EP0633950B1 - Nickel-free phosphatization process - Google Patents

Nickel-free phosphatization process Download PDF

Info

Publication number
EP0633950B1
EP0633950B1 EP92924684A EP92924684A EP0633950B1 EP 0633950 B1 EP0633950 B1 EP 0633950B1 EP 92924684 A EP92924684 A EP 92924684A EP 92924684 A EP92924684 A EP 92924684A EP 0633950 B1 EP0633950 B1 EP 0633950B1
Authority
EP
European Patent Office
Prior art keywords
ions
phosphating solution
phosphating
hydroxylamine
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92924684A
Other languages
German (de)
French (fr)
Other versions
EP0633950A1 (en
Inventor
Wolf-Achim Roland
Karl-Heinz Gottwald
Matthias Hamacher
Jan-Willem Brouwer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6455509&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0633950(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0633950A1 publication Critical patent/EP0633950A1/en
Application granted granted Critical
Publication of EP0633950B1 publication Critical patent/EP0633950B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/186Orthophosphates containing manganese cations containing also copper cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/22Orthophosphates containing alkaline earth metal cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • C23C22/80Pretreatment of the material to be coated with solutions containing titanium or zirconium compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12583Component contains compound of adjacent metal

Definitions

  • the invention relates to a method for producing copper-containing, nickel-free phosphate layers on metal surfaces and to the use of the method as pretreatment of the metal surfaces before painting, in particular cataphoretic dip painting (KTL).
  • KTL cataphoretic dip painting
  • the quality of phosphate coatings before cataphoretic dip painting depends on a variety of parameters. These include physical quantities such as the shape and size of the crystals, their mechanical stability and in particular the free metal surface after phosphating, the so-called pore surface. With regard to the chemical parameters, the alkali stability during the cataphoretic coating, the binding strength of the crystal water of the zinc phosphate crystals when baking the paints and the rehydration ability are of particular interest.
  • the layer weight can be controlled, in particular reduced, by using activating agents prior to phosphating.
  • the polymeric titanium phosphates present in the activating agents form active centers on the metal surface from which crystal growth proceeds. The result is smaller and mechanically more stable crystals on the one hand, and on the other hand the pore area is reduced, making it more difficult to attack corrosive media if the paint is damaged.
  • the water hardness ions in particular deactivate the polymeric titanium phosphates.
  • Barium phosphate coatings do not contain zinc, but have a number of positive properties, such as high thermal stability. However, the achievable layer weights are not sufficient to achieve a high level of corrosion protection in combination with a cataphoretic dip coating.
  • the barium phosphate coatings thus occupy an intermediate position between the "thin” iron phosphate coatings (0.3-0.5 g / m) and the “thicker" zinc phosphate coatings (2.0-3.5 g / m).
  • Aluminum ions reduce the phosphate layer weights even more, so that so-called "passivation phenomena" already occur from a concentration of 5 ppm Al3 + ions in the phosphating bath, i. H. disturbances in the formation of zinc phosphate coatings.
  • the layer weight reduction by magnesium ions is so strong that other control parameters, which are usually also used to reduce the layer weight, such as very low zinc concentrations (0.6 g / l Zn+), high concentrations of accelerators such as sodium nitrite or meta-nitrobenzenesulfonate / Na salts do not have to be used to generate a mass per unit area in the range of 1.5 - 2.0 g / m.
  • control parameters which are usually also used to reduce the layer weight, such as very low zinc concentrations (0.6 g / l Zn+), high concentrations of accelerators such as sodium nitrite or meta-nitrobenzenesulfonate / Na salts do not have to be used to generate a mass per unit area in the range of 1.5 - 2.0 g / m.
  • EP-A-0 186 823 discloses strongly acidic phosphating solutions with a pH of 1.8-2.5 which contain 7.5-75 g / l zinc ions, Contain 0.1 - 10 g / l hydroxylamine and optionally up to 20 g / l manganese ions and 5 - 75 g / l nitrate ions.
  • the solutions tolerate an iron content of up to 25 g / l.
  • EP-A-0 315 059 discloses a process for zinc phosphating iron-containing surfaces.
  • the desired morphology of the zinc phosphate crystals is set by using hydroxylammonium salts, hydroxylamine complexes and / or hydroxylamine.
  • all of the examples contain nickel as another layer-forming cation.
  • the toxicological disadvantages of nickel are known.
  • the object was therefore to provide a process for the production of nickel-free phosphate layers which, in the absence of nickel on metal surfaces such as cold rolled steel, electrolytically galvanized steel and aluminum, ensures very good paint adhesion and excellent corrosion protection.
  • the above-mentioned object is achieved with the aid of a specially selected phosphating solution which contains hydroxylamine salts, hydroxylamine complexes and / or hydroxylamine in an amount of 500 to 5000 ppm of hydroxylamine, based on the phosphating solution, as an active ingredient for modifying the crystal morphology ("accelerator").
  • a specially selected phosphating solution which contains hydroxylamine salts, hydroxylamine complexes and / or hydroxylamine in an amount of 500 to 5000 ppm of hydroxylamine, based on the phosphating solution, as an active ingredient for modifying the crystal morphology.
  • the present invention relates, according to claim 1, to a method for producing copper-containing nickel-free phosphate layers with a copper content in the range from 0.1 to 5% by weight and an edge length of Phosphate crystals in the range of 0.5 to 10 ⁇ m on metal surfaces selected from steel, galvanized steel, alloy galvanized steel, aluminum and their alloys, by treating them in a spray, dip or spray / dip process with a phosphating solution which does the following Components contains: Zinc ions 0.2 to 2 g / l Copper ions 0.5 to 25 mg / l Phosphate ions 5 to 30 g / l (calculated as P2O5) and also hydroxylamine salts, hydroxylamine complexes and / or hydroxylamine in an amount of 500 to 5000 ppm hydroxylamine based on the phosphating solution.
  • the phosphating solution contains 5 to 20 ppm of copper ions when the metal surface is brought into contact with the phosphating solution by means of immersion processes.
  • the phosphating solutions contain 1 to 10 ppm copper ions in order to incorporate correspondingly high copper contents in the conversion coating.
  • the pH of the phosphating solution In order to ensure proper formation of the phosphate layer, it is known to adjust the pH of the phosphating solution to a value between 2.5 and 3.5. If necessary, further cations, for example alkali metal cations and / or alkaline earth metal cations with corresponding anions known in the prior art, are used to adjust the pH of the phosphating solution.
  • the pH value can be corrected during the phosphating, for example, with basic additives or acids.
  • the phosphating solution contains 0.1 to 5 g / l, in particular 0.5 to 1.5 g / l, of manganese (II) ions.
  • the quality of the copper-containing nickel-free phosphate layers produced with the aid of the method according to the invention is not impaired if the phosphating solution contains alkaline earth metal cations of up to 2.5 g / l, in particular magnesium and / or calcium ions.
  • the method according to the invention can be applied in particular to steel, steel galvanized on one or two sides, steel galvanized on one or both sides, aluminum and its alloys.
  • steel in the sense of the present invention includes, in addition to low-alloy steels, also soft, unalloyed steels and higher as well as high-strength steels.
  • the essential content of the invention is that the aqueous, acid phosphating solutions are free of nickel. However, this means that under technical conditions a small amount of nickel ions can be contained in the phosphating baths. However, in accordance with the prior art DE-A-40 13 483, this amount should be less than 0.0002 to 0.01 g / l, in particular less than 0.0001 g / l.
  • iron in the form of iron (II) ions dissolves.
  • iron (II) is converted into iron (III) and can thus be precipitated as iron phosphate sludge. Accordingly, it is typical in the sense of the present invention that the phosphating solution contains up to 50 ppm - briefly in the production process, but also up to 500 ppm - iron (II) ions.
  • a number of oxidizing agents are known in the prior art for limiting the iron (II) ion concentration.
  • the contact of the phosphating solution with oxygen for example atmospheric oxygen and / or the addition of suitable oxidizing agents, serves to limit the iron (II) ion concentration.
  • the phosphating solution contains oxidizing agents selected from peroxide compounds, chlorates, permanganates and organic nitro compounds.
  • the oxidizing agents of the phosphating solutions are preferably selected from peroxide compounds, in particular hydrogen peroxide, perborate, percarbonate and Perphosphate, and organic nitro compounds, especially nitrobenzenesulfonate.
  • peroxide compounds in particular hydrogen peroxide, perborate, percarbonate and Perphosphate
  • organic nitro compounds especially nitrobenzenesulfonate.
  • the amounts of oxidizing agent to be used are known from the prior art. For example: Peroxide compound calculated as hydrogen peroxide: 0.005 to 0.1 g / l, nitrobenzenesulfonate: 0.005 to 1 g / l.
  • the phosphating process is applied to galvanized steel, alloy galvanized steel, aluminum and its alloys, the presence of iron (II) ions is not harmful. Accordingly, the addition of oxidizing agents can be completely dispensed with when phosphating these materials when using the method according to the invention.
  • a preferred embodiment of the present invention consists in using phosphating solutions which are essentially free of nitrite ions.
  • a significant advantage of this process variant is that no toxic decomposition products of nitrites, for example nitrous gases which are hazardous to health, can arise.
  • modifying compounds from the group of surfactants hydroxycarboxylic acids, tartrate, citrate, hydrofluoric acid, alkali metal fluoride, boron trifluoride, silicon fluoride is known in principle from the prior art. While the addition of surfactants (for example 0.05 to 0.5 g / l) leads to an improvement in the phosphating of lightly greased metal surfaces, it is known that hydroxycarboxylic acids, in particular tartaric acid, citric acid and their salts, in a concentration range of 0.03 to 0.3 g / l contribute to a significant reduction in the weight of the phosphate layer.
  • Fluoride ions promote the phosphating of metals that are more difficult to attack, thereby shortening the phosphating time and also increasing the area coverage of the phosphate layer.
  • about 0.1 to 1 g / l of the fluorides are used.
  • the controlled addition of fluorides also enables the formation of crystalline phosphate layers on aluminum and its alloys. Salts of boron tetrafluoride and silicon hexafluoride increase the aggressiveness of the phosphating baths, which is particularly noticeable in the treatment of hot-dip galvanized surfaces, which is why these complex fluorides can be used, for example, in amounts of 0.4 to 3 g / l.
  • Phosphating processes are usually used at bath temperatures between 40 and 60 ° C. These temperature ranges are used in spraying as well as in spray-immersion and immersion applications.
  • the metal surfaces to be phosphated are cleaned, rinsed and, if necessary, treated with activating agents, in particular based on titanium phosphates, according to processes known per se in the prior art.
  • the phosphating baths for carrying out the process according to the invention are generally prepared in the customary manner which is known per se to the person skilled in the art.
  • the following compounds are suitable as starting products for the preparation of the phosphating bath: Zinc: in the form of zinc oxide, zinc carbonate or optionally zinc nitrate; Copper: in the form of acetate, sulfate or, where appropriate, nitrate; Manganese: in the form of carbonate, magnesium and calcium: in the form of carbonates; Phosphate: preferably in the form of phosphoric acid.
  • the fluoride ions which may be used in the bath are preferably used in the form of alkali metal or ammonium fluoride, in particular sodium fluoride or in the form of the complex compounds mentioned above.
  • the compounds mentioned above are dissolved in water in the concentration ranges essential for the invention; then, as has also been said above, the pH of the phosphating solutions is adjusted to the desired value.
  • hydroxylamine can originate from any source. Accordingly, any compound which provides hydroxylamine or a derivative thereof, for example a hydroxylamine salt or a hydroxylamine complex, which is often in the form of hydrate, can be used according to the invention. Examples which can be used include hydroxylamine phosphate, optionally hydroxylamine nitrate, hydroxylamine sulfate (also called hydroxylammonium sulfate [(NH2OH) 2.H2SO4]) or a mixture thereof. Hydroxylamine sulfate and hydroxylamine phosphate are particularly preferred as the hydroxylamine source.
  • test surfaces were phosphatized from electrolytically galvanized thin sheet at a temperature of 53 ° C. in the course of 1 min.
  • the test panels were then given a test coat of KTL and white top coat and subjected to the alternating climate test according to VDA 621-415. The results after a test period of 5 cycles are also shown in Table 2.
  • the corrosion protection effect of the phosphating according to the invention was determined in accordance with the standards of the German Association of the Automotive Industry (VDA 621-414 (outdoor weathering) and VDA 621-415 (alternating climate test)).
  • the testing of the corrosion protection of motor vehicle paints by exposure to the weather serves to determine the corrosion protection effect of motor vehicle paints under the influence of natural weathering in the overall structure, as in the example without light protection and additional stress by spraying with saline solution.
  • Test coats consisting of an automobile-typical structure made of KTL, filler, white top coat, each according to Ford specification, are provided with a straight scratch mark parallel to the long side, which runs through to the metal surface.
  • the test coats are stored on suitable racks. They are sprayed liberally once a week with a dilute sodium chloride solution.
  • the test time in the present case was 6 months.
  • the sample coats are rinsed with clear, flowing water, blown dry with compressed air if necessary and examined for visible changes.
  • the under rusting visible from both sides of the scoring is determined.
  • the width of the metal surface damaged by rust next to the scratch is generally easy to see on the paint surface.
  • the average total width is used for evaluation the rust zone in mm. For this purpose, the width is measured in several places and the arithmetic mean is formed.
  • Testing the corrosion protection of automotive paintwork in the case of cyclically changing stresses serves to assess the corrosion protection of automotive paintwork using a time-consuming laboratory process, which causes corrosion processes and corrosion patterns that are well comparable with those that occur during driving.
  • the short test simulates in particular the under rust caused by a paint injury, as well as the edge and edge rust in the case of special corrosion test sheets or components with known weak points in the paint and the surface rust.
  • test panels were provided with a straight scratch mark parallel to the long side, extending through to the metal surface.
  • test panels were set up in the tester at an angle of 60 ° to 75 ° to the horizontal.
  • the test time is 10 cycles corresponding to 70 days.
  • test plates are rinsed with clear, flowing water, blown dry with compressed air if necessary and examined for visible changes.
  • the width of the metal surface damaged by rust next to the scratch is easily recognizable as a trace of bubbles or rust on the paint surface.
  • an inclined knife blade e.g. B. with an eraser, carefully remove the rusted paint film to the still adherent zone.

