EP0877159B1 - Procédé de comtrôle du fonctionnement du chauffage de la sonde lambda dans l'échappement d'un moteur à combustion - Google Patents

Procédé de comtrôle du fonctionnement du chauffage de la sonde lambda dans l'échappement d'un moteur à combustion Download PDF

Info

Publication number
EP0877159B1
EP0877159B1 EP98106013A EP98106013A EP0877159B1 EP 0877159 B1 EP0877159 B1 EP 0877159B1 EP 98106013 A EP98106013 A EP 98106013A EP 98106013 A EP98106013 A EP 98106013A EP 0877159 B1 EP0877159 B1 EP 0877159B1
Authority
EP
European Patent Office
Prior art keywords
heater
heating
resistor
current
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98106013A
Other languages
German (de)
English (en)
Other versions
EP0877159A2 (fr
EP0877159A3 (fr
Inventor
Thomas Seidenfuss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP0877159A2 publication Critical patent/EP0877159A2/fr
Publication of EP0877159A3 publication Critical patent/EP0877159A3/fr
Application granted granted Critical
Publication of EP0877159B1 publication Critical patent/EP0877159B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system

Definitions

  • the invention relates to a method for checking the functionality the electrical heating of a lambda sensor in the exhaust pipe Internal combustion engine according to the preamble of patent claim 1.
  • the oxygen content of the exhaust gas is measured with a lambda probe determined and the value determined in this way fed to a control device, which serves to set a predetermined air / fuel ratio.
  • the lambda probe is only operational above a minimum operating temperature.
  • the regulation of the air / fuel mixture by means of Lambda probe only possible when the lambda probe has reached its operating temperature has reached. Only then can one be low
  • Optimal air / fuel mixture can be regulated.
  • the operating temperature of the Lambda probe is heated by a electric heating accelerates. In terms of low pollutant emissions it is therefore necessary for the operability of the lambda probe heater to check. It is known that aging of the electrical resistance of such a heater changes with time.
  • the temperature-dependent electrical resistance of the lambda probe heating is therefore measured in the known method according to DE 41 32 008 A1 when a predetermined operating temperature is reached.
  • a device is used, for example, which is also shown schematically in FIG. 3.
  • the lambda probe heater is connected in the form of a heating resistor R L between the drain electrode of a field effect transistor T1 (or the collector of a bipolar transistor) and the positive pole of a battery.
  • the source electrode of the field effect transistor T1 (or the emitter of a bipolar transistor) is connected via a measuring resistor R measurement to the negative pole of the battery or to ground.
  • a control output of the microprocessor is connected to the control electrode of the field effect transistor T1 (or to the base of a bipolar transistor).
  • the microprocessor ⁇ P has other inputs and outputs for controlling different functions.
  • the source electrode of transistor T1 (or the emitter of a bipolar transistor) is connected via a resistor R2 or via an operational amplifier to the input of an A / D converter, the output of which leads to an input of the microprocessor ⁇ P.
  • the heating resistor R L is energized by means of the battery voltage U + when the heating resistor R L is connected to the battery B via a relay R and the microprocessor .mu.P connects transistor T1 to ground by actuating the control electrode.
  • the resistor R L can also be connected directly to the battery B, saving the relay R.
  • the heating resistor of the lambda sensor heater at ambient temperatures is very low compared to the operating temperature, flows when switched on the lambda sensor heater a very high current.
  • the measuring resistor dimensioned such that a sufficient at operating temperature accurate measurement is possible during the warm-up phase of the lambda probe a high power is converted into heat in the measuring resistor.
  • Control devices e.g. B. engine control units
  • this problem either with a large measuring resistor or by reduction the performance is solved by clocking the heating current.
  • large measuring resistance requires a large printed circuit board area and is relatively expensive. Reducing performance through Clocking in turn undesirably extends the time period to one Lambda control is possible.
  • the electrical resistance of the heater is measured when the heating current is switched off.
  • the heating is with a Measuring current applied, which is smaller than the heating current. This resistance measurement is preferably carried out if the Lamda probe has reached its operating temperature.
  • the heating is different to the prior art according to DE 41 32 008 A1, in which the Heating for the application of (heating) current is switched to ground, for the application of (measuring or heating) current against positive voltage connected.
  • the power loss in the resistance measurement avoided because the heating resistor is not during the Heating current is measured, but in the switched off state.
  • a resistor R1 by means of which a measuring current I M is predetermined, is connected in parallel to the transistor T1.
  • the heating is switched off in a first step, ie the transistor T1 is blocked, so that heating current I H can no longer flow.
  • the relay R is closed, only a small measuring current I M flows through the resistor R1, which is also applied to the probe heater or its heating resistor R L.
  • the microprocessor ⁇ P calculates the value of the heating resistor R L from the voltage drop U measured over the heating resistor R L , the known value of the resistor R1 and the battery voltage U +.
  • the measurement of the heating resistance R L can also be carried out at any other probe temperature or also in the cold state, ie in the unheated state. Since there is a known relationship between the probe temperature or the temperature of the heating resistor and the ohmic value of the heating resistor, on the one hand the measured heating resistance can be used to draw conclusions about the current probe temperature, but on the other hand it can compare the measured value with an expected value of the heating resistor if the probe temperature is known become. If the difference between these values exceeds a certain threshold value, it is concluded that there is an error. To monitor the correct functionality of the heating, a predetermined course of the ohmic values of the heating resistor over a certain period of time can also be compared with an actually determined course.
  • one connection of the lambda probe heater or the heating resistor R L is connected firmly to ground, while the other connection can be switched against the battery voltage U +.
  • a diode D1 connected to ground between the resistor R2 and the A / D converter limits the voltage at the A / D converter input when the heating is switched on. If the resistor R2 is selected to have a very high resistance and at the same time the A / D converter input is sufficiently protected internally, the diode D1 can also be omitted.
  • the main relay R usually present in motor vehicles ensures that the measuring current is switched off when the vehicle is parked.
  • FIG. 2 shows an alternative with respect to FIG. 1 in that the resistor R1 extra with a measuring voltage of 5 V instead of the battery voltage U + is applied.
  • the voltage of 5 V is usually the supply voltage a control device of a control device.
  • the 5 V voltage is the reference for the A / D converter, which makes the Voltage measurement of the battery voltage U + can be omitted.
  • 1 to 3 are usually in internal combustion engine control units integrated, which also regulates an optimal Make air / fuel mixture.
  • the exemplary embodiments according to the invention make it possible to dispense with low-resistance measuring resistors (R measurement ) with high power.
  • R measurement low-resistance measuring resistors
  • a 1% SMD standard resistor of the 1206 design can be used. This reduces costs and saves space on the circuit board, especially when considering the fact that several lambda probes often have to be switched per control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Claims (2)

