WO2002082111A1 - Procede servant a reguler la magnetisation dans une structure en couches, et sa mise en oeuvre - Google Patents

Procede servant a reguler la magnetisation dans une structure en couches, et sa mise en oeuvre Download PDF

Info

Publication number
WO2002082111A1
WO2002082111A1 PCT/DE2002/000900 DE0200900W WO02082111A1 WO 2002082111 A1 WO2002082111 A1 WO 2002082111A1 DE 0200900 W DE0200900 W DE 0200900W WO 02082111 A1 WO02082111 A1 WO 02082111A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetization
resulting
ferromagnetic layer
antiferromagnetic
Prior art date
Application number
PCT/DE2002/000900
Other languages
German (de)
English (en)
Inventor
Gunther Haas
Andrew Johnson
Gilbert Moersch
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2002082111A1 publication Critical patent/WO2002082111A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Definitions

  • the invention relates to a method for setting, in particular for local change, a resulting direction of magnetization in a layer arrangement according to the type of the main claim, and the use of this method for producing a magnetoresistive layer system working according to the spin valve principle.
  • a magnetoresistive layer system which operates according to the spin valve principle has a soft magnetic or ferromagnetic detection layer, an adjacent, non-magnetic, electrically conductive intermediate layer and a reference layer which is as hard as possible and is adjacent to the intermediate layer, with a predetermined spatial orientation of the direction of the resulting magnetization on.
  • a layer system shows a change in the electrical resistance of the intermediate layer in accordance with:
  • R R 0 + C cos ⁇
  • denotes the angle between the magnetization ⁇ ti belonging to the detection layer or its direction and the magnetization m 2 belonging to the reference layer or its direction. Since the magnetization rri ⁇ in the soft direction of the magnetic detection layer can be changed by an externally applied magnetic field, aligning itself as far as possible parallel to this, a corresponding change in resistance occurs in the intermediate layer, which is typically in the range of 5% and 15% ("Giant Magneto Resistance "(GMR)).
  • Magnetoresistive coating systems are widely used in magnetic disks and reading heads, but they are also suitable for measuring magnetic field strengths and directions of magnetic fields and in particular for contactless detection of speeds and angles as well as quantities derived therefrom, for example in motor vehicles.
  • the hard magnetic reference layer In r ⁇ agnetoresistive layer systems based on the spin valve principle, it is also known to design the hard magnetic reference layer from two adjacent partial layers arranged one above the other, a relatively soft magnetic, ferro-magnetic layer with the magnetization m 2 directly adjacent to the intermediate layer, and one the underlying antiferromagnetic layer, which defines the spatial orientation of the magnetization m 2 in the soft magnetic, ferromagnetic layer via the so-called "Exchange Bias Effect". Since the antiferromagnetic layer has no or hardly any magnetic properties after being generated by an external magnetic field Alignment or unidirectional anisotropy in the reference layer must be induced during deposition of the antiferromagnetic layer by applying an external magnetic field.
  • Such a construction of the reference layer from ferromagnetic and antiferromagnetic layers has the advantage that even relatively strong external magnetic fields do not become one Change the direction of the magnetization m 2 in the reference layer.
  • L0 are designed, for example, as meandering conductor tracks, rectangles or circles, to be structured, and then to be interconnected by means of conductor tracks to form a Wheatstone bridge.
  • a direction-dependent one from an externally applied magnetic field For example, for an angle measurement, a direction-dependent one from an externally applied magnetic field
  • Obtaining L5 bridge output signal is further known to distinguish the magnetization directions of the regions of the reference layer which form the four individual resistors R 1A R 2 , R 3 and R.
  • the magnetization directions of the regions of the reference layer that are caused by the resistances are further known to distinguish the magnetization directions of the regions of the reference layer which form the four individual resistors R 1A R 2 , R 3 and R. The magnetization directions of the regions of the reference layer that are caused by the resistances
  • Bridge circuits are problematic in a magnetoresistive layer system with two Wheatstone rotated against one another, in order to produce a sensor that detects locally different and simultaneously defined directions of the resulting magnetization m 2 in particular on a chip.
  • it has already been proposed to replace the antiferromagnetic partial layer by a so-called “artificial” antiferromagnet, which has a resulting magnetic moment.
  • the resulting magnetization m 2 in the reference layer can be made retrospectively, ie even after the deposition of the layer system of artificial antiferromagnet and reference layer, locally change again by means of an external magnetic field or set L0.
  • an external magnetic field or set L0 external magnetic field
  • Such a GMR sensor element is offered by Infineon AG, Kunststoff, under the designation GMR-B6.
  • the object of the invention was to provide a method with which locally different directions of a resulting magnetization in a layer arrangement, in particular on a chip, or these directions as well
  • the method according to the invention for setting, in particular for locally changing, a resulting direction of magnetization in a layer arrangement has the advantage over the prior art that a magnetoresistive layer system which works according to the spin valve principle can be produced in a particularly simple manner, in which Areas are present within the reference layer, each with a different, in particular pairwise perpendicular magnetization direction.
  • a sensor element based on the GMR effect can be produced, in which locally different directions of the resulting magnetization are present on a chip or a substrate, so L5 that these areas can be interconnected to form a Wheatstone bridge in order to to achieve a large degree of temperature independence of the specific electrical resistance in the current-carrying intermediate layer.
  • Another advantage of the method according to the invention is that it is possible to dispense with the use of an “artificial” antiferromagnet, so that external interference fields do not impair the layer arrangement or the locally Different directions of the resulting magnetization remain unchanged due to such external interference fields.
  • the method according to the invention can easily be integrated into the mass production of sensor elements and the usual processes.
  • one has the possibility of simply determining the shape of the regions of different magnetization directions via the local heating on the substrate, i.e. For example, to generate locally meandering, circular or rectangular areas which are then interconnected.
  • the antiferromagnetic layer in particular locally, is heated above the threshold temperature T b by irradiation with a laser.
  • a laser can be particularly simple, defined and localized.
  • the irradiation with the laser is carried out by scanning strips to be irradiated, so that stripes with on the substrate in the ferromagnetic layer adjacent to the antiferromagnetic layer
  • 35 see width from 5 ⁇ m to 100 ⁇ m and a length of 1 mm up to 120 mm, depending on the size of the substrate or wafer used.
  • an adjustment, in particular a change, of the locally resulting magnetization directions m 2 can advantageously be made in the assigned areas of the ferromagnetic layer by an external magnetic field applied during the heating.
  • the locally different magnetization directions m 2 are preferably aligned perpendicular to one another.
  • the external magnetic field used to change or set the local direction of magnetization during heating up already during the heating of the antiferromagnetic layer above the threshold temperature T b and in particular during the entire time, within which the respective range the antiferromagnetic layer is above this threshold temperature is maintained.
  • the external magnetic field is only applied above the threshold temperature after it has been heated up and is maintained at least until the temperature drops below the threshold temperature.
  • the result is that the resulting direction of magnetization of the ferromagnetic layer in the region adjacent to the heated region of the antiferromagnetic layer after cooling at least approximately to that during the
  • Time of heating above the threshold temperature applied direction of the external magnetic field is aligned in parallel.
  • the heated area of the antiferromagnetic layer even after cooling below the threshold temperature T b again a stabilization of the area of the ferromagnetic layer adjacent to this area with respect to the direction of the resulting magnetization m 2 there .
  • a local stabilization direction of the resulting magnetization in the ferromagnetic layer is defined by the local heating.
  • a ferromagnetic layer is particularly suitable for a soft magnetic layer, for example a nickel layer, an iron layer, a cobalt layer or a layer with an alloy of two or three of the elements mentioned.
  • a nickel oxide layer or an iridium-manganese layer, for example, is suitable as the antiferromagnetic layer.
  • FIG. 1 shows a schematic diagram of a magnetoresistive layer system based on the spin valve principle
  • FIG. 2a shows a section through FIG. 1 below the threshold temperature
  • FIG. 2b shows a section through FIG. 1 after heating above the threshold temperature and cooling with an external magnetic field H applied
  • 2c shows the magnetoresistive layer system according to FIG. 1 and FIG. 2b on a substrate.
  • FIG. 3 shows the local setting of the magnetization direction m 2 in the form of strips
  • FIG. 4 explains an interconnection of local areas with different magnetization directions to form two Wheatstone bridge circuits.
  • the invention is based on a magnetoresistive layer system according to the spin valve principle shown in FIG. 1, which has a GMR effect. It is provided that an electrically conductive intermediate layer 3, which is current-carrying during operation, is arranged on a reference layer 2, which at least locally has a resulting magnetization m 2 with a predetermined, fixed or “pinned” magnetization direction, and a detection layer 1 is arranged thereon detection layer 1 is, for example, a soft magnetic layer whose magnetization m **. always at least approximately aligns parallel to an externally applied magnetic field. Since, in such an external magnetic field, the direction of magnetization m 2, as already explained, at least remains largely unaffected, resulting an angle-dependent electrical resistance of the intermediate layer (GMR effect).
  • GMR effect angle-dependent electrical resistance of the intermediate layer
  • FIG. 2c shows that an optional buffer layer 11, which consists of tantalum and is a few nanometers thick, has first been applied to a substrate 10 made of, for example, thermally oxidized silicon, for example using sputtering technology.
  • the detection layer 1 was then deposited on this buffer layer 11, which consists for example of a nickel-iron layer a few nanometers thick or a cobalt layer.
  • the ferromagnetic detection layer is preferably a soft magnetic, ferroelectric layer.
  • the intermediate layer 3 was then in a known manner on the detection layer 1 in the form of a few
  • Nanometer thick layer for example made of copper, deposited.
  • a ferromagnetic layer 2a made of a preferably relatively soft magnetic material such as a nickel Iron alloy or cobalt deposited with a thickness of a few nanometers before an antiferromagnetic layer 2b was deposited thereon, which consists, for example, of a few nanometer thick nickel oxide layer or an iridium-manganese layer.
  • the ferromagnetic layer 2a and the adjacent antiferromagnetic layer 2b form the reference layer 2 according to FIG. 1.
  • the layer sequence according to FIG. 2c can also be reversed, i.e. the reference layer 2 is deposited on the buffer layer 11, then the intermediate layer 3 and then the detection layer 1.
  • FIG. 2c it is further provided that at least when the reference layer 2 is generated from the two sub-layers 2a, 2b by applying an external magnetic field during the deposition or deposition, a homogeneous alignment of the resulting magnetic moment or the magnetization m 2 in the first ferromagnetic layer 2a is set.
  • this application of the external magnetic field during the deposition or deposition favors unidirectional anisotropy in the reference layer 2, which is also referred to as the “pinning” direction.
  • the antiferromagnetic layer 2b For local adjustment or change of the “pinning” direction in the reference layer 2 or in particular in the ferromagnetic layer 2a, ie specifically the direction of the magnetization m 2 resulting locally there, it is now further provided that at least the antiferromagnetic layer 2b, but preferably the antiferromagnetic layer 2b and the ferromagnetic layer 2a are heated above a threshold temperature T b by local irradiation with the aid of a laser.
  • This threshold temperature is also referred to as the "blocking temperature" of the antiferromagnetic layer 2b.
  • the heating is based on the knowledge that when an antiferromagnetic layer is heated above this threshold temperature T b , the so-called “Exchange 5 bias effect” disappears, ie the antiferromagnetic
  • Layer 2b no longer induces a preferred direction of magnetization m 2 in the adjacent ferromagnetic layer 2a above this threshold temperature T b .
  • the stabilization of the direction of the magnetization m 2 , L0, which was caused by the antiferromagnetic layer 2b, is also lost above this threshold temperature T b .
  • L5 th areas of the antiferromagnetic layer 2b for example insulated areas with a size of 5 ⁇ m 2 to 500 ⁇ m 2 , or alternatively also strips with a width of 5 ⁇ m to 100 ⁇ m and a length of 1 mm to 120 mm, successively with a laser be heated.
  • the laser offers
  • the threshold temperature T b depends on
  • FIG. 2a first shows the state below the threshold temperature T b at which the antiferromagnetic
  • FIG. 2b shows how radiation with a Laser first heated the antiferromagnetic layer 2b above the threshold temperature T b , whereby at least after the threshold temperature T b has been exceeded and during the subsequent cooling, an external magnetic field H of the indicated direction has been applied.
  • the antiferromagnetic layer 2b again below the threshold temperature T b cools, sets of b by the heating above the threshold temperature T off "exchange bias effect" again, ie the antiferromagnetic layer 2b "pins” or fixes again a resulting magnetization m 2 in the layer 2a via the boundary layer between the antiferromagnetic layer 2b and the ferromagnetic layer 2a with the direction shown in FIG. 2b corresponding to the direction of the temporarily applied external magnetic field H.
  • the direction of the magnetization m 2 is oriented in accordance with the direction of the external magnetic field H applied during the heating above the threshold temperature. This alignment only occurs in the areas that are adjacent to the heated areas. Other areas are not affected by the change in the direction of magnetization.
  • FIG. 3 is a top view of the ferromagnetic layer 2a according to FIG.
  • FIG. 3 shows a first strip 5, a second strip 6, a third strip 8 and a fourth strip 9, each of which has a different direction of magnetization m 2 in the rectangular areas shown.
  • the rectangular regions of the ferromagnetic layer 2a adjacent to the heated regions of the antiferromagnetic layer 2b are designed in the form of insulated areas with a size of 5 ⁇ m 2 to 500 ⁇ m 2 .
  • the individual areas or strips 5, 6, 8, 9 with different directions of the magnetization m 2 are at a minimum distance of 20 ⁇ m to 100 ⁇ m from one another.
  • a corresponding mask is preferably used to generate the rectangular or alternatively also meandering areas with locally different magnetization directions according to FIG. 3 by heating corresponding assigned areas of the antiferromagnetic layer 2b.
  • the heating can take place on a wafer use or alternatively also on a sensor element that has already been processed with or without an additional passivation layer applied on the reference layer 2.
  • the laser treatment and thus the local change in the resulting magnetization direction according to FIG. 3 can also be carried out in a final backend test.
  • FIG. 4 explains the connection of two Wheatstone bridge circuits generated on the substrate 10 in the ferromagnetic layer 2a according to FIG. 2c or FIG. 1.
  • the areas with different directions of the resulting magnetization m 2 according to FIG. 3 were routed to a first Wheatstone bridge 40 and a second Wheatstone bridge 41 via conventional conductor layers or conductor tracks. interconnected.
  • the first Wheatstone bridge 40 is formed by the areas within the first strip 5 and the second strip 6.
  • areas lying within 5 of the third strip 8 were connected to areas lying within the fourth strip 9 as shown. In this way, the first Wheatstone bridge 40 is rotated by 90 ° with respect to the second Wheatstone bridge 41.
  • the first Wheatstone bridge 40 delivers a cos signal while the second delivers a sin signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hall/Mr Elements (AREA)

Abstract

La présente invention concerne un procédé servant à réguler, notamment à modifier localement, la direction de magnétisation résultante (m2) dans une structure en couches (2) comprenant une couche ferromagnétique (2a) et une couche antiferromagnétique (2b) voisine. A cet effet, la couche antiferromagnétique (2b) est tout d'abord au moins partiellement portée au-dessus d'une température seuil (Tb), notamment au moyen d'une laser, l'effet de cette zone sur la direction de magnétisation résultante (m2) de la zone voisine (5, 6, 8, 9) de la couche ferromagnétique (2a) disparaissant au moins dans une large mesure au-dessus de ladite température seuil. Ensuite, au moins la zone (5, 6, 8, 9) de la couche ferromagnétique (2a), voisine de la zone chauffée de la couche antiferromagnétique (2b), est exposée à un champ magnétique externe (H) de direction prédéterminée, et la couche antiferromagnétique (2b) est finalement refroidie en-dessous de la température seuil (Tb). Le procédé de l'invention convient notamment à la réalisation d'un système de couches magnétorésistif fonctionnant selon le principe des vannes de spin avec des directions de magnétisation (m2) différentes par zones et qui sont reliées sous la forme de ponts de Wheatstone.
PCT/DE2002/000900 2001-04-07 2002-03-14 Procede servant a reguler la magnetisation dans une structure en couches, et sa mise en oeuvre WO2002082111A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10117355.5 2001-04-07
DE10117355A DE10117355A1 (de) 2001-04-07 2001-04-07 Verfahren zur Einstellung einer Magnetisierung in einer Schichtanordnung und dessen Verwendung

Publications (1)

Publication Number Publication Date
WO2002082111A1 true WO2002082111A1 (fr) 2002-10-17

Family

ID=7680739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/000900 WO2002082111A1 (fr) 2001-04-07 2002-03-14 Procede servant a reguler la magnetisation dans une structure en couches, et sa mise en oeuvre

Country Status (2)

Country Link
DE (1) DE10117355A1 (fr)
WO (1) WO2002082111A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004848A1 (fr) * 2013-04-22 2014-10-24 Centre Nat Rech Scient Procede de modification de la valeur d'une resistance electrique comportant un materiau ferromagnetique
US10665778B2 (en) 2016-05-17 2020-05-26 Infineon Technologies Ag Methods and apparatuses for producing magnetoresistive apparatuses
DE102021212072A1 (de) 2021-10-26 2023-04-27 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Einstellung der Magnetisierung in mindestens einem Bereich einer Halbleitervorrichtung
DE102021212669A1 (de) 2021-11-10 2023-05-11 3D-Micromac Ag Verfahren und System zur Herstellung eines xMR-Magnetfeldsensors
DE102021214706A1 (de) 2021-12-20 2023-06-22 Robert Bosch Gesellschaft mit beschränkter Haftung Sensorvorrichtung und Herstellungsverfahren für eine Sensorvorrichtung

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10202287C1 (de) * 2002-01-22 2003-08-07 Siemens Ag Verfahren zur Herstellung einer monolithischen Brückenschaltung bestehend aus mehreren, als magneto-resistive Elemente ausgebildeten Brückengliedern und eine hiernach hergestellte monolithische Brückenschaltung
DE10230455A1 (de) 2002-07-06 2004-01-22 Robert Bosch Gmbh Verfahren zur Einstellung oder lokalen Veränderung einer Magnetisierung in einer Schicht einer magnetoresistiven Schichtanordnung, Heizstempel zum Anheizen der magnetoresistiven Schichtanordnung und deren Verwendung
DE10249752A1 (de) * 2002-10-25 2004-05-13 Robert Bosch Gmbh Neigungssensor und dessen Verwendung
DE10251566A1 (de) * 2002-11-06 2004-05-27 Robert Bosch Gmbh Verfahren zur Herstellung einer magnetoresistiven Schichtanordnung oder eines Sensorelementes oder Speicherelementes damit, sowie GMR-Sensorbauelement oder GMR-Speicherbauelement
DE102004032483A1 (de) * 2004-07-05 2006-01-26 Infineon Technologies Ag Verfahren zum Erzeugen einer lokalen Magnetisierung und Bauelement
DE102005047482A1 (de) 2005-10-04 2007-04-12 Infineon Technologies Ag Magnetoresistives Sensormodul und Verfahren zum Herstellen desselben
DE102016002591A1 (de) * 2016-03-03 2017-09-07 Infineon Technologies Ag Verfahren und Werkzeug zum Magnetisieren von zu magnetisierenden Strukturen
CN106871778B (zh) 2017-02-23 2019-11-22 江苏多维科技有限公司 一种单芯片双轴磁电阻角度传感器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686837A (en) * 1994-04-15 1997-11-11 U.S. Philips Corporation Magnetic field sensor and instrument comprising such a sensor
WO2000079298A2 (fr) * 1999-06-18 2000-12-28 Koninklijke Philips Electronics N.V. Systemes magnetiques aux caracteristiques irreversibles et procede pour fabriquer, reparer et exploiter ces systemes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686837A (en) * 1994-04-15 1997-11-11 U.S. Philips Corporation Magnetic field sensor and instrument comprising such a sensor
WO2000079298A2 (fr) * 1999-06-18 2000-12-28 Koninklijke Philips Electronics N.V. Systemes magnetiques aux caracteristiques irreversibles et procede pour fabriquer, reparer et exploiter ces systemes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004848A1 (fr) * 2013-04-22 2014-10-24 Centre Nat Rech Scient Procede de modification de la valeur d'une resistance electrique comportant un materiau ferromagnetique
WO2014173841A1 (fr) * 2013-04-22 2014-10-30 Centre National De La Recherche Scientifique Procede de modification de la valeur d'une resistance electrique comportant un materiau ferromagnetique
US10665778B2 (en) 2016-05-17 2020-05-26 Infineon Technologies Ag Methods and apparatuses for producing magnetoresistive apparatuses
DE102021212072A1 (de) 2021-10-26 2023-04-27 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Einstellung der Magnetisierung in mindestens einem Bereich einer Halbleitervorrichtung
WO2023072593A1 (fr) 2021-10-26 2023-05-04 Robert Bosch Gmbh Procédé de réglage de l'aimantation dans au moins une zone d'un dispositif à semi-conducteur
DE102021212669A1 (de) 2021-11-10 2023-05-11 3D-Micromac Ag Verfahren und System zur Herstellung eines xMR-Magnetfeldsensors
WO2023083759A1 (fr) 2021-11-10 2023-05-19 3D-Micromac Ag Procédé et système de fabrication d'un capteur de champ magnétique xmr
DE102021214706A1 (de) 2021-12-20 2023-06-22 Robert Bosch Gesellschaft mit beschränkter Haftung Sensorvorrichtung und Herstellungsverfahren für eine Sensorvorrichtung
WO2023117452A1 (fr) 2021-12-20 2023-06-29 Robert Bosch Gmbh Appareil de détection et procédé de production d'un appareil de détection

Also Published As

Publication number Publication date
DE10117355A1 (de) 2002-10-17

Similar Documents

Publication Publication Date Title
DE69534013T2 (de) Magnetfeldfühler und Verfahren zu ihrer Herstellung
DE60037790T2 (de) Magnetisches messsystem mit irreversibler charakteristik, sowie methode zur erzeugung, reparatur und verwendung eines solchen systems
DE102007032867B4 (de) Magnetoresistive Magnetfeldsensorstrukturen und Herstellungsverfahren
DE69818884T2 (de) Magnetoresistiver Sensor
DE19520206C2 (de) Magnetfeldsensor mit einer Brückenschaltung von magnetoresistiven Brückenelementen
DE10028640A1 (de) Wheatstonebrücke, beinhaltend Brückenelemente, bestehend aus einem Spin-Valve-System, sowie ein Verfahren zu deren Herstellung
DE112010002899T5 (de) Verfahren zur Herstellung eines Magnetowiderstandseffektelements, eines Magnetsensors, einer Drehwinkel-Erfassungsvorrichtung
EP3221904A1 (fr) Procédé et dispositif de réalisation d'un dispositif de détection de champ magnétique et dispositif de détection de champ magnétique correspondant
WO2006136577A1 (fr) Capteur de courant permettant la mesure de courant a separation galvanique
DE19649265C2 (de) GMR-Sensor mit einer Wheatstonebrücke
DE10017374B4 (de) Magnetische Koppeleinrichtung und deren Verwendung
DE102016111256B4 (de) Magnetfeldgenerator, Magnetsensorsystem und Magnetsensor
DE102006046739B4 (de) Verfahren zum Betreiben eines Magnetfeldsensors und zugehöriger Magnetfeldsensor
EP1567878B1 (fr) Element de detection magnetoresistif et procede pour diminuer le defaut d'alignement angulaire d'un element de detection magnetoresistif
DE19532674C1 (de) Drehwinkelgeber unter Verwendung von Giant Magnetowiderstandsmaterialien
WO2002082111A1 (fr) Procede servant a reguler la magnetisation dans une structure en couches, et sa mise en oeuvre
DE10202287C1 (de) Verfahren zur Herstellung einer monolithischen Brückenschaltung bestehend aus mehreren, als magneto-resistive Elemente ausgebildeten Brückengliedern und eine hiernach hergestellte monolithische Brückenschaltung
DE10128150C1 (de) Magnetoresistives Sensorsystem
WO2002101406A1 (fr) Ensemble de couches magnetoresistif et gradiometre comportant un ensemble de couches de ce type
DE19949714A1 (de) Magnetisch sensitives Bauteil, insbesondere Sensorelement, mit magnetoresistiven Schichtsystemen in Brückenschaltung
DE102015100226A1 (de) Magnetfeldsensor und Magnetfelderfassungsverfahren
DE19742366C1 (de) Einrichtung mit magnetoresistivem Sensorelement und zugeordneter Magnetisierungsvorrichtung
EP1527351A1 (fr) Systeme de couches magnetoresistif et element capteur comprenant ce systeme de couches
DE102004032483A1 (de) Verfahren zum Erzeugen einer lokalen Magnetisierung und Bauelement
DE19949713C2 (de) Magnetoresistives Schichtsystem

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP