EP0877159B1 - Verfahren zur Überprüfung der Funktionsfähigkeit der elektrischen Heizung einer Lambda-Sonde im Abgasrohr einer Brennkraftmaschine - Google Patents

Verfahren zur Überprüfung der Funktionsfähigkeit der elektrischen Heizung einer Lambda-Sonde im Abgasrohr einer Brennkraftmaschine Download PDF

Info

Publication number
EP0877159B1
EP0877159B1 EP98106013A EP98106013A EP0877159B1 EP 0877159 B1 EP0877159 B1 EP 0877159B1 EP 98106013 A EP98106013 A EP 98106013A EP 98106013 A EP98106013 A EP 98106013A EP 0877159 B1 EP0877159 B1 EP 0877159B1
Authority
EP
European Patent Office
Prior art keywords
heater
heating
resistor
current
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98106013A
Other languages
English (en)
French (fr)
Other versions
EP0877159A2 (de
EP0877159A3 (de
Inventor
Thomas Seidenfuss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP0877159A2 publication Critical patent/EP0877159A2/de
Publication of EP0877159A3 publication Critical patent/EP0877159A3/de
Application granted granted Critical
Publication of EP0877159B1 publication Critical patent/EP0877159B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system

Definitions

  • the invention relates to a method for checking the functionality the electrical heating of a lambda sensor in the exhaust pipe Internal combustion engine according to the preamble of patent claim 1.
  • the oxygen content of the exhaust gas is measured with a lambda probe determined and the value determined in this way fed to a control device, which serves to set a predetermined air / fuel ratio.
  • the lambda probe is only operational above a minimum operating temperature.
  • the regulation of the air / fuel mixture by means of Lambda probe only possible when the lambda probe has reached its operating temperature has reached. Only then can one be low
  • Optimal air / fuel mixture can be regulated.
  • the operating temperature of the Lambda probe is heated by a electric heating accelerates. In terms of low pollutant emissions it is therefore necessary for the operability of the lambda probe heater to check. It is known that aging of the electrical resistance of such a heater changes with time.
  • the temperature-dependent electrical resistance of the lambda probe heating is therefore measured in the known method according to DE 41 32 008 A1 when a predetermined operating temperature is reached.
  • a device is used, for example, which is also shown schematically in FIG. 3.
  • the lambda probe heater is connected in the form of a heating resistor R L between the drain electrode of a field effect transistor T1 (or the collector of a bipolar transistor) and the positive pole of a battery.
  • the source electrode of the field effect transistor T1 (or the emitter of a bipolar transistor) is connected via a measuring resistor R measurement to the negative pole of the battery or to ground.
  • a control output of the microprocessor is connected to the control electrode of the field effect transistor T1 (or to the base of a bipolar transistor).
  • the microprocessor ⁇ P has other inputs and outputs for controlling different functions.
  • the source electrode of transistor T1 (or the emitter of a bipolar transistor) is connected via a resistor R2 or via an operational amplifier to the input of an A / D converter, the output of which leads to an input of the microprocessor ⁇ P.
  • the heating resistor R L is energized by means of the battery voltage U + when the heating resistor R L is connected to the battery B via a relay R and the microprocessor .mu.P connects transistor T1 to ground by actuating the control electrode.
  • the resistor R L can also be connected directly to the battery B, saving the relay R.
  • the heating resistor of the lambda sensor heater at ambient temperatures is very low compared to the operating temperature, flows when switched on the lambda sensor heater a very high current.
  • the measuring resistor dimensioned such that a sufficient at operating temperature accurate measurement is possible during the warm-up phase of the lambda probe a high power is converted into heat in the measuring resistor.
  • Control devices e.g. B. engine control units
  • this problem either with a large measuring resistor or by reduction the performance is solved by clocking the heating current.
  • large measuring resistance requires a large printed circuit board area and is relatively expensive. Reducing performance through Clocking in turn undesirably extends the time period to one Lambda control is possible.
  • the electrical resistance of the heater is measured when the heating current is switched off.