Abstract

The invention is a process for applying a nickel-free, copper-containing phosphate coating to a metal surface by contacting the metal surface with a phosphate solution containing 0.2 to 2.0 g/l zinc ions, 0.5 to 25 mg/l copper ions, and 5-30 g/l phosphate ions.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von kupferhaltigen, nickelfreien Phosphatschichten auf Metalloberflächen sowie die Anwendung des Verfahrens als Vorbehandlung der Metalloberflächen vor einer Lackierung, insbesondere einer kataphoretischen Tauchlackierung (KTL).The invention relates to a method for producing copper-containing, nickel-free phosphate layers on metal surfaces and to the use of the method as pretreatment of the metal surfaces before painting, in particular cataphoretic dip painting (KTL).

Die Qualität von Phosphatüberzügen vor einer kataphoretischen Tauchlackierung (KTL) hängt von einer Vielzahl von Parametern ab. Dazu zählen physikalische Größen wie Form und Größe der Kristalle, deren mechanische Stabilität und insbesondere die freie Metalloberfläche nach der Phosphatierung, die sogenannte Porenfläche. Bei den chemischen Parametern sind von besonderem Interesse die Alkalistabilität während der kataphoretischen Beschichtung, die Bindefestigkeit des Kristallwassers der Zinkphosphatkristalle beim Einbrennen der Lacke und das Rehydratationsvermögen.The quality of phosphate coatings before cataphoretic dip painting (KTL) depends on a variety of parameters. These include physical quantities such as the shape and size of the crystals, their mechanical stability and in particular the free metal surface after phosphating, the so-called pore surface. With regard to the chemical parameters, the alkali stability during the cataphoretic coating, the binding strength of the crystal water of the zinc phosphate crystals when baking the paints and the rehydration ability are of particular interest.

Durch Verwendung von Aktivierungsmitteln vor der Phosphatierung kann man das Schichtgewicht steuern, insbesondere reduzieren. Durch die in den Aktivierungsmitteln vorhandenen polymeren Titanphosphate werden auf der Metalloberfläche aktive Zentren gebildet, von denen aus das Kristallwachstum fortschreitet. Als Ergebnis erhält man einerseits kleinere und mechanisch stabilere Kristalle, andererseits wird die Porenfläche verkleinert und damit der Angriff korrosiver Medien bei Verletzung der Lackierung erschwert.The layer weight can be controlled, in particular reduced, by using activating agents prior to phosphating. The polymeric titanium phosphates present in the activating agents form active centers on the metal surface from which crystal growth proceeds. The result is smaller and mechanically more stable crystals on the one hand, and on the other hand the pore area is reduced, making it more difficult to attack corrosive media if the paint is damaged.

Im Stand der Technik hat es sich als vorteilhaft erwiesen, ein separates Behandlungsbad vorzusehen, um die Schichtqualität der nachfolgenden Phosphatierung optimal zu beeinflussen. Allerdings ist die Wirkungsdauer (Standzeit) der Aktivierungsbäder begrenzt durch den Eintrag aus den vorhergehenden Reinigerbädern.In the prior art, it has proven to be advantageous to provide a separate treatment bath in order to optimally influence the layer quality of the subsequent phosphating. However, the duration of action (service life) of the activation baths is limited by the entry from the previous cleaning baths.

Insbesondere die Ionen der Wasserhärte desaktivieren die polymeren Titanphosphate.The water hardness ions in particular deactivate the polymeric titanium phosphates.

Es wurde deshalb nach Wegen gesucht, eine dichte porenarme Phosphatschicht mit geringer flächenbezogener Masse auf anderem Wege bzw. zusätzlich zur Aktivierung direkt im Phosphatierbad zu erzielen. Dazu wurden umfangreiche Grundlagenarbeiten durchgeführt. Ein Teil dieser Arbeiten wurde am Institut für Kristallographie der Universität Köln durchgeführt und führte zur Entdeckung einer neuen Kristallphase Ba₃ (PO₄)₂ · HzO (Z. für Kristallographie 196, 312 - 313 (1991)).
Bariumphosphatüberzüge enthalten kein Zink, weisen jedoch eine Reihe positiver Eigenschaften, wie insbesondere eine hohe Thermostabilität, auf. Die erzielbaren Schichtgewichte sind jedoch nicht ausreichend, um einen hohen Korrosionsschutz in Kombination mit kataphoretischem Tauchlack zu erzielen. Die Bariumphosphatüberzüge nehmen damit eine Zwischenstellung zwischen den "dünnen" Eisenphosphatüberzügen (0,3 - 0,5 g/m) und den "dickeren" Zinkphosphatüberzügen (2,0 - 3,5 g/m) ein.
Therefore, ways were sought to achieve a dense, low-pore phosphate layer with a low mass per area by other means or in addition to activation directly in the phosphating bath. Extensive basic work was carried out for this. Part of this work was carried out at the Institute of Crystallography at the University of Cologne and led to the discovery of a new crystal phase Ba₃ (PO₄) ₂ · H z O (Z. für Kristallographie 196, 312 - 313 (1991)).
Barium phosphate coatings do not contain zinc, but have a number of positive properties, such as high thermal stability. However, the achievable layer weights are not sufficient to achieve a high level of corrosion protection in combination with a cataphoretic dip coating. The barium phosphate coatings thus occupy an intermediate position between the "thin" iron phosphate coatings (0.3-0.5 g / m) and the "thicker" zinc phosphate coatings (2.0-3.5 g / m).

