium or barium. DE-B-12 87 412, which also relates to a phosphating solution which contains chelating polycarboxylic acids having 2 to 6 carbon atoms, is closely related to this. In addition to zinc ions, this solution contains 1 to 10 g / 1 iron (II). Other optional components are nickel, cobalt, lithium, bismuth, cerium and manganese in quantities of up to 0.5 g / l. In one embodiment, 4.7 mg / 1 lithium are used. Without further details of the concentration, US Pat. No. 3,676,224 claims a phosphating solution which, in addition to phosphate and zinc ions, contains one or more of the metals calcium, magnesium, lithium, beryllium, strontium, cadmium and barium as so-called modifying ions. The Exemplary embodiments contain between 1.09 and 1.62 g / 1 zinc, between 4.94 and 12.4 g / 1 phosphate and no lithium.
Die Erfindung stellt sich die Aufgabe, Phosphatierbäder zur Verfügung zu stellen, die frei sind von dem aus umwelt- und arbeitsplatzhygienischen Gründen bedenklichen Nickel oder dem ähnlich bedenklichen Kobalt.The object of the invention is to provide phosphating baths which are free of nickel or the similarly questionable cobalt, which is dangerous for environmental and workplace hygiene reasons.
Diese Aufgabe wird gelöst durch eine saure, wäßrige Phosphatierlösung, enthaltendThis object is achieved by an acidic, aqueous phosphating solution containing
0,2 bis 3 g/1 Zink(II) und0.2 to 3 g / 1 zinc (II) and
3 bis 50 g/1 Phosphat, berechnet als PO 3-3 to 50 g / 1 phosphate, calculated as PO 3-
dadurch gekennzeichnet, daß die Lösung zusätzlichcharacterized in that the solution additionally
0,2 bis 1,5 g/1 Lithium(I) enthält.Contains 0.2 to 1.5 g / 1 lithium (I).
Lithium wird bevorzugt als wasserlösliches Salz, insbesondere als Hydroxid, Carbonat, Nitrat oder Sulfat eingesetzt. Da es sich bei Phos¬ phatierbäder um Lösungen handelt, liegen alle Metalle, auch die nachste¬ hend als fakultativ angeführten, als Ionen vor.Lithium is preferably used as a water-soluble salt, in particular as a hydroxide, carbonate, nitrate or sulfate. Since phosphating baths are solutions, all metals, including those listed below as optional, are present as ions.
Die erfindungsgemäßen Phosphatierbäder können weitere zweiwertige Metall- ionen enthalten, deren positive Wirkung auf den Korrosionsschutz von Zinkphosphatschichten im Stand der Technik bekannt ist. Daher ist es be¬ vorzugt, daß die erfindungsgemäße Phosphatierlösung zusätzlich eines oder mehrere der folgenden Kationen enthält:The phosphating baths according to the invention can contain further divalent metal ions, the positive effect of which on the corrosion protection of zinc phosphate layers is known in the prior art. It is therefore preferred that the phosphating solution according to the invention additionally contains one or more of the following cations:
0,2 bis 4 g/1 Mangan(II), 0,2 bis 2,5 g/1 Magnesium(II), 0,2 bis 2,5 g/1 Calcium(II). 0,01 bis 0,5 g/1 Eisen(II). 0,001 bis 0,03 g/1 Kuρfer(II)0.2 to 4 g / 1 manganese (II), 0.2 to 2.5 g / 1 magnesium (II), 0.2 to 2.5 g / 1 calcium (II). 0.01 to 0.5 g / 1 iron (II). 0.001 to 0.03 g / 1 copper (II)
Dabei ist die Anwesenheit von Mangan besonders bevorzugt. Die Möglichkeit der Anwesenheit von zweiwertigem Eisen hängt von dem weiter unten be¬ schriebenen Beschleunigersystem ab. Die Gegenwart von Eisen(II) im genannten Konzentrationsbereich setzt einen Beschleuniger voraus, der ge¬ genüber diesen Ionen nicht oxidierend wirkt. Hierfür ist insbesondere Hy¬ droxylamin als Beispiel zu nennen.The presence of manganese is particularly preferred. The possibility of the presence of divalent iron depends on the accelerator system described below. The presence of iron (II) in the mentioned concentration range requires an accelerator which does not have an oxidizing effect on these ions. Hydroxylamine is an example of this.
Die Phosphatierbäder sind vorzugsweise, jedoch nicht notwendigerweise frei von Nickel und Kobalt. Dies bedeutet, daß diese Elemente bzw. Ionen den Phosphatierbädern nicht bewußt zugesetzt werden. Es ist jedoch in der Praxis nicht auszuschließen, daß solche Bestandteile über das zu behan¬ delnde Material in Spuren in die Phosphatierbäder eingetragen werden. Insbesondere ist es nicht auszuschließen, daß bei der Phosphatierung von mit Zink-Nickel-Legierungen beschichtetem Stahl Nickelionen in die Phos¬ phatierlösung eingetragen werden. Jedoch wird an die erfindungsgemäßen Phosphatierbäder die Erwartung gestellt, daß unter technischen Bedingungen die Nickelkonzentration in den Bädern unter 0,01 g/1, insbesondere unter 0,0001 g/1 liegt.The phosphating baths are preferably, but not necessarily, free of nickel and cobalt. This means that these elements or ions are not deliberately added to the phosphating baths. In practice, however, it cannot be ruled out that such constituents may be traced into the phosphating baths via the material to be treated. In particular, it cannot be ruled out that when phosphating steel coated with zinc-nickel alloys, nickel ions are introduced into the phosphating solution. However, the expectation of the phosphating baths according to the invention is that under technical conditions the nickel concentration in the baths is below 0.01 g / 1, in particular below 0.0001 g / 1.
Ähnlich wie in der EP-A-321 059 beschrieben bringt auch in den er¬ findungsgemäßen Phosphatierbädern die Gegenwart löslicher Verbindungen des sechswertigen Wolframs Vorteile hinsichtlich Korrosionswiderstand und Lackhaftung. In den erfindungsgemäßen Phosphatierverfahren können Phos¬ phatierlösungen Verwendung finden, die zusätzlich 20 bis 800 mg/1, vor¬ zugsweise 50 bis 600 mg/1 Wolfram in Form wasserlöslicher Wolframate, S licowolframate und/oder Borowolframate enthalten. Dabei können die ge¬ nannten Anionen in Form ihrer Säuren und/ oder ihrer wasserlöslichen Salze, vorzugsweise Ammoniumsalze eingesetzt werden.In a manner similar to that described in EP-A-321 059, the presence of soluble compounds of hexavalent tungsten also has advantages in terms of corrosion resistance and paint adhesion in the phosphating baths according to the invention. Phosphating solutions which additionally contain 20 to 800 mg / 1, preferably 50 to 600 mg / 1 of tungsten in the form of water-soluble tungstates, silicotungstates and / or borotungstates can be used in the phosphating processes according to the invention. The anions mentioned can be used in the form of their acids and / or their water-soluble salts, preferably ammonium salts.
