EP0883679B1 - Production of anionic detergent particles - Google Patents
Production of anionic detergent particles Download PDFInfo
- Publication number
- EP0883679B1 EP0883679B1 EP97902354A EP97902354A EP0883679B1 EP 0883679 B1 EP0883679 B1 EP 0883679B1 EP 97902354 A EP97902354 A EP 97902354A EP 97902354 A EP97902354 A EP 97902354A EP 0883679 B1 EP0883679 B1 EP 0883679B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- particles
- anionic surfactant
- detergent
- process according
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002245 particle Substances 0.000 title claims description 83
- 239000003599 detergent Substances 0.000 title claims description 57
- 238000004519 manufacturing process Methods 0.000 title description 8
- 238000001035 drying Methods 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 44
- 230000008569 process Effects 0.000 claims description 43
- 239000000203 mixture Substances 0.000 claims description 37
- 239000003945 anionic surfactant Substances 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 31
- 238000001816 cooling Methods 0.000 claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 30
- 239000003795 chemical substances by application Substances 0.000 claims description 26
- 239000002253 acid Substances 0.000 claims description 23
- -1 alkylbenzene sulphonate Chemical class 0.000 claims description 20
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 15
- 230000003472 neutralizing effect Effects 0.000 claims description 13
- 238000013019 agitation Methods 0.000 claims description 8
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 2
- 239000000377 silicon dioxide Substances 0.000 claims 1
- 239000000843 powder Substances 0.000 description 32
- 239000004094 surface-active agent Substances 0.000 description 28
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 20
- 150000001875 compounds Chemical class 0.000 description 15
- 239000010457 zeolite Substances 0.000 description 15
- 229910021536 Zeolite Inorganic materials 0.000 description 14
- 239000008187 granular material Substances 0.000 description 10
- 239000002243 precursor Substances 0.000 description 10
- 229910000029 sodium carbonate Inorganic materials 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000002585 base Substances 0.000 description 9
- 239000007844 bleaching agent Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 125000000129 anionic group Chemical group 0.000 description 8
- 238000006386 neutralization reaction Methods 0.000 description 8
- 239000011149 active material Substances 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 239000000344 soap Substances 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 238000001694 spray drying Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000005979 thermal decomposition reaction Methods 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000002736 nonionic surfactant Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 150000001860 citric acid derivatives Chemical class 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 235000012149 noodles Nutrition 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 229920006243 acrylic copolymer Polymers 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004061 bleaching Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000112 cooling gas Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920005646 polycarboxylate Polymers 0.000 description 2
- 229920005996 polystyrene-poly(ethylene-butylene)-polystyrene Polymers 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 235000019832 sodium triphosphate Nutrition 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 2
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical class OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical class OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- LVVZBNKWTVZSIU-UHFFFAOYSA-N 2-(carboxymethoxy)propanedioic acid Chemical class OC(=O)COC(C(O)=O)C(O)=O LVVZBNKWTVZSIU-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RKWGIWYCVPQPMF-UHFFFAOYSA-N Chloropropamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 description 1
- OCUCCJIRFHNWBP-IYEMJOQQSA-L Copper gluconate Chemical class [Cu+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O OCUCCJIRFHNWBP-IYEMJOQQSA-L 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- JYXGIOKAKDAARW-UHFFFAOYSA-N N-(2-hydroxyethyl)iminodiacetic acid Chemical class OCCN(CC(O)=O)CC(O)=O JYXGIOKAKDAARW-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004435 Oxo alcohol Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000012683 anionic precursor Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 235000019646 color tone Nutrition 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010952 in-situ formation Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 230000002366 lipolytic effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000004967 organic peroxy acids Chemical class 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000012056 up-stream process Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/06—Powder; Flakes; Free-flowing mixtures; Sheets
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/0082—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/04—Special methods for preparing compositions containing mixtures of detergents by chemical means, e.g. by sulfonating in the presence of other compounding ingredients followed by neutralising
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0039—Coated compositions or coated components in the compositions, (micro)capsules
Definitions
- the present invention relates to a process for the production of detergent particles having a high level of anionic surfactant which involves drying a detergent paste containing the anionic surfactant.
- Detergent-active compounds conventionally employed in detergent compositions include anionic surfactants e.g. linear alkylbenzene sulphonates (LAS), linear alkyl ether sulphate (LES) and primary alkyl sulphates (PAS), and nonionic surfactants e.g. alcohol ethoxylates.
- anionic surfactants e.g. linear alkylbenzene sulphonates (LAS), linear alkyl ether sulphate (LES) and primary alkyl sulphates (PAS)
- nonionic surfactants e.g. alcohol ethoxylates.
- Detergent compositions having a high bulk density are typically prepared by a process involving mixing or granulation of components of the composition and/or a base powder obtained for example from a spray-drying process and provide significant consumer benefits as compared to compositions of lower bulk density.
- detergent active compounds into such compositions in liquid form.
- anionic surfactant e.g. LAS or PAS
- a solid adjunct that is, a particle comprising the surfactant and other components of the composition e.g. sodium carbonate and builder.
- anionic surfactant present in such adjuncts has been limited due to the need to provide good flow properties and reduce the tendency to agglomerate.
- EP-A-506 184 discloses a process for the continuous dry neutralisation of liquid acid precursor of anionic surfactant.
- Detergent particles having an active detergent content of 30 to 40% by weight may be prepared by this process.
- EP-A-572 957 discloses a process for producing a powdery anionic surfactant by feeding an aqueous slurry of the surfactant containing 60 to 80% solids into an evaporator, forming a film of the surfactant on the reactor wall and scraping it from the wall whilst drying and concentrating the slurry.