  1. Procédé pour contrôler du fonctionnement du circuit électrique d'une sonde lambda dans l'échappement d'un moteur à combustion interne, selon lequel on mesure la résistance électrique du chauffage,
    caractérisé en ce que
    la mesure de la résistance électrique (RL) du chauffage a lieu quand le courant du chauffage (IH) est coupé, et le chauffage, pour mesurer sa résistance électrique (RL), est alimenté par un courant de mesure (IM = U+/R1) qui est inférieur au courant de chauffage (IH).
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    la résistance électrique (RL) du chauffage, pour être alimentée par le courant de chauffage ou de mesure (IM, IH), est reliée à la tension positive (U+).
EP98106013A 1997-05-07 1998-04-02 Procédé de comtrôle du fonctionnement du chauffage de la sonde lambda dans l'échappement d'un moteur à combustion Expired - Lifetime EP0877159B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19719390A DE19719390A1 (de) 1997-05-07 1997-05-07 Verfahren zur Überprüfung der Funktionsfähigkeit der elektrischen Heizung einer Lambda-Sonde im Abgasrohr einer Brennkraftmaschine
DE19719390 1997-05-07

Publications (3)

Publication Number Publication Date
EP0877159A2 EP0877159A2 (fr) 1998-11-11
EP0877159A3 EP0877159A3 (fr) 1999-12-29
EP0877159B1 true EP0877159B1 (fr) 2003-06-25

Family

ID=7828955

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98106013A Expired - Lifetime EP0877159B1 (fr) 1997-05-07 1998-04-02 Procédé de comtrôle du fonctionnement du chauffage de la sonde lambda dans l'échappement d'un moteur à combustion

Country Status (5)

Country Link
US (1) US5929328A (fr)
EP (1) EP0877159B1 (fr)
JP (1) JPH1183790A (fr)
DE (2) DE19719390A1 (fr)
ES (1) ES2202676T3 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19956823C2 (de) * 1999-11-25 2002-11-28 Siemens Ag Ansteuerschaltung und Ansteuerverfahren für einen Gassensor
US7481915B2 (en) * 2001-02-08 2009-01-27 Ford Global Technologies, Llc Exhaust gas temperature measurement utilizing an exhaust gas sensor
US6586711B2 (en) * 2001-07-27 2003-07-01 General Motors Corporation Current control method for an oxygen sensor heater
DE102006014681A1 (de) * 2006-03-28 2007-10-04 Robert Bosch Gmbh Gassensor
CN102854393B (zh) * 2012-09-08 2014-12-24 无锡隆盛科技股份有限公司 氮氧传感器加热检测电路及加热检测方法
DE102015222554A1 (de) 2015-11-16 2017-05-18 Inficon Gmbh Lecksuche mit Sauerstoff
DE102016202854A1 (de) * 2016-02-24 2017-08-24 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben einer Lambdasonde in einem Abgaskanal einer Brennkraftmaschine
US10563605B2 (en) * 2018-03-13 2020-02-18 Ford Global Technologies, Llc Systems and methods for reducing vehicle emissions
US11092101B2 (en) 2018-08-22 2021-08-17 Rosemount Aerospace Inc. Heater in-circuit capacitive measurement
US11078859B2 (en) * 2019-10-11 2021-08-03 Fca Us Llc Oxygen sensor out of specification heater rationality monitor using cold start cycle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122627B2 (ja) * 1987-12-16 1995-12-25 日本電装株式会社 酸素濃度センサ用ヒータの制御装置
US4993392A (en) * 1989-04-24 1991-02-19 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling heater for heating oxygen sensor
DE3941995A1 (de) * 1989-12-20 1991-06-27 Bosch Gmbh Robert Verfahren und vorrichtung zur ueberwachung der funktionsfaehigkeit einer sonden-heizeinrichtung
DE4132008C2 (de) * 1991-09-26 2000-04-06 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überprüfung der Funktionsfähigkeit einer Heizung einer Sauerstoffsonde
US5245979A (en) * 1992-10-28 1993-09-21 Ford Motor Company Oxygen sensor system with a dynamic heater malfunction detector
US5454259A (en) * 1993-08-02 1995-10-03 Toyota Jidosha Kabushiki Kaisha Failure detecting apparatus in temperature controller of air-fuel ratio sensor
US5392643A (en) * 1993-11-22 1995-02-28 Chrysler Corporation Oxygen heater sensor diagnostic routine
DE4344961B4 (de) * 1993-12-30 2004-05-06 Robert Bosch Gmbh Auswertevorrichtung für das Signal einer Sauerstoffsonde
JP3711582B2 (ja) * 1995-03-31 2005-11-02 株式会社デンソー 酸素濃度検出装置

Also Published As

Publication number Publication date
DE19719390A1 (de) 1998-11-12
EP0877159A2 (fr) 1998-11-11
US5929328A (en) 1999-07-27
ES2202676T3 (es) 2004-04-01
DE59808786D1 (de) 2003-07-31
EP0877159A3 (fr) 1999-12-29
JPH1183790A (ja) 1999-03-26

Similar Documents

Publication Publication Date Title
EP1385073B1 (fr) Procédé et dispositif pour le contrôle du fonctionnement d'un appareil de chauffage électrique
DE2528914C2 (de) Einrichtung zum Bestimmen des Sauerstoffgehalts in Abgasen, insbesondere von Verbrennungskraftmaschinen
DE4434559A1 (de) Verfahren und Anordnung zum Betrieb eines Füllstandssensors
EP0189086B1 (fr) Elément à incandescence
EP0877159B1 (fr) Procédé de comtrôle du fonctionnement du chauffage de la sonde lambda dans l'échappement d'un moteur à combustion
DE10149982B4 (de) Verfahren zur Ermittlung der Temperatur einer elektrischen Spule sowie zugehörige Vorrichtung
EP1186102B1 (fr) Procede et dispositif pour effectuer un diagnostic "charge ouverte" sur un etage de commutation
DE4132008C2 (de) Verfahren und Vorrichtung zur Überprüfung der Funktionsfähigkeit einer Heizung einer Sauerstoffsonde
DE102012017832A1 (de) Sensorsteuervorrichtung und Sensorsteuersystem
DE19728466A1 (de) Luft-Kraftstoff-Verhältnis-Regelvorrichtung mit einer Luft-Kraftstoff-Verhältnis-Sollwertumschaltfunktion
DE3842287C2 (fr)
DE102006014266A1 (de) Breitband-Lambdasonde
DE102015015501A1 (de) Lasttreibervorrichtung
DE102014102476A1 (de) Heizungssteuerungs-verfahren und heizungssteuerungs-vorrichtung für gassensoren
DE102007029022B4 (de) Glühsystem, Steuereinrichtung und Verfahren zur Leistungssteuerung einer Glühkerze
DE69609722T2 (de) Kühlungsanlage für ein kraftfahrzeug mit einem verbrennungsmotor
DE10045976A1 (de) Verfahren und Vorrichtung zur Steuerung eines elektrischen Verbrauchers
DE19707436A1 (de) Steuergerät für Kraftfahrzeuge
DE1926980B2 (de) Verfahren und Anordnung zur Steuerung der Drehzahl eines fremderregten, über einen Ankerstromrichter gespeisten Gleichstrommotors mit Reihenschlußverhalten
WO2017144222A1 (fr) Procédé et dispositif pour faire fonctionner une sonde lambda dans un conduit de gaz d'échappement d'un moteur à combustion interne
DE102021114496A1 (de) Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung
DE69702226T2 (de) Heizelementsteuerschaltung mit veränderlichem Widerstand assoziiert mit einem Sensor zur Erfassung von Sauerstoff in Abgasen
DE19622126C2 (de) Verfahren zur Zünd- und/oder Flammüberwachung in einem Fahrzeugheizgerät
DE2733006C3 (de) Temperaturwächter
EP2823171B1 (fr) Procédé de commande d'un dispositif de chauffage destiné à chauffer un élément structural, dispositif de commande et véhicule automobile comprenant un tel dispositif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000620

AKX Designation fees paid

Free format text: DE ES FR GB IT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 59808786

Country of ref document: DE

Date of ref document: 20030731

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2202676

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060404

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060406

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060427

Year of fee payment: 9

Ref country code: FR

Payment date: 20060427

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060430

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060524

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070403

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070402