  • the heating is with a Measuring current applied, which is smaller than the heating current. This resistance measurement is preferably carried out if the Lamda probe has reached its operating temperature.
  • the heating is different to the prior art according to DE 41 32 008 A1, in which the Heating for the application of (heating) current is switched to ground, for the application of (measuring or heating) current against positive voltage connected.
  • the power loss in the resistance measurement avoided because the heating resistor is not during the Heating current is measured, but in the switched off state.
  • a resistor R1 by means of which a measuring current I M is predetermined, is connected in parallel to the transistor T1.
  • the heating is switched off in a first step, ie the transistor T1 is blocked, so that heating current I H can no longer flow.
  • the relay R is closed, only a small measuring current I M flows through the resistor R1, which is also applied to the probe heater or its heating resistor R L.
  • the microprocessor ⁇ P calculates the value of the heating resistor R L from the voltage drop U measured over the heating resistor R L , the known value of the resistor R1 and the battery voltage U +.
  • the measurement of the heating resistance R L can also be carried out at any other probe temperature or also in the cold state, ie in the unheated state. Since there is a known relationship between the probe temperature or the temperature of the heating resistor and the ohmic value of the heating resistor, on the one hand the measured heating resistance can be used to draw conclusions about the current probe temperature, but on the other hand it can compare the measured value with an expected value of the heating resistor if the probe temperature is known become. If the difference between these values exceeds a certain threshold value, it is concluded that there is an error. To monitor the correct functionality of the heating, a predetermined course of the ohmic values of the heating resistor over a certain period of time can also be compared with an actually determined course.
  • one connection of the lambda probe heater or the heating resistor R L is connected firmly to ground, while the other connection can be switched against the battery voltage U +.
  • a diode D1 connected to ground between the resistor R2 and the A / D converter limits the voltage at the A / D converter input when the heating is switched on. If the resistor R2 is selected to have a very high resistance and at the same time the A / D converter input is sufficiently protected internally, the diode D1 can also be omitted.
  • the main relay R usually present in motor vehicles ensures that the measuring current is switched off when the vehicle is parked.
  • FIG. 2 shows an alternative with respect to FIG. 1 in that the resistor R1 extra with a measuring voltage of 5 V instead of the battery voltage U + is applied.
  • the voltage of 5 V is usually the supply voltage a control device of a control device.
  • the 5 V voltage is the reference for the A / D converter, which makes the Voltage measurement of the battery voltage U + can be omitted.
  • 1 to 3 are usually in internal combustion engine control units integrated, which also regulates an optimal Make air / fuel mixture.
  • the exemplary embodiments according to the invention make it possible to dispense with low-resistance measuring resistors (R measurement ) with high power.
  • R measurement low-resistance measuring resistors
  • a 1% SMD standard resistor of the 1206 design can be used. This reduces costs and saves space on the circuit board, especially when considering the fact that several lambda probes often have to be switched per control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Überprüfung der Funktionsfähigkeit der elektrischen Heizung einer Lambda-Sonde im Abgasrohr einer Brennkraftmaschine nach dem Oberbegriff des Patentanspruchs 1.
Ein derartiges Verfahren ist beispielsweise aus der DE 41 32 008 A1 bekannt. Dieses bekannte Verfahren wird auch anhand der schematischen Darstellung nach Fig. 3 der Zeichnung im folgenden erläutert.