- DE-A-4304015 discloses a process for forming surfactant granules having reduced tackiness by introducing a surfactant paste into a fluid bed apparatus containing a particulate material, simultaneuosly granulating and drying the material in a fluidised bed, and subsequently adding a granule stabiliser to the discharge air stream of the apparatus.
- Detergent particles having a active content of 15 to 90% by weight may be prepared by this process.
- the reactor wall is at a temperature of 50 to 140°C; 130°C is the highest wall temperature exemplified. Higher temperatures are said to cause thermal degradation and colour tone change and are thus disadvantageous. Furthermore, this document discloses that the blades in the reactor are operated to provide a tip speed of preferably 2 to 20 m/s, with 10.5m/s being the highest tip speed which is exemplified. Bulk densities of up to about 0.5 g/cm 3 are disclosed.
- detergent particles having a high bulk density, a high level of anionic surfactant and excellent powder properties may be produced by heating a paste containing the surfactant in a first zone at an even higher temperature and then cooling the thus formed particles.
- the aforementioned process involves feeding a paste material comprising water in an amount typically of more than 10% by weight of the paste and the anionic surfactant into a drying zone.
- the paste material is heated in the drying zone to reduce the water content and subsequently cooled in a cooling zone to form detergent particles.
- EP-A-390 251 discloses use of a layering agent as a granulation aid in the production of detergent granules wherein components are treated in a high speed mixer and then maintained in, or brought into a deformable stage in a moderate speed mixer.
- a first aspect of the present invention provides a process for producing detergent particles comprising an anionic surfactant, the process comprising the steps of feeding a paste material comprising water and an anionic surfactant into a drying zone, which does not comprise a fluidised bed, heating the paste material in the drying zone to reduce the water content thereof and subsequently cooling the paste material in a cooling zone to form detergent particles, characterised by introducing a layering agent into the cooling zone during the cooling step.
- the cooling gas needs to be generally dry and may for example be air or nitrogen, e.g. below 0°C.
- the cooling gas may be applied as a counter-current gas stream.
- the present invention is not limited only to compositions where the anionic component comprises or consists of LAS. It is also beneficial for use with other anionies including PAS or LES.
- the layering agent may be any material capable of coating the particles at the cooling stage, to improve the granularity thereof.
- Relatively inert materials are preferred for this purpose but especially any of those inert materials which have a beneficial effect in the wash liquor, for example, aluminosilicates, silicas talcs and clays. A mixture of such materials may be used. Examples of aluminosilicates and silicas are outlined in more detail hereinbelow. The presence of any such material as a coating on the finished particles does not preclude the presence also of the material within the body of the particles.
- the dosing weight ratio of the layer materials in the cooling step is preferably from 1:3 to 1:20, more preferably from 1:9 to 1:20.
- the drying zone may optionally be under a slight vacuum to facilitate the removal of water and volatiles.
- the vacuum may be from 100 Torr up to atmospheric pressure as this provides significant process flexibility. However, a vacuum in excess of 500 Torr up to atmospheric has the advantage of reducing capital investment whilst providing vacuum operation.
- Control of residence time and particle size may be secured and process throughput may be increased by agitating the material in the drying and/or cooling zone.
- the process is preferably continuous as this facilitates continuous transportation of the particles.
- the flow rate of the paste is suitably of the order of 10 to 25 kg/m 2 /hr and preferably 17 to 22 kg/m 2 /hr e.g. 20 kg/m 2 /hr.
- the average residence time in the drying zone is less than 5 minutes.
- a residence time of less than 4 minutes is especially preferred with as low a residence time as possible being most preferred, to reduce the possibility of decomposition (especially with PAS) and maximise product throughput.
- Agitation of the paste in the heating zone generally provides efficient heat transfer within the paste and facilitate removal of water. Agitation reduces the contact time between the paste particles and the wall of the drying zone which, together with efficient heat transfer, reduces the likelihood of "hot spots" forming which may lead to decomposition. Moreover, improved drying is secured thus allowing a shorter residence time/increased throughput in the drying zone.
- the paste material is preferably not heated to a temperature in excess of 170°C.
- the process of the present invention permits the formation of particles having a high bulk density for example in excess of 550 g/cm 3 .
- the material is cooled in a cooling zone which is suitably operated at a temperature not in excess of 50°C and preferably not in excess of 40° e.g. 30°C. Desirably there is agitation within the cooling zone to provide efficient cooling of the material therein.
- a cooling zone which is suitably operated at a temperature not in excess of 50°C and preferably not in excess of 40° e.g. 30°C.
- active cooling may be through circulation of, for example, cold water or chilled water (e.g. glycol water at ca - 5°C) around the cooling zone, for example, in a cooling jacket.
- the paste material preferably comprises a mixture of anionic surfactant and water although the other components may be present if desired or carried through as impurities from an up-stream process, for example production of the surfactant.
- the paste material comprises at least 60% by weight, more preferably at least 65% and especially at least 70% by weight of anionic surfactant.
- the paste comprises no more than 50% and preferably no more than 30% by weight of water.
- the paste material should be pumpable at the temperature at which it is to be fed into the drying zone and this may limit the maximum level of surfactant present therein.
- the paste is suitably fed to the drying zone at a temperature of 50 to 70°C and preferably 50 to 65°C.
- the process of the invention may be carried out in any suitable apparatus. However, it is preferred to use a scrape surface drier and especially, a flash reactor. Suitable flash reactors include e.g. the Flash Drier system available from VRVSpA processi Impianti Industriali. The ratio of drying zone heat transfer area to cooling zone heat transfer area is typically from 3:1 to 1:1, e.g. about 2:1.