Aluminiumionen reduzieren die Phosphatschichtgewichte noch stärker, so daß es bereits ab einer Konzentration von 5 ppm Al³+-Ionen im Phosphatierbad zu sogenannten "Passivierungserscheinungen" kommt, d. h. zu Störungen der Ausbildung von Zinkphosphatüberzügen.Aluminum ions reduce the phosphate layer weights even more, so that so-called "passivation phenomena" already occur from a concentration of 5 ppm Al³ + ions in the phosphating bath, i. H. disturbances in the formation of zinc phosphate coatings.

Weiterhin wurden Zusätze von Magnesiumionen untersucht. Schon frühzeitig wurden die anwendungstechnisch positiven Effekte dieser Ionen erkannt (DE-A-39 20 296), die auf mehreren Effekten beruhen. Wesentlich ist auch hier die hohe Kristallstabilität beim Erhitzen. Die Abgabe von Kristallwasser, die den Kristallverbund und damit das Gesamtsystem schwächt, wird mit steigendem Magnesiumeinbau zu höheren Temperaturen verschoben. Andererseits werden die Kristalle durch Zusätze von Mg⁺-Ionen kleiner, die Phosphatschicht dichter und die freie Metalloberfläche nach der Phosphatierung wird minimiert. Die Schichtgewichtsreduzierung durch Magnesiumionen ist so stark, daß andere Steuerungsgrößen, die üblicherweise auch noch zur Schichtgewichtsreduzierung herangezogen werden, wie sehr niedrige Zinkkonzentrationen (0,6 g/l Zn⁺), hohe Konzentrationen an Beschleunigern wie Natriumnitrit oder meta-Nitrobenzolsulfonat/Na-Salze nicht zusätzlich genutzt werden müssen, um eine flächenbezogene Masse im Bereich von 1,5 - 2,0 g/m zu erzeugen.Additions of magnesium ions were also investigated. The application-technical effects of these ions were recognized early on (DE-A-39 20 296), which are based on several effects. The high crystal stability during heating is also important here. The release of crystal water, which weakens the crystal composite and thus the overall system, is shifted to higher temperatures with increasing magnesium incorporation. On the other hand, the crystals by adding Mg⁺ ions smaller, the phosphate layer thicker and the free metal surface after phosphating is minimized. The layer weight reduction by magnesium ions is so strong that other control parameters, which are usually also used to reduce the layer weight, such as very low zinc concentrations (0.6 g / l Zn⁺), high concentrations of accelerators such as sodium nitrite or meta-nitrobenzenesulfonate / Na salts do not have to be used to generate a mass per unit area in the range of 1.5 - 2.0 g / m.

Weiterhin wurde der Einfluß von Cu⁺-Ionen untersucht. Zusätze von kleinen Mengen Kupferionen zu Phosphatierbädern sind bereits seit 40 Jahren bekannt. So werden in der US-A-2 293 716 kleinste Mengen Cu⁺-Ionen als "Beschleuniger" bzw. zur Verbesserung des Weißtons anodischer Elektrotauchlacke als "Farbneutralisator" zugesetzt. Dabei wurde beobachtet, daß Kupferzusätze das Schichtgewicht, insbesondere auf Stahl, erhöhen.The influence of Cu⁺ ions was also investigated. Additions of small amounts of copper ions to phosphating baths have been known for 40 years. In US-A-2 293 716, the smallest amounts of Cu⁺ ions are added as "accelerators" or to improve the whiteness of anodic electrocoating materials as "color neutralizers". It was observed that copper additives increase the layer weight, especially on steel.

Aus der DE-A-40 13 483 ist ein Verfahren zur Phosphatierung von Metalloberflächen bekannt, bei dem man mit Phosphatierlösungen arbeitet, die im wesentlichen frei von Nickel sind. Als wesentliche Badbestandteile werden Zink, Mangan und geringe Gehalte an Kupfer genannt. Darüber hinaus wird durch Sauerstoff und/oder andere gleichwirkende Oxidationsmittel die Konzentration an Fe(II) unter einem Maximalwert gehalten. Das Verfahren dient insbesondere zur Vorbehandlung von Metalloberflächen für eine anschließende Lackierung, insbesondere eine Elektrotauchlackierung, und der Phosphatierung von Stahl, verzinktem Stahl, legierungsverzinktem Stahl, Aluminium und dessen Legierungen.From DE-A-40 13 483 a method for phosphating metal surfaces is known, in which one works with phosphating solutions which are essentially free of nickel. Zinc, manganese and low copper contents are mentioned as essential bath components. In addition, the concentration of Fe (II) is kept below a maximum value by oxygen and / or other oxidizing agents having the same effect. The method is used in particular for the pretreatment of metal surfaces for subsequent painting, in particular electro-dip painting, and the phosphating of steel, galvanized steel, alloy-galvanized steel, aluminum and their alloys.

Aus der EP-A-0 186 823 sind stark saure Phosphatierlösungen mit einem pH-Wert von 1,8 - 2,5 bekannt, die 7,5 - 75 g/l Zinkionen, 0,1 - 10 g/l Hydroxylamin und gegebenenfalls bis 20 g/l Manganionen sowie 5 - 75 g/l Nitrationen enthalten. Die Lösungen tolerieren einen Eisengehalt von bis zu 25 g/l.EP-A-0 186 823 discloses strongly acidic phosphating solutions with a pH of 1.8-2.5 which contain 7.5-75 g / l zinc ions, Contain 0.1 - 10 g / l hydroxylamine and optionally up to 20 g / l manganese ions and 5 - 75 g / l nitrate ions. The solutions tolerate an iron content of up to 25 g / l.

Aus der EP-A-0 315 059 ist ein Verfahren zur Zinkphosphatierung von eisenhaltigen Oberflächen bekannt. Die gewünschte Morphologie der Zinkphosphatkristalle wird durch die Anwendung von Hydroxylammoniumsalzen, Hydroxylaminkomplexen und/oder Hydroxylamin eingestellt. Sämtliche Beispiele enthalten neben Zink Nickel als weiteres, schichtbildendes Kation. Die toxikologischen Nachteile von Nickel sind bekannt.EP-A-0 315 059 discloses a process for zinc phosphating iron-containing surfaces. The desired morphology of the zinc phosphate crystals is set by using hydroxylammonium salts, hydroxylamine complexes and / or hydroxylamine. In addition to zinc, all of the examples contain nickel as another layer-forming cation. The toxicological disadvantages of nickel are known.

Es bestand daher die Aufgabe, ein Verfahren zur Herstellung von nickelfreien Phosphatschichten zur Verfügung zu stellen, das bei Abwesenheit von Nickel auf Metalloberflächen wie Kaltwalzstahl, elektrolytisch verzinktem Stahl und Aluminium eine sehr gute Lackhaftung und einen hervorragenden Korrosionsschutz gewährleistet.The object was therefore to provide a process for the production of nickel-free phosphate layers which, in the absence of nickel on metal surfaces such as cold rolled steel, electrolytically galvanized steel and aluminum, ensures very good paint adhesion and excellent corrosion protection.

Die vorstehend genannte Aufgabe wird gelöst mit Hilfe einer speziell ausgewählten Phosphatierlösung, die als Wirkstoff zur Modifizierung der Kristallmorphologie ("Beschleuniger") Hydroxylaminsalze, Hydroxylaminkomplexe und/oder Hydroxylamin in einer Menge von 500 bis 5 000 ppm Hydroxylamin, bezogen auf die Phosphatierlösung, enthält. Mit Hilfe derartiger Phosphatierlösungen ist es möglich, kupferhaltige Phosphatschichten mit einem definierten Kupfergehalt und einer definierten Kantenlänge der Phosphatkristalle zu erzeugen.The above-mentioned object is achieved with the aid of a specially selected phosphating solution which contains hydroxylamine salts, hydroxylamine complexes and / or hydroxylamine in an amount of 500 to 5000 ppm of hydroxylamine, based on the phosphating solution, as an active ingredient for modifying the crystal morphology ("accelerator"). With the help of such phosphating solutions, it is possible to produce copper-containing phosphate layers with a defined copper content and a defined edge length of the phosphate crystals.

Gegenstand der vorliegenden Erfindung ist gemäß Anspruch 1 ein Verfahren zur Erzeugung von kupferhaltigen nickelfreien Phosphatschichten mit einem Gehalt an Kupfer im Bereich von 0,1 bis 5 Gew.-% und einer Kantenlänge der Phosphatkristalle im Bereich von 0,5 bis 10 µm auf Metalloberflächen, ausgewählt aus Stahl, verzinktem Stahl, legierungsverzinktem Stahl, Aluminium und dessen Legierungen, durch Behandeln derselben im Spritz-, Tauch- oder Spritz/Tauch-Verfahren mit einer Phosphatierlösung, die die folgenden Komponenten enthält: Zink-Ionen 0,2 bis 2 g/l Kupfer-Ionen 0,5 bis 25 mg/l Phosphat-Ionen    5 bis 30 g/l (berechnet als P₂O₅) sowie Hydroxylaminsalze, Hydroxylaminkomplexe und/oder Hydroxylamin in einer Menge von 500 bis 5 000 ppm Hydroxylamin bezogen auf die Phosphatierlösung. Weitere bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens sind in den abhängigen Ansprüchen 2 bis 9 beansprucht. Die Verwendung des Verfahrens ist in Anspruch 10 beansprucht. Es wurde gefunden, daß diese Phosphatierlösungen auch bei Abwesenheit von Nickel auf Metalloberflächen wie oben genannt, ohne Stippenbildung sehr gute Lackhaftung und einen hervorragenden Korrosionsschutz gewährleisten. Die so hergestellten Zinkphosphatschichten sind aus kleinen (0,5 bis 10 µm), kompakten, dichtgewachsenen Kristallen aufgebaut.The present invention relates, according to claim 1, to a method for producing copper-containing nickel-free phosphate layers with a copper content in the range from 0.1 to 5% by weight and an edge length of Phosphate crystals in the range of 0.5 to 10 µm on metal surfaces selected from steel, galvanized steel, alloy galvanized steel, aluminum and their alloys, by treating them in a spray, dip or spray / dip process with a phosphating solution which does the following Components contains: Zinc ions 0.2 to 2 g / l Copper ions 0.5 to 25 mg / l Phosphate ions 5 to 30 g / l (calculated as P₂O₅) and also hydroxylamine salts, hydroxylamine complexes and / or hydroxylamine in an amount of 500 to 5000 ppm hydroxylamine based on the phosphating solution. Further preferred embodiments of the method according to the invention are claimed in dependent claims 2 to 9. The use of the method is claimed in claim 10. It was found that these phosphating solutions, even in the absence of nickel on metal surfaces as mentioned above, guarantee very good paint adhesion and excellent corrosion protection without speck formation. The zinc phosphate layers produced in this way are made up of small (0.5 to 10 µm), compact, densely grown crystals.