Grundsätzlich wird mit einer Lambda-Sonde der Sauerstoffgehalt des Abgases bestimmt und der so ermittelte Wert einer Regeleinrichtung zugeführt, die dazu dient, ein vorgegebenes Luft-/Kraftstoffverhältnis einzustellen. Die Lambda-Sonde ist nur oberhalb einer minimalen Betriebstemperatur funktionsbereit. Somit ist die Regelung des Luft-/Kraftstoffgemisches mittels der Lambda-Sonde erst dann möglich, wenn die Lambda-Sonde ihre Betriebstemperatur erreicht hat. Nur dann kann ein im Hinblick auf eine niedrige Schadstoffemission optimales Luft-/Kraftstoffgemisch eingeregelt werden. Um die Emissionswerte gering zu halten, soll die Betriebstemperatur der Lambda-Sonde möglichst schnell nach dem Start der Brennkraftmaschine erreicht werden. Daher wird ein Aufheizen der Lambda-Sonde durch eine elektrische Heizung beschleunigt. Im Sinne einer geringen Schadstoffemission ist es daher erforderlich, die Funktionsfähigkeit der Lambda-Sonden-Heizung zu überprüfen. Es ist bekannt, daß sich durch Alterung der elektrische Widerstand einer derartigen Heizung mit der Zeit ändert.
Zur Überprüfung der Lambda-Sonden-Heizung wird daher bei dem bekannten Verfahren nach der DE 41 32 008 A1 bei Erreichen einer vorgegebenen Betriebstemperatur der temperaturabhängige elektrische Widerstand der Lambda-Sonden-Heizung gemessen. Hierzu wird beispielsweise eine Vorrichtung verwendet, die auch in Fig. 3 schematisch dargestellt ist. Die Lambda-Sonden-Heizung ist in Form eines Heizwiderstandes RL zwischen die Drain-Elektrode eines Feldeffekttransistors T1 (oder dem Kollektor eines Bipolartransistors) und den Pluspol einer Batterie geschaltet. Die Source-Elektrode des Feldeffekttransistors T1 (oder der Emitter eines Bipolartransistors) ist über einen Meßwiderstand Rmeß mit dem Minuspol der Batterie bzw. mit Masse verbunden. Ein Steuerausgang des Mikroprozessors (µP) ist mit der Steuerelektrode des Feldeffekttransistors T1 (oder mit der Basis eines Bipolartransistors) verbunden. Der Mikroprozessor µP weist noch weitere Ein- und Ausgänge zur Steuerung unterschiedlicher Funktionen auf. Darüber hinaus ist die Source-Elektrode des Transistors T1 (oder der Emitter eines Bipolartransistors) über einen Widerstand R2 oder über einen Operationsverstärker mit dem Eingang eines A/D-Wandlers verbunden, dessen Ausgang an einen Eingang des Mikroprozessors µP führt. Die Bestromung des Heizwiderstandes RL mittels der Batteriespannung U+ wird vorgenommen, wenn der Heizwiderstand RL über ein Relais R mit der Batterie B verbunden ist und der Mikroprozessor µP durch Ansteuerung der Steuerelektrode den Transistor T1 gegen Masse durchschaltet. Alternativ kann der Widerstand RL unter Einsparung des Relais R auch direkt mit der Batterie B verbunden sein.
Bei dem aus der DE 41 32 008 A1 bekannten Verfahren werden bei eingeschalteter Heizung, d. h. bei durchgeschaltetem Transistor T1, die Batteriespannung U+ und die Meßspannung Umeß, die über den Meßwiderstand Rmeß abfällt, erfaßt. Im Zusammenhang mit dem bekannten Wert des Meßwiderstands Rmeß wird daraus über den Mikroprozessor µP der Heizwiderstand RL berechnet (vgl. auch Fig. 3).
Da der Heizwiderstand der Lambdasonden-Heizung bei Umgebungstemperaturen im Vergleich zur Betriebstemperatur sehr gering ist, fließt beim Einschalten der Lambdasonden-Heizung ein sehr hoher Strom. Wird der Meßwiderstand derart dimensioniert, daß bei Betriebstemperatur eine hinreichend genaue Messung möglich ist, wird in der Aufwärmphase der Lambda-Sonde im Meßwiderstand eine hohe Leistung in Wärme umgesetzt. In bekannten Regeleinrichtungen, z. B. Motorsteuergeräten, wird dieses Problem entweder mit einem leistungsmäßig großen Meßwiderstand oder durch Reduzierung der Leistung mittels Takten des Heizstroms gelöst. Ein leistungsmäßig großer Meßwiderstand benötigt jedoch eine große Leiterplattenfläche und ist verhältnismäßig kostenintensiv. Die Reduzierung der Leistung durch Takten verlängert wiederum in unerwünschter Weise die Zeitdauer bis eine Lambdaregelung möglich ist.
Es ist Aufgabe der Erfindung, ein Verfahren eingangs genannter Art derart zu verbessern, daß auf einen Hochleistungsmeßwiderstand verzichtet wird und dennoch die Zeitdauer bis zur ordnungsgemäßen Lambdaregelung nicht unnötig verlängert wird.
Diese Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.
Erfindungsgemäß wird der elektrische Widerstand der Heizung gemessen, wenn der Heizstrom ausgeschaltet ist. Dabei wird die Heizung mit einem Meßstrom beaufschlagt, der kleiner als der Heizstrom ist. Vorzugsweise wird diese Messung des Widerstands vorgenommen, wenn die Lamda-Sonde ihre Betriebstemperatur erreicht hat.
In einer vorteilhaften Ausgestaltung der Erfindung wird die Heizung im Unterschied zum Stand der Technik nach der DE 41 32 008 A1, bei dem die Heizung zur Beaufschlagung mit (Heiz-) Strom gegen Masse geschaltet wird, zur Beaufschlagung mit (Meß- oder Heiz-) Strom gegen positive Spannung geschaltet. Hierdurch wird die Messung des Widerstandes der Heizung vereinfacht, da insbesondere der gesamte A/D-Wandler-Bereich ausgenützt werden kann.
Durch das erfindungsgemäße Verfahren wird die Verlustleistung bei der Widerstandsmessung vermieden, da der Heizwiderstand nicht während der Heizbestromung gemessen wird, sondern im abgeschalteten Zustand.
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Es zeigt
Fig. 1
eine Schaltung zur Durchführung des erfindungsgemäßen Verfahrens nach einer ersten Alternative und
Fig. 2
eine Schaltung zur Durchführung des erfindungsgemäßen Verfahrens nach einer zweiten Alternative.
In der Zeichnung sind gleiche Bauteile mit gleichen Bezugszeichen versehen. In Fig. 1 ist im Unterschied zum Stand der Technik (Fig. 3) ein Widerstand R1, durch den ein Meßstrom IM vorgegeben wird, parallel zum Transistor T1 geschaltet. Der Heizwiderstand RL (= zu messender elektrischer Widerstand der Heizung) ist einerseits an der Source-Elektrode des Transistors T1 (oder am Emitter eines Bipolartransistors) angeschlossen und andererseits fest gegen Masse geschaltet.
Ist vorzugsweise eine vorgegebene Betriebstemperatur der Lambdasonde erreicht, wird in einem ersten Schritt die Heizung ausgeschaltet, d. h. der Transistor T1 gesperrt, so daß kein Heizstrom IH mehr fließen kann. Bei geschlossenem Relais R fließt über den Widerstand R1 lediglich ein kleiner Meßstrom IM, mit dem auch die Sondenheizung bzw. deren Heizwiderstand RL beaufschlagt wird. Der Mikroprozessor µP berechnet den Wert des Heizwiderstandes RL aus dem Spannungsabfall Umeß über den Heizwiderstand RL, dem bekannten Wert des Widerstands R1 und der Batteriespannung U+.
Ergänzend wird darauf hingewiesen, daß die Messung des Heizwiderstandes RL auch bei jeder anderen Sondentemperatur bzw. auch im Kaltzustand, d.h. im unbeheiztem Zustand, durchgeführt werden kann.
Da eine bekannte Beziehung zwischen der Sondentemperatur bzw. der Temperatur des Heizwiderstandes und dem ohmschen Wert des Heizwiderstandes besteht, kann einerseits von dem gemessenen Heizwiderstand auf die momentan vorliegende Sondentemperatur geschlossen werden, andererseits jedoch bei bekannter Sondentemperatur der gemessene mit einem zu erwartenden Wert des Heizwiderstandes verglichen werden. Überschreitet die Differenz dieser Werte einen bestimmten Schwellwert, wird auf das Vorliegen eines Fehlers geschlossen.
Zur Überwachung der korrekten Funktionsfähigkeit der Heizung kann auch ein vorgegebenerr Verlauf der ohmschen Werte des Heizwiderstandes über einer bestimmten Zeitspanne mit einem tatsächlich ermittelten Verlauf verglichen werden.
Damit die Meßspannung Umeß im gesamten Spannungsbereich des A/D-Wandlers liegt, ist ein Anschluß der Lambdasonden-Heizung bzw. des Heizwiderstands RL fest gegen Masse geschaltet, während der andere Anschluß gegen die Batteriespannung U+ schaltbar ist. Eine zwischen dem Widerstand R2 und dem A/D-Wandler gegen Masse geschaltete Diode D1 begrenzt die Spannung am A/D-Wandlereingang bei eingeschalteter Heizung. Wird der Widerstand R2 sehr hochohmig gewählt und ist gleichzeitig der A/D-Wandlereingang intern ausreichend geschützt, kann die Diode D1 auch entfallen. Durch das in Kraftfahrzeugen üblicherweise vorhandene Hauptrelais R ist sichergestellt, daß der Meßstrom bei abgestelltem Fahrzeug ausgeschaltet ist.
Fig. 2 stellt eine Alternative bezüglich Fig. 1 dar, indem der Widerstand R1 extra mit einer Meßspannung von 5 V anstatt mit der Batteriespannung U+ beaufschlagt wird. Üblicherweise ist die Spannung von 5 V die Versorgungsspannung eines Steuergeräts einer Regeleinrichtung. Gleichzeitig ist üblicherweise die 5 V-Spannung die Referenz für den A/D-Wandler, wodurch die Spannungsmessung der Batteriespannung U+ entfallen kann.
Die Schaltungen nach den Fig. 1 bis 3 sind üblicherweise in Brennkraftmaschinensteuergeräten integriert, die auch die Regelung eines optimalen Luft-/ Kraftstoffgemisches vornehmen.
Folgende Bauteilwerte der Schaltungen nach Fig. 1 und Fig. 2 sind besonders vorteilhaft:
  • R1 = 1 KOhm
  • R2 = 47 KOhm
  • RL = 2 Ohm im kalten Zustand
  • RL = 9 Ohm bei Betriebstemperatur
  • U+ = 13 V
  • Auflösung des A/D-Wandlers = 10 Bit
  • Durch die erfindungsgemäßen Ausführungsbeispiele kann im Gegensatz zu den im Einsatz befindlichen Schaltungen auf niederohmige Meßwiderstände (Rmeß) hoher Leistung verzichtet werden. Für den Widerstand R1 zur Bestimmung des Meßstroms IM kann beispielsweise ein 1%iger SMD-Standardwiderstand der Bauform 1206 verwendet werden. Dies reduziert die Kosten und spart Platz auf der Leiterplatte, insbesondere bei Berücksichtigung der Tatsache, daß häufig mehrere Lambda-Sonden pro Steuergerät geschaltet werden müssen.

    Claims (2)

    1. Verfahren zur Überprüfung der Funktionsfähigkeit der elektrischen Heizung einer Lambda-Sonde im Abgasrohr einer Brennkraftmaschine, bei dem der elektrische Widerstand der Heizung gemessen wird, dadurch gekennzeichnet, daß der elektrische Widerstand (RL) der Heizung gemessen wird, wenn der Heizstrom (IH) ausgeschaltet ist, und daß die Heizung zur Messung ihres elektrischen Widerstands (RL) mit einem Meßstrom (IM=U+/R1) beaufschlagt wird, der kleiner als der Heizstrom (IH) ist.
    2. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, daß der elektrische Widerstand (RL) der Heizung zur Beaufschlagung mit Heiz- oder Meß- Strom (IM, IH) gegen positive Spannung (U+) geschaltet wird.
    EP98106013A 1997-05-07 1998-04-02 Verfahren zur Überprüfung der Funktionsfähigkeit der elektrischen Heizung einer Lambda-Sonde im Abgasrohr einer Brennkraftmaschine Expired - Lifetime EP0877159B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19719390A DE19719390A1 (de) 1997-05-07 1997-05-07 Verfahren zur Überprüfung der Funktionsfähigkeit der elektrischen Heizung einer Lambda-Sonde im Abgasrohr einer Brennkraftmaschine
    DE19719390 1997-05-07