- drying zones may be employed before the cooling zone as desired.
- a single apparatus may be employed to provide the drying zone and cooling zone as desired or alternatively separate apparatus for example a drier and a cooling fluid bed may be employed.
- the drying zone is substantially circular in cross section and is thus defined by a cylindrical wall.
- the said wall is heated by means of a heating jacket through which water, steam or oil may be fed.
- the inside of the said wall is preferably maintained at a temperature of at least 130°C and especially at least 140°C.
- the drying zone has an evaporation rate of 3 to 25, and especially 5 to 20 kg water per m 2 of heat surface per hour.
- the cooling zone is preferably defined by a cylindrical wall. Where the process is continuous, the apparatus is suitably arranged such that the drying zone and cooling zone are substantially horizontally aligned to facilitate efficient drying, cooling and transport of the material through the drying and cooling zones in a generally horizontal direction.
- the drying zone and preferably the cooling zone have agitation means therein which agitates and transports the surfactant paste and forming granules through the said zones.
- the agitation means preferably comprises a series of radially extending paddles and/or blades mounted on an axially mounted rotatable shaft. Desirably the paddles and/or blades are inclined in order to effect transportation and preferably have a clearance from the inner wall of nor more than 10mm, for example 5mm.
- the present invention has especial applicability in the production of high quality detergent particles comprising LAS which would otherwise be unobtainable by previously known processes.
- the anionic component may also be in the form of PAS, LES or any other anionic surfactant and mixtures of these with or without LAS.
- LAS is most usually commercially available in the form of the free acid. Unlike PAS acid which is extremely unstable, LAS acid is very stable and sold commercially by a number of suppliers, for example Petralab 550 (Petresa), Deter (Deter), Marlican (Huls), Nalkylene 540L (Vista) and Isorchem L83 (Enichem). It is provided as a viscous liquid that is easily handled, stored and processed.
- the paste in the drying zone may be formed by feeding a liquid anionic precursor of the anionic surfactant and a neutralising agent to the drying zone or an entry zone for the drying zone and forming the anionic surfactant in-situ.
- Neutralised LAS acid is commercially available as a powder.
- LAS powders are mainly either drum or spray dried and can have reasonable powder properties when fresh. However they are less preferred because they can absorb moisture from the atmosphere and become sticky and difficult to handle. Their flow deteriorates and they become prone to caking.
- Typical powders that are available are Marlan ARL (80% LAS), Marlan A390 (90% LAS), Marlan A396 (96% LAS), or (ex Unger) Ufaryl DL90 (90% LAS), Ufaryl DL85 (85% LAS), and Ufaryl DL80 (80% LAS).
- PAS is presently available on the market in fine powder form or in noodle form.
- the fine powder is generally dusty, having a significant quantity of particles of less than 150 microns.
- PAS noodles are generally produced by extruding dried PAS which has the appearance of soap chips and typically have a very large particle size and a very low porosity leading to poor dissolution characteristics.
- To increase the level of detergent active material in a detergent composition it is known to post-dose detergent particles to provide a composition having a high level of active material.
- PAS in fine powder form and PAS noodles are generally not suitable for post-dosing into a detergent composition as the composition particles and the post-dosed particles are generally of different particle size and thus tend to segregate and be unsightly.
- the process according to the present invention enables detergent particles having a high level of detergent active material and suitable porosity and particle size characteristics to be obtained.
- Detergent particles comprising at least 60% by weight of the particle of an anionic surfactant, preferably comprising or consisting of LAS, and not more than 5% by weight of the particle of water, the particles being coated with a layering agent are obtainable by a process according to the first aspect of the invention.
- the invention can provid detergent particles comprising an anionic surfactant, preferably comprising or consisting of LAS and preferably in an amount of at least 60% by weight of the particle, wherein the particles are coated with a layering agent and have a porosity of from 0% to 25% by volume of the particle and a particle size distribution such that at least 80% of the particles have a particle size of 180 to 1500 microns, preferably 250 to 1200 microns and less than 10% and preferably less than 5% of the particles have a particle diameter less than 180 mm.
- the anionic surfactant in the detergent particles is present in an amount of at least 70% preferably of at least 80% and desirably at least 85% by weight of the particles. It is desirable that the particles also comprise water in an amount of 0 to 8% and preferably 0 to 4% by weight of the particles. The water in the particle provides improved granule integrity thus reducing the level of the fine particles.
- the detergent particles have an aspect ratio not in excess of 2 and more preferably are generally spherical in order to reduce segregation from other particles in a formulated detergent composition and to enhance the visual appearance of the powder.
- any LAS anionic surfactant has a chain length of from C 8 to C 16 , preferably from C 9 to C 15 and most preferably a narrow range of from C 10 to C 14 .
- any PAS surfactant has a chain length of C 10 to C 23 preferably C 12 to C 18 and more preferably to a narrow range of C 12 to C 14 , Coco PAS is particularly desirable.
- the detergent particle may comprise mixtures of PAS with other surfactants and/or non surfactant components as desired.
- Suitable other surfactants may comprise linear alkyl ether sulphates, oxo alcohol sulphates for examples C 11 to C 15 and C 13 to C 15 alcohol sulphates, secondary alcohol sulphates and sulphonates, unsaturated surfactants for example sodium oleate, oleyl sulphates, olefin sulphonate, or mixtures thereof.
- LAS rich particles that is particles in which the amount of LAS exceeds the amount of any other surfactant or non-surfactant and more preferably exceeds the total amount of all other surfactant and non-surfactant components.
- the sodium salt of the surfactants will be employed, however K, Ca or Mg salts may also be present.
- it is preferred to form the anionic component by feeding the acid form of the anionic surfactant and a neutralising agent to the drying zone or an entry zone immediately before the drying zone and forming the anionic surfactant in-situ.
- the heat of neutralisation evolved in the drying zone reduces the requirement for external heating of the drying zone and is advantageous over processes in which surfactant paste is employed as a feedstock.
- the precursor acid may be fed to the drying zone in liquid form rather than as an aqueous solution and the neutralising agent may be concentrated.
- the total amount of water introduced into the drying zone may be reduced significantly as compared to processes in which a surfactant paste is employed. Such pastes may require at least 30% by weight of water in order to be pumpable.
- the precursor acid for example LAS or PAS acid
- the precursor acid is suitably fed to the drying zone in the liquid phase.
- the neutralisation preferably occurs sufficiently rapidly and substantially completely such that thermal decomposition of the acid due to the elevated temperature is minimised and desirably avoided.
- the precursor acid is suitably fed at a temperature of 40 to 60°C to ensure it is in the liquid form but without encouraging thermal decomposition.
- the neutralising agent may be fed into the drying zone at any desired temperature.
- the neutralising agent is introduced as an aqueous solution or slurry or solid material.
- Conventional neutralising agents may be employed including alkali metal hydroxides for example sodium hydroxide and alkali metal carbonates, for example sodium carbonate, ideally added as a solid material.
- the neutralising agent is present in an amount of 25 to 55% and preferably a 30 to 50% by weight of the aqueous solution or slurry.
- a high concentration of the neutralising agent may give unwanted crystallisation and a low concentration is undesirable due to the large proportion of water.
- the concentration of the neutralising agent solution or slurry may be varied in order to control the water content in the drying zone.
- optimum viscosity characteristics may be attained whereby the material in the drying zone remains transportable/pumpable.
- a stoichiometric excess of neutralising agent with respect to the acid precursor may be employed.
- the excess neutralising agent combines with acid, for example sulphuric acid which may be produced if part of the precursor acid thermally decomposes.
- Agitation of the precursor and neutralising agent (hereinafter referred to as the feedstocks) in the heating zone generally provides efficient heat transfer and facilitate removal of water. Agitation reduces the contact time between the feedstocks and the wall of the drying zone which, together with efficient heat transfer, reduces the likelihood of "hot spots" forming which may lead to thermal decomposition. Moreover, improved drying is secured thus allowing a shorter residence time/increased throughput in the drying zone.
- non-surfactant components which may be present in the detergent particles include dispersion aids, preferably polymeric dispersion aids and more preferably urea, sugars, polyaklyleneoxides; and builders as hereinafter described.
- the detergent particles may comprise an organic and/or inorganic salt, e.g. a hydratable salt.
- Suitable materials in salts preferably sodium, of tripolyphosphate, citrates, carbonates, sulphates, chlorides.
- Aluminosilicates, clays, silicas and other inorganic materials may also be included.
- the particles may also contain one or more nonionic surfactants, for example as mentioned below in the context of a base powder with which the particles are admixed.
- organic materials e.g. PEG and other polymer builder or soap may also be included in the particles, also as mentioned below in the latter context.
- a salt be present in the particle when the anionic surfactant component comprises LAS.
- the salt may be present at a level of up to 50% and preferably up to 30% by weight of the particles.
- the detergent particles may be post-dosed directly to a base powder obtained from any conventional detergent production process including a non tower process in which the components of the detergent composition are mixed and granulated as described e.g. in EP-A-367 339 and a spray drying process optionally followed by a post tower densification.
- a base powder which is substantially free of detergent active compounds may be produced as the detergent active compounds may be introduced substantially wholly as post-dosed particles.
- a further aspect of the invention provides a detergent composition comprising detergent particles according to the third or fourth aspects of the invention and a base powder.
- the option of reducing the level of detergent active material in a base powder is especially advantageous where the base powder is produced by a spray drying process as a lower level of detergent active compound in the spray drying process permits a higher throughput to be secured thus increasing overall production efficiency.
- compositions according to the present invention may also contain, in addition to the detergent-active compound, a detergency builder and optionally bleaching components and other active ingredients to enhance performance and properties.
- Detergent compositions of the invention may contain, in addition to the post-dosed detergent particles, one or more detergent-active compounds (surfactants) which may be chosen from soap and non-soap anionic, cationic, nonionic, amphoteric and zwitterionic detergent-active compounds, and mixtures thereof.
- surfactants may be chosen from soap and non-soap anionic, cationic, nonionic, amphoteric and zwitterionic detergent-active compounds, and mixtures thereof.
- suitable detergent-active compounds are available and are fully described in the literature, for example, in "Surface-Active Agents and Detergents", Volumes I and II, by Schwartz, Perry and Berch.
- the preferred detergent-active compounds that can be used are soaps and synthetic non-soap anionic and nonionic compounds.
- Anionic surfactants are well-known to those skilled in the art. Examples include alkylbenzene sulphonates, particularly linear alkylbenzene sulphonates having an alkyl chain length of C8-C15; primary and secondary alkyl sulphates, particularly C12-C15 primary alkyl sulphates; alkyl ether sulphates; olefin sulphonates; alkyl xylene sulphonates; dialkyl sulphosuccinates; and fatty acid ester sulphonates.
- Sodium salts are generally preferred.
- Nonionic surfactants that may be used include the primary and secondary alcohol ethoxylates, especially the C 8 -C 20 aliphatic alcohols ethyxylated with an average of from 1 to 20 moles ethylene oxide per mole of alcohol, and more especially the C 10 -C 15 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol.
