EP0874999A1 - Detecteur de champ magnetique pourvu d'un montage en pont constitue d'elements de pontage magnetoresistifs - Google Patents

Detecteur de champ magnetique pourvu d'un montage en pont constitue d'elements de pontage magnetoresistifs

Info

Publication number
EP0874999A1
EP0874999A1 EP96915955A EP96915955A EP0874999A1 EP 0874999 A1 EP0874999 A1 EP 0874999A1 EP 96915955 A EP96915955 A EP 96915955A EP 96915955 A EP96915955 A EP 96915955A EP 0874999 A1 EP0874999 A1 EP 0874999A1
Authority
EP
European Patent Office
Prior art keywords
bridge
layer
magnetic field
elements
bias layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96915955A
Other languages
German (de)
English (en)
Inventor
Wolfgang Schelter
Hugo Van Den Berg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0874999A1 publication Critical patent/EP0874999A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the invention relates to a sensor for detecting an external, at least largely homogeneous magnetic field with magnetoresistive bridge elements with a thin layer structure connected to form a bridge, via which bridge a bridge current is to be conducted and from which a measuring voltage is to be taken.
  • a sensor is indicated in DE-GBM 93 12 674.3.
  • the electrical resistance can depend on the size and direction of a magnetic field penetrating the material.
  • the corresponding effect is called anisotropic magnetoresistance "AMR" or anisotropic magnetoresistive effect. Physically, it is based on the different scattering cross sections of electrons with the spin polarity of the D band and different spin. The electrons are therefore referred to as majority or minority electrons.
  • AMR anisotropic magnetoresistance
  • a thin layer of such a magnetoresistive material with a magnetization in the layer plane is generally provided.
  • magnetoresistive multilayer systems which contain a plurality of ferromagnetic layers arranged in a stack, which are separated from one another by metallic intermediate layers and the magnetizations of which lie in the layer plane.
  • the thicknesses of the individual layers are significantly smaller than that average free path length of the line electrons selected.
  • a so-called giant magnetoresistive effect or giant magnetoresistance GMR can occur in the individual layers (cf. for example EP-A-0 483 373).
  • Such a GMR effect is based on the differently strong scattering of majority and minority conduction electrons at the interfaces between the ferromagnetic layers and the intermediate layers as well as on scattering effects within the layers, especially when alloys are used.
  • the GMR effect is an isotropic effect. It can be considerably larger than the anisotropic effect AMR and can assume values of up to 70% of the normal isotropic resistance.
  • adjacent metallic magnetic layers are initially magnetized in opposite directions. Under the influence of an external magnetic field, the initial anti-parallel alignment of the magnetizations can be converted into a parallel one. This fact is exploited with corresponding magnetic field sensors.
  • a magnetic field sensor emerges with whose bridge elements (sensor elements), which show an anisotropic magnetoresistance AMR, a Wheatstone bridge circuit can be constructed.
  • the individual sensor elements can advantageously be connected to the bridge by appropriate structuring so that the current directions in the two pairs of diagonal bridge elements from the two bridge branches are opposite.
  • the sensor should be relatively easy to manufacture.
  • the set current is to be chosen so high that it can be used to obtain a magnetic field which is sufficiently strong for the magnetic reversal of the bias layer part.
  • the magnetic field of the set current can optionally be overlaid by an external support or auxiliary field.
  • the external magnetic field component to be detected is not able to reverse magnetize the bias layer part.
  • a layer structure is understood to mean that each bridge element has a predetermined layer sequence with a predetermined thickness of the individual layers.
  • the layer sequences and the thicknesses of corresponding layers from all bridge elements are the same. Such layer sequences can advantageously be easily realized.
  • FIG. 1 shows the circuit diagram of a bridge circuit of a magnetic field sensor according to the invention
  • FIG. 2 shows an oblique view of a GMR layer structure of an individual bridge element of such a sensor
  • FIG. 3 shows a cross section through a bridge element according to the invention
  • FIGS. 4 and 5 are views of bridge circuits of magnetic field sensors according to the invention
  • a bridge circuit known per se is advantageously provided for the magnetic field sensor according to the invention, which is shown in FIG. 1.
  • the bridge B shown contains two bridge branches ZI and Z2, which are connected in parallel between two connection points AI and A2 of the bridge.
  • a bridge current Ig is to be conducted over the bridge B at the connection points AI and A2.
  • Each of the bridge branches ZI and Z2 contains two bridge elements E1 and E2 or E3 and E4 connected in series.
  • a measuring point P1 or P2 of the bridge lies between the two elements of each bridge branch.
  • a measuring voltage U m can be taken at these measuring points.
  • the individual bridge elements Ej (with 1 ⁇ j 4 4) of the bridge circuit B are to be built up from multi-layer systems known per se which have a GMR effect (cf. for example EP-A-0 483 373 or DE -OSen 42 32 244, 42 43 357 or 42 43 358).
  • These multilayer systems each have, among other things, a bias layer part with a predetermined orientation direction of the magnetization m fj .
  • these magnetizations are indicated by arrowed lines on the individual bridge elements illustrated.
  • the two pairs E1-E4 and E2-E3 of diagonal bridge elements each have the same directions of the bias magnetizations mfj, the direction of magnetization of one pair being opposite to that of the other pair.
  • the bias field caused by the bias layers of each bridge element Ej is denoted by H ⁇ j.
  • FIG. 2 shows the basic structure of a known multilayer system S with a GMR effect (cf. e.g. EP 0 346 817 A).
  • This multilayer system contains a bias layer part 2, which according to the exemplary embodiment shown consists of a ferromagnetic bias layer 2a (e.g. made of NiFe) with an additional antiferromagnetic layer 2b underneath