    Publications (3)

    Publication Number Publication Date
    EP0877159A2 EP0877159A2 (de) 1998-11-11
    EP0877159A3 EP0877159A3 (de) 1999-12-29
    EP0877159B1 true EP0877159B1 (de) 2003-06-25

    Family

    ID=7828955

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98106013A Expired - Lifetime EP0877159B1 (de) 1997-05-07 1998-04-02 Verfahren zur Überprüfung der Funktionsfähigkeit der elektrischen Heizung einer Lambda-Sonde im Abgasrohr einer Brennkraftmaschine

    Country Status (5)

    Country Link
    US (1) US5929328A (de)
    EP (1) EP0877159B1 (de)
    JP (1) JPH1183790A (de)
    DE (2) DE19719390A1 (de)
    ES (1) ES2202676T3 (de)

    Families Citing this family (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19956823C2 (de) * 1999-11-25 2002-11-28 Siemens Ag Ansteuerschaltung und Ansteuerverfahren für einen Gassensor
    US7481915B2 (en) * 2001-02-08 2009-01-27 Ford Global Technologies, Llc Exhaust gas temperature measurement utilizing an exhaust gas sensor
    US6586711B2 (en) * 2001-07-27 2003-07-01 General Motors Corporation Current control method for an oxygen sensor heater
    DE102006014681A1 (de) * 2006-03-28 2007-10-04 Robert Bosch Gmbh Gassensor
    CN102854393B (zh) * 2012-09-08 2014-12-24 无锡隆盛科技股份有限公司 氮氧传感器加热检测电路及加热检测方法
    DE102015222554A1 (de) 2015-11-16 2017-05-18 Inficon Gmbh Lecksuche mit Sauerstoff
    DE102016202854A1 (de) * 2016-02-24 2017-08-24 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben einer Lambdasonde in einem Abgaskanal einer Brennkraftmaschine
    US10563605B2 (en) * 2018-03-13 2020-02-18 Ford Global Technologies, Llc Systems and methods for reducing vehicle emissions
    US11092101B2 (en) 2018-08-22 2021-08-17 Rosemount Aerospace Inc. Heater in-circuit capacitive measurement
    US11078859B2 (en) * 2019-10-11 2021-08-03 Fca Us Llc Oxygen sensor out of specification heater rationality monitor using cold start cycle

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPH07122627B2 (ja) * 1987-12-16 1995-12-25 日本電装株式会社 酸素濃度センサ用ヒータの制御装置
    US4993392A (en) * 1989-04-24 1991-02-19 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling heater for heating oxygen sensor
    DE3941995A1 (de) * 1989-12-20 1991-06-27 Bosch Gmbh Robert Verfahren und vorrichtung zur ueberwachung der funktionsfaehigkeit einer sonden-heizeinrichtung
    DE4132008C2 (de) * 1991-09-26 2000-04-06 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überprüfung der Funktionsfähigkeit einer Heizung einer Sauerstoffsonde
    US5245979A (en) * 1992-10-28 1993-09-21 Ford Motor Company Oxygen sensor system with a dynamic heater malfunction detector
    US5454259A (en) * 1993-08-02 1995-10-03 Toyota Jidosha Kabushiki Kaisha Failure detecting apparatus in temperature controller of air-fuel ratio sensor
    US5392643A (en) * 1993-11-22 1995-02-28 Chrysler Corporation Oxygen heater sensor diagnostic routine
    DE4344961B4 (de) * 1993-12-30 2004-05-06 Robert Bosch Gmbh Auswertevorrichtung für das Signal einer Sauerstoffsonde
    JP3711582B2 (ja) * 1995-03-31 2005-11-02 株式会社デンソー 酸素濃度検出装置

    Also Published As

    Publication number Publication date
    DE19719390A1 (de) 1998-11-12
    EP0877159A2 (de) 1998-11-11
    US5929328A (en) 1999-07-27
    ES2202676T3 (es) 2004-04-01
    DE59808786D1 (de) 2003-07-31
    EP0877159A3 (de) 1999-12-29
    JPH1183790A (ja) 1999-03-26

    Similar Documents

    Publication Publication Date Title
    EP1385073B1 (de) Verfahren und Vorrichtung zur Funktionsprüfung einer elektrischen Heizeinrichtung
    DE2528914C2 (de) Einrichtung zum Bestimmen des Sauerstoffgehalts in Abgasen, insbesondere von Verbrennungskraftmaschinen
    DE4434559A1 (de) Verfahren und Anordnung zum Betrieb eines Füllstandssensors
    EP0189086B1 (de) Glühelement
    EP0877159B1 (de) Verfahren zur Überprüfung der Funktionsfähigkeit der elektrischen Heizung einer Lambda-Sonde im Abgasrohr einer Brennkraftmaschine
    DE10149982B4 (de) Verfahren zur Ermittlung der Temperatur einer elektrischen Spule sowie zugehörige Vorrichtung
    EP1186102B1 (de) Verfahren und vorrichtung zur open-load-diagnose einer schaltstufe
    DE4132008C2 (de) Verfahren und Vorrichtung zur Überprüfung der Funktionsfähigkeit einer Heizung einer Sauerstoffsonde
    DE102012017832A1 (de) Sensorsteuervorrichtung und Sensorsteuersystem
    DE19728466A1 (de) Luft-Kraftstoff-Verhältnis-Regelvorrichtung mit einer Luft-Kraftstoff-Verhältnis-Sollwertumschaltfunktion
    DE3842287C2 (de)
    DE102006014266A1 (de) Breitband-Lambdasonde
    DE102015015501A1 (de) Lasttreibervorrichtung
    DE102014102476A1 (de) Heizungssteuerungs-verfahren und heizungssteuerungs-vorrichtung für gassensoren
    DE102007029022B4 (de) Glühsystem, Steuereinrichtung und Verfahren zur Leistungssteuerung einer Glühkerze
    DE69609722T2 (de) Kühlungsanlage für ein kraftfahrzeug mit einem verbrennungsmotor
    DE10045976A1 (de) Verfahren und Vorrichtung zur Steuerung eines elektrischen Verbrauchers
    DE19707436A1 (de) Steuergerät für Kraftfahrzeuge
    DE1926980B2 (de) Verfahren und Anordnung zur Steuerung der Drehzahl eines fremderregten, über einen Ankerstromrichter gespeisten Gleichstrommotors mit Reihenschlußverhalten
    WO2017144222A1 (de) Verfahren und vorrichtung zum betreiben einer lambdasonde in einem abgaskanal einer brennkraftmaschine
    DE102021114496A1 (de) Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung
    DE69702226T2 (de) Heizelementsteuerschaltung mit veränderlichem Widerstand assoziiert mit einem Sensor zur Erfassung von Sauerstoff in Abgasen
    DE19622126C2 (de) Verfahren zur Zünd- und/oder Flammüberwachung in einem Fahrzeugheizgerät
    DE2733006C3 (de) Temperaturwächter
    EP2823171B1 (de) Verfahren zur steuerung einer heizeinrichtung zur beheizung eines bauteils, steuervorrichtung sowie kraftfahrzeug mit einer solchen

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): DE ES FR GB IT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20000620

    AKX Designation fees paid

    Free format text: DE ES FR GB IT SE

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): DE ES FR GB IT SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    REF Corresponds to:

    Ref document number: 59808786

    Country of ref document: DE

    Date of ref document: 20030731

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2202676

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040326

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20060404

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20060406

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20060427

    Year of fee payment: 9

    Ref country code: FR

    Payment date: 20060427

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20060430

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20060524

    Year of fee payment: 9

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20070402

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20071101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070402

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070403

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20070403

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070403

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070402