- Non-ethoxylated nonionic surfactants include alkylpolyglycosides, glycerol monoethers, and polyhydroxyamides (glucamide).
- the total amount of surfactant present in the detergent composition is suitably from to 5 to 40 wt% although amounts outside this range may be employed as desired.
- the detergent compositions of the invention generally also contain a detergency builder.
- the total amount of detergency builder in the compositions is suitably from 10 to 80 wt%, preferably from 15 to 60 wt%.
- the builder may be present in an adjunct with other components or, if desired, separate builder particles containing one or more builder materials may be employed.
- Inorganic builders that may be present include sodium carbonate, if desired in combination with a crystallisation seed for calcium carbonate, as disclosed in GB-A-1 437 950; crystalline and amorphous aluminosilicates, for example zeolites as disclosed in GB-A-1 473 201; amorphous aluminosilicates as disclosed in GB-A-1 473 202; and mixed crystalline/amorphous aluminosilicates as disclosed in GB 1 470 250; and layered silicates as disclosed in EP-B-164 514.
- Inorganic phosphate builders for example, sodium, orthophosphate, pyrophosphate and tripolyphosphate, may also be present, but on environmental grounds those are no longer preferred.
- Aluminosilicates whether used as layering agents and/or incorporated in the bulk of the particles may suitably be present in a total amount of from 10 to 60 wt% and preferably an amount of from 15 to 50 wt%.
- the zeolite used in most commercial particulate detergent compositions is zeolite A.
- maximum aluminium zeolite P zeolite MAP
- Zeolite MAP is an alkali metal aluminosilicated of the P type having a silicon to aluminium ratio not exceeding 1.33, preferably not exceeding 1.15, and more preferably not exceeding 1.07.
- Organic builders that may be present include polycarboxylate polymers such as polyacrylates, acrylic/maleic copolymers, and acrylic phosphinates; monomeric polycarboxylates such as citrates, gluconates, oxydisuccinates, glycerol mono-, di-and trisuccinates, carboxymethyloxysuccinates, carboxymethyloxymalonates, dipicolinates, hydroxyethyliminodiacetates, alkyl- and alkenylmalonates and succinates; and sulphonated fatty acid salts.
- a copolymer of maleic acid, acrylic acid and vinyl acetate is especially preferred as it is biodegradable and thus environmentally desirable. This list is not intended to be exhaustive.
- Especially preferred organic builders are citrates, suitably used in amounts of from 5 to 30 wt%, preferably from 10 to 25 wt%; and acrylic polymers, more especially acrylic/maleic copolymers, suitably used in amounts of from 0.5 to 15 wt%, preferably from 1 to 10 wt%.
- the builder is preferably present in alkali metal salt, especially sodium salt, form.
- the builder system comprises a crystalline layered silicate, for example, SKS-6 ex Hoechst, a zeolite, for example, zeolite A and optionally an alkali metal citrate.
- a crystalline layered silicate for example, SKS-6 ex Hoechst
- a zeolite for example, zeolite A
- optionally an alkali metal citrate for example, SKS-6 ex Hoechst
- Detergent compositions according to the invention may also contain a bleach system, desirably a peroxy bleach compound, for example, an inorganic persalt or organic peroxyacid, capable of yielding hydrogen peroxide in aqueous solution.
- a peroxy bleach compound for example, an inorganic persalt or organic peroxyacid, capable of yielding hydrogen peroxide in aqueous solution.
- the peroxy bleach compound may be used in conjunction with a bleach activator (bleach precursor) to improve bleaching action at low wash temperatures.
- An especially preferred bleach system comprises a peroxy bleach compound (preferably sodium percarbonate optionally together with a bleach activator), and a transition metal bleach catalyst as described and claimed in EP 458 397A and EP-A-509 787.
- compositions of the invention may contain alkali metal, preferably sodium, carbonate, in order to increase detergency and ease processing.
- Sodium carbonate may suitably be present in an amount from 1 to 60 wt%, preferably from 2 to 40 wt%.
- compositions containing little or no sodium carbonate are also within the scope of the invention.
- Powder flow may be improved by the incorporation of a small amount of a powder structurant, for example, a fatty acid (or fatty acid soap), a sugar, an acrylate or acrylate/maleate polymer, or sodium silicate which is suitably present in an amount of from 1 to 5 wt%.
- a powder structurant for example, a fatty acid (or fatty acid soap), a sugar, an acrylate or acrylate/maleate polymer, or sodium silicate which is suitably present in an amount of from 1 to 5 wt%.
- the materials that may be present in detergent compositions of the invention include sodium silicate; corrosion inhibitors including silicates; antiredeposition agents such as cellulosic polymers; fluorescers; inorganic salts such as sodium sulphate, lather control agents or lather boosters as appropriate; proteolytic and lipolytic enzymes; dyes; coloured speckles; perfumes; foam controllers; and fabric softening compounds. This list is not intended to be exhaustive.
- the base composition is suitably prepared by spray-drying a slurry of compatible heat-insensitive ingredients, and then spraying on, admixing and/or postdosing those ingredients unsuitable for processing via the slurry.
- the detergent particles produced according to the process of the present invention are post-dosed to the base composition by conventional methods.
- Detergent compositions of the invention preferably have a bulk density of at least 500 g/l, more preferably at least 550 g/litre.
- Such powders may be prepared either by spray-drying, by post-tower densification of spray-dried powder, or by wholly non-tower methods such as dry mixing and granulation.