  • a bias layer part 2a e.g. made of NiFe
  • a measuring layer 3 which is magnetically softer than this bias layer part 2 (e.g. made of a NiFe alloy with a correspondingly smaller coercive field thickness) is separated by a non-magnetic intermediate layer 4 (e.g. made of Cu).
  • the figure shows the possible magnetizations in these layers by means of arrowed lines.
  • Corresponding multilayer systems are also referred to as "exchange biased systems”.
  • Such or another multilayer system with a GMR effect can be, for example, the basic system for forming a bridge element Ej according to the invention.
  • the bridge elements Ej preferably each have a multiplicity of magnetic and non-magnetic layers.
  • Such a multilayer system is assumed for the bridge element Ej, which is indicated in FIG. 3.
  • His multilayer system S ' which, for example, comprises a bias layer part 2 with several layers, is covered with a passivation layer 5, which consists of a non-magnetic and in particular insulating material.
  • a conductor layer 6 in the form of a metallization made of a non-magnetic, electrically highly conductive material such as Cu or Ag is applied to this passivation layer 5. With a setting current I e through this conductor layer 6, a magnetic setting field H e of such a direction and strength can be caused that a preferred direction of the magnetization can be fixed in the bias layer part 2 of the multilayer system S '.
  • corresponding strip-shaped conductor layers 6i are for two
  • the bridge circuit B1 according to FIG. 4 has a rectangular arrangement of its bridge elements E1 to E4, while in the bridge circuit B2 according to FIG. 5 all four bridge elements E1 to E4 are arranged next to one another.
  • the embodiment according to FIG. 5 advantageously allows a particularly narrow arrangement of the bridge elements.
  • Three tracks of conductor layers 6i are required for the bridge circuit B1 and four tracks of conductor layers 6i are required for the bridge circuit B2.
  • the directions of the individual setting currents I e through the respective conductor layers to be selected, for example, are indicated by arrowed lines.
  • each element is provided with its GMR layer system with at least two contacts. These contacts are either both on the top measuring layer of the corresponding magnetic field sensitive layer system arranged so that the bridge current flows parallel to the layer planes on average (so-called “current-in-plane (CIP) system”); or a contact is arranged on the top and on the bottom layer, so that the bridge current then flows on average perpendicular to the layer planes (so-called “current-perpendicular-to-plane (CPP) system”).
  • CIP current-in-plane
  • CCPP current-perpendicular-to-plane
  • the layer structure selected in each case is then coated with the passivation layer 5 according to FIG. 3 before the conductor layers 6i are applied to magnetize the individual bias layer parts.
  • FIG. 6 shows a corresponding exemplary embodiment with 20 magnetic field sensors according to the invention on a disk-shaped Si substrate 13.
  • Embodiments 11 according to FIG. 4 are used as a basis for these magnetic field sensors.
  • Their respective bridge circuit B1 is only indicated by a flat rectangle in the figure. The interconnection of the conductor layers 6i of all bridge circuits leads to a meandering conductor track 16 between contacting surfaces 17a and 17b.
  • a corresponding system of magnetic field sensors can be jointly formed on a substrate 13.
  • Corresponding systems of magnetic field sensors according to the invention can be implemented particularly easily with GMR bridge elements which are of the type of an exchange biased multilayer system S illustrated in FIG. 2.
  • GMR bridge elements which are of the type of an exchange biased multilayer system S illustrated in FIG. 2.
  • the rigid magnet tization in the bias layer part 2 only small fields such as under 20 Oe are necessary.
  • the required value of 20 Oe can be produced in the bias layer part.
  • a temperature increase to approximately 150 ° C. is favorable.
  • a corresponding temperature increase can take place, for example, by arranging the layer system in a heated room. If necessary, however, it is also possible to provide the heating power by means of the conductor layer 6i generating the magnetic adjustment field H e . This can be done by selecting the appropriate conductor parameters (such as material, cross-section, electrical current I e ).
  • the support field H z and the setting field H e on which this is based then make it necessary to exceed a predetermined threshold value of the field strength which, according to the assumed embodiment, the saturation field strength H s of the bias layer part.
  • the field relationships can be seen from the diagram in FIG.
  • the field strength H is plotted in arbitrary units in the direction of the abscissa and the magnetization M in the direction of the ordinate.
  • the quantities H s represent the saturation field strength or the threshold field strength
  • H c the coercive field strength
  • H min the field strength at which the magnetization M begins to increase sharply with increasing field strength from the value of the negative saturation magnetization.
  • Hg ⁇ z + H e .
  • the size is preferably approximately
  • H 2 - IH. results If H z and I e are selected accordingly, the threshold value H is exceeded for the bias layer part of the bridge elements El and E4. This leads to a desired permanent orientation of the magnetization in this bias layer part. In contrast, the bridge elements E2 and E3, no change is effected for the bias layer part as H m i n is not exceeded. The magnetization of this layer part thus remains unaffected. If one now reverses the direction of H z , the bridge elements El and E4 result in H g -
  • , for E2 and E3 accordingly H g -
  • the threshold value H s is exceeded for the bias layer part of the bridge elements E2 and E3, which leads to a desired permanent orientation of the magnetization in this bias layer part, while for the bias layer part of the bridge elements E1 and E4 the coercive field strength is not exceeded and the magnetization of this layer part remains unaffected, ie due to the previous process step in the opposite orientation.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