Insbesondere wurde bei der Untersuchung kupferionhaltiger Phosphatierbäder festgestellt, daß nur sehr kleine Mengen an Kupfer-Ionen in der Lösung erforderlich sind, um den gewünschten Kupfergehalt der Phosphatschicht im Bereich von 0,1 bis 5 Gew.-% einzustellen.In particular, when examining copper ion-containing phosphating baths, it was found that only very small amounts of copper ions are required in the solution in order to set the desired copper content of the phosphate layer in the range from 0.1 to 5% by weight.

In einer weiteren Ausführungsform der vorliegenden Erfindung ist es daher bevorzugt, daß die Phosphatierlösung 5 bis 20 ppm Kupfer-Ionen enthält, wenn die Metalloberfläche mittels Tauchverfahren mit der Phosphatierlösung in Kontakt gebracht wird. Bei Anwendung des Spritzverfahrens ist es in gleicher Weise bevorzugt, daß die Phosphatierlösungen 1 bis 10 ppm Kupfer-Ionen enthalten, um entsprechend hohe Kupfergehalte in den Konversionsüberzug einzubauen.In a further embodiment of the present invention, it is therefore preferred that the phosphating solution contains 5 to 20 ppm of copper ions when the metal surface is brought into contact with the phosphating solution by means of immersion processes. When using the spraying process, it is equally preferred that the phosphating solutions contain 1 to 10 ppm copper ions in order to incorporate correspondingly high copper contents in the conversion coating.

Um eine einwandfreie Phosphatschichtausbildung zu gewährleisten, ist es bekannt, den pH-Wert der Phosphatierlösung auf einen Wert zwischen 2,5 und 3,5 einzustellen. Falls erforderlich, werden zur Einstellung des pH-Wertes der Phosphatierlösung weitere Kationen, beispielsweise Alkalimetallkationen und/oder Erdalkalimetallkationen mit entsprechenden, im Stand der Technik bekannten Anionen eingesetzt. Korrekturen des pH-Wertes während der Phosphatierung können beispielsweise durch basische Zusätze oder Säuren vorgenommen werden.In order to ensure proper formation of the phosphate layer, it is known to adjust the pH of the phosphating solution to a value between 2.5 and 3.5. If necessary, further cations, for example alkali metal cations and / or alkaline earth metal cations with corresponding anions known in the prior art, are used to adjust the pH of the phosphating solution. The pH value can be corrected during the phosphating, for example, with basic additives or acids.

Durch den Zusatz von Mangan(II)-Ionen werden insbesondere im Spritzen auf oberflächenveredelten Materialien feine Kristalle ausgebildet, die kaum mehr die bekannte Nadelstruktur zeigen, sondern eine wesentlich kompaktere granulare Morphologie aufweisen. Der Einsatz von Manganionen neben Zinkionen in Niedrig-Zink-Phosphatierverfahren verbessert den Korrosionsschutz, insbesondere bei Verwendung oberflächenveredelter Feinbleche. Der Einbau von Mangan in die Zinkphosphatüberzüge führt zu kleineren und kompakteren Kristallen mit erhöhter Alkalistabilität. Dementsprechend besteht eine besonders bevorzugte Ausführungsform der vorliegenden Erfindung darin, daß die Phosphatierlösung 0,1 bis 5 g/l, insbesondere 0,5 bis 1,5 g/l, Mangan(II)-Ionen enthält.By adding manganese (II) ions, fine crystals are formed in particular when spraying on surface-refined materials, which hardly show the known needle structure, but have a much more compact granular morphology. The use of manganese ions in addition to zinc ions in low-zinc phosphating processes improves corrosion protection, especially when using surface-coated thin sheets. The incorporation of manganese into the zinc phosphate coatings leads to smaller and more compact crystals with increased stability to alkali. Accordingly, a particularly preferred embodiment of the present invention is that the phosphating solution contains 0.1 to 5 g / l, in particular 0.5 to 1.5 g / l, of manganese (II) ions.

Die Qualität der mit Hilfe des erfindungsgemäßen Verfahrens hergestellten kupferhaltigen nickelfreien Phosphatschichten wird nicht beeinträchtigt, wenn die Phosphatierlösung Erdalkalimetallkationen bis zu 2,5 g/l, insbesondere Magnesium- und/oder Calciumionen, enthält.The quality of the copper-containing nickel-free phosphate layers produced with the aid of the method according to the invention is not impaired if the phosphating solution contains alkaline earth metal cations of up to 2.5 g / l, in particular magnesium and / or calcium ions.

Das erfindungsgemäße Verfahren kann insbesondere auf Stahl, einoder zweiseitig verzinktem Stahl, ein- oder zweiseitig legierungsverzinktem Stahl, Aluminium und dessen Legierungen angewendet werden. Der Begriff Stahl im Sinne der vorliegenden Erfindung umfaßt neben niedriglegierten Stählen auch weiche, unlegierte Stähle und höher sowie hochfeste Stähle. Wesentlicher Inhalt der Erfindung ist, daß die wäßrigen, sauren Phosphatierlösungen frei von Nickel sind. Dies bedeutet jedoch, daß unter technischen Bedingungen eine kleine Menge an Nickel-Ionen in den Phosphatierbädern enthalten sein kann. Diese Menge soll jedoch in Übereinstimmung mit dem Stand der Technik DE-A-40 13 483 weniger als 0,0002 bis 0,01 g/l, insbesondere weniger als 0,0001 g/l, betragen.The method according to the invention can be applied in particular to steel, steel galvanized on one or two sides, steel galvanized on one or both sides, aluminum and its alloys. The term steel in the sense of the present invention includes, in addition to low-alloy steels, also soft, unalloyed steels and higher as well as high-strength steels. The essential content of the invention is that the aqueous, acid phosphating solutions are free of nickel. However, this means that under technical conditions a small amount of nickel ions can be contained in the phosphating baths. However, in accordance with the prior art DE-A-40 13 483, this amount should be less than 0.0002 to 0.01 g / l, in particular less than 0.0001 g / l.

Bei der Anwendung des Phosphatierverfahrens auf Stahloberflächen geht Fisen in Form von Eisen(II)-Ionen in Lösung. Durch Zugabe von geeigneten Oxidationsmitteln wird Eisen(II) in Eisen(III) überführt und kann so als Eisenphosphat-Schlamm ausgefällt werden. Dementsprechend ist es im Sinne der vorliegenden Erfindung typisch, daß die Phosphatierlösung bis zu 50 ppm - kurzfristig im Produktionsablauf aber auch bis zu 500 ppm - Eisen(II)-Ionen enthält.When using the phosphating process on steel surfaces, iron in the form of iron (II) ions dissolves. By adding suitable oxidizing agents, iron (II) is converted into iron (III) and can thus be precipitated as iron phosphate sludge. Accordingly, it is typical in the sense of the present invention that the phosphating solution contains up to 50 ppm - briefly in the production process, but also up to 500 ppm - iron (II) ions.

Zur Begrenzung der Eisen(II)-Ionenkonzentration sind eine Reihe von Oxidationsmitteln im Stand der Technik bekannt. So dient beispielsweise der Kontakt der Phosphatierlösung mit Sauerstoff, beispielsweise Luftsauerstoff und/oder der Zusatz geeigneter Oxidationsmittel zur Begrenzung der Eisen(II)-Ionenkonzentration.A number of oxidizing agents are known in the prior art for limiting the iron (II) ion concentration. For example, the contact of the phosphating solution with oxygen, for example atmospheric oxygen and / or the addition of suitable oxidizing agents, serves to limit the iron (II) ion concentration.

Dementsprechend ist es erfindungsgemäß bevorzugt, daß die Phosphatierlösung Oxidationsmittel, ausgewählt aus Peroxidverbindungen, Chloraten, Permanganaten und organischen Nitroverbindungen, enthält.Accordingly, it is preferred according to the invention that the phosphating solution contains oxidizing agents selected from peroxide compounds, chlorates, permanganates and organic nitro compounds.

Im Sinne der vorliegenden Erfindung sind die Oxidationsmittel der Phosphatierlösungen vorzugsweise ausgewählt aus Peroxid-Verbindungen, insbesondere Wasserstoffperoxid, Perborat, Percarbonat und Perphosphat, und organischen Nitroverbindungen, insbesondere Nitrobenzolsulfonat. Die Mengen an einzusetzenden Oxidationsmittel sind aus dem Stand der Technik bekannt. Beispielsweise sei genannt: Peroxid-Verbindung berechnet als Wasserstoffperoxid: 0,005 bis 0,1 g/l, Nitrobenzolsulfonat: 0,005 bis 1 g/l.For the purposes of the present invention, the oxidizing agents of the phosphating solutions are preferably selected from peroxide compounds, in particular hydrogen peroxide, perborate, percarbonate and Perphosphate, and organic nitro compounds, especially nitrobenzenesulfonate. The amounts of oxidizing agent to be used are known from the prior art. For example: Peroxide compound calculated as hydrogen peroxide: 0.005 to 0.1 g / l, nitrobenzenesulfonate: 0.005 to 1 g / l.

Im Falle der Anwendung des Phosphatierverfahrens auf verzinktem Stahl, legierungsverzinktem Stahl, Aluminium und dessen Legierungen, ist die Anwesenheit von Eisen-II-Ionen nicht schädlich. Dementsprechend kann bei der Phosphatierung dieser Materialien - bei Anwendung des erfindungsgemäßen Verfahrens - auf die Zugabe von Oxidationsmitteln völlig verzichtet werden.If the phosphating process is applied to galvanized steel, alloy galvanized steel, aluminum and its alloys, the presence of iron (II) ions is not harmful. Accordingly, the addition of oxidizing agents can be completely dispensed with when phosphating these materials when using the method according to the invention.

Ferner hat es sich insbesondere als vorteilhaft erwiesen, bei der erfindungsgemäßen Phosphatierung verzinkter Metalloberflächen mit Nitrat-freien Phosphatierlösungen zu arbeiten.Furthermore, it has proven to be particularly advantageous to work with nitrate-free phosphating solutions in the phosphating of galvanized metal surfaces according to the invention.

Weiterhin besteht eine bevorzugte Ausführungsform der vorliegenden Erfindung darin, daß man Phosphatierlösungen einsetzt, die im wesentlichen frei von Nitrit-Ionen sind. Wesentlicher Vorteil dieser Verfahrensvariante ist, daß keine toxischen Zersetzungsprodukte von Nitriten, beispielsweise gesundheitsgefährdende Nitrose Gase, entstehen können.Furthermore, a preferred embodiment of the present invention consists in using phosphating solutions which are essentially free of nitrite ions. A significant advantage of this process variant is that no toxic decomposition products of nitrites, for example nitrous gases which are hazardous to health, can arise.

Aus dem Stand der Technik prinzipiell bekannt ist die Verwendung von modifizierend wirkenden Verbindungen aus der Gruppe Tenside, Hydroxycarbonsäuren, Tartrat, Citrat, Flußsäure, Alkalimetallfluoride, Bortrifluorid, Silicofluorid. Während der Zusatz von Tensiden (beispielsweise 0,05 bis 0,5 g/l) zu einer Verbesserung der Phosphatierung von leicht befetteten Metalloberflächen führt, ist es bekannt, daß Hydroxycarbonsäuren, insbesondere Weinsäure, Citronensäure sowie deren Salze in einem Konzentrationsbereich von 0,03 bis 0,3 g/l zu einer deutlichen Verminderung des Phosphatschichtgewichtes beitragen. Fluorid-Ionen begünstigen die Phosphatierung von schwerer angreifbaren Metallen, führen dabei zu einer Verkürzung der Phosphatierzeit und darüber hinaus zu einer Erhöhung der Flächendeckung der Phosphatschicht. Bekanntermaßen setzt man etwa 0,1 bis 1 g/l der Fluoride ein. Durch die kontrollierte Zugabe der Fluoride wird auch die Ausbildung kristalliner Phosphatschichten auf Aluminium und dessen Legierungen möglich. Salze des Bortetrafluorids und Siliciumhexafluorids erhöhen die Aggressivität der Phosphatierbäder, was sich insbesondere bei der Behandlung von feuerverzinkten Oberflächen bemerkbar macht, weshalb diese komplexen Fluoride beispielsweise in Mengen von 0,4 bis 3 g/l eingesetzt werden können.The use of modifying compounds from the group of surfactants, hydroxycarboxylic acids, tartrate, citrate, hydrofluoric acid, alkali metal fluoride, boron trifluoride, silicon fluoride is known in principle from the prior art. While the addition of surfactants (for example 0.05 to 0.5 g / l) leads to an improvement in the phosphating of lightly greased metal surfaces, it is known that hydroxycarboxylic acids, in particular tartaric acid, citric acid and their salts, in a concentration range of 0.03 to 0.3 g / l contribute to a significant reduction in the weight of the phosphate layer. Fluoride ions promote the phosphating of metals that are more difficult to attack, thereby shortening the phosphating time and also increasing the area coverage of the phosphate layer. As is known, about 0.1 to 1 g / l of the fluorides are used. The controlled addition of fluorides also enables the formation of crystalline phosphate layers on aluminum and its alloys. Salts of boron tetrafluoride and silicon hexafluoride increase the aggressiveness of the phosphating baths, which is particularly noticeable in the treatment of hot-dip galvanized surfaces, which is why these complex fluorides can be used, for example, in amounts of 0.4 to 3 g / l.

Üblicherweise werden Phosphatierverfahren bei Temperaturen des Bades zwischen 40 und 60 °C angewendet. Diese Temperaturbereiche werden sowohl im Spritzen als auch bei Spritz-Tauch- und Tauch-Applikationen eingesetzt.Phosphating processes are usually used at bath temperatures between 40 and 60 ° C. These temperature ranges are used in spraying as well as in spray-immersion and immersion applications.

Die zu phosphatierenden Metalloberflächen werden nach an sich im Stand der Technik bekannten Verfahren vor der Phosphatierung gereinigt, gespült und sofern erforderlich mit Aktivierungsmitteln, insbesondere auf der Basis von Titanphosphaten behandelt.The metal surfaces to be phosphated are cleaned, rinsed and, if necessary, treated with activating agents, in particular based on titanium phosphates, according to processes known per se in the prior art.

Die Herstellung der Phosphatierungsbäder zur Durchführung des erfindungsgemäßen Verfahrens erfolgt im allgemeinen in der üblichen Weise, die dem Fachmann an sich bekannt ist. Als Ausgangsprodukte zur Herstellung des Phosphatierungsbades kommen beispielsweise die folgenden Verbindungen in Betracht: Zink: in Form von Zinkoxid, Zinkcarbonat oder gegebenenfalls Zinknitrat; Kupfer: in Form von Acetat, Sulfat oder gegebenenfalls Nitrat; Mangan: in Form des Carbonats, Magnesium und Calcium: in Form der Carbonate; Phosphat: vorzugsweise in Form von Phosphorsäure. Die gegebenenfalls im Bad zu verwendenden Fluoridionen werden bevorzugt in Form von Alkalimetall- oder Ammoniumfluorid, insbesondere von Natriumfluorid oder in Form der vorstehend genannten komplexen Verbindungen eingesetzt. Die vorstehend genannten Verbindungen werden - in den für die Erfindung wesentlichen Konzentrationsbereichen - in Wasser aufgelöst; anschließend wird, wie gleichfalls vorstehend bereits gesagt, der pH-Wert der Phosphatierungslösungen auf den gewünschten Wert eingestellt.The phosphating baths for carrying out the process according to the invention are generally prepared in the customary manner which is known per se to the person skilled in the art. The following compounds are suitable as starting products for the preparation of the phosphating bath: Zinc: in the form of zinc oxide, zinc carbonate or optionally zinc nitrate; Copper: in the form of acetate, sulfate or, where appropriate, nitrate; Manganese: in the form of carbonate, magnesium and calcium: in the form of carbonates; Phosphate: preferably in the form of phosphoric acid. The fluoride ions which may be used in the bath are preferably used in the form of alkali metal or ammonium fluoride, in particular sodium fluoride or in the form of the complex compounds mentioned above. The compounds mentioned above are dissolved in water in the concentration ranges essential for the invention; then, as has also been said above, the pH of the phosphating solutions is adjusted to the desired value.

Hydroxylamin kann im Sinne der vorliegenden Erfindung aus jeder beliebigen Quelle stammen. Dementsprechend kann erfindungsgemäß jede Verbindung eingesetzt werden, die Hydroxylamin oder ein Derivat davon liefert, beispielsweise ein Hydroxylaminsalz oder ein Hydroxylaminkomplex, der häufig in Hydratform vorliegt. Einsetzbare Beispiele umfassen Hydroxylaminphosphat, gegebenenfalls Hydroxylaminnitrat, Hydroxylaminsulfat (auch Hydroxylammoniumsulfat [(NH₂OH)₂.H₂SO₄] genannt ) oder deren Mischung. Insbesondere bevorzugt sind als Hydroxylamin-Quelle Hydroxylaminsulfat und Hydroxylaminphosphat.For the purposes of the present invention, hydroxylamine can originate from any source. Accordingly, any compound which provides hydroxylamine or a derivative thereof, for example a hydroxylamine salt or a hydroxylamine complex, which is often in the form of hydrate, can be used according to the invention. Examples which can be used include hydroxylamine phosphate, optionally hydroxylamine nitrate, hydroxylamine sulfate (also called hydroxylammonium sulfate [(NH₂OH) ₂.H₂SO₄]) or a mixture thereof. Hydroxylamine sulfate and hydroxylamine phosphate are particularly preferred as the hydroxylamine source.