- a high-speed mixer/granulator may advantageously be used for such mixing. Processes using high-speed mixer/granulators are disclosed, for example, in EP-A-340 013, EP-A-367 339, EP-A-390 251 and EP-A-420 317.
- a 1.2m 2 VRV machine was used, having three equal jacket sections. Dosing ports for both liquids and powders were situated just prior to the first hot section, with mid-jacket dosing ports available in the final two sections. Zeolite was added via this port in the final section. An electrically-powdered oil heater provided the heating to the first two jacket sections, with oil temperatures between 120°C and 190°C being used. Ambient process water at 15°C was used for cooling the jacket in the final section. Make-up air flow through the reactor was controlled between 10 and 50 m 3 /hr by opening a bypass on the exhaust vapour extraction fan. All experiments were carried out with the motor at full speed, giving a tip speed of about 30m/sec.
- a mono pump was calibrated to dose ambient temperature LAS acid, and a peristaltic pump was calibrate to does the 47% sodium hydroxide.
- Screw feeders were calibrated to dose both sodium carbonate and zeolite A24 for layering. The sodium carbonate and the liquids were added just prior to the first hot section, and the zeolite layering was added into the third section which was cold. The minimum level of zeolite was added to give free flowing granules leaving the drier.
- Sample A had excellent powder properties with a reasonable mean particle size.
- the flow properties of these powders were exceptional considering that all contain around 90% LAS.
- samples B to D shared a slight reduction in flow, coupled with an increase in particle size. This increase in particle size was due to a higher residual moisture content within the granules.
- the throughput was reduced in E, the flow was improved and the particle size decreased.
- the level of water evaporation in these experiments was low, as no water was added.
- the water originated mainly from the water of neutralisation of the LAS acid.
- a lower jacket temperature of 145°C was used.
- a fixed flow of sodium carbonate powder was used, together with increasing levels of LAS acid, to coincide with degrees of neutralisation of LAS acid ranging from 42% up to 83%, as shown in Table 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB9604000.1A GB9604000D0 (en) | 1996-02-26 | 1996-02-26 | Production of anionic detergent particles |
GB9604000 | 1996-02-26 | ||
PCT/EP1997/000591 WO1997032002A1 (en) | 1996-02-26 | 1997-02-08 | Production of anionic detergent particles |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0883679A1 EP0883679A1 (en) | 1998-12-16 |
EP0883679B1 true EP0883679B1 (en) | 2002-06-19 |
Family
ID=10789393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97902354A Expired - Lifetime EP0883679B1 (en) | 1996-02-26 | 1997-02-08 | Production of anionic detergent particles |
Country Status (19)
Country | Link |
---|---|
US (1) | USRE36593E (ko) |
EP (1) | EP0883679B1 (ko) |
JP (1) | JP2000506193A (ko) |
CN (1) | CN1156564C (ko) |
AR (1) | AR005990A1 (ko) |
AU (1) | AU733689B2 (ko) |
BR (1) | BR9707741A (ko) |
DE (1) | DE69713488T2 (ko) |
EA (1) | EA001548B1 (ko) |
ES (1) | ES2177930T3 (ko) |
GB (1) | GB9604000D0 (ko) |
HU (1) | HUP9900652A3 (ko) |
ID (1) | ID16047A (ko) |
IN (1) | IN188392B (ko) |
PL (1) | PL188721B1 (ko) |
TR (1) | TR199801664T2 (ko) |
TW (1) | TW349122B (ko) |
WO (1) | WO1997032002A1 (ko) |
ZA (1) | ZA971457B (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10160319A1 (de) * | 2001-12-07 | 2003-06-26 | Henkel Kgaa | Tensidgranulate und Verfahren zur Herstellung von Tensidgranulaten |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW397862B (en) * | 1996-09-06 | 2000-07-11 | Kao Corp | Detergent granules and method for producing the same, and high-bulk density detergent composition |
DE69817811T2 (de) | 1997-05-30 | 2004-04-01 | Unilever N.V. | Rieselfähige körnige waschmittelzusammensetzungen |
GB9711350D0 (en) * | 1997-05-30 | 1997-07-30 | Unilever Plc | Granular detergent compositions and their production |
GB9711359D0 (en) | 1997-05-30 | 1997-07-30 | Unilever Plc | Detergent powder composition |
GB9711356D0 (en) | 1997-05-30 | 1997-07-30 | Unilever Plc | Particulate detergent composition |
GB9825558D0 (en) | 1998-11-20 | 1999-01-13 | Unilever Plc | Granular detergent components and particulate detergent compositions containing them |
GB9825563D0 (en) | 1998-11-20 | 1999-01-13 | Unilever Plc | Particulate laundry detergent compositions containing anionic surfactant granules |
GB9825560D0 (en) | 1998-11-20 | 1999-01-13 | Unilever Plc | Particulate laundry detergent compositons containing nonionic surfactant granules |
GB9826097D0 (en) | 1998-11-27 | 1999-01-20 | Unilever Plc | Detergent compositions |
US6407050B1 (en) | 2000-01-11 | 2002-06-18 | Huish Detergents, Inc. | α-sulfofatty acid methyl ester laundry detergent composition with reduced builder deposits |
US6468956B1 (en) * | 2000-05-24 | 2002-10-22 | Huish Detergents, Inc. | Composition containing α-sulfofatty acid ester and hydrotrope and methods of making and using the same |
GB0023487D0 (en) | 2000-09-25 | 2000-11-08 | Unilever Plc | Production of anionic surfactant granules by in situ neutralisation |
GB0023489D0 (en) * | 2000-09-25 | 2000-11-08 | Unilever Plc | Production of anionic surfactant granules by in situ neutralisation |
GB0023488D0 (en) * | 2000-09-25 | 2000-11-08 | Unilever Plc | Production of anionic surfactant granules by in situ neutralisation |
US6764989B1 (en) | 2000-10-02 | 2004-07-20 | Huish Detergents, Inc. | Liquid cleaning composition containing α-sulfofatty acid ester |
RU2305701C2 (ru) | 2001-10-25 | 2007-09-10 | Унилевер Нв | Способ получения гранул моющего средства |
GB0125653D0 (en) | 2001-10-25 | 2001-12-19 | Unilever Plc | Process for the production of detergent granules |
US7459420B2 (en) * | 2004-12-01 | 2008-12-02 | Vlahakis E Van | Automatic dishwashing detergent comprised of ethylene oxide adduct and without phosphates |
US7485613B2 (en) | 2004-12-01 | 2009-02-03 | Venus Laboratories, Inc. | Low foaming carpet-cleaning detergent concentrate comprised of ethylene oxide adduct and without phosphates |
EP2138565A1 (en) * | 2008-06-25 | 2009-12-30 | The Procter and Gamble Company | A spray-drying process |
IN2013MU02404A (ko) * | 2013-07-18 | 2015-06-19 | Galaxy Surfactants Ltd | |
CN110785481B (zh) * | 2017-06-20 | 2021-04-13 | 荷兰联合利华有限公司 | 包含香料的颗粒洗涤剂组合物 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH552977A (de) * | 1972-06-30 | 1974-08-30 | Decker Elektromaschinenbau | Antriebsaggregat fuer glaeserspuelmaschinen. |
GB1437950A (en) * | 1972-08-22 | 1976-06-03 | Unilever Ltd | Detergent compositions |
AT330930B (de) * | 1973-04-13 | 1976-07-26 | Henkel & Cie Gmbh | Verfahren zur herstellung von festen, schuttfahigen wasch- oder reinigungsmitteln mit einem gehalt an calcium bindenden substanzen |
DE2433485A1 (de) * | 1973-07-16 | 1975-02-06 | Procter & Gamble | Zur verwendung in waschmitteln geeignete aluminosilikat-ionenaustauscher |
US4534879A (en) * | 1983-06-29 | 1985-08-13 | The Procter & Gamble Company | Synthetic surfactant flakes and process for making them |
JPS6072999A (ja) * | 1983-09-30 | 1985-04-25 | 花王株式会社 | 超濃縮粉末洗剤の製法 |
DD228458A1 (de) * | 1983-12-21 | 1985-10-16 | Genthin Waschmittelwerk | Verfahren zur kontinuierlichen bestaeubung von waschmittelgranulatprodukten |
DE3413571A1 (de) * | 1984-04-11 | 1985-10-24 | Hoechst Ag, 6230 Frankfurt | Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung |
GB8810193D0 (en) * | 1988-04-29 | 1988-06-02 | Unilever Plc | Detergent compositions & process for preparing them |
CA2001535C (en) * | 1988-11-02 | 1995-01-31 | Peter Willem Appel | Process for preparing a high bulk density granular detergent composition |
GB8907187D0 (en) * | 1989-03-30 | 1989-05-10 | Unilever Plc | Detergent compositions and process for preparing them |
GB8922018D0 (en) * | 1989-09-29 | 1989-11-15 | Unilever Plc | Detergent compositions and process for preparing them |
EP0458397B1 (en) * | 1990-05-21 | 1997-03-26 | Unilever N.V. | Bleach activation |
KR0170424B1 (ko) * | 1990-07-05 | 1999-01-15 | 호르스트 헤를레,요한 글라슬 | 세제 및 청정제용 표면 활성제 과립의 제조방법 |
DE4024657A1 (de) * | 1990-08-03 | 1992-02-06 | Henkel Kgaa | Verfahren zur trocknung und granulierung waessriger pasten waschaktiver wirkstoffgemische |
ES2118783T3 (es) * | 1991-03-28 | 1998-10-01 | Unilever Nv | Composiciones detergentes y procedimiento para su preparacion. |
DE4111827A1 (de) * | 1991-04-11 | 1992-10-15 | Basf Ag | Verfahren zur herstellung und reinigung von 1-amino-2-phenoxy-4-hydroxy-anthrachinon |
GB9108136D0 (en) * | 1991-04-17 | 1991-06-05 | Unilever Plc | Concentrated detergent powder compositions |
JPH04359100A (ja) * | 1991-06-04 | 1992-12-11 | Lion Corp | 高嵩密度洗剤組成物の製造方法 |
DE4134078A1 (de) * | 1991-10-15 | 1993-04-22 | Henkel Kgaa | Konzentriertes waesseriges fluessigwaschmittel |
JP3179186B2 (ja) * | 1992-06-01 | 2001-06-25 | 花王株式会社 | アニオン活性剤粉粒体の製造方法 |
ES2109665T3 (es) * | 1992-12-15 | 1998-01-16 | Shell Int Research | Composicion tensioactiva que incluye una zeolita y un sulfato de alquilo secundario y su procedimiento de obtencion. |
DE4304015A1 (de) * | 1993-02-11 | 1994-08-18 | Henkel Kgaa | Verfahren zur Herstellung von Granulaten |
GB9313878D0 (en) * | 1993-07-05 | 1993-08-18 | Unilever Plc | Detergent composition or component containing anionic surfactant and process for its preparation |
US5431857A (en) * | 1994-01-19 | 1995-07-11 | The Procter & Gamble Company | Process for producing a high density detergent composition having improved solubility by agglomeration of anionic surfactants and an agglomerating agent |
US5565137A (en) * | 1994-05-20 | 1996-10-15 | The Proctor & Gamble Co. | Process for making a high density detergent composition from starting detergent ingredients |
GB9417354D0 (en) * | 1994-08-26 | 1994-10-19 | Unilever Plc | Detergent particles and process for their production |
GB9417356D0 (en) * | 1994-08-26 | 1994-10-19 | Unilever Plc | Detergent particles and process for their production |
DE19707649C1 (de) * | 1997-02-26 | 1998-10-22 | Henkel Kgaa | Verfahren zur Herstellung von Waschmittelrohstoffen |
DE19710152C2 (de) * | 1997-03-12 | 1999-04-22 | Henkel Kgaa | Verfahren zur Herstellung von Aniontensidgranulaten |
-
1996
- 1996-02-26 GB GBGB9604000.1A patent/GB9604000D0/en active Pending
-
1997
- 1997-02-08 DE DE69713488T patent/DE69713488T2/de not_active Expired - Fee Related
- 1997-02-08 WO PCT/EP1997/000591 patent/WO1997032002A1/en active IP Right Grant
- 1997-02-08 TR TR1998/01664T patent/TR199801664T2/xx unknown
- 1997-02-08 AU AU16022/97A patent/AU733689B2/en not_active Ceased
- 1997-02-08 CN CNB971940665A patent/CN1156564C/zh not_active Expired - Fee Related
- 1997-02-08 ES ES97902354T patent/ES2177930T3/es not_active Expired - Lifetime
- 1997-02-08 JP JP9530541A patent/JP2000506193A/ja not_active Ceased
- 1997-02-08 EP EP97902354A patent/EP0883679B1/en not_active Expired - Lifetime
- 1997-02-08 BR BR9707741A patent/BR9707741A/pt not_active IP Right Cessation
- 1997-02-08 HU HU9900652A patent/HUP9900652A3/hu unknown
- 1997-02-08 PL PL97328458A patent/PL188721B1/pl not_active IP Right Cessation
- 1997-02-08 EA EA199800766A patent/EA001548B1/ru not_active IP Right Cessation
- 1997-02-20 ZA ZA971457A patent/ZA971457B/xx unknown
- 1997-02-21 IN IN108BO1997 patent/IN188392B/en unknown
- 1997-02-25 ID IDP970563A patent/ID16047A/id unknown
- 1997-02-25 AR ARP970100750A patent/AR005990A1/es unknown
- 1997-03-03 TW TW086102500A patent/TW349122B/zh active
-
1999
- 1999-06-17 US US09/336,117 patent/USRE36593E/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10160319A1 (de) * | 2001-12-07 | 2003-06-26 | Henkel Kgaa | Tensidgranulate und Verfahren zur Herstellung von Tensidgranulaten |
DE10160319B4 (de) * | 2001-12-07 | 2008-05-15 | Henkel Kgaa | Tensidgranulate und Verfahren zur Herstellung von Tensidgranulaten |
Also Published As
Publication number | Publication date |
---|---|
AU733689B2 (en) | 2001-05-24 |
EA199800766A1 (ru) | 1999-02-25 |
AR005990A1 (es) | 1999-07-21 |
ID16047A (id) | 1997-08-28 |
DE69713488T2 (de) | 2003-01-16 |
EP0883679A1 (en) | 1998-12-16 |
PL328458A1 (en) | 1999-02-01 |
IN188392B (ko) | 2002-09-14 |
CN1156564C (zh) | 2004-07-07 |
AU1602297A (en) | 1997-09-16 |
USRE36593E (en) | 2000-02-29 |
BR9707741A (pt) | 1999-07-27 |
EA001548B1 (ru) | 2001-04-23 |
PL188721B1 (pl) | 2005-04-29 |
HUP9900652A3 (en) | 2002-04-29 |
ES2177930T3 (es) | 2002-12-16 |
CN1216578A (zh) | 1999-05-12 |
HUP9900652A2 (hu) | 1999-07-28 |
WO1997032002A1 (en) | 1997-09-04 |
GB9604000D0 (en) | 1996-04-24 |
JP2000506193A (ja) | 2000-05-23 |
ZA971457B (en) | 1998-08-20 |
DE69713488D1 (de) | 2002-07-25 |
TW349122B (en) | 1999-01-01 |
TR199801664T2 (xx) | 1998-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0883679B1 (en) | Production of anionic detergent particles | |
EP0777719B1 (en) | Production of anionic surfactant granules | |
EP0777720B1 (en) | Production of anionic surfactant granules by in situ neutralisation | |
US5856294A (en) | Production of anionic detergent particles | |
EP1320578B1 (en) | Production of anionic surfactant granules by in situ neutralisation | |
US6518234B2 (en) | Production of anionic surfactant granules by in situ neutralisation | |
EP1332203B1 (en) | Production of anionic surfactant granules by in situ neutralisation | |
WO1998011193A1 (en) | Process for preparing high bulk density detergent compositions | |
AU731828B2 (en) | Process for preparing high bulk density detergent compositions | |
PL191480B1 (pl) | Sposób wytwarzania granulowanego detergentowego produktu |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980805 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT |
|
17Q | First examination report despatched |
Effective date: 19991123 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UNILEVER N.V. Owner name: UNILEVER PLC |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69713488 Country of ref document: DE Date of ref document: 20020725 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2177930 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030320 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070223 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20070226 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20070327 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070330 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20070521 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20070221 Year of fee payment: 11 |
|
BERE | Be: lapsed |
Owner name: *UNILEVER N.V. Effective date: 20080228 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080208 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20081031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080229 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20080209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080208 |