Le détecteur comporte un montage en pont (B1) constitué de plusieurs éléments de pontage à couche mince (E1 à E4) magnétorésistifs. L'invention vise à ce que tous les éléments de pontage (E1 à E4) présentent la même structure de couches, soient formés sur un substrat (13) commun et aient un effet magnétorésistif géant (GMR). L'invention vise en outre à ce que chaque élément de pontage comporte une partie à couche de polarisation et une couche conductrice (6i) servant à guider un courant de réglage (Ie), afin de donner un sens d'orientation déterminé à la magnétisation dans la partie à couche de polarisation.
EP96915955A 1995-06-01 1996-05-31 Detecteur de champ magnetique pourvu d'un montage en pont constitue d'elements de pontage magnetoresistifs Withdrawn EP0874999A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19520206 1995-06-01
DE19520206A DE19520206C2 (de) 1995-06-01 1995-06-01 Magnetfeldsensor mit einer Brückenschaltung von magnetoresistiven Brückenelementen
PCT/DE1996/000960 WO1996038739A1 (fr) 1995-06-01 1996-05-31 Detecteur de champ magnetique pourvu d'un montage en pont constitue d'elements de pontage magnetoresistifs

Publications (1)

Publication Number Publication Date
EP0874999A1 true EP0874999A1 (fr) 1998-11-04

Family

ID=7763477

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96915955A Withdrawn EP0874999A1 (fr) 1995-06-01 1996-05-31 Detecteur de champ magnetique pourvu d'un montage en pont constitue d'elements de pontage magnetoresistifs

Country Status (5)

Country Link
EP (1) EP0874999A1 (fr)
JP (1) JPH11505966A (fr)
KR (1) KR19990022160A (fr)
DE (1) DE19520206C2 (fr)
WO (1) WO1996038739A1 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19614460A1 (de) 1996-04-12 1997-10-16 Bosch Gmbh Robert Verfahren zur Herstellung eines GMR-Brückensensors sowie GMR-Brückensensor
DE19649265C2 (de) * 1996-11-28 2001-03-15 Inst Physikalische Hochtech Ev GMR-Sensor mit einer Wheatstonebrücke
WO1998048291A2 (fr) * 1997-04-18 1998-10-29 Koninklijke Philips Electronics N.V. Detecteur de champ magnetique avec pont de wheatstone
DE59812241D1 (de) 1997-09-24 2004-12-16 Infineon Technologies Ag Sensoreinrichtung zur Richtungserfassung eines äu eren Magnetfeldes mittels eines magnetoresistiven Sensorelementes
DE19742366C1 (de) * 1997-09-25 1999-05-27 Siemens Ag Einrichtung mit magnetoresistivem Sensorelement und zugeordneter Magnetisierungsvorrichtung
FR2776064B1 (fr) * 1998-03-10 2000-05-26 Crouzet Automatismes Dispositif de mesure de position angulaire utilisant un capteur magnetique
DE19810838C2 (de) * 1998-03-12 2002-04-18 Siemens Ag Sensoreinrichtung mit mindestens einem magnetoresistiven Sensor auf einer Substratschicht eines Sensorsubstrats
US6270487B1 (en) 1998-05-01 2001-08-07 The Procter & Gamble Company Absorbent articles having a skin care composition disposed thereon that are at least partially assembled using an oil resistant adhesive
JP3623366B2 (ja) 1998-07-17 2005-02-23 アルプス電気株式会社 巨大磁気抵抗効果素子を備えた磁界センサおよびその製造方法と製造装置
JP3623367B2 (ja) * 1998-07-17 2005-02-23 アルプス電気株式会社 巨大磁気抵抗効果素子を備えたポテンショメータ
JP3560821B2 (ja) 1998-07-17 2004-09-02 アルプス電気株式会社 巨大磁気抵抗効果素子を備えたエンコーダ
DE19949714A1 (de) * 1999-10-15 2001-04-26 Bosch Gmbh Robert Magnetisch sensitives Bauteil, insbesondere Sensorelement, mit magnetoresistiven Schichtsystemen in Brückenschaltung
JP3498737B2 (ja) 2001-01-24 2004-02-16 ヤマハ株式会社 磁気センサの製造方法
JP3971934B2 (ja) 2001-03-07 2007-09-05 ヤマハ株式会社 磁気センサとその製法
DE10130620A1 (de) * 2001-06-26 2003-01-16 Siemens Ag System aus Magnetisierungsvorrichtung und magnetoresistiven Sensorelementen in einer Brückenschaltung und Verwendung der Magnetisierungsvorrichtung
JP4028971B2 (ja) * 2001-08-28 2008-01-09 アルプス電気株式会社 磁気センサの組立方法
DE102005047413B8 (de) 2005-02-23 2012-06-06 Infineon Technologies Ag Magnetfeldsensorelement und Verfahren zum Durchführen eines On-Wafer-Funktionstests, sowie Verfahren zur Herstellung von Magnetfeldsensorelementen und Verfahren zur Herstellung von Magnetfeldsensorelementen mit On-Wafer-Funktionstest
US7633039B2 (en) 2006-08-31 2009-12-15 Infineon Technologies Ag Sensor device and a method for manufacturing the same
US7923987B2 (en) 2007-10-08 2011-04-12 Infineon Technologies Ag Magnetic sensor integrated circuit with test conductor
US8559139B2 (en) 2007-12-14 2013-10-15 Intel Mobile Communications GmbH Sensor module and method for manufacturing a sensor module
US8080993B2 (en) 2008-03-27 2011-12-20 Infineon Technologies Ag Sensor module with mold encapsulation for applying a bias magnetic field
WO2011033980A1 (fr) * 2009-09-17 2011-03-24 アルプス電気株式会社 Détecteur magnétique et procédé de fabrication de ce détecteur
JP5397496B2 (ja) * 2011-05-30 2014-01-22 株式会社デンソー 磁気センサ装置およびその製造方法
US9024632B2 (en) 2011-05-30 2015-05-05 Denso Corporation Magnetic sensor with a plurality of heater portions to fix the direction of magnetization of a pinned magnetic layer
DE102014116953B4 (de) 2014-11-19 2022-06-30 Sensitec Gmbh Verfahren und Vorrichtung zur Herstellung einer Magnetfeldsensorvorrichtung, sowie diesbezüglicheMagnetfeldsensorvorrichtung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3442278A1 (de) * 1984-11-20 1986-05-22 Philips Patentverwaltung Gmbh, 2000 Hamburg Magnetfeldmessgeraet
DE3820475C1 (fr) * 1988-06-16 1989-12-21 Kernforschungsanlage Juelich Gmbh, 5170 Juelich, De
JP3088478B2 (ja) * 1990-05-21 2000-09-18 財団法人生産開発科学研究所 磁気抵抗効果素子
DE4232244C2 (de) * 1992-09-25 1998-05-14 Siemens Ag Magnetowiderstands-Sensor
DE4243357A1 (de) * 1992-12-21 1994-06-23 Siemens Ag Magnetowiderstands-Sensor mit verkürzten Meßschichten
DE4243358A1 (de) * 1992-12-21 1994-06-23 Siemens Ag Magnetowiderstands-Sensor mit künstlichem Antiferromagneten und Verfahren zu seiner Herstellung
DE9312674U1 (de) * 1993-08-24 1994-12-22 Siemens Ag Magnetoresistiver Sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9638739A1 *

Also Published As

Publication number Publication date
JPH11505966A (ja) 1999-05-25
DE19520206A1 (de) 1996-12-05
KR19990022160A (ko) 1999-03-25
DE19520206C2 (de) 1997-03-27
WO1996038739A1 (fr) 1996-12-05

Similar Documents

Publication Publication Date Title
DE19520206C2 (de) Magnetfeldsensor mit einer Brückenschaltung von magnetoresistiven Brückenelementen
EP0875000B1 (fr) Dispositif d'aimantation d'elements capteurs magnetoresistifs a couche mince dans un montage en pont
DE69534013T2 (de) Magnetfeldfühler und Verfahren zu ihrer Herstellung
DE10028640B4 (de) Wheatstonebrücke, beinhaltend Brückenelemente, bestehend aus einem Spin-Valve-System, sowie ein Verfahren zu deren Herstellung
EP0905523B1 (fr) Capteur pour mesurer la direction d'un champ magnétique extern au moyen d'un élément magnétorésistif
DE60037790T2 (de) Magnetisches messsystem mit irreversibler charakteristik, sowie methode zur erzeugung, reparatur und verwendung eines solchen systems
DE102006035661B4 (de) Magnetfelderfassungsvorrichtung und Verfahren zu deren Einstellung
DE19536433C2 (de) Vorrichtung zur berührungslosen Positionserfassung eines Objektes und Verwendung der Vorrichtung
DE69631917T2 (de) Magnetsensor mit einem Riesenmagnetowiderstand und sein Herstellungsverfahren
DE19649265C2 (de) GMR-Sensor mit einer Wheatstonebrücke
DE4427495C2 (de) Sensoreinrichtung mit einem GMR-Sensorelement
WO2006136577A1 (fr) Capteur de courant permettant la mesure de courant a separation galvanique
EP0807827A2 (fr) Capteur sensible au champ magnétique avec plusieurs éléments capteurs GMR
DE102012210378A1 (de) XMR - Winkelsensoren
EP0829018B1 (fr) Dispositif de magnetisation pour element de detection a couche mince magnetoresistive comportant une partie de couche de polarisation
DE19532674C1 (de) Drehwinkelgeber unter Verwendung von Giant Magnetowiderstandsmaterialien
DE10017374A1 (de) Magnetische Koppeleinrichtung und deren Verwendung
DE10128135A1 (de) Magnetoresistive Schichtanordnung und Gradiometer mit einer derartigen Schichtanordnung
DE19949714A1 (de) Magnetisch sensitives Bauteil, insbesondere Sensorelement, mit magnetoresistiven Schichtsystemen in Brückenschaltung
EP0730162A2 (fr) Dispositif capteur muni d'un circuit en pont des éléments capteur magnétorésistifs
WO2002082111A1 (fr) Procede servant a reguler la magnetisation dans une structure en couches, et sa mise en oeuvre
DE102015100226A1 (de) Magnetfeldsensor und Magnetfelderfassungsverfahren
DE19742366C1 (de) Einrichtung mit magnetoresistivem Sensorelement und zugeordneter Magnetisierungsvorrichtung
DE102019126320B4 (de) Magnetoresistiver Sensor und Fertigungsverfahren für einen magnetoresistiven Sensor
DE19743335C1 (de) Sensoreinrichtung mit einer Brückenschaltung ihrer einen großen magnetoresistiven Effekt zeigenden Brückenelemente

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 19990723

18D Application deemed to be withdrawn

Effective date: 19991201