BeispieleExamples Verfahrensgang: Procedure :

  • 1. Entfetten mit einem handelsüblichen alkalischen Reiniger (Ridoline R 1558)
    Ansatz:
    2 %
    Temperatur:
    55 °C
    Zeit:
    4 Min.
    1. Degrease with a commercially available alkaline cleaner (Ridoline R 1558)
    Approach:
    2%
    Temperature:
    55 ° C
    Time:
    4 min.
  • 2. Spülen mit Betriebswasser
    Temperatur:
    Raumtemperatur
    Zeit:
    1 Min.
    2. Rinse with process water
    Temperature:
    Room temperature
    Time:
    1 min.
  • 3. Aktivieren mit einem oligo/polymeren Titanphosphate enthaltendem Aktivierungsmittel (FIXODINE R950)
    Ansatz:
    0,1 % in vollentsalztem Wasser
    Temperatur:
    Raumtemperatur
    Zeit:
    1 Min.
    3. Activation with an activating agent containing oligo / polymeric titanium phosphates (FIXODINE R 950)
    Approach:
    0.1% in deionized water
    Temperature:
    Room temperature
    Time:
    1 min.
  • 4. Phosphatieren mit der jeweils in den Beispielen und Vergleichsbeispielen genannten Lösung
    Ansatz:
    siehe Beispiele und Vergleichsbeispiele
    4. Phosphating with the solution mentioned in the examples and comparative examples
    Approach:
    see examples and comparative examples
  • 5. Spülen mit Betriebswasser
    Temperatur:
    Raumtemperatur
    Zeit:
    1 Min.
    5. Rinse with process water
    Temperature:
    Room temperature
    Time:
    1 min.
  • 6. Nachpassivieren mit einer handelsüblichen Nachpassivierung (DEOXYLYTER 41)
    Ansatz:
    0,1 Vol.-%;
    Temperatur:
    40 °C
    Zeit:
    1 Min.
    6. Post-passivation with a standard post-passivation (DEOXYLYTE R 41)
    Approach:
    0.1 vol%;
    Temperature:
    40 ° C
    Time:
    1 min.
  • 7. Spülen mit vollentsalztem Wasser7. Rinse with deionized water
Beispiel 1example 1

Ausgehend von einer wäßrigen Lösung einer Badzusammensetzung im Schritt 4 des obengenannten Verfahrensganges mit folgenden Ionenkonzentrationen Zn 1,1 g/l, Mn 0,8 g/l, Cu 0,015 g/l, PO43- 17,5 g/l, NO3- 2,0 g/l, SiF62- 0,95 g/l, F⁻ 0,2 g/l,

  • Beschleuniger (Hydroxylammoniumsulfat) 1,7 g/l,
  • Gesamtsäure 22,7 Punkte,
  • Freie Säure 0,9 Punkte
Starting from an aqueous solution of a bath composition in step 4 of the above process with the following ion concentrations Zn 1.1 g / l, Mn 0.8 g / l, Cu 0.015 g / l, PO 4 3- 17.5 g / l, NO 3 - 2.0 g / l, SiF 6 2- 0.95 g / l, F⁻ 0.2 g / l,
  • Accelerator (hydroxylammonium sulfate) 1.7 g / l,
  • Total acidity 22.7 points,
  • Free acidity 0.9 points

wurden bei einer Temperatur im Bereich von 52 bis 54° C im Verlauf von 3 min Oberflächen aus Stahlblech (Sidca) (Beispiel la) und elektrolytisch verzinktem Feinblech (ZE) (Beispiel 1b) phosphatiert, wobei die in der Tabelle 1 wiedergegebenen Korrosionsschutzdaten gefunden werden.Surfaces made of sheet steel (Sidca) (example la) and electrolytically galvanized thin sheet (ZE) (example 1b) were phosphated at a temperature in the range from 52 to 54 ° C. in the course of 3 min, the corrosion protection data shown in table 1 being found .

Vergleichsbeispiel 1Comparative Example 1

Ausgehend von einer wäßrigen Lösung einer Badzusammensetzung im Schritt 4 des obengenannten Verfahrensganges mit folgenden Ionenkonzentrationen Zn 1,0 g/l, Mn 1,4 g/l, PO43- 16,9 g/l, NO3- 2,0 g/l, SiF62- 1,0 g/l, F⁻ 0,2 g/l,

  • Beschleuniger (Hydroxylammoniumsulfat) 1,8 g/l,
  • Gesamtsäure 21,8 Punkte,
  • Freie Säure 0,9 Punkte
Starting from an aqueous solution of a bath composition in step 4 of the above process with the following ion concentrations Zn 1.0 g / l, Mn 1.4 g / l, PO 4 3- 16.9 g / l, NO 3 - 2.0 g / l, SiF 6 2- 1.0 g / l, F⁻ 0.2 g / l,
  • Accelerator (hydroxylammonium sulfate) 1.8 g / l,
  • Total acidity 21.8 points,
  • Free acidity 0.9 points

wurden bei einer Temperatur im Bereich von 52 bis 54° C im Verlauf von 3 min Oberflächen aus Stahlblech (Sidca) (Beispiel la) und elektrolytisch verzinktem Feinblech (ZE) (Beispiel 1b) phosphatiert, wobei die in der Tabelle 1 wiedergegebenen Korrosionsschutzdaten gefunden wurden.Surfaces of steel sheet (Sidca) (example la) and electrolytically galvanized thin sheet (ZE) (example 1b) were phosphated at a temperature in the range from 52 to 54 ° C. over a period of 3 minutes, the corrosion protection data shown in table 1 being found .

Vergleichsbeispiel 2Comparative Example 2

Ausgehend von einer wäßrigen Lösung einer Badzusammensetzung im Schritt 4 des obengenannten Verfahrensganges mit folgenden Ionenkonzentrationen

Figure imgb0001
Figure imgb0002
wurden bei einer Temperatur im Bereich von 52 bis 54° C im Verlauf von 3 min Oberflächen aus Stahlblech (Sidca) (Beispiel 2a) und elektrolytisch verzinktem Feinblech (ZE) (Beispiel 2b) phosphatiert, wobei die in der Tabelle 1 wiedergegebenen Korrosionsschutzdaten gefunden wurden.Starting from an aqueous solution of a bath composition in step 4 of the above process with the following ion concentrations
Figure imgb0001
Figure imgb0002
Surfaces of steel sheet (Sidca) (example 2a) and electrolytically galvanized thin sheet (ZE) (example 2b) were phosphated at a temperature in the range from 52 to 54 ° C. over a period of 3 minutes, the corrosion protection data shown in table 1 being found .

Beispiele 2a und 2b sowieExamples 2a and 2b as well Vergleichsbeispiele 3a und 3bComparative Examples 3a and 3b

Ausgehend von einer wäßrigen Lösung einer Badzusammensetzung im Schritt 4 des obengenannten Verfahrensganges mit folgenden Ionenkonzentrationen Zn 1,0 g/l Mn 0,8 g/l Cu siehe Tabelle 2 NO3- siehe Tabelle 2 PO43- 13,7 g/l SiF62- 0,95 g/l F⁻ 0,22 g/l Beschleuniger (Hydroxylammoniumsulfat) 2,0 g/l Gesamtsäure 20,0 Punkte Freie Säure 1,2 Punkte Starting from an aqueous solution of a bath composition in step 4 of the above process with the following ion concentrations Zn 1.0 g / l Mn 0.8 g / l Cu see table 2 NO 3 - see table 2 PO 4 3- 13.7 g / l SiF 6 2- 0.95 g / l F⁻ 0.22 g / l Accelerator (hydroxylammonium sulfate) 2.0 g / l Total acidity 20.0 points Free acid 1.2 points

wurden bei einer Temperatur von 53 °C im Verlaufe von 1 min Oberflächen aus elektrolytisch verzinktem Feinblech phosphatiert. Anschließend wurden die Testbleche mit einem Probeanstrich aus KTL und Decklack weiß versehen und dem Wechselklimatest nach VDA 621-415 unterzogen. Die Ergebnisse nach einer Prüfdauer von 5 Zyklen sind gleichfalls in Tabelle 2 wiedergegeben.surfaces were phosphatized from electrolytically galvanized thin sheet at a temperature of 53 ° C. in the course of 1 min. The test panels were then given a test coat of KTL and white top coat and subjected to the alternating climate test according to VDA 621-415. The results after a test period of 5 cycles are also shown in Table 2.

TestmethodenTest methods

Die Korrosionsschutzwirkung der erfindungsgemäßen Phosphatierung wurde entsprechend der Normen des Verbandes der Automobilindustrie e.V. (VDA 621-414 (Freibewitterung) und VDA 621-415 (Wechselklimatest)) bestimmt.The corrosion protection effect of the phosphating according to the invention was determined in accordance with the standards of the German Association of the Automotive Industry (VDA 621-414 (outdoor weathering) and VDA 621-415 (alternating climate test)).

Die Prüfung des Korrosionsschutzes von Kraftfahrzeuglackierungen durch Freibewitterung dient der Ermittlung der Korrosionsschutzwirkung von Kraftfahrzeuglackierungen unter dem Einfluß der natürlichen Bewitterung bei Gesamtaufbau wie im Beispiel ohne Lichtschutz und zusätzlicher Beanspruchung durch Besprühen mit Salzlösung.The testing of the corrosion protection of motor vehicle paints by exposure to the weather serves to determine the corrosion protection effect of motor vehicle paints under the influence of natural weathering in the overall structure, as in the example without light protection and additional stress by spraying with saline solution.

Probeanstriche bestehend aus einem automobiltypischen Aufbau aus KTL, Füller, Decklack weiB, jeweils nach Ford-Spezifikation werden parallell zur Längsseite mit einer geraden, kontrolliert bis zum Metalluntergrund durchgehenden Ritzspur versehen. Die Probeanstriche werden auf geeigneten Gestellen gelagert. Sie werden wöchentlich einmal mit einer verdünnten Natriumchloridlösung reichlich besprüht.Test coats consisting of an automobile-typical structure made of KTL, filler, white top coat, each according to Ford specification, are provided with a straight scratch mark parallel to the long side, which runs through to the metal surface. The test coats are stored on suitable racks. They are sprayed liberally once a week with a dilute sodium chloride solution.

Die Prüfzeit im vorliegenden Fall betrug 6 Monate.The test time in the present case was 6 months.

Zur Endbeurteilung werden die Probeanstriche mit klarem, fließenden Wasser abgespült, gegebenenfalls mit Preßluft oberflächlich trocken geblasen und auf sichtbare Veränderungen betrachtet. Die vom Ritz nach beiden Seiten ausgehende sichtbare Unterrostung wird festgestellt. Die Breite der neben dem Ritz durch Rost beschädigten Metallfläche ist im allgemeinen auf der Anstrichoberfläche leicht zu erkennen. Zur Auswertung wird die durchschnittliche Gesamtbreite der Unterrostungszone in mm gemessen. Dazu wird die Breite an mehreren Stellen gemessen und der arithmetische Mittelwert gebildet.For the final assessment, the sample coats are rinsed with clear, flowing water, blown dry with compressed air if necessary and examined for visible changes. The under rusting visible from both sides of the scoring is determined. The width of the metal surface damaged by rust next to the scratch is generally easy to see on the paint surface. The average total width is used for evaluation the rust zone in mm. For this purpose, the width is measured in several places and the arithmetic mean is formed.

Die Prüfung des Korrosionsschutzes von Kraftfahrzeuglackierungen bei zyklisch wechselnder Beanspruchung dient dazu, den Korrosionsschutz von Kraftfahrzeuglackierungen mit einem zeitraffenden Laborverfahren zu beurteilen, welches Korrosionsvorgänge und Korrosionsbilder bewirkt, die mit den im Fahrbetrieb entstehenden gut vergleichbar sind. Die Kurzprüfung simuliert insbesondere die von einer Anstrichverletzung ausgehende Unterrostung, sowie die Randund Kantenrostung bei speziellen Korrosionsprüfblechen oder Bauteilen mit bekannten Schwachstellen des Anstriches und den Flächenrost.Testing the corrosion protection of automotive paintwork in the case of cyclically changing stresses serves to assess the corrosion protection of automotive paintwork using a time-consuming laboratory process, which causes corrosion processes and corrosion patterns that are well comparable with those that occur during driving. The short test simulates in particular the under rust caused by a paint injury, as well as the edge and edge rust in the case of special corrosion test sheets or components with known weak points in the paint and the surface rust.

Analog zu den Untersuchungen der Freibewitterung wurden auch hier Probeplatten parallel zur Längsseite mit einer geraden, bis zum Metalluntergrund durchgehenden Ritzspur versehen.Analogous to the examinations of outdoor weathering, here, too, test panels were provided with a straight scratch mark parallel to the long side, extending through to the metal surface.

Die Probeplatten wurden im Prüfgerät in einem Winkel von 60° bis 75° zur Waagerechten aufgestellt.The test panels were set up in the tester at an angle of 60 ° to 75 ° to the horizontal.

Ein Prüfzyklus dauert 7 Tage und besteht aus

1 Tag =
24 h Salzsprühnebelprüfung SS DIN 50 021
4 Tage =
4 Zyklen Kondenswasser - Wechselklima KFW DIN 50 017 und
2 Tage =
48 h Raumtemperatur 18° bis 28° C nach DIN 50 014.
A test cycle takes 7 days and consists of
1 day =
24 h salt spray test SS DIN 50 021
4 days =
4 cycles of condensed water - alternating climate KFW DIN 50 017 and
2 days =
48 h room temperature 18 ° to 28 ° C according to DIN 50 014.

Die Prüfzeit beträgt 10 Zyklen entsprechend 70 Tage.The test time is 10 cycles corresponding to 70 days.

Nach Beendigung der Prüfung werden die Probeplatten mit klarem, fließenden Wasser abgespült, gegebenenfalls mit Preßluft oberflächlich trockengeblasen und auf sichtbare Veränderungen betrachtet.At the end of the test, the test plates are rinsed with clear, flowing water, blown dry with compressed air if necessary and examined for visible changes.

Die vom Ritz nach beiden Seiten ausgehende sichtbare Unterrostung wird festgestellt.The under rusting visible from both sides of the scoring is determined.

Im allgemeinen ist die Breite der neben dem Ritz durch Rost beschädigten Metalloberfläche als Blasen- oder Rostspur auf der Lackoberfläche leicht erkennbar. Ergänzend kann mit einer schräggehaltenen Messerklinge, z. B. mit einem Radiermesser, der unterrostete Anstrichfilm bis zur noch festhafenden Zone vorsichtig entfernt werden.In general, the width of the metal surface damaged by rust next to the scratch is easily recognizable as a trace of bubbles or rust on the paint surface. In addition, with an inclined knife blade, e.g. B. with an eraser, carefully remove the rusted paint film to the still adherent zone.

Zur Auswertung wird auch hier die durchschnittliche Gesamtbreite der Unterrostungszone in mm gemessen. Dazu wird die Breite an mehreren Stellen gemessen und der arithmetische Mittelwert gebildet. Tabelle 1 Korrosiontestergebnisse 3-Schicht-Lacksystem Freibewitterung VDA 621-414 Wechselklimatest VDA 621-415 6 Monate Unterwanderung mm Unterwanderung mm Steinschlag-Kennwert Beisp. 1 (a) Stahl 0,4 0,6 0,4 0,6 0,6 0,5 1-2 1 1 (b) ZE 0 0 0 0,9 0,8 1,0 1 1 1 Vergl.Beisp.1 (a) Stahl 0,5 0,6 0,8 0,5 0,8 0,9 1 1-2 1 (b) ZE 1,0 0,8 0,7 2,8 3,3 2,5 6 6 6 Vergl.Beisp.2 (a) Stahl 0,3 0,3 0,3 0,3 0,6 0,8 1 1 1 (b) ZE 0 0,3 0 1,6 1,0 1,3 1 1 1 Tabelle 2 Beispiel Ionenkonzentrationen im Bad Lackunterwanderung Cu [ppm] NO₃- [g/l] [mm] 2a 3 - 1,1 - 1,7 2b 8 - 1,6 - 1,9 Vgl 3a 3 2 2,6 - 4,6 Vgl 3b 8 2 2,8 - 2,5 For evaluation purposes, the average overall width of the rust area in mm is also measured here. For this purpose, the width is measured in several places and the arithmetic mean is formed. Table 1 Corrosion test results 3-layer paint system Outdoor weathering VDA 621-414 Alternating climate test VDA 621-415 6 months infiltration mm Infiltration mm Stone chip characteristic Ex. 1 (a) steel 0.4 0.6 0.4 0.6 0.6 0.5 1-2 1 1 (b) ZE 0 0 0 0.9 0.8 1.0 1 1 1 See Example 1 (a) steel 0.5 0.6 0.8 0.5 0.8 0.9 1 1-2 1 (b) ZE 1.0 0.8 0.7 2.8 3.3 2.5 6 6 6 Compare Ex. 2 (a) steel 0.3 0.3 0.3 0.3 0.6 0.8 1 1 1 (b) ZE 0 0.3 0 1.6 1.0 1.3 1 1 1 example Ion concentrations in the bathroom Paint infiltration Cu [ppm] NO₃- [g / l] [mm] 2a 3rd - 1.1 - 1.7 2 B 8th - 1.6 - 1.9 See 3a 3rd 2nd 2.6 - 4.6 See 3b 8th 2nd 2.8 - 2.5

Diese Beispiele zeigen eindeutig den positiven Einfluß Nitratfreier Phosphatierlösungen bei der Phosphatierung verzinkter Metalloberflächen.These examples clearly show the positive influence of nitrate-free phosphating solutions in the phosphating of galvanized metal surfaces.

Claims (10)

  1. A process for the production of copper-containing nickel-free phosphate coatings with a copper content of 0.1 to 5.0% by weight and an edge length of the phosphate crystals of 0.5 to 10 µm on metal surfaces selected from steel, galvanized steel, alloy-galvanized steel, aluminium and alloys thereof by treatment of the surfaces by spraying, dipping or spraying/dipping with a phosphating solution containing the following components: zinc ions 0.2 to 2 g/l copper ions 0.5 to 25 mg/l phosphate ions 5 to 30 g/l (expressed as P₂O₅)
    and hydroxylamine salts, hydroxylamine complexes and/or hydroxylamine in a quantity of 500 to 5,000 ppm of hydroxylamine, based on the phosphating solution.
  2. A process as claimed in claim 1, characterized in that the phosphating solution contains up to 500 ppm of iron(II) ions and, more particularly, up to 50 ppm of iron(II) ions.
  3. A process as claimed in claim 1 or 2, characterized in that the phosphating solution contains 5 to 20 ppm of copper ions when applied by dipping and 1 to 10 ppm of copper ions when applied by spraying.
  4. A process as claimed in one or more of claims 1 to 3, characterized in that the phosphating solution additionally contains 0.1 to 5 g/l and, more particularly, 0.5 to 1.5 g/l of manganese(II) ions.
  5. A process as claimed in one or more of claims 1 to 4, characterized in that the phosphating solution additionally contains alkaline earth metal cations, more particularly magnesium and/or calcium ions, in a quantity of up to 2.5 g/l.
  6. A process as claimed in one or more of claims 1 to 5, characterized in that the hydroxylamine salt is selected from hydroxylammonium phosphate, hydroxylammonium nitrate, hydroxylammonium sulfate or mixtures thereof.
  7. A process as claimed in one or more of claims 1 to 6, characterized in that the phosphating solution additionally contains an oxidizing agent selected from peroxide compounds, chlorates, permanganates and organic nitro compounds.
  8. A process as claimed in one or more of claims 1 to 7, characterized in that a phosphating solution substantially free from nitrite ions is used.
  9. A process as claimed in one or more of claims 1 to 8, characterized in that a phosphating solution substantially free from nitrate ions is used.
  10. The use of the process claimed in one or more of claims 1 to 9 as a pretreatment of the metal surfaces before lacquering, more particularly before cataphoretic dip lacquering.
EP92924684A 1992-03-31 1992-12-07 Nickel-free phosphatization process Expired - Lifetime EP0633950B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4210513 1992-03-31
DE4210513A DE4210513A1 (en) 1992-03-31 1992-03-31 Nickel-free phosphating process
PCT/EP1992/002827 WO1993020259A1 (en) 1992-03-31 1992-12-07 Nickel-free phosphatization process

Publications (2)

Publication Number Publication Date
EP0633950A1 EP0633950A1 (en) 1995-01-18
EP0633950B1 true EP0633950B1 (en) 1996-05-15

Family

ID=6455509

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92924684A Expired - Lifetime EP0633950B1 (en) 1992-03-31 1992-12-07 Nickel-free phosphatization process

Country Status (8)

Country Link
US (1) US6197126B1 (en)
EP (1) EP0633950B1 (en)
JP (1) JPH07505445A (en)
AT (1) ATE138112T1 (en)
CA (1) CA2133455A1 (en)
DE (2) DE4210513A1 (en)
ES (1) ES2086782T3 (en)
WO (1) WO1993020259A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0675972A1 (en) * 1992-12-22 1995-10-11 Henkel Corporation Substantially nickel-free phosphate conversion coating composition and process
WO1998030732A1 (en) * 1997-01-08 1998-07-16 Henkel Kommanditgesellschaft Auf Aktien Hydroxylamine stabilizers in copper-containing phosphating solutions
WO1999043868A1 (en) * 1998-02-27 1999-09-02 Metallgesellschaft Aktiengesellschaft Aqueous solution and method for phosphatizing metallic surfaces

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU678284B2 (en) * 1993-09-06 1997-05-22 Henkel Kommanditgesellschaft Auf Aktien Nickel-free phosphatization process
US5597465A (en) * 1994-08-05 1997-01-28 Novamax Itb S.R.L. Acid aqueous phosphatic solution and process using same for phosphating metal surfaces
IT1274594B (en) * 1994-08-05 1997-07-18 Itb Srl ACID WATER PHOSPHATIC SOLUTION AND METALLIC SURFACE PHOSPHATION PROCESS USING IT
DE19500927A1 (en) * 1995-01-16 1996-07-18 Henkel Kgaa Lithium-containing zinc phosphating solution
DE19540085A1 (en) * 1995-10-27 1997-04-30 Henkel Kgaa Low nitrate, manganese-free zinc phosphating
DE19606017A1 (en) * 1996-02-19 1997-08-21 Henkel Kgaa Zinc phosphating with low copper and manganese contents
DE19716075A1 (en) * 1997-04-17 1998-10-22 Henkel Kgaa Phosphating process accelerated with hydroxylamine and chlorate
US6379474B1 (en) 1997-08-06 2002-04-30 Henkel Kommanditgesellschaft Auf Aktien Phosphating method accelerated by N-oxides
US6720032B1 (en) 1997-09-10 2004-04-13 Henkel Kommanditgesellschaft Auf Aktien Pretreatment before painting of composite metal structures containing aluminum portions
JPH11264076A (en) * 1998-01-14 1999-09-28 Nippon Paint Co Ltd Chemical conversion treatment for low lead ed
US6723178B1 (en) 1999-08-16 2004-04-20 Henkel Corporation Process for forming a phosphate conversion coating on metal
DE10006338C2 (en) * 2000-02-12 2003-12-04 Chemetall Gmbh Process for coating metal surfaces, aqueous concentrate therefor and use of the coated metal parts
DE10110833B4 (en) * 2001-03-06 2005-03-24 Chemetall Gmbh Process for applying a phosphate coating and use of the thus phosphated metal parts
DE10110834B4 (en) * 2001-03-06 2005-03-10 Chemetall Gmbh Process for coating metallic surfaces and use of the substrates coated in this way
US6652977B2 (en) 2001-09-10 2003-11-25 Johnson Diversey, Inc. Primer composition
EP1453989A4 (en) * 2001-12-13 2005-03-23 Henkel Kgaa Use of substituted hydroxylamines in metal phosphating processes
WO2006108108A2 (en) * 2005-04-06 2006-10-12 Rem Technologies, Inc. Superfinishing of high density carbides
DE102010001686A1 (en) 2010-02-09 2011-08-11 Henkel AG & Co. KGaA, 40589 Composition for the alkaline passivation of zinc surfaces
CN101935831B (en) * 2010-08-16 2011-09-14 景阳富 Phosphatizing liquid and preparation method thereof
PL2503025T3 (en) * 2011-03-22 2013-12-31 Henkel Ag & Co Kgaa Multi-step corrosion-resistant treatment of metallic workpieces having at least partially zinc or zinc alloy surfaces
JP5840454B2 (en) * 2011-10-27 2016-01-06 上村工業株式会社 Reduced electroless silver plating solution and reduced electroless silver plating method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293716A (en) 1941-02-03 1942-08-25 Parker Rust Proof Co Metal treating solution
DE2424382A1 (en) * 1974-05-20 1975-12-04 Metallgesellschaft Ag PROCESS FOR THE PREPARATION OF METALLIC WORKPIECES FOR CHIPLESS COLD FORMING
CA1257527A (en) * 1984-12-20 1989-07-18 Thomas W. Tull Cold deformation process employing improved lubrication coating
US5236565A (en) * 1987-04-11 1993-08-17 Metallgesellschaft Aktiengesellschaft Process of phosphating before electroimmersion painting
US4865653A (en) 1987-10-30 1989-09-12 Henkel Corporation Zinc phosphate coating process
ZA903498B (en) * 1989-05-19 1992-01-29 Henkel Corp Composition and process for zinc phosphating
DE3920296A1 (en) 1989-06-21 1991-01-10 Henkel Kgaa METHOD FOR PRODUCING ZINC PHOSPHATE CONTAINING MANGANE AND MAGNESIUM
US5268041A (en) * 1990-04-27 1993-12-07 Metallgesellschaft Ag Process for phosphating metal surfaces
DE4013483A1 (en) 1990-04-27 1991-10-31 Metallgesellschaft Ag METHOD FOR PHOSPHATING METAL SURFACES
US5261973A (en) * 1991-07-29 1993-11-16 Henkel Corporation Zinc phosphate conversion coating and process
KR100740227B1 (en) 2006-06-15 2007-07-18 삼성전자주식회사 Display panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0675972A1 (en) * 1992-12-22 1995-10-11 Henkel Corporation Substantially nickel-free phosphate conversion coating composition and process
WO1998030732A1 (en) * 1997-01-08 1998-07-16 Henkel Kommanditgesellschaft Auf Aktien Hydroxylamine stabilizers in copper-containing phosphating solutions
WO1999043868A1 (en) * 1998-02-27 1999-09-02 Metallgesellschaft Aktiengesellschaft Aqueous solution and method for phosphatizing metallic surfaces

Also Published As

Publication number Publication date
EP0633950A1 (en) 1995-01-18
DE59206327D1 (en) 1996-06-20
ATE138112T1 (en) 1996-06-15
WO1993020259A1 (en) 1993-10-14
CA2133455A1 (en) 1993-10-14
DE4210513A1 (en) 1993-10-07
ES2086782T3 (en) 1996-07-01
JPH07505445A (en) 1995-06-15
US6197126B1 (en) 2001-03-06

Similar Documents

Publication Publication Date Title
EP0633950B1 (en) Nickel-free phosphatization process
EP2092090B1 (en) Zr-/ti-containing phosphating solution for passivation of metal composite surfaces
EP0478648B1 (en) Process for producing zinc phosphate coatings containing manganese and magnesium
WO2012000894A1 (en) Method for selectively phosphating a composite metal construction
EP1114202A1 (en) Method for phosphatizing, rerinsing and cathodic electro-dipcoating
EP0578670B1 (en) Process for phosphatizing metallic surfaces
EP0922123B1 (en) Process and aqueous solution for phosphatising metallic surfaces
EP0155547B1 (en) Process for the zinc-calcium phosphatizing of metal surfaces at a low treating temperature
DE4326388A1 (en) Process for the phosphating treatment of one-sided galvanized steel strip
EP0486576B1 (en) Process for producing manganese-containing zinc phosphate coatings on galvanized steel
DE19808440C2 (en) Aqueous solution and method for phosphating metallic surfaces and use of the solution and method
EP0264811B1 (en) Process for producing phosphate coatings
EP0931179A2 (en) Method for phosphating a steel band
EP1290242B1 (en) Method for treating or pre-treating components comprising aluminium surfaces
EP0662164B1 (en) Process for phosphating galvanised steel surfaces
DE19718891C2 (en) Process and agent for phosphating aluminum surfaces
EP1019564A1 (en) Method for phosphatizing a steel strip
WO1993022474A1 (en) Copper-containing, nickel-free phosphatizing process
DE4330104A1 (en) Nickel- and copper-free phosphating process
EP1155163B1 (en) Method for phosphatizing zinc or aluminium surfaces
WO1997014821A1 (en) Layer weight-adjustment in hydroxylamine-accelerated phosphatisation systems
DE19958192A1 (en) Process for phosphating, rinsing and cathodic electrocoating

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL PT SE

17Q First examination report despatched

Effective date: 19950502

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL PT SE

REF Corresponds to:

Ref document number: 138112

Country of ref document: AT

Date of ref document: 19960615

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59206327

Country of ref document: DE

Date of ref document: 19960620

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2086782

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960806

SC4A Pt: translation is available

Free format text: 960628 AVAILABILITY OF NATIONAL TRANSLATION

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: METALLGESELLSCHAFT AG

Effective date: 19970214

NLR1 Nl: opposition has been filed with the epo

Opponent name: METALLGESELLSCHAFT AG

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBL Opposition procedure terminated

Free format text: ORIGINAL CODE: EPIDOS OPPC

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 19981223

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20011206

Year of fee payment: 10

Ref country code: SE

Payment date: 20011206

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20011212

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011228

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020215

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021204

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

BERE Be: lapsed

Owner name: *HENKEL K.G.A.A.

Effective date: 20021231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030701

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20030630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20031230

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050628

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050630

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051207

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20041209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060831