Bei Phosphatierbädern, die für unterschiedliche Substrate geeignet sein sollen, ist es üblich geworden, freies und/oder komplexgebundenes Fluorid in Mengen bis zu 2,5 g/1 Gesamtfluorid, davon bis zu 800 mg/1 freies Fluorid zuzusetzen. Die Anwesenheit solcher Fluoridmengen ist auch für die erfindungsgemäßen Phosphatierbäder von Vorteil. Bei Abwesenheit von Fluo¬ rid soll der Aluminiumgehalt des Bades 3 mg/1 nicht überschreiten. Bei Gegenwart von Fluorid werden infolge der Komplexbildung höhere Al-Gehalte toleriert, sofern die Konzentration des nicht komplexierten AI 3 mg/1 nicht übersteigt. Die Verwendung fluoridhaltiger Bäder ist daher vorteil¬ haft, wenn die zu phosphatierenden Oberflächen zumindest teilweise aus Aluminium bestehen oder Aluminium enthalten. In diesen Fällen ist es gün¬ stig, kein komplexgebundenes, sondern nur freies Fluorid, vorzugsweise in Konzentrationen im Bereich 0,5 bis 1,0 g/1, einzusetzen.In the case of phosphating baths which are said to be suitable for different substrates, it has become customary to add free and / or complex-bound fluoride in amounts of up to 2.5 g / 1 total fluoride, of which up to 800 mg / 1 free fluoride. The presence of such amounts of fluoride is also advantageous for the phosphating baths according to the invention. In the absence of fluoride, the aluminum content of the bath should not exceed 3 mg / 1. In the presence of fluoride, higher Al contents are tolerated as a result of the complex formation, provided the concentration of the non-complexed AI does not exceed 3 mg / 1. The use of fluoride-containing baths is therefore advantageous if the surfaces to be phosphated are at least partially Made of aluminum or containing aluminum. In these cases it is expedient not to use any fluoride bound to the complex, but only free fluoride, preferably in concentrations in the range from 0.5 to 1.0 g / l.
Für die Phosphatierung von Zinkoberflächen ist es nicht zwingend erfor¬ derlich, daß die Phosphatierbäder sogenannte Beschleuniger enthalten. Für die Phosphatierung von StahlOberflächen ist es jedoch erforderlich, daß die Phosphatierlösung einen oder mehrere Beschleuniger enthält. Solche Beschleuniger sind im Stand der Technik als Komponenten von Zinkphospha- tierbädern geläufig. Hierunter werden Substanzen verstanden, die den durch den Beizangriff der Säure an der MetallOberfläche entstehenden Wasserstoff dadurch chemisch binden, daß sie selbst reduziert werden. Oxidierend wir¬ kende Beschleuniger haben weiterhin den Effekt, durch den Beizangriff auf Stahloberflächen freigesetzte Eisen(II)-Ionen zur dreiwertigen Stufe zu oxidieren, so daß sie als Eisen(III)-Phosphat ausfallen können.For the phosphating of zinc surfaces, it is not absolutely necessary that the phosphating baths contain so-called accelerators. For the phosphating of steel surfaces, however, it is necessary that the phosphating solution contain one or more accelerators. Such accelerators are known in the prior art as components of zinc phosphate baths. These are substances that chemically bind the hydrogen generated by the acid pickling on the metal surface by reducing them themselves. Oxidizing accelerators also have the effect of oxidizing released iron (II) ions to the trivalent stage by the pickling attack on steel surfaces, so that they can precipitate out as iron (III) phosphate.
Die erfindungsgemäßen Phosphatierbäder können als Beschleuniger eine oder mehrere der folgenden Komponenten enthalten:The phosphating baths according to the invention can contain one or more of the following components as accelerators:
0,3 bis 1,5 g/1 Chlorationen,0.3 to 1.5 g / 1 chlorate ion,
0,01 bis 0,2 g/1 Nitritionen,0.01 to 0.2 g / 1 nitrite ion,
0,05 bis 2 g/1 m-Nitrobenzolsulfonationen,0.05 to 2 g / 1 m-nitrobenzenesulfonate ions,
0,05 bis 2 g/1 m-Nitrobenzoationen,0.05 to 2 g / 1 m nitrobenzoate ions,
0,05 bis 2 g/1 p-Nitrophenol,0.05 to 2 g / 1 p-nitrophenol,
0,005 bis 0,15 g/1 Wasserstoffperoxid in freier oder gebundener Form,0.005 to 0.15 g / 1 hydrogen peroxide in free or bound form,
0,1 bis 10 g/1 Hydroxylamin in freier oder gebundener Form.0.1 to 10 g / 1 hydroxylamine in free or bound form.
Als Cobeschleuniger können zusätzlich Nitrationen in Mengen bis zu 10 g/1 zugegen sein, was sich insbesondere bei der Phosphatierung von Stahlober¬ flächen günstig auswirken kann. Bei der Phosphatierung von verzinktem Stahl ist es jedoch vorzuziehen, daß die Phosphatierlösung möglichst wenig Nitrat enthält. Nitratkonzentrationen von 0,5 g/1 sollten vorzugsweise nicht überschritten werden, da bei höheren Nitratkonzent ationen die Ge¬ fahr einer sogenannten "Stippenbildung" besteht. Hiermit sind weiße, kra¬ terartige Fehlstellen in der Phosphatschicht gemeint. Die Verwendung von Nitrit als Beschleuniger führt insbesondere auf Stahl¬ oberflächen zu technisch befriedigenden Ergebnissen. Aus Gründen der Ar¬ beitssicherheit (Gefahr der Entwicklung nitroser Gase) ist es jedoch em¬ pfehlenswert, auf Nitrit als Beschleuniger zu verzichten. Für die Phosphatierung verzinkter Oberflächen ist dies auch aus technischen Grün¬ den ratsam, da sich aus Nitrit Nitrat bilden kann, was, wie vorstehend erläutert, zum Problem der Stippenbildung führen kann.In addition, nitrate ions in amounts of up to 10 g / l can be present as co-accelerators, which can have a particularly favorable effect on the phosphating of steel surfaces. When phosphating galvanized steel, however, it is preferred that the phosphating solution contain as little nitrate as possible. Nitrate concentrations of 0.5 g / l should preferably not be exceeded, since at higher nitrate concentrations there is a risk of so-called "speck formation". This means white, crater-like defects in the phosphate layer. The use of nitrite as an accelerator leads to technically satisfactory results, in particular on steel surfaces. For reasons of occupational safety (risk of developing nitrous gases), however, it is advisable to avoid nitrite as an accelerator. For the phosphating of galvanized surfaces, this is also advisable for technical reasons, since nitrite can form from nitrite, which, as explained above, can lead to the problem of speck formation.
Aus Gründen der Umweltfreundlichkeit ist Wasserstoffperoxid, aus den technischen Gründen der vereinfachten Formulierungsmöglichkeiten für Nachdosierlösungen ist Hydroxylamin als Beschleuniger besonders bevorzugt. Die gemeinsame Verwendung dieser beiden Beschleuniger ist jedoch nicht ratsam, da Hydroxylamin von Wasserstoffperoxid zersetzt wird. Setzt man Wasserstoffperoxid in freier oder gebundener Form als Beschleuniger ein, so sind Konzentrationen von 0,005 bis 0,02 g/1 Wasserstoffperoxid beson¬ ders bevorzugt. Dabei kann das Wasserstoffperoxid der Phosphatierlösung als solches zugegeben werden. Es ist jedoch auch möglich, Wasserstoffper¬ oxid in gebundener Form als Verbindungen einzusetzen, die im Phosphatier- bad durch Hydrolysereaktionen Wasserstoffperoxid liefern. Beispiele solcher Verbindungen sind Persalze wie Perborate, Percarbonate, Peroxosulfate oder PeroxodiSulfate. Als weitere Quellen für Wasserstoff¬ peroxid kommen ionische Peroxide wie beispielsweise Alkalimetallperoxide in Betracht.Hydrogen peroxide is preferred for reasons of environmental friendliness, and hydroxylamine is particularly preferred as an accelerator for technical reasons because of the simplified formulation options for replenishing solutions. However, using these two accelerators together is not advisable since hydroxylamine is decomposed by hydrogen peroxide. If hydrogen peroxide in free or bound form is used as an accelerator, concentrations of 0.005 to 0.02 g / l of hydrogen peroxide are particularly preferred. The hydrogen peroxide can be added as such to the phosphating solution. However, it is also possible to use hydrogen peroxide in bound form as compounds which give hydrogen peroxide in the phosphating bath by hydrolysis reactions. Examples of such compounds are persalts such as perborates, percarbonates, peroxosulfates or peroxodisulfates. Ionic peroxides, such as, for example, alkali metal peroxides, are suitable as further sources of hydrogen peroxide.
Hydroxylamin kann als freie Base, als Hydroxylaminkomplex oder in Form von Hydroxylammoniumsalzen eingesetzt werden. Fügt man freies Hydroxylamin dem Phosphatierbad oder einem Phosphatierbad-Konzentrat zu, wird es aufgrund des sauren Charkters dieser Lösungen weitgehend als Hydroxylammonium-Ka- tion vorliegen. Bei einer Verwendung als Hydroxylammonium-Salz sind die Sulfate sowie die Phosphate besonders geeignet. Im Falle der Phosphate sind aufgrund der besseren Löslichkeit die sauren Salze bevorzugt. Hydro¬ xylamin oder seine Verbindungen werden dem Phosphatierbad in solchen Men¬ gen zugesetzt, daß die rechnerische Konzentration des freien Hydroxylamins zwischen 0,1 und 10 g/1, vorzugsweise zwischen 0,2 und 6 g/1 und insbe¬ sondere zwischen 0,3 und 2 g/1 liegt. Bevorzugte Konzentrationen an Lithiumionen in den erfindungsgemäßen Phos¬ phatierbädern liegen im Bereich von 0,4 bis 1 g/1. Dabei sind Phospha¬ tierbäder besonders vorzuziehen, die Lithium als einziges einwertiges Kation enthalten. Je nach gewünschtem Verhältnis von Phosphationen zu den zweiwertigen Kationen und den Lithiumionen kann es jedoch erforderlich sein, zum Einstellen der erwünschten freien Säure den Phosphatierbädern weitere basische Substanzen zuzugeben. In diesem Falle setzt man vorzugs¬ weise Ammoniak ein, so daß die lithiumhaltigen Phosphatierbäder zusätzlich Ammoniumionen im Bereich von etwa 0,5 bis etwa 2 g/1 enthalten können. Die Verwendung basischer Natriumverbindungen wie beispielsweise Natronlauge ist weniger bevorzugt, da die Gegenwart von Natriumionen in den lithiumhaltigen Phosphatierbädern die Korrosionsschutzeigenschaften der erhaltenen Schichten verschlechtert.Hydroxylamine can be used as a free base, as a hydroxylamine complex or in the form of hydroxylammonium salts. If free hydroxylamine is added to the phosphating bath or a phosphating bath concentrate, it will largely exist as a hydroxylammonium cation due to the acid character of these solutions. When used as a hydroxylammonium salt, the sulfates and the phosphates are particularly suitable. In the case of the phosphates, the acid salts are preferred due to the better solubility. Hydroxylamine or its compounds are added to the phosphating bath in such quantities that the calculated concentration of the free hydroxylamine is between 0.1 and 10 g / 1, preferably between 0.2 and 6 g / 1 and in particular between 0. 3 and 2 g / 1. Preferred concentrations of lithium ions in the phosphating baths according to the invention are in the range from 0.4 to 1 g / l. Phosphate baths which contain lithium as the only monovalent cation are particularly preferred. Depending on the desired ratio of phosphate ions to the divalent cations and the lithium ions, it may be necessary to add further basic substances to the phosphating baths in order to set the desired free acid. In this case, ammonia is preferably used, so that the lithium-containing phosphating baths can additionally contain ammonium ions in the range from about 0.5 to about 2 g / l. The use of basic sodium compounds such as sodium hydroxide solution is less preferred since the presence of sodium ions in the lithium-containing phosphating baths deteriorates the corrosion protection properties of the layers obtained.
Besonders gute Korrosionsschutzergebnisse werden mit Phosphatierbädern erhalten, die außer Zink und Lithium Mangan(II) enthalten. Der Mangange¬ halt des Phosphatierbades soll zwischen 0,2 und 4 g/1 liegen, da bei ge¬ ringeren Mangangehalten der positive Einfluß auf das Korrosionsverhalten der Phosphatschichten nicht mehr gegeben ist und bei höheren Mangange¬ halten kein weiterer positiver Effekt eintritt. Gehalte zwischen 0,3 und 2 g/1 und insbesondere zwischen 0,5 und 1,5 g/1 sind bevorzugt. Den Zink¬ gehalt des Phosphatierbades stellt man vorzugsweise auf Werte zwischen 0,45 und 1,5 g/1 ein. Infolge des Beizabtrages bei der Phosphatierung zinkhaltiger Oberflächen ist es jedoch möglich, daß der aktuelle Zinkge¬ halt des arbeitenden Bades auf bis zu 3 g/1 ansteigt. In welcher Form die Zink- und Manganionen in die Phosphatierbäder eingebracht werden, ist prinzipiell ohne Belang. Es bietet sich insbesondere an, als Zink- und/oder Manganquelle die Oxide und/oder die Carbonate zu verwenden.Particularly good corrosion protection results are obtained with phosphating baths that contain manganese (II) in addition to zinc and lithium. The manganese content of the phosphating bath should be between 0.2 and 4 g / l, since with lower manganese contents the positive influence on the corrosion behavior of the phosphate layers is no longer given and with higher manganese contents there is no further positive effect. Contents between 0.3 and 2 g / 1 and in particular between 0.5 and 1.5 g / 1 are preferred. The zinc content of the phosphating bath is preferably set to values between 0.45 and 1.5 g / l. As a result of the pickling removal during the phosphating of zinc-containing surfaces, it is possible, however, that the current zinc content of the working bath rises to up to 3 g / l. The form in which the zinc and manganese ions are introduced into the phosphating baths is in principle irrelevant. It is particularly advisable to use the oxides and / or the carbonates as the zinc and / or manganese source.
Bei der Anwendung des Phosphatierverfahrens auf StahlOberflächen geht Ei¬ sen in Form von Eisen(II)-Ionen in Lösung. Falls die erfindungsgemäßen Phosphatierbäder keine Substanzen enthalten, die gegenüber Eisen(II) stark oxidierend wirken, geht das zweiwertige Eisen vornehmlich in Folge von Luftoxidation in den dreiwertigen Zustand über, so daß es als Eisen(III)- Phosphat ausfallen kann. Daher können sich in den Phosphatierbädern Ei¬ sendII)-Gehalte aufbauen, die deutlich über den Gehalten liegen, die Oxidationsmittel-haltige Bäder enthalten. In diesem Sinne sind Eisen(II)- Konzentrationen bis zu 50 ppm normal, wobei kurzfristig im Produktionsab¬ lauf auch Werte bis zu 500 ppm auftreten können. Für das erfindungsgemäße Phosphatierverfahren sind solche Eisen(II)-Konzentrationen nicht schäd¬ lich.When the phosphating process is used on steel surfaces, iron in the form of iron (II) ions dissolves. If the phosphating baths according to the invention do not contain any substances which have a strong oxidizing effect on iron (II), the divalent iron changes to the trivalent state primarily as a result of air oxidation, so that it can precipitate out as iron (III) phosphate. Therefore, egg II) contents can be built up in the phosphating baths which are clearly above the contents which Baths containing oxidizing agents. In this sense, iron (II) concentrations of up to 50 ppm are normal, although values of up to 500 ppm can also occur briefly in the production process. Such iron (II) concentrations are not detrimental to the phosphating process according to the invention.
Das GewichtsVerhältnis Phosphationen zu Zinkionen in den Phosphatierbädern kann in weiten Grenzen schwanken, sofern es im Bereich zwischen 3,7 und 30 liegt. Ein Gewichtsverhältnis zwischen 10 und 20 ist besonders bevorzugt. Für diese Berechnung wird der gesamte Phosphorgehalt des Phosphatierbades als in Form von Phosphationen P0_;3~ vorliegend angesehen. Demnach wird bei der Berechnung des Mengenverhältnisses die bekannte Tatsache außer acht gelassen, daß bei den pH-Werten der Phosphatierbäder, die üblicherweise im Bereich von etwa 3 bis etwa 3,6 liegen, nur ein sehr geringer Teil des Phosphats tatsächlich in Form der dreifach negativ geladenen Anionen vor¬ liegt. Bei diesen pH-Werten ist vielmehr zu erwarten, daß das Phosphat vornehmlich als einfach negativ geladenes Dihydrogenphosphat-Anion vor¬ liegt, zusammen mit geringeren Mengen an undisoziierter Phosphorsäure und an zweifach negativ geladenen Hydrogenphosphat-Anionen.The weight ratio of phosphate ions to zinc ions in the phosphating baths can vary within a wide range, provided that it is in the range between 3.7 and 30. A weight ratio between 10 and 20 is particularly preferred. For this calculation, the total phosphorus content of the phosphating bath is considered to be present in the form of phosphate ions P0_; 3 ~. Accordingly, the known fact that the pH values of the phosphating baths, which are usually in the range from about 3 to about 3.6, only a very small part of the phosphate in the form of the triple negative is disregarded when calculating the quantitative ratio charged anions. At these pH values, it is rather to be expected that the phosphate is present primarily as a single negatively charged dihydrogenphosphate anion, together with smaller amounts of undisociated phosphoric acid and double negatively charged hydrogenphosphate anions.
Als weitere Parameter zur Steuerung von Phosphatierbädern sind dem Fach¬ mann die Gehalte an freier Säure und an Gesamtsäure bekannt. Die in dieser Schrift verwendete Bestimmungsmethode dieser Parameter ist im Beispielteil angegeben. Werte der freien Säure zwischen 0 und 1,5 Punkten bei Teile- phosphatierung, bei Bandphosphatierung bis zu 2,5 Punkten und der Gesamt¬ säure zwischen etwa 15 und etwa 30 Punkten liegen im technisch üblichen Bereich und sind im Rahmen dieser Erfindung geeignet.As a further parameter for controlling phosphating baths, the free acid and total acid contents are known to the person skilled in the art. The method of determining these parameters used in this document is given in the example section. Values of the free acid between 0 and 1.5 points in the case of partial phosphating, in the case of band phosphating up to 2.5 points and the total acid between about 15 and about 30 points are within the technically customary range and are suitable for the purposes of this invention.
Phosphatierbäder werden üblicherweise in Form von wäßrigen Konzentraten vertrieben, die vor Ort durch Zugabe von Wasser auf die Anwendungskonzen¬ trationen eingestellt werden. Aus Stabilitätsgründen können diese Konzen¬ trate einen Überschuß an freier Phosphorsäure enthalten, so daß beim Ver¬ dünnen auf Badkonzentration der Wert der freien Säure zunächst zu hoch bzw. der pH-Wert zu niedrig liegt. Durch Zugabe von Alkalien wie vorzugs¬ weise Lithiumhydroxid, Lithiumcarbonat oder Ammoniak, gegebenenfalls auch basische Kalium- oder (weniger bevorzugt) Natriumverbindungen, wird der Wert der freien Säure auf den erwünschten Bereich abgesenkt. Weiterhin ist es bekannt, daß der Gehalt an freier Säure während des Gebrauchs der Phosphatierbäder durch den Verbrauch der schichtbildenden Kationen und gegebenenfalls durch Zersetzungsreaktionen des Beschleunigers mit der Zeit ansteigen kann. In diesen Fällen ist es erforderlich, den Wert der freien Säure durch Alkalienzugabe von Zeit zu Zeit auf den erwünschten Bereich wieder einzustellen. Dies bedeutet, daß die Gehalte der Phosphatierbäder an Alkalimetall- oder Ammoniumionen in weiten Grenzen schwanken können und im Laufe der Gebrauchsdauer der Phosphatierbäder durch das Abstumpfen der freien Säure tendenziell ansteigen. Das Gewichtsverhältnis von Alkalime¬ tall- und/oder Ammoniumionen zu beispielsweise Zinkionen kann demnach bei frisch angesetzten Phosphatierbädern sehr niedrig liegen, beispielsweise < 0,5 sein und im Extremfall sogar 0 betragen, während es mit der Zeit durch Badpflegemaßnahmen üblicherweise ansteigt, so daß das Verhältnis > 1 wer¬ den und Werte bis zu 10 und größer annehmen kann. Niedrigzink-Phospha- tierbäder erfordern in der Regel Zusätze von Alkalimetall- oder Ammoniumionen, um bei dem erwünschten Gewichtsverhältnis POt - : Zn > 8 die freie Säure auf den Sollwert-Bereich einstellen zu können. Analoge Betrachtungen lassen sich auch über die Mengenverhältnisse von Alkalime¬ tall- und/oder Ammoniumionen zu anderen Badbestandteilen, beispielsweise zu Phosphationen, anstellen.Phosphating baths are usually sold in the form of aqueous concentrates which are adjusted to the application concentrations on site by adding water. For reasons of stability, these concentrates can contain an excess of free phosphoric acid, so that when diluted to a bath concentration, the value of the free acid is initially too high or the pH is too low. By adding alkalis such as preferably lithium hydroxide, lithium carbonate or ammonia, optionally also basic potassium or (less preferred) sodium compounds, the Free acid value lowered to the desired range. Furthermore, it is known that the free acid content during use of the phosphating baths can increase over time due to the consumption of the layer-forming cations and, if appropriate, through decomposition reactions of the accelerator. In these cases it is necessary to readjust the value of the free acid to the desired range from time to time by adding alkalis. This means that the contents of alkali metal or ammonium ions in the phosphating baths can fluctuate within wide limits and tend to increase over the course of the service life of the phosphating baths due to the dulling of the free acid. The weight ratio of alkali metal and / or ammonium ions to zinc ions, for example, can therefore be very low in freshly prepared phosphating baths, for example <0.5 and in extreme cases even 0, while it usually increases over time due to bath maintenance measures, so that the Ratio> 1 and can take values up to 10 and larger. Low-zinc phosphate baths generally require the addition of alkali metal or ammonium ions in order to be able to adjust the free acid to the desired value range at the desired weight ratio POt -: Zn> 8. Analogous considerations can also be made regarding the proportions of alkali metal and / or ammonium ions to other bath components, for example phosphate ions.
Erfindungsgemäße Phosphatierbäder sind geeignet zur Phosphatierung von Oberflächen aus Stahl, verzinktem oder legierungsverzinktem Stahl, Alumi¬ nium, aluminiertem oder legierungsalunliniertem Stahl. Der Begriff "Alumi¬ nium" schließt dabei die technisch üblichen Aluminiumlegierungen wie bei¬ spielsweise AlMg0,5Sil,4 mit ein. Die genannten Materialien können - wie es im Automobilbau zunehmend üblich wird - auch nebeneinander vorliegen. Das Verfahren ist für die Anwendung im Tauch-, Spritz- oder Spritz/Tauch¬ verfahren geeignet. Es kann insbesondere im Automobilbau eingesetzt wer¬ den, wo Behandlungszeiten zwischen 1 und 8 Minuten, insbesondere 2 bis 5 Minuten, üblich sind. Der Einsatz bei der Bandphosphatierung im Stahlwerk, wobei die Behandlungszeiten zwischen 3 und 12 Sekunden liegen, ist jedoch ebenfalls möglich. Bei der Verwendung in Bandphosphatierverfahren ist es empfehlenswert, die Badkonzentrationen jeweils in der oberen Hälfte der erfindungsgemäß bevorzugten Bereiche einzustellen. Beispielsweise kann der Zinkgehalt im Bereich von 1,5 bis 2,5 g/1, der Lithiumgehalt im Bereich von 0,5 bis 1,5 g/1, der Mangangehalt im Bereich von 1,5 bis 3 g/1 und der Gehalt von freier Säure im Bereich von 1,5 bis 2,5 Punkten liegen. Als Substrat für die Bandphosphatierung eignet sich besonders verzinkter Stahl, insbesondere elektrolytisch verzinkter Stahl.Phosphating baths according to the invention are suitable for phosphating surfaces made of steel, galvanized or alloy-galvanized steel, aluminum, aluminized or alloy-alloyed steel. The term "aluminum" includes the technically customary aluminum alloys such as AlMg0.5Sil, 4. The materials mentioned can - as is becoming increasingly common in automotive engineering - also coexist. The method is suitable for use in immersion, spraying or spray / immersion processes. It can be used in particular in automobile construction, where treatment times between 1 and 8 minutes, in particular 2 to 5 minutes, are common. However, it can also be used for strip phosphating in the steel mill, with treatment times between 3 and 12 seconds. When used in tape phosphating processes, it is advisable to set the bath concentrations in the upper half of the ranges preferred according to the invention. For example, the Zinc content in the range from 1.5 to 2.5 g / 1, the lithium content in the range from 0.5 to 1.5 g / 1, the manganese content in the range from 1.5 to 3 g / 1 and the content of free acid are in the range of 1.5 to 2.5 points. A particularly suitable substrate for strip phosphating is galvanized steel, in particular electrolytically galvanized steel.
Wie bei anderen Phosphatierbädern des Standes der Technik ebenfalls üb¬ lich, liegen die geeigneten Badtemperaturen unabhängig vom Anwendungsge¬ biet zwischen 30 und 70 °C, wobei der Temperaturbereich zwischen 45 und 60 °C bevorzugt wird.As is also common with other phosphating baths of the prior art, the suitable bath temperatures are between 30 and 70 ° C. regardless of the field of application, the temperature range between 45 and 60 ° C. being preferred.
Das erfindungsgemäße Phosphatierverfahren ist insbesondere zur Behandlung der genannten Metalloberflächen vor einer Lackierung, beispielsweise vor einer kathodischen Elektrotauchlackierung gedacht, wie sie im Automobilbau üblich ist. Es eignet sich weiterhin als Vorbehandlung vor einer Pulver- lackierung, wie sie beispielsweise für Haushaltsgeräte eingesetzt wird. Das Phosphatierverfahren ist als Teilschritt der technisch üblichen Vor¬ behandlungskette zu sehen. In dieser Kette sind der Phosphatierung übli¬ cherweise die Schritte Reinigen/Entfetten, Zwischenspülen und Aktivieren vorgeschaltet, wobei die Aktivierung üblicherweise mit Titanphosphat-hal¬ tigen Aktiviermitteln erfolgt. Der erfindungsgemäßen Phosphatierung kann, nach einer Zwischenspülung, gegebenenfalls eine passivierende Nachbehand¬ lung folgen. Für eine solche passivierende Nachbehandlung sind chromsäure-haltige Behandlungsbäder weit verbreitet. Aus Gründen des Ar- beits- und Umweltschutzes sowie aus Entsorgungsgründen besteht jedoch die Tendenz, diese chromhaltigen Passivierbäder durch chromfreie Behandlungs¬ bäder zu ersetzen. Hierfür sind rein anorganische Badlösungen, insbeson¬ dere auf der Basis von Zirkonverbindungen, oder auch organisch-reaktive Badlösungen, beispielsweise auf Basis von Poly(vinylphenolen), bekannt. Zwischen dieser Nachpassivierung und der sich üblicherweise anschließenden Lackierung wird in der Regel eine Zwischenspülung mit vollentsalztem Was¬ ser durchgeführt. Ausführunosbeispiele 1 bis 16 - Verqleichsbeispiele 1 bis 3The phosphating process according to the invention is intended in particular for treating the metal surfaces mentioned before painting, for example before cathodic electrocoating, as is customary in automobile construction. It is also suitable as a pre-treatment before a powder coating, such as that used for household appliances. The phosphating process is to be seen as a sub-step of the technically customary pretreatment chain. In this chain, the steps of cleaning / degreasing, rinsing and activating are usually preceded by the phosphating, the activation usually being carried out using activating agents containing titanium phosphate. After intermediate rinsing, the phosphating according to the invention can optionally be followed by a passivating aftertreatment. Treatment baths containing chromic acid are widely used for such a passivating aftertreatment. For reasons of work and environmental protection and for reasons of disposal, however, there is a tendency to replace these chromium-containing passivation baths with chromium-free treatment baths. Purely inorganic bath solutions, in particular based on zirconium compounds, or also organic-reactive bath solutions, for example based on poly (vinylphenols), are known for this. An intermediate rinse with demineralized water is generally carried out between this post-passivation and the usually subsequent coating. Embodiments 1 to 16 - Comparative Examples 1 to 3
Die erfindungsgemäßen Phosphatierverfahren sowie Vergleichsverfahren wur¬ den an Stahlblechen (St 1405), an Aluminiumblechen der Legierung AlMgO,5Sil,4 und an beidseitig elektrolytisch verzinkten Stahlblechen (ZE), wie sie im Automobilbau Verwendung finden, überprüft. Dabei wurde folgender in der Karosseriefertigung gebräuchl cher Verfahrensgang (im Tauch- bzw. Spritzverfahren) ausgeführt:The phosphating processes according to the invention and the comparative processes were checked on steel sheets (St 1405), on aluminum sheets of the alloy AlMgO, 5Sil, 4 and on steel sheets (ZE) electrolytically galvanized on both sides, as are used in automobile construction. The following process step (in the dipping or spraying process) used in body production was carried out:
1. Für Tauchverfahren: Reinigen mit einem alkalischen Reiniger (RidolineR 1559, Henkel KGaA), Ansatz 2 % in Stadtwasser, 60 °C, 4 Minuten.1. For immersion processes: cleaning with an alkaline cleaner (Ridoline R 1559, Henkel KGaA), preparation 2% in city water, 60 ° C, 4 minutes.
Für Spritzverfahren: Reinigen mit einem alkalischen Reiniger (Ridoli- neR C1250, Henkel KGaA), Ansatz 0,5 % in Stadtwasser, 60 °C, 2 Minu¬ ten.For spraying processes: cleaning with an alkaline cleaner (Ridoline R C1250, Henkel KGaA), approach 0.5% in city water, 60 ° C, 2 minutes.
2. Spülen mit vollentsalztem Wasser im Spritzen oder Tauchen, Raumtempe¬ ratur, 1 Minute.2. Rinse with deionized water in spraying or dipping, room temperature, 1 minute.
3. Aktivieren mit einem Titanphosphat-haltigen Aktiviermittel im Tauchen (FixodineR C 9112, Henkel KGaA), Ansatz 0,2 % in vollentsalztem Was¬ ser, Raumtemperatur, 2 Minuten.3. Activation with an activating agent containing titanium phosphate in immersion (Fixodine R C 9112, Henkel KGaA), approach 0.2% in deionized water, room temperature, 2 minutes.
4. Phosphatieren mit Phosphatierbädern (Badtemperatür, falls nicht anders angegeben, 50 °C) gemäß Tabelle 1. Außer den genannten Kationen ent¬ hielten die Phosphatierbäder 0,5 bis 2 g/1 Ammoniumionen zum Einstel¬ len der freien Säure sowie Fe(II) im Bereich 50 - 60 ppm. Natrium und Hydroxylamin wurden als Sulfat eingesetzt. Für alle Bäder wurde voll¬ entsalztes Wasser verwendet. Beispielsweise wurde das Bad des Bei¬ spiels 1 erhalten, indem man in vollentsalztem Wasser folgende Sub¬ stanzen in der angegebenen Reihenfolge löste: 16,56 g/1 85%-ige Phosphorsäure4. Phosphating with phosphating baths (bath temperature, unless otherwise stated, 50 ° C.) according to Table 1. In addition to the cations mentioned, the phosphating baths contained 0.5 to 2 g / 1 ammonium ions to adjust the free acid and Fe (II ) in the range 50 - 60 ppm. Sodium and hydroxylamine were used as sulfate. Demineralized water was used for all baths. For example, the bath of Example 1 was obtained by dissolving the following substances in completely deionized water in the order given: 16.56 g / 1 85% phosphoric acid
1,25 g/1 ZnO1.25 g / 1 ZnO
2,09 g/1 nC032.09 g / 1 nC03
2,48 g/1 FeS04 x 7 H202.48 g / 1 FeS04 x 7 H 2 0
2,86 g/1 34%-ige Lösung von H2SiFö2.86 g / 1 34% solution of H 2 SiFö
0,57 g/1 40%-ige Lösung von HF0.57 g / 1 40% solution of HF
1,63 g/1 (NH30H)2S041.63 g / 1 (NH 3 0H) 2 S04
1,72 g/1 LiOH1.72 g / 1 LiOH
Das Bad des Beispiels 2 enthielt zusätzlich 4,57 g/1 Li Sθ4 x H20.The bath of Example 2 additionally contained 4.57 g / l LiSO 4 x H 2 0.
Unter der Punktzahl der freien Säure wird der Verbrauch in ml an 0,1- normaler Natronlauge verstanden, um 10 ml Badlösung bis zu einem pH- Wert von 3,6 zu titrieren. Analog gibt die Punktzahl der Gesamtsäure den Verbrauch in ml bis zu einem pH-Wert von 8,2 an.The free acid score is understood to mean the consumption in ml of 0.1 normal sodium hydroxide solution in order to titrate 10 ml of bath solution up to a pH of 3.6. Similarly, the total acid score indicates consumption in ml up to a pH of 8.2.
5. Spülen mit vollentsalztem Wasser im Spritzen oder Tauchen, Raumtempe¬ ratur, 1 Minute.5. Rinse with deionized water by spraying or dipping, room temperature, 1 minute.
6. Trockenblasen mit Preßluft6. Blow dry with compressed air
Als Kurztest für die Korrosionsschutzwirkung der Schichten wurden Strom- dichte-/Potentialmessungen durchgeführt. Dieses Verfahren ist beispiels¬ weise beschrieben in A.Losch, J.W.Schultze, D.Speckmann: "A New Electro- che ical Method for the Determination of the Free Surface of Phosphate Layers", Appl. Surf. Sei. 5.2, 29-38 (1991). Hierzu wurden die phospha- tierten Probebleche in einen Probenhalter aus Polyamid eingeklemmt, der eine zu untersuchende Oberfläche von 43 cm2 frei ließ. Die Messungen er¬ folgten unter sauerstofffreien Bedingungen (Spülung mit Stickstoff) in einem Elektrolyten mit pH = 7,1, der 0,32 M H3BO3, 0,026 M Na2B4θ7'10H 0 und 0,5 M NaNθ3 enthielt. Als Referenzelektrode wurde eine Standard- Quecks lber-Elektrode mit einem Normalpotential EQ - 0,68 Volt verwendet. Die Proben wurden zunächst ohne Anlegen eines äußeren Potentials für 5 Minuten in die Elektrolytlösung getaucht. Danach wurden cyclische Voltamogramme zwischen -0,7 und 1,3 Volt gegenüber der Standard-Quecksil¬ ber-Elektrode mit einer Potentialänderung von 20 mV/s aufgenommen. Zur Auswertung wurde die Stromdichte bei einem Potential von -0,3 Volt, der Maximalwert der Stromdichte im Bereich zwischen 0 und 0,8 Volt sowie der Minimalwert der Stromdichte im Bereich zwischen 0,5 und 1,3 Volt, jeweils bezogen auf die Standard-Quecksilber-Elektrode, abgelesen. Negative Stromdichten bei einem Potential von -0,3 Volt zeigen eine Reduktion von Schichtbestandteilen an. Hohe Stromdichten in den Meßbereichen von 0 bis 0,8 Volt und von 0,5 bis 1,3 Volt zeigen eine schlechte Barrierewirkung, geringe Stromdichten eine gute Barrierwirkung der Phosphatschichten ge¬ genüber korrosiven Strömen an.Current density / potential measurements were carried out as a short test for the corrosion protection effect of the layers. This method is described, for example, in A.Losch, JWSchultze, D. Speckmann: "A New Electronic Method for the Determination of the Free Surface of Phosphate Layers", Appl. Surf. Be. 5.2, 29-38 (1991). For this purpose, the phosphated sample sheets were clamped in a sample holder made of polyamide, which left a surface of 43 cm 2 to be examined free. The measurements were carried out under oxygen-free conditions (flushing with nitrogen) in an electrolyte with pH = 7.1, which contained 0.32 M H3BO3, 0.026 M Na 2 B4θ7'10H 0 and 0.5 M NaNθ3. A standard mercury electrode with a normal potential EQ - 0.68 volts was used as the reference electrode. The samples were first immersed in the electrolyte solution for 5 minutes without applying an external potential. Then cyclic Voltamograms between -0.7 and 1.3 volts compared to the standard mercury electrode with a potential change of 20 mV / s were recorded. For evaluation, the current density at a potential of -0.3 volts, the maximum value of the current density in the range between 0 and 0.8 volts and the minimum value of the current density in the range between 0.5 and 1.3 volts, in each case based on the standard - Mercury electrode, read. Negative current densities at a potential of -0.3 volts indicate a reduction in layer components. High current densities in the measuring ranges from 0 to 0.8 volts and from 0.5 to 1.3 volts indicate a poor barrier effect, low current densities indicate a good barrier effect of the phosphate layers against corrosive currents.
Schichtgewichte bei Phosphatierung unterschiedlicher Substrate und ausge¬ wählte Ergebnisse von Stro dichte-/Potentialmessungen sind in Tabelle 2 enthalten. Layer weights when phosphating different substrates and selected results of current density / potential measurements are contained in Table 2.
Figure imgf000018_0001
Tabelle 1: Fortsetzung Komponente Vera1.3 Beisp.9 Beisp.lO Beisp.ll Beisp.12 Beisp.13 Beisp.14 Beisp.15 Beisp.16
Figure imgf000018_0001
Table 1: Continued component Vera1.3 Ex. 9 Ex. 10 Ex. 11 Ex. 12 Ex. 13 Ex. 14 Ex. 15 Ex. 16
Zn(II) (g/1) 1 1 1 i 1 i 1 l 1 l 1 1 1 1 1Zn (II) (g / 1) 1 1 1 i 1 i 1 l 1 l 1 1 1 1 1
Phosphat (g/1) 14 14 14 14 14 14 14 14 14Phosphate (g / 1) 14 14 14 14 14 14 14 14 14
LUD (g/D - 0,25 0,5 0,75 1 1,25 0,5 0,5 0,5LUD (g / D - 0.25 0.5 0.75 1 1.25 0.5 0.5 0.5
Mn(II) (g/1) 1 1 1 1 1 1 1 1 1Mn (II) (g / 1) 1 1 1 1 1 1 1 1 1
Ni(II) (g/D -Ni (II) (g / D -
Mg (II) (g/1) -Mg (II) (g / 1) -
Na(I) (g/1) 0 0,,88 0,8 0,8 0,8 0,8 0,8 1 0,25Na (I) (g / 1) 0 0.8 88 0.8 0.8 0.8 0.8 0.8 1 0.25
SiF62- (g/1) 0 0,,9966 0,96 0,96 0,96 0,96 0,96 0,96 0,96SiF 6 2- (g / 1) 0.0, 9966 0.96 0.96 0.96 0.96 0.96 0.96 0.96
F" frei (g/1) 0 0,,2222 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,7F "free (g / 1) 0 0.22222 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.7
NH20H (g/1) 0 0,,6666 0,66 0,66 0,66 0,66 0,66 0,66 0,66 0,66 m-Nitrobenzol- - I sulfonsäure (g/1)NH 2 0H (g / 1) 0 0, .6666 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 m-nitrobenzene - - I sulfonic acid (g / 1)
H202 (mg/1) - pH-Wert 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3H 2 0 2 (mg / 1) - pH 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
Freie Säure 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8Free acid 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
(Punkte)(Points)
Gesamtsäure 23 23 23 23 23 23 23 23 23Total acid 23 23 23 23 23 23 23 23 23
(Punkte)(Points)
Applikation Tauchen Tauchen Tauchen Tauchen Tauchen Tauchen Tauchen Tauchen TauchenApplication diving diving diving diving diving diving diving diving diving
Zeit (Sekunden) 180 180 180 180 180 180 180 180 180 Time (seconds) 180 180 180 180 180 180 180 180 180
Figure imgf000020_0001
Figure imgf000020_0001

Claims

Patentansprüche claims
1. Saure, wäßrige Phosphatierlösung, enthaltend1. Containing acidic, aqueous phosphating solution
0,2 bis 3 g/1 Zink(II) und0.2 to 3 g / 1 zinc (II) and
3 bis 50 g/1 Phosphat, berechnet als PO43-,3 to 50 g / 1 phosphate, calculated as PO4 3 -,
dadurch gekennzeichnet, daß die Lösung zusätzlichcharacterized in that the solution additionally
0,2 bis 1,5 g/1 Lithium(I) enthält.Contains 0.2 to 1.5 g / 1 lithium (I).
2. Phosphatierlösung nach Anspruch 1, dadurch gekennzeichnet, daß sie zusätzlich eines oder mehrere der folgenden Kationen enthält:2. Phosphating solution according to claim 1, characterized in that it additionally contains one or more of the following cations:
0,2 bis 4 g/1 Mangan(II),0.2 to 4 g / 1 manganese (II),
0,2 bis 2,5 g/1 Magnesium(II),0.2 to 2.5 g / 1 magnesium (II),
0,2 bis 2,5 g/1 Calcium(II),0.2 to 2.5 g / 1 calcium (II),
0,01 bis 0,5 g/1 Eisen(II).0.01 to 0.5 g / 1 iron (II).
0,001 bis 0,03 g/1 Kupfer(II).0.001 to 0.03 g / 1 copper (II).
3. Phosphatierlösung nach einem oder beiden der Ansprüche 1 und 2, da¬ durch gekennzeichnet, daß sie zusätzlich3. phosphating solution according to one or both of claims 1 and 2, da¬ characterized in that it additionally
20 bis 800 mg/1 Wolfram20 to 800 mg / 1 tungsten
in Form wasserlöslicher Wolframate, S licowolframate und/oder Borowolfra ate in Form ihrer Säuren und/oder in Form ihrer wasserlöslichen Salze enthält.contains in the form of water-soluble tungstates, S licowungstamates and / or Borowolfra ate in the form of their acids and / or in the form of their water-soluble salts.
4. Phosphatierlösung nach einem oder mehreren der Ansprüche 1 bis 3, da¬ durch gekennzeichnet, daß sie zusätzlich Fluorid in Mengen von bis zu 2,5 g/1 Gesamtfluorid, davon bis zu 800 mg/1 freies Fluorid enthält.4. Phosphating solution according to one or more of claims 1 to 3, characterized in that it additionally contains fluoride in amounts of up to 2.5 g / 1 total fluoride, of which up to 800 mg / 1 free fluoride.
5. Phosphatierlösung nach einem oder mehreren der Ansprüche 1 bis 3, da¬ durch gekennzeichnet, daß sie zusätzlich als Beschleuniger eine oder mehrere der folgenden Komponenten enthält: 0,3 bis 1,5 g/1 Chlorat5. Phosphating solution according to one or more of claims 1 to 3, characterized in that it additionally contains one or more of the following components as accelerators: 0.3 to 1.5 g / 1 chlorate
0,01 bis 0,2 g/1 Nitritionen,0.01 to 0.2 g / 1 nitrite ion,
0,05 bis 2 g/1 m-Nitrobenzolsulfonationen,0.05 to 2 g / 1 m-nitrobenzenesulfonate ions,
0,05 bis 2 g/1 m-Nitrobenzoationen,0.05 to 2 g / 1 m nitrobenzoate ions,
0,05 bis 2 g/1 p-Nitrophenol,0.05 to 2 g / 1 p-nitrophenol,
0,005 bbiiss 00,,115 g/1 Wasserstoffperoxid in freier oder gebundener Form,0.005 bbiiss 00,, 115 g / 1 hydrogen peroxide in free or bound form,
0,1 bis 10 g/1 Hydroxylamin in freier oder gebundener Form.0.1 to 10 g / 1 hydroxylamine in free or bound form.
6. Phosphatierlösung nach Anspruch 5, dadurch gekennzeichnet, daß sie als Beschleuniger 0,005 bis 0,02 g/1 Wasserstoffperoxid in freier oder gebundener Form enthält.6. phosphating solution according to claim 5, characterized in that it contains 0.005 to 0.02 g / 1 hydrogen peroxide in free or bound form as accelerator.
7. Phosphatierlösung nach Anspruch 5, dadurch gekennzeichnet, daß sie als Beschleuniger 0,2 bis 6 g/1 Hydroxylamin in freier oder gebundener Form enthält.7. phosphating solution according to claim 5, characterized in that it contains 0.2 to 6 g / 1 hydroxylamine as an accelerator in free or bound form.
8. Phosphatierlösung nach einem oder mehreren der Ansprüche 1 bis 7, da¬ durch gekennzeichnet, daß sie 0,4 bis 1 g/1 Lithium(I) enthält.8. phosphating solution according to one or more of claims 1 to 7, characterized in that it contains 0.4 to 1 g / 1 lithium (I).
9. Phosphatierlösung nach einem oder mehreren der Ansprüche 1 bis 8, da¬ durch gekennzeichnet, daß sie einen Gehalt an freier Säure im Bereich von 0 bis 2,5 Punkten und/oder einen Gehalt an Gesamtsäure im Bereich von 15 bis 30 Punkten aufweist.9. phosphating solution according to one or more of claims 1 to 8, da¬ characterized in that it has a free acid content in the range of 0 to 2.5 points and / or a total acid content in the range of 15 to 30 points.
10. Verfahren zur Phosphatierung von Oberflächen von Stahl, verzinktem oder legierungsverzinktem Stahl und/oder von Aluminium oder dessen Legierungen, dadurch gekennzeichnet, daß man die Oberflächen mit einer Phosphatierlösung nach einem oder mehreren der Ansprüche 1 bis 9, die eine Temperatur im Bereich von 30 bis 70 °C aufweist, für die Dauer von 3 Sekunden bis 8 Minuten durch Spritzen, Tauchen oder Spritztau¬ chen in Berührung bringt.10. A method for phosphating surfaces of steel, galvanized or galvanized steel and / or of aluminum or its alloys, characterized in that the surfaces with a phosphating solution according to one or more of claims 1 to 9, the temperature in the range of 30 up to 70 ° C, for a period of 3 seconds to 8 minutes by spraying, dipping or spray dipping.
11. Verfahren nach Anspruch 10 zur Behandlung der Oberflächen vor einer kathodischen Elektrotauchlackierung oder vor einer Pulverlackierung. 11. The method according to claim 10 for the treatment of the surfaces before a cathodic electrocoating or before a powder coating.
PCT/EP1996/000039 1995-01-16 1996-01-08 Lithium-containing zinc phosphating solution WO1996022406A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU44844/96A AU4484496A (en) 1995-01-16 1996-01-08 Lithium-containing zinc phosphating solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19500927.4 1995-01-16
DE19500927A DE19500927A1 (en) 1995-01-16 1995-01-16 Lithium-containing zinc phosphating solution

Publications (1)

Publication Number Publication Date
WO1996022406A1 true WO1996022406A1 (en) 1996-07-25

Family

ID=7751471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/000039 WO1996022406A1 (en) 1995-01-16 1996-01-08 Lithium-containing zinc phosphating solution

Country Status (6)

Country Link
AR (1) AR000711A1 (en)
AU (1) AU4484496A (en)
DE (1) DE19500927A1 (en)
TR (1) TR199600035A2 (en)
WO (1) WO1996022406A1 (en)
ZA (1) ZA96302B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130071675A1 (en) * 2011-09-16 2013-03-21 Eric L. Morris Corrosion resistant pretreatment coating compositions

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540085A1 (en) * 1995-10-27 1997-04-30 Henkel Kgaa Low nitrate, manganese-free zinc phosphating
DE19606018A1 (en) * 1996-02-19 1997-08-21 Henkel Kgaa Zinc phosphating with low levels of nickel and / or cobalt
US6720032B1 (en) 1997-09-10 2004-04-13 Henkel Kommanditgesellschaft Auf Aktien Pretreatment before painting of composite metal structures containing aluminum portions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3090709A (en) * 1953-08-10 1963-05-21 Lubrizol Corp Phosphate coating of metals
EP0321059A1 (en) * 1987-12-18 1989-06-21 Nippon Paint Co., Ltd. Process for phosphating metal surfaces
DE3920296A1 (en) * 1989-06-21 1991-01-10 Henkel Kgaa METHOD FOR PRODUCING ZINC PHOSPHATE CONTAINING MANGANE AND MAGNESIUM
DE4013483A1 (en) * 1990-04-27 1991-10-31 Metallgesellschaft Ag METHOD FOR PHOSPHATING METAL SURFACES
WO1993020259A1 (en) * 1992-03-31 1993-10-14 Henkel Kommanditgesellschaft Auf Aktien Nickel-free phosphatization process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3090709A (en) * 1953-08-10 1963-05-21 Lubrizol Corp Phosphate coating of metals
EP0321059A1 (en) * 1987-12-18 1989-06-21 Nippon Paint Co., Ltd. Process for phosphating metal surfaces
DE3920296A1 (en) * 1989-06-21 1991-01-10 Henkel Kgaa METHOD FOR PRODUCING ZINC PHOSPHATE CONTAINING MANGANE AND MAGNESIUM
DE4013483A1 (en) * 1990-04-27 1991-10-31 Metallgesellschaft Ag METHOD FOR PHOSPHATING METAL SURFACES
WO1993020259A1 (en) * 1992-03-31 1993-10-14 Henkel Kommanditgesellschaft Auf Aktien Nickel-free phosphatization process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130071675A1 (en) * 2011-09-16 2013-03-21 Eric L. Morris Corrosion resistant pretreatment coating compositions
US10876211B2 (en) * 2011-09-16 2020-12-29 Prc-Desoto International, Inc. Compositions for application to a metal substrate

Also Published As

Publication number Publication date
ZA96302B (en) 1996-07-16
AU4484496A (en) 1996-08-07
AR000711A1 (en) 1997-08-06
DE19500927A1 (en) 1996-07-18
TR199600035A2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
EP0817872B1 (en) Phosphating process with a metalliferous re-rinsing stage
EP0717787B1 (en) Nickel-free phosphatization process
EP1114202A1 (en) Method for phosphatizing, rerinsing and cathodic electro-dipcoating
WO1993020259A1 (en) Nickel-free phosphatization process
EP1929070A1 (en) Phosphatising solution with hydrogen peroxide and chelating carboxylic acids
EP0922123B1 (en) Process and aqueous solution for phosphatising metallic surfaces
EP0931179B1 (en) Method for phosphating a steel band
DE19705701A1 (en) Phosphating metal surfaces for subsequent lacquering
EP0889977B1 (en) Zinc phosphatizing with low quantity of copper and manganese
EP1005578A1 (en) Phosphating method accelerated by n-oxides
WO2001038605A2 (en) Method for phosphatization with rinsing using a metal-containing agent
WO1996022406A1 (en) Lithium-containing zinc phosphating solution
DE4330104A1 (en) Nickel- and copper-free phosphating process
DE19606018A1 (en) Zinc phosphating with low levels of nickel and / or cobalt
DE4341041A1 (en) Phosphating solns contg hydroxylamine and/or nitrobenzene sulphonate
WO1997014821A1 (en) Layer weight-adjustment in hydroxylamine-accelerated phosphatisation systems
DE19958192A1 (en) Process for phosphating, rinsing and cathodic electrocoating
WO1997016581A2 (en) Low-nitrate, manganese-free zinc phosphatization
DE19733978A1 (en) Acid phosphating solution, stable in presence of copper ions
DE19500562A1 (en) Phosphating solution
WO1998009000A1 (en) Ruthenium-containing zinc phosphate treatment
DE19723350A1 (en) Passivating-rinsing process for phosphate layers
EP1208246A1 (en) Zinc phosphatizing using epoxides
DE19716075A1 (en) Phosphating process accelerated with hydroxylamine and chlorate
DE19750301A1 (en) Aqueous acid, phosphatising solution containing an organic N-oxide accelerator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ HU JP KR MX PL RU SI SK US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase