EP0872563B1 - Dispositif et procédé de traitement thermique - Google Patents

Dispositif et procédé de traitement thermique Download PDF

Info

Publication number
EP0872563B1
EP0872563B1 EP98400761A EP98400761A EP0872563B1 EP 0872563 B1 EP0872563 B1 EP 0872563B1 EP 98400761 A EP98400761 A EP 98400761A EP 98400761 A EP98400761 A EP 98400761A EP 0872563 B1 EP0872563 B1 EP 0872563B1
Authority
EP
European Patent Office
Prior art keywords
sleeve
shielding
nozzle
delivery
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP98400761A
Other languages
German (de)
English (en)
Other versions
EP0872563A1 (fr
Inventor
Francis Remy
Bernard Hansz
Vincent Gourlaouen
Christian Coddet
François Pesme
Han Lin Liao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9506378&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0872563(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0872563A1 publication Critical patent/EP0872563A1/fr
Application granted granted Critical
Publication of EP0872563B1 publication Critical patent/EP0872563B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B2045/0212Cooling devices, e.g. using gaseous coolants using gaseous coolants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems

Definitions

  • the present invention relates in particular to a device and method for heat treatment of a material and, more particularly, to a device and a surface coating process by applying a thermal spray method with cooling.
  • treatment thermal means any technique for treating a substrate-material using cooling at least part of said substrate material, in particular: surface coating, quenching, nitriding, case hardening, plasma spraying, flame cutting, laser cutting, HVOF projection (for High Velocity Oxy Fuel in English), flame projection ....
  • surface coating quenching, nitriding, case hardening, plasma spraying, flame cutting, laser cutting, HVOF projection (for High Velocity Oxy Fuel in English), flame projection ....
  • a spray jet consisting of hot carrier gas and particles of coated or softened coating material is directed onto the surface of the material to be treated or material-substrate, which surface is cooled before and / or after treatment with a jet of coolant, such as liquid argon or carbon dioxide (CO 2 ).
  • coolant such as liquid argon or carbon dioxide (CO 2 ).
  • So plasma projection is widely used to make coatings on any type of material, such as composite materials, for example resins or plastics, which must be coated with layers thin ceramic or metallic layers.
  • This technique is also used to make protective coatings in the mechanical field, for example for aeronautics or automotive, or in that of energy.
  • the thermal spraying technique involves very high temperatures and calorific values important. Indeed, the projection jet composed, in general, hot carrier gas and particles of coating material must be at a temperature high enough to soften or melt said particles of filler coating material and on the other hand, to obtain a heat treatment effective surface material or workpiece undergo the coating.
  • Said material to be coated or substrate material therefore undergoes considerable heating on the one hand, due to the amount of heat supplied directly by hot gases, and secondly, by coating particles at least partially melted which, when they come into contact with the substrate material, transfer to the latter an amount of significant heat in a very short time.
  • the substrate material undergoes a warming of several hundreds of degrees and a thermal equilibrium is established, on the one hand, by heat exchange with the atmosphere ambient and, on the other hand, by diffusion of heat to across said substrate material and the layer of coating.
  • the thickness of the coating does not may in some cases exceed a few tenths of millimeter, which greatly limits applications industrial possibilities.
  • the coating layer when intended to play the role of thermal barrier, that is to say thermal insulation, it must, in some case, have a thickness well beyond the millimeter what which is therefore not feasible.
  • the properties of the substrate material to be coated also come into line of consideration, in particular, the coefficient thermal expansion and thermal conductivity, which reflects the material's ability to evacuate calories.
  • additional cooling allows, in addition, to apply the projection technique thermal coating of so-called substrate materials "sensitive", on which the temperature can have a harmful influence, such as organic materials or composites, paper or wood, or low metals melting point, such as aluminum or copper.
  • one of the goals of cooling additional is to allow, by quenching, an evacuation efficient in calories and, in any case, faster that by letting the part to be treated cool down by itself, apart from the hot gas jet.
  • cooling effective also significantly reduces the projection time and therefore costs, given that no need to leave time for the pieces processed to cool by themselves; it was possible, in some cases, to divide the projection time by one factor 10.
  • the cooling air jet disturbs as little as possible the hot jet, that is to say the mixture comprising one or more hot gases and, in general, particles in fusion or softened, in order to avoid a cooling of it, oxidation of the particles of molten coating, contamination of the layer coating ...
  • the temperature of the substrate material is a parameter critical since if its temperature exceeds one some value, we can see a degradation irreversible of said substrate material.
  • An alternative then consists in using as cooling fluid, a refrigerating fluid, such as argon or carbon dioxide (CO 2 ).
  • a refrigerating fluid such as argon or carbon dioxide (CO 2 ).
  • the liquid argon used as a cooling helps maintain the temperature of the substrate material and / or the coating layer at a temperature generally between 0 and 150 ° C, this temperature essentially dependent on pressure liquid argon and the argon gas flow rate used, which ensure atomization of the flow of liquid argon into fine droplets of varying diameter.
  • a cooling efficiency allows layer deposition thick coating, for example of the order 3 mm.
  • liquid argon as coolant causes an increase in production costs and installation of equipment more expensive. From there, use at scale industrial argon, as a cooling, is generally limited to treatment high value added parts.
  • CO 2 is very advantageous because, on the one hand, it makes it possible to obtain similar performances with argon, since the temperature of the material-substrate can be maintained at values of the order room temperature and, on the other hand, its cost is significantly lower than that of argon.
  • Such CO 2 cooling can therefore be applied to the heat treatment of all kinds of parts, whatever their added value.
  • CO 2 cooling is also well suited for obtaining thin coating deposits on substrate materials with a high expansion coefficient, such as aluminum alloys. By soaking in a cryogenic liquid, it is then possible to separate the coating from the support material.
  • CO 2 cooling allows, in particular, the deposition of a coating layer of tungsten carbide / cobalt on a support material, avoiding the formation of carbide harmful for the desired properties, namely in particular the resistance to wear.
  • This CO 2 cooling also allows the chromium / nickel layer to be deposited on aluminum parts, which cannot be achieved using compressed air, since the difference in expansion coefficient between the layer of chrome / nickel coating and the aluminum part requires keeping the temperature below 80 ° C.
  • document EP-A-546359 describes a device heat treatment comprising projection means delivering at least one jet containing at least one carrier gas hot, and cooling means comprising a nozzle delivering coolant, i.e. dioxide carbon, the nozzle being provided with an expansion nozzle forming a sleeve around a part of the nozzle, in which nozzle an expansion of the cooling.
  • coolant i.e. dioxide carbon
  • document EP-A-124432 describes a heat treatment device comprising means for cooling comprising a nozzle delivering a fluid cooling, the nozzle being provided with a nozzle head forming a sleeve around part of the nozzle.
  • the architecture of the nozzle is relatively complex since it includes a first internal passage for supply a coolant and a second internal passage to convey a carrier gas, the first and second passages ending in the free space located between the nozzle and the nozzle head, so as to obtain a mixture of said coolant and carrier gas in said free space.
  • a refrigerant usually carbon dioxide liquid
  • distribution means delivering said fluid, in general, one or more nozzles, within which, liquid carbon dioxide expands and gives rise to a mixture two-phase consisting of carbon dioxide and snow carbonic.
  • the nozzle In order to obtain a laminar jet, the nozzle usually in the form of a geometry tube well determined: size, shape ...
  • This icing of the nozzles is very harmful because it generally causes the formation of a plug which makes the jet of coolant, such as CO 2 , unstable and turbulent, which results, on the one hand, in improper cooling and ineffective of the substrate material and / or of the coating layer and, on the other hand, can cause a harmful disturbance of the thermal spray jet.
  • coolant such as CO 2
  • the aim of the present invention is therefore to solve this problem of icing of the nozzles delivering a cooling fluid, such as CO 2 , and therefore, by the same token, of improving the existing heat treatment devices and methods, by avoiding condensation.
  • the present invention therefore relates to a device heat treatment according to claim 1.
  • the invention relates to a device according to claim 2.
  • the present invention also relates to a method heat treatment, in which a material using a device according to the invention, preferably the heat treatment is a coating of surface, i.e. the application of one or more layers of one or more coating materials on at minus part of the surface of a substrate material or of a room.
  • the invention further relates to a method of heat treatment of a material according to claim 6.
  • the method according to the invention is a surface coating process.
  • the device or method according to the invention can be used in a manufacturing process of a part made of a material chosen by metals, metal alloys, polymers or plastics, organic and mineral materials, for example a room combustion chamber or medical prosthesis.
  • the gas protection either consisting of nitrogen or dry air
  • any gas or mixture gas with a dew point low enough to not not cause icing is likely to be used as such.
  • the present invention can be applied in all fields where cooling by means of a refrigerant, such as CO 2 , is necessary.
  • the cooling nozzles usable in a heat treatment process and shown on the Figures 1 to 4 are commonly accessible nozzles in trade that can be obtained from companies specialized in the marketing of this type of products, such as the companies AGEFKO or SPRAYING SYSTEM.
  • FIG. 1 there is shown a nozzle 3 for distributing carbon dioxide (liquid CO 2 ) conveyed from a place of storage in liquid CO 2 , not shown, to said nozzle 3 by means, in particular, of a pipe. or hollow tube 1, in the direction shown by arrow F.
  • carbon dioxide liquid CO 2
  • the nozzle 3 has a part 4 or downstream end whose section is of substantially cylindrical shape or oval and a part 4 'or upstream end connected to the downstream end 1 'of the pipe 1 by through connection means 2, for example by screwing.
  • this sleeve 5 formed of one or several pieces, is fixed by its proximal end 5a by fixing means 7 on the body of the tube 1 to near its end 1 'and upstream thereof.
  • the fixing means 7 allow also to provide a seal, preventing a harmful entry of atmospheric air at the connection of the proximal end 5a to the tube 1.
  • the other end of the sleeve 5 or distal end 5b is free and comprises a part or part 12 advancing towards the end 4 of the nozzle 3 and making it possible to sheath the shielding gas around said end 4 of the nozzle 3, which prevents ambient humidity from settling there and cause icing.
  • the part 12 can be an attached and fixed part on the end 5b, for example by screwing, or make integral with the end 5b, that is to say that the end 5b and the part 12 are in one piece.
  • the sleeve 5 therefore forms a sort of corolla protective covering the nozzle 3, and makes it possible to maintain the latter under a gaseous protective atmosphere.
  • this sleeve 5 are arranged one or more perforations or orifices 18 making it possible to introduce a dry shielding gas, such as nitrogen or air dry, inside the sleeve 5, so as to create a gas sweep and / or a protective gas atmosphere in the vicinity 15 of the nozzle 3 or of the nozzle part 3 located inside 15 of the protective sleeve 5.
  • a dry shielding gas such as nitrogen or air dry
  • the dry protective gas is brought from a place of storage or production, by means of routing 6, such as pipes, to the orifices 18, of kind of crossing said orifices 18 in the direction indicated by arrow F '.
  • connection means 17 allow fixing said pipe 6 to the sleeve 5 in look of the perforations 18; sealing means 16, like an O-ring, seal this connection by preventing parasitic air inlets atmospheric charged with humidity at the level of said connection.
  • Figure 2 is similar to Figure 1 and from there the common parts, identical or similar, will not not detailed below.
  • Figure 2 has two differences with Figure 1, namely, on the one hand, that the nozzle 3 has a downstream end 4 of flat section or flattened, whereas in the case of FIG. 1, the downstream end 4 or outlet orifice of the nozzle 3 was of substantially circular section.
  • the part 12 of FIG. 1 has been replaced by a flat 12 'piece or 12' plate, within which is an orifice 13 (see Figure 3 and Figure 4), in which is housed the downstream end 4 of the nozzle 3.
  • a plate 12 ' constitutes a mechanical barrier making it possible to limit the atmospheric air inlets inside 15 of the sleeve 5.
  • care must be taken to keep minus a passage 14a, 14b, 14c and 14d intended to allow creating a sweeping gas flow around the end 4 of the nozzle 3 and / or to evacuate the excess gas dry protection contained inside 15 of the sleeve 5.
  • the gas sweeping carried out using dry gas, for example nitrogen or dry air, on the end 4 of the nozzle 3 creates a flow of gas which is evacuated by the orifice (s) 14a, 14b, 14c and 14d without disturbing the distribution of coolant, such as CO 2 , by the nozzle 3 and prevents atmospheric air from entering inside 15 of the sleeve 5 and of being deposited on part 4 of nozzle 3, causing icing there.
  • dry gas for example nitrogen or dry air
  • the plate 12 ' is, in this case, held on the end 5b of the sleeve 5 by holding means 12 "by screwing.
  • Figure 3 shows a schematic top view from the downstream end 4 of the nozzle 3 shown in the Figure 2. More specifically, we see the sleeve 5 surrounding the nozzle 3 whose downstream end 4 is shaped flattened.
  • the plate 12 ' is fixed by the means of holding 12 "at the sleeve 5 and / or at the end 4 of the nozzle 3 and has a perforation 13, in which is inserted said end 4 of the nozzle 3.
  • the gas dry protection contained inside the sleeve 5 is evacuated through the orifices 14a, 14b, 14c and 14d while preventing thus the atmospheric air to penetrate inside said sleeve 5.
  • the arrangement, in particular the part 12, shown in Figure 1 is not limited to substantially circular section nozzles and that it can also be suitable for nozzles with a flat section, such as that shown in Figure 2.
  • the arrangement constituted by the plate 12 'of Figure 2 is not limited to flat section nozzles, but can be adapted to circular section nozzles, such as that shown in FIG. 1, with an adaptation to the range of one skilled in the art.
  • FIG. 4 which is in all respects analogous to the Figure 3, except that the nozzle shown this time, not a flat section, but a substantially circular section 4, such as that of the nozzle 3 shown in FIG. 1.
  • nozzles having one end of circular shape and those at the end flattened, make it possible to obtain liquid jets refrigerant of different shapes and are therefore used for different applications.
  • a heat treatment device provided with a round jet cooling nozzle (circular end) and delivering a CO 2 type coolant was used.
  • the nozzle is equipped at its downstream end with a protective sleeve into which gas is introduced protection, so to create a sweep on the part downstream of the carbon dioxide spray nozzle.
  • the shielding gas used is industrial compressed air, which is previously filtered mainly to remove moisture, but also the fat from compression.
  • a sweep of said nozzle is carried out by means of compressed dry air and filtered.
  • This device gives complete satisfaction at the start, that is, for the first 5-10 minutes no icing of the downstream end of the nozzle is observed. However, after this time, a slight condensation on the downstream end of the nozzle appears from by saturation in humidity of the filter used for purify the compressed air serving as a protective gas.
  • This example 2 is completely analogous to the example 1, except that in this case the gas protection used is not dry compressed air, but nitrogen gas, which is, on the one hand, easier to handle and, on the other hand, does not require filtering.
  • N45 nitrogen has maximum water and oxygen of the order of 5 ppm (part per million in volume) while standard N25 nitrogen has a content maximum water of the order of 40 ppm and its content oxygen is variable.
  • standard nitrogen N25 or nitrogen N45 can be used effectively to form a gas protection against icing of the nozzles distributing a refrigerant, such as CO2, used in processes heat treatment.
  • this example 2 confirms that the slight condensation appeared on the nozzle in example 1 is good the result of saturation of the filter with humidity.
  • the shielding gas is delivered at a flow rate of the order of 15 l / min and at a pressure of approximately 1.2 ⁇ 10 5 Pa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nozzles (AREA)
  • Furnace Details (AREA)

Description

La présente invention se rapporte notamment à un dispositif et à un procédé de traitement thermique d'un matériau et, plus particulièrement, à un dispositif et à un procédé de revêtement de surface par application d'une méthode de projection thermique avec refroidissement.
Dans le cadre de l'invention, par traitement thermique, on entend toute technique de traitement d'un matériau-substrat mettant en oeuvre un refroidissement d'au moins une partie dudit matériau-substrat, notamment: le revêtement de surface, la trempe, la nitruration, la cémentation, la projection plasma, l'oxycoupage, le coupage laser, la projection HVOF (pour High Velocity Oxy Fuel en anglais), la projection flamme.... Ces différentes techniques de traitement thermique sont connues et largement utilisées dans le domaine industriel.
Par exemple, pour réaliser des revêtements sur des matériaux, un jet de projection constitué de gaz vecteur chaud et de particules de matériau de revêtement fondues ou ramollies est dirigé sur la surface du matériau à traiter ou matériau-substrat, laquelle surface est refroidie avant et/ou après traitement par un jet d'un fluide réfrigérant, tels l'argon liquide ou le dioxyde de carbone (CO2).
Ainsi, la projection plasma est largement utilisée pour réaliser des revêtements sur tout type de matériau, tels les matériaux composites, par exemples les résines ou les plastiques, qu'il faut revêtir avec des couches minces de céramique ou des couches métalliques.
Cette technique est aussi utilisée pour réaliser des revêtements protecteurs dans le domaine de la mécanique, par exemple pour l'aéronautique ou l'automobile, ou dans celui de l'énergie.
La technique de projection thermique met en jeu des températures très élevées et des puissances calorifiques importantes. En effet, le jet de projection composé, en général, d'un gaz vecteur chaud et de particules de matériau de revêtement doit être à une température suffisamment élevée pour permettre de ramollir ou fondre lesdites particules de matériau de revêtement d'apport et pour, d'autre part, obtenir un traitement thermique efficace de la surface du matériau ou de la pièce devant subir le revêtement.
Ledit matériau devant subir un revêtement ou matériau-substrat subit donc un échauffement considérable dû, d'une part, à la quantité de chaleur apportée directement par les gaz chauds, et d'autre part, par les particules de revêtement au moins partiellement fondues qui, lors de leur entrée en contact avec le matériau-substrat, transfèrent à ce dernier une quantité de chaleur importante en un temps très court. Classiquement, le matériau-substrat subit un réchauffement de plusieurs centaines de degrés et un équilibre thermique s'établit, d'une part, par échange thermique avec l'atmosphère ambiante et, d'autre part, par diffusion de la chaleur au travers dudit matériau-substrat et de la couche de revêtement.
Il a été observé que l'adhésion, c'est-à-dire l'accrochage de la couche de revêtement sur le matériau-substrat, est favorisée avec la température. En d'autres termes, plus la température est élevée, plus l'ancrage mécanique et les réactions chimiques s'établissant entre la couche de revêtement et le matériau-substrat évoluent dans un sens favorable et entraínent, de fait, une hypertrempe plus efficace.
Ceci peut s'expliquer notamment par une meilleure mouillabilité des particules de revêtement en fusion et donc d'un meilleur étalement ou écrasement de celles-ci sur le matériau-substrat.
Cependant, il est également nécessaire de considérer les propriétés microscopiques non seulement de la couche de revêtement, mais aussi du matériau-substrat.
En effet, lors de l'empilement successif de plusieurs couches de revêtement ou stratifications, il apparaít des tensions internes dans ledit revêtement, lesquelles sont d'autant plus importantes que la conductivité thermique du matériau de revêtement déposé est faible ou que l'épaisseur du matériau déposé à chaque passage est importante.
Un tel phénomène a notamment été observé lors de la projection de particules de type céramique, où on a constaté l'apparition de fissures, voire même dans certains cas une délamination du revêtement, due à un écart de température trop important entre, d'une part, le matériau-substrat et la couche de revêtement, et, d'autre part, au sein même de la couche de revêtement céramique.
De manière analogue, lors du refroidissement, si la différence de coefficient d'expansion thermique (α) entre le matériau-substrat et le matériau de revêtement devient trop importante, il apparaít des contraintes résiduelles à l'interface entre le matériau-substrat et le matériau de revêtement, lesquelles contraintes sont à l'origine de phénomènes de décohésion ou de délamination.
Ceci a été observé, notamment, lors de la projection de matériau de type céramique sur des métaux, tel l'aluminium, où on a constaté que la couche de céramique (α = 8.10-6 K-1) ne peut adhérer sur une pièce en aluminium (α = 22.10-6 K-1) si la température du support dépasse quelques centaines de degrés.
De là, il résulte que l'épaisseur du revêtement ne peut, dans certains cas, excéder quelques dixièmes de millimètre, ce qui limite grandement les applications industrielles possibles.
En effet, lorsque la couche de revêtement est destinée à jouer le rôle de barrière thermique, c'est-à-dire d'isolant thermique, celle-ci doit, dans certains cas, avoir une épaisseur bien au-delà du millimètre ce qui n'est, dès lors, pas réalisable.
On comprend donc que les propriétés du matériau-susbtrat devant subir un revêtement entrent également en ligne de considération, en particulier, le coefficient d'expansion thermique et la conductivité thermique, laquelle reflète l'aptitude du matériau à évacuer les calories.
Afin de pallier les problèmes précités, il est d'usage de coupler l'opération de traitement thermique du matériau, tel le dépôt d'une couche de revêtement, à un refroidissement du matériau-substrat préalablement et/ou postérieurement au traitement de celui-ci, c'est-à-dire, par exemple, à la projection sur la surface de celui-ci dudit jet comprenant le gaz vecteur chaud et les particules de matériau de revêtement au moins partiellement fondues.
La mise en oeuvre d'un refroidissement additionnel permet, en outre, d'appliquer la technique de projection thermique au revêtement de matériaux-substrats dits "sensibles", sur lesquels la température peut avoir une influence néfaste, tels les matériaux organiques ou composites, le papier ou le bois, ou les métaux à bas point de fusion, tels l'aluminium ou le cuivre.
En d'autres termes, un des buts du refroidissement additionnel est de permettre, par trempe, une évacuation efficace des calories et, dans tous les cas, plus rapide qu'en laissant la pièce à traiter refroidir d'elle-même, en dehors du jet de gaz chaud.
D'autre part, un refroidissement additionnel permet l'établissement d'un gradient de température beaucoup moins élevé entre la couche de revêtement et la matériau-substrat, ce qui améliore grandement la tenue du revêtement.
Par ailleurs, la mise en oeuvre d'un refroidissement efficace permet également de réduire considérablement le temps de projection et donc les coûts, étant donné qu'il n'est plus nécessaire de laisser le temps aux pièces traitées de refroidir par elles-mêmes; il a été possible, dans certains cas, de diviser le temps de projection d'un facteur 10.
Il existe actuellement plusieurs techniques de refroidissement mettant en oeuvre des fluides de refroidissement de natures différentes selon l'efficacité du refroidissement désiré, laquelle est, comme nous l'avons vu ci-avant, fonction des propriétés intrinsèques du couple matériau-substrat/couche de revêtement.
Toutefois, il convient, dans tous les cas, de veiller à ce que le jet d'air de refroidissement perturbe le moins possible le jet chaud, c'est-à-dire le mélange comportant un ou plusieurs gaz chauds et, en général, des particules en fusion ou ramollies, afin d'éviter un refroidissement de celui-ci, une oxydation des particules de revêtement en fusion, une contamination de la couche de revêtement...
Cependant, comme nous l'avons vu précédemment, la température du matériau-substrat est un paramètre critique étant donné que si sa température dépasse une certaine valeur, on peut assister à une dégradation irréversible dudit matériau-substrat.
Ainsi, lorsque l'on souhaite obtenir un refroidissement peu important, c'est-à-dire conduisant au maintien de la pièce à traiter à une température comprise dans la gamme de 150°C à environ 600°C, et qui soit, de plus, facile à mettre en oeuvre et bon marché, on peut utiliser comme fluide de refroidissement de l'air comprimé.
A l'inverse, l'air comprimé n'est pas adapté si l'on désire une bonne efficacité de refroidissement.
Une alternative consiste alors à utiliser comme fluide de refroidissement, un fluide réfrigérant, tel l'argon ou le dioxyde de carbone (CO2).
En effet, l'argon liquide utilisé comme fluide de refroidissement permet de maintenir la température du matériau-substrat et/ou de la couche de revêtement à une température comprise généralement entre 0 et 150°C, cette température dépendant essentiellement de la pression d'argon liquide et du débit d'argon gazeux mis en oeuvre, lesquels assurent l'atomisation du flux d'argon liquide en fines gouttelettes de diamètre variable. Une telle efficacité de refroidissement permet le dépôt de couche de revêtement de forte épaisseur, par exemple de l'ordre de 3 mm.
Toutefois, l'utilisation d'argon liquide comme fluide de refroidissement engendre une augmentation des coûts de production et la mise en place d'un équipement plus onéreux. De là, l'utilisation à l'échelle industrielle de l'argon, en tant que fluide de refroidissement, est généralement limitée au traitement thermique de pièces à haute valeur ajoutée.
Outre l'argon, il est également possible d'utiliser du dioxyde de carbone comme fluide de refroidissement.
L'emploi de CO2 est très avantageux car, d'une part, il permet d'obtenir des performances similaires d'avec l'argon, étant donné que la température du matériau-substrat peut être maintenue à des valeurs de l'ordre de la température ambiante et, d'autre part, son coût est nettement moindre que celui de l'argon. Un tel refroidissement par CO2 peut donc être appliqué au traitement thermique de toutes sortes de pièces, quelque soit leur valeur ajoutée. A titre d'exemple, on peut citer le dépôt de couche de revêtement de silice, dioxyde de titane ou molybdène, d'une épaisseur de 1 à 1,5 mm, sur une pièce en acier ou encore le dépôt d'une couche d'environ 3 mm de zircone devant jouer le rôle de barrière thermique sur une pièce en un alliage d'aluminium.
En outre, le refroidissement par CO2 est également bien adapté à l'obtention de dépôt de revêtement de faible épaisseur sur des matériaux-substrats à haut coefficient d'expansion, tels les alliages d'aluminium. Par trempe dans un liquide cryogénique, il est alors possible de séparer le revêtement du matériau support.
De même, lors de la mise en oeuvre d'un procédé de traitement thermique par projection HVOF, un refroidissement par CO2 permet, notamment, le dépôt de couche de revêtement de carbure de tungstène/cobalt sur un matériau-support en évitant la formation de carbure néfaste pour les propriétés recherchées, à savoir notamment la résistance à l'usure.
Ce refroidissement par CO2 permet aussi le dépôt de couche de chrome/nickel sur des pièces en aluminium, ce qui n'est pas réalisable à l'aide d'air comprimé, étant donné que la différence de coefficient de dilatation entre la couche de revêtement chrome/nickel et la pièce en aluminium impose de maintenir la température en dessous de 80°C.
En outre, l'utilisation du refroidissement par CO2 permet d'éviter une forte oxydation du cuivre, lorsque celui-ci est utilisé en tant que matériau de revêtement pour réaliser une couche de revêtement épaisse, c'est-à-dire de l'ordre de 2 mm.
Dans certains cas, il est également possible d'utiliser comme fluide de refroidissement de l'azote liquide.
De nombreux procédés et dispositifs de traitement de surface par projection thermique ont déjà été décrits dans l'art antérieur et on peut citer à titre d'exemple les documents: EP-A-0124432, US-A-3,744,262, FR-A-2,347,111, EP-A-0546359 ou encore Research Disclosure, janvier 1997, p.30 N° 39329.
Ainsi, le document EP-A-546359 décrit un dispositif de traitement thermique comprenant des moyens de projection délivrant au moins un jet contenant au moins un gaz vecteur chaud, et des moyens de refroidissement comprenant une buse délivrant un fluide de refroidissement, à savoir du dioxyde de carbone, la buse étant munie d'un embout d'expansion formant manchon autour d'une partie de la buse, dans lequel embout s'effectue une expansion du fluide de refroidissement.
Par ailleurs, le document EP-A-124432 décrit un dispositif de traitement thermique comprenant des moyens de refroidissement comprenant une buse délivrant un fluide de refroidissement, la buse étant munie d'une tête de buse formant manchon autour d'une partie de la buse. L'architecture de la buse est relativement complexe puisqu'elle comprend un premier passage interne pour acheminer un fluide de refroidissement et un deuxième passage interne pour acheminer un gaz porteur, les premier et deuxième passages aboutissant dans l'espace libre situé entre la buse et la tête de buse, de manière à obtenir un mélange desdits fluide de refroidissement et gaz porteur dans ledit espace libre.
Ces différents procédés ou dispositifs sont très similaires les uns des autres. De façon schématique, un fluide réfrigérant, en général du dioxyde de carbone liquide, est apporté jusqu'à des moyens de distribution délivrant ledit fluide, en général, une ou plusieurs buses, au sein des quelles, le dioxyde de carbone liquide subit une expansion et donne naissance à un mélange diphasique constitué de gaz carbonique et de neige carbonique.
Afin d'obtenir un jet laminaire, la buse se présente, en général, sous forme d'un tube de géométrie bien déterminée: dimension, forme...
Parfois, au lieu d'utiliser du dioxyde de carbone à l'état liquide, il a été décrit d'utiliser le dioxyde de carbone à l'état gazeux uniquement. Toutefois, ceci nécessite d'une part, la mise en oeuvre de pression élevée, c'est-à-dire d'au moins 45 bars et, d'autre part, de disposer d'un système de chauffage permettant de maintenir la température de stockage du dioxyde de carbone, de préférence, au-dessus de 30°C. Dans ce cas, la détente du dioxyde de carbone gazeux en un mélange gaz et neige carbonique est effectué au travers d'une buse dont l'extrémité au moins est de forme aplatie.
Si la mise en oeuvre d'un refroidissement au moyen d'un fluide réfrigérant, tel le CO2, dans un procédé de traitement thermique présente un certain nombre d'avantages, il convient néanmoins de veiller à ce que:
  • le jet réfrigérant sortant des buses entre en contact intime avec le matériau-substrat;
  • le débit et la forme du jet réfrigérant soient stables et réguliers dans le temps afin d'éviter les pulsations, c'est-à-dire une distribution par à-coups, dont l'une des causes est la condensation de la vapeur d'eau atmosphérique sur les buses;
  • la perturbation occasionnée par le jet de fluide réfrigérant sur le jet constitué essentiellement de gaz chaud et, selon le cas, de particules en fusion soit minimale;
  • les différents débits soient adaptés en fonction de la position des buses délivrant le fluide réfrigérant par rapport à celle des buses ou torches de projection thermique;
  • la forme plutôt aplatie ou plutôt cylindrique de la buse délivrant le fluide réfrigérant soit adaptée au cas d'espèce.
Il existe pourtant encore un certain nombre de problèmes se posant dans ce domaine et n'ayant à ce jour, pas été résolus.
Parmi ceux-ci, le plus important, est celui de la condensation de la vapeur d'eau présente dans l'air atmosphérique s'opérant sur la ou les buses distribuant le liquide réfrigérant et engendrant un givrage de celles-ci.
Ce givrage des buses est très néfaste car il provoque, en général, la formation d'un bouchon qui rend le jet de fluide réfrigérant, tel le CO2, instable et turbulent, ce qui aboutit, d'une part, à un refroidissement incorrect et peu efficace du matériau-substrat et/ou de la couche de revêtement et, d'autre part, peut occasionner une perturbation néfaste du jet de projection thermique.
Actuellement, la glace formée par condensation de la vapeur d'eau de l'atmosphère est éliminée, de manière très sommaire, par exemple en approchant la buse couverte de givre d'une source de chaleur extérieure, ce qui implique un arrêt de la chaíne de production et conduit donc à une perte de temps et de-productivité, donc à une augmentation inacceptable des coûts de production.
Le but de la présente invention est donc de résoudre ce problème de givrage des buses délivrant un fluide réfrigérant, tel le CO2, et donc, par la même, d'améliorer les dispositifs et les procédés de traitement thermique existant, en évitant la condensation de l'humidité ambiante à la sortie, c'est-à-dire à l'extrémité de distribution, de la buse où le fluide réfrigérant se détend en un mélange gaz/solide, en provoquant un refroidissement de la buse, favorable à ladite condensation de l'humidité ambiante.
La présente invention concerne alors un dispositif de traitement thermique selon la revendication 1.
Plus particulièrement, l'invention a trait à un dispositif selon la revendication 2.
Selon le cas le dispositif pourra comprendre en outre l'une ou plusieurs des caractéristiques suivantes:
  • ledit manchon est fixé par une extrémité proximale auxdits moyens de distribution et, de préférence, en amont de la buse,
  • ledit manchon comporte une extrémité distale libre et, de préférence, présentant un rétrécissement,
  • ledit manchon comporte une extrémité distale obturée partiellement par un moyen d'obturation,
  • la buse de distribution comporte une extrémité de section circulaire ou ovale, ou de section aplatie.
La présente invention concerne également un procédé de traitement thermique, dans lequel on traite un matériau au moyen d'un dispositif selon l'invention, de préférence, le traitement thermique est un revêtement de surface, c'est-à-dire l'application d'une ou plusieurs couches d'un ou plusieurs matériaux de revêtement sur au moins une partie de la surface d'un matériau-substrat ou d'une pièce.
L'invention concerne, en outre, un procédé de traitement thermique d'un matériau selon la revendication 6.
Selon le cas le procédé pourra comprendre, en outre, l'une ou plusieurs des caractéristiques suivantes:
  • le jet chaud de projection comporte, en outre, des particules d'un matériau en fusion au moins partielle ou ramollies, c'est-à-dire sous une forme "pâteuse", et, de préférence, d'un matériau choisi dans le groupe formé par les métaux, les alliages de métaux, les céramiques, les plastiques ou polymères, la silice et les oxydes métalliques,
  • le fluide réfrigérant est choisi parmi l'azote, le dioxyde de carbone, l'argon et les mélanges les comprenant,
  • le balayage est effectué au moyen d'au moins un gaz sec et, de préférence, un gaz choisi dans le groupe formé par l'air sec, l'azote, l'hélium, l'argon et les mélanges les contenant. De manière générale, conviennent également les gaz ou mélanges gazeux permettant de modifier la mouillabilité des particules en fusion ou du refroidissement vis-à-vis du matériau-substrat,
  • l'atmosphère gazeuse de protection est, dans le manchon, à une pression supérieure, à 0,9.105 Pa, de préférence, supérieure ou égale à 105 Pa, avantageusement comprise dans la gamme 1,1.105 Pa à 3.105 Pa, avantageusement encore dans la gamme 1,1.105 Pa à 2.105 Pa,
  • le débit du flux gazeux de protection est fonction de la géométrie, en particulier du diamètre, de la buse. Ainsi, pour une buse de 0,5 mm à 30 mm de diamètre, le débit du flux de protection est compris, de préférence, dans la gamme 5 l/min à 30 l/min et pour une buse de 1 mm à 10 mm de diamètre, dans la gamme 8 l/min à 25 l/min.
De préférence, le procédé selon l'invention est un procédé de revêtement de surface.
Le dispositif ou le procédé selon l'invention peuvent être utilisés dans un procédé de fabrication d'une pièce en un matériau choisi par les métaux, les alliages de métaux, les polymères ou plastiques, les matériaux organiques et minéraux, par exemple une pièce de chambre de combustion ou une prothèse médicale.
Comme il ressort de ce qui précède, la Demanderesse a mis en évidence, de façon surprenante, qu'il était possible d'éliminer la présence d'humidité atmosphérique résiduelle autour de la sortie de la buse, et donc la condensation de ladite humidité au contact de ladite buse, en protégeant la partie de la buse où s'opère cette condensation par la mise en oeuvre d'une protection gazeuse, dont les débit et pression sont adaptés pour éviter à l'air ambiant de venir en contact avec ladite partie froide de la buse.
Bien que dans le cas présent, la protection gazeuse soit constituée d'azote ou d'air sec, tout gaz ou mélange de gaz ayant un point de rosée suffisamment bas pour ne pas engendrer de givrage est susceptible d'être utilisé en tant que tel.
La présente invention pourra être appliquée dans tous les domaines où un refroidissement au moyen d'un fluide réfrigérant, tel le CO2, est nécessaire.
L'invention va maintenant être décrite plus en détails, à l'aide de modes de réalisation donnés à titre illustratif, mais nullement limitatif, en références aux figures annexées, où:
  • la figure 1 représente, de façon schématique, une vue en coupe longitudinale d'un premier mode de réalisation d'un dispositif selon l'invention;
  • la figure 2 représente, de façon schématique, une vue en coupe longitudinale d'un deuxième mode de réalisation d'un dispositif selon l'invention;
  • la figure 3 représente une vue de dessus du dispositif représenté sur la figure 2;
  • et la figure 4 est analogue à la figure 3 à l'exception du fait que le dispositif représenté est cette fois muni d'une buse à section sensiblement circulaire.
Les buses de refroidissement utilisables dans un procédé de traitement thermique et représentées sur les figures 1 à 4 sont des buses couramment accessibles dans le commerce que l'on peut se procurer auprès de sociétés spécialisées dans la commercialisation de ce type de produits, telles les sociétés AGEFKO ou SPRAYING SYSTEM.
Sur la figure 1, est représentée une buse 3 de distribution de dioxyde de carbone (CO2 liquide) acheminé depuis un lieu de stockage en CO2 liquide, non représenté, jusqu'à ladite buse 3 au moyen, notamment, d'une canalisation ou tube creux 1, dans le sens représenté par la flèche F.
La buse 3 comporte une partie 4 ou extrémité aval dont la section est de forme sensiblement cylindrique ou ovale et une partie 4' ou extrémité amont reliée à l'extrémité aval 1' de la canalisation 1 par l'intermédiaire de moyens de connexion 2, par exemple par vissage.
Afin d'éviter le givrage de la buse 3 par dépôt de l'humidité ambiante sur cette buse 3 où s'effectue la détente du CO2 liquide, une pièce de révolution 5 ayant sensiblement la forme d'un manchon est aménagée autour de ladite buse 3; ce manchon 5 a été partiellement représenté sur la figure 1 (coupe longitudinale).
Plus précisément, ce manchon 5, formé d'une ou plusieurs pièces, est fixé par son extrémité proximale 5a par des moyens de fixation 7 sur le corps du tube 1 à proximité de son extrémité 1' et en amont de celle-ci.
De préférence, les moyens de fixation 7 permettent également de conférer une étanchéité, en empêchant une entrée nuisible d'air atmosphérique au niveau de la connexion de l'extrémité proximale 5a sur le tube 1.
L'autre extrémité du manchon 5 ou extrémité distale 5b est libre et comporte une pièce ou partie 12 avançant vers l'extrémité 4 de la buse 3 et permettant de gainer le gaz de protection autour de ladite extrémité 4 de la buse 3, ce qui empêche l'humidité ambiante de s'y déposer et d'y provoquer un givrage.
La pièce 12 peut être une pièce rapportée et fixée sur l'extrémité 5b, par exemple par vissage, ou faire partie intégrante de l'extrémité 5b, c'est-à-dire que l'extrémité 5b et la pièce 12 sont d'un seul tenant.
Le manchon 5 forme donc une sorte de corolle protectrice entourant la buse 3, et permet de maintenir cette dernière sous une atmosphère protectrice gazeuse.
Dans ce manchon 5 sont aménagés une ou plusieurs perforations ou orifices 18 permettant d'introduire un gaz sec de protection, par exemple de l'azote ou de l'air sec, à l'intérieur du manchon 5, de sorte de créer un balayage gazeux et/ou une atmosphère protectrice gazeuse au voisinage 15 de la buse 3 ou de la partie de buse 3 située à l'intérieur 15 du manchon protecteur 5.
Ici, trois orifices 18 ont été aménagés sur le manchon 5 de sorte d'être équidistants les uns des autres; toutefois ce nombre de perforations 18 et cet agencement desdites perforations sur le manchon 5 ne sont nullement limitatifs.
Le gaz sec de protection est amené depuis un lieu de stockage ou de production, via des moyens d'acheminement 6, telles des canalisations, jusqu'aux orifices 18, de sorte de traverser lesdits orifices 18 dans le sens indiqué par la flèche F'.
De préférence, des moyens de connexion 17 permettent la fixation de ladite canalisation 6 sur le manchon 5 en regard des perforations 18; des moyens d'étanchéité 16, tel un joint torique, assurent l'étanchéité de cette connexion en empêchant des entrées parasites d'air atmosphérique chargé en humidité au niveau de ladite connexion.
La figure 2 est analogue à la figure 1 et, de là, les parties communes, identiques ou similaires, ne seront pas redétaillées ci-après.
Cependant, la figure 2 comporte deux différences majeures d'avec la figure 1, à savoir, d'une part, que la buse 3 comporte une extrémité aval 4 de section plate ou aplatie, alors que dans le cas de la figure 1, l'extrémité aval 4 ou orifice de sortie de la buse 3 était de section sensiblement circulaire.
D'autre part, la pièce 12 de la figure 1 a été remplacée par une pièce 12' de forme plane ou plaque 12', au sein de laquelle est aménagé un orifice 13 (voir figure 3 et figure 4), dans lequel vient se loger l'extrémité aval 4 de la buse 3. Une telle plaque 12' constitue une barrière mécanique permettant de limiter les entrées d'air atmosphérique à l'intérieur 15 du manchon 5. Toutefois, il faut veiller à conserver au moins un passage 14a, 14b, 14c et 14d destiné à permettre la création d'un flux gazeux de balayage autour de l'extrémité 4 de la buse 3 et/ou à évacuer l'excès de gaz sec de protection contenu à l'intérieur 15 du manchon 5.
En effet, le balayage gazeux réalisé à l'aide du gaz sec, par exemple de l'azote ou de l'air sec, sur l'extrémité 4 de la buse 3 crée un flux de gaz qui est évacué par le ou les orifices 14a, 14b, 14c et 14d sans perturbation de la distribution de fluide réfrigérant, tel le CO2, par la buse 3 et empêche l'air atmosphérique de pénétrer à l'intérieur 15 du manchon 5 et de se déposer sur la partie 4 de la buse 3 en y provoquant un givrage.
La plaque 12' est, dans ce cas, maintenue sur l'extrémité 5b du manchon 5 par des moyens de maintien 12" par vissage.
La figure 3 représente une vue schématique de dessus de l'extrémité aval 4 de la buse 3 représentée sur la figure 2. Plus précisément, on voit le manchon 5 entourant la buse 3 dont l'extrémité aval 4 est de forme aplatie. La plaque 12' est fixée par les moyens de maintien 12" au manchon 5 et/ou à l'extrémité 4 de la buse 3 et comporte une perforation 13, dans laquelle vient s'insérer ladite extrémité 4 de la buse 3. Le gaz sec de protection contenu à l'intérieur du manchon 5 est évacué par les orifices 14a, 14b, 14c et 14d en empêchant ainsi l'air atmosphérique de pénétrer à l'intérieur dudit manchon 5.
Il va de soi que l'agencement, en particulier la pièce 12, représenté sur la figure 1 n'est pas limité aux buses à section sensiblement circulaire et qu'il peut être adapté également aux buses à section plate, telle celle représentée sur la figure 2. De même, l'agencement constitué par la plaque 12' de la figure 2 n'est pas limitée aux buses à section plate, mais peut être adapté aux buses à section circulaire, telle celle représentée sur la figure 1, moyennant une adaptation à la portée de l'homme de l'art. D'ailleurs, ceci apparaít clairement sur la figure 4, laquelle est en tout point analogue à la figure 3, à l'exception du fait que la buse représentée a, cette fois, non pas une section plate, mais une section sensiblement circulaire 4, telle celle de la buse 3 représentée sur la figure 1.
Les deux types de buses, à savoir les buses ayant une extrémité de forme circulaire et celles à extrémité aplatie, permettent d'obtenir des jets de liquide réfrigérant de formes différentes et servent donc à des applications différentes.
Afin de vérifier l'efficacité du dispositif de l'invention pour les deux modes de réalisation représentés respectivement sur les figures 1 et 2, des essais expérimentaux ont été réalisés et sont consignés dans les exemples ci-après.
Exemple 1
Un dispositif de traitement thermique muni d'une buse de refroidissement à jet rond (extrémité circulaire) et délivrant un fluide réfrigérant de type CO2 a été mis en oeuvre.
La buse est équipée à son extrémité aval d'un manchon protecteur au sein duquel est introduit un gaz de protection, de sorte de créer un balayage sur la partie aval de la buse de projection de dioxyde de carbone.
Dans cet exemple, le gaz de protection utilisé est de l'air comprimé industriel, lequel est préalablement filtré pour en éliminer principalement l'humidité, mais aussi la graisse issue de la compression.
Pendant le temps de fonctionnement de la buse, c'est-à-dire pendant 5 à 10 minutes, un balayage de ladite buse est effectué au moyen de l'air sec comprimé et filtré.
Ce dispositif donne entière satisfaction au début, c'est-à-dire que pendant les 5 à 10 premières minutes aucun givrage de l'extrémité aval de la buse n'est observé. Cependant, au bout de ce temps, une légère condensation sur l'extrémité aval de la buse apparaít de par une saturation en humidité du filtre utilisé pour épurer l'air comprimé servant de gaz de protection.
En d'autres termes, la légère condensation, ou givrage, observée est due non pas au dispositif de la présente invention, mais à l'incapacité du filtre mis en oeuvre à assurer pleinement son rôle.
Exemple 2
Cet exemple 2 est en tout point analogue à l'exemple 1, à l'exception du fait que dans ce cas, le gaz de protection utilisé n'est pas de l'air sec comprimé, mais de l'azote gazeux, lequel est, d'une part, plus facile à manipuler et, d'autre part, ne nécessite pas de filtrage.
De l'azote de deux qualités différentes a été utilisé, à savoir de l'azote N45 et de l'azote standard N25. L'azote N45 a des teneurs maximales en eau et en oxygène de l'ordre de 5 ppm (partie par million en volume) alors que l'azote N25 standard a une teneur maximale en eau de l'ordre de 40 ppm et sa teneur en oxygène est variable.
Dans cet exemple 2, lors de la mise en oeuvre de l'installation, aucun givrage n'est observé sur la buse de distribution de CO2.
De là, l'azote standard N25 ou l'azote N45 peuvent être utilisés efficacement en vue de constituer un gaz de protection contre le givrage des buses distribuant un fluide réfrigérant, tel le CO2, utilisé dans des procédés de traitement thermique.
Par ailleurs, cet exemple 2 confirme que la légère condensation apparue sur la buse à l'exemple 1 est bien le résultat d'une saturation du filtre en humidité.
Dans les exemples 1 et 2 précédents, le gaz de protection est délivré à un débit de l'ordre de 15 l/min et à une pression d'environ 1,2.105 Pa.

Claims (10)

  1. Dispositif de traitement thermique comportant des moyens de refroidissement (1, 2, 3, 4, 4') comprenant :
    des moyens de distribution (3, 4, 4') délivrant au moins un fluide de refroidissement, lesdits moyens de distribution (3, 4, 4') étant une ou plusieurs buses (3) de distribution, et
    des moyens de protection (5, 5a, 5b, 12, 12') comportant un manchon (5) entourant, au moins partiellement, une ou des buses (3) de distribution, les moyens de protection (5, 5a, 5b, 12, 12') étant reliés à des moyens d'alimentation (6, 16, 17) en au moins un flux gazeux de protection, de manière à assurer le maintien d'une atmosphère gazeuse de protection sur au moins une partie desdits moyens de distribution (3, 4, 4'), ledit manchon (5) comportant au moins un orifice (18) par lequel est introduit le flux gazeux de protection acheminé par lesdits moyens d'alimentation (6, 16, 17), ledit dispositif étant caractérisé en ce que l'orifice (18) est situé dans la paroi dudit manchon (5).
  2. Dispositif comportant :
    des moyens de projection délivrant au moins un jet contenant au moins un gaz vecteur chaud, et
    des moyens de refroidissement (1, 2, 3, 4, 4') comprenant des moyens de distribution (3, 4, 4') délivrant au moins un fluide de refroidissement, les moyens de distribution (3, 4, 4') étant une ou plusieurs buses (3) de distribution, et
    des moyens de protection (5, 5a, 5b, 12, 12') reliés à des moyens d'alimentation (6, 16, 17) en au moins un flux gazeux de protection, lesdits moyens de protection (5, 5a, 5b, 12, 12') comportant un manchon (5) entourant, au moins partiellement, une ou des buses (3) de distribution, de manière à assurer le maintien d'une atmosphère gazeuse de protection sur au moins une partie desdits moyens de distribution (3, 4, 4'), ledit manchon (5) comportant au moins un orifice (18) par lequel est introduit le flux gazeux de protection acheminé par les moyens d'alimentation (6, 16, 17), ledit dispositif étant caractérisé en ce que l'orifice (18) est situé dans la paroi dudit manchon (5).
  3. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que ledit manchon (5) est fixé par une extrémité proximale (5a) auxdits moyens de distribution (3, 4, 4') et, de préférence, en amont de la buse (3).
  4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que ledit manchon (5) comporte une extrémité distale (5b) libre et, de préférence, présentant un rétrécissement (12).
  5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que ledit manchon (5) comporte une extrémité distale (5b) obturée partiellement par un moyen d'obturation (12, 12').
  6. Procédé de traitement thermique d'un matériau, dans lequel :
    on effectue une projection, sur au moins une partie de la surface dudit matériau, d'au moins un jet contenant au moins un gaz vecteur chaud,
    on refroidit au moins une partie dudit matériau au moyen d'au moins une buse de distribution délivrant un fluide réfrigérant, ladite buse de distribution étant au moins partiellement entourée par des moyens de protection comportant un manchon, lequel manchon comporte au moins un orifice situé dans la paroi dudit manchon,
    on maintient au moins une partie de la buse de distribution sous une atmosphère gazeuse de protection au moyen d'au moins un gaz de protection en soumettant ladite buse à un balayage par ledit flux gazeux de protection, ledit flux gazeux de protection étant introduit dans ledit manchon par ledit au moins un orifice situé dans la paroi dudit manchon, de manière à créer ledit balayage gazeux de protection à l'intérieur dudit manchon protecteur.
  7. Procédé selon la revendication 6, caractérisé en ce que le jet de projection comporte, en outre, des particules d'un matériau en fusion au moins partielle ou ramollies et, de préférence, d'un matériau choisi dans le groupe formé par les métaux, les alliages de métaux, les céramiques, les plastiques, la silice et les oxydes métalliques.
  8. Procédé selon l'une des revendications 6 ou 7, caractérisé en ce que le balayage est effectué au moyen d'au moins un gaz sec et, de préférence, un gaz choisi dans le groupe formé par l'air sec, l'azote, l'hélium, l'argon et des mélanges les contenant.
  9. Procédé de revêtement de surface mettant en oeuvre un dispositif selon l'une des revendications 1 à 5 ou un procédé selon l'une des revendications 6 à 8.
  10. Utilisation du dispositif selon l'une des revendications 1 à 5 dans un procédé de traitement thermique d'une pièce en un matériau choisi parmi les métaux, les alliages de métaux, les polymères, les matériaux organiques et minéraux.
EP98400761A 1997-04-28 1998-03-31 Dispositif et procédé de traitement thermique Revoked EP0872563B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9705230A FR2762667B1 (fr) 1997-04-28 1997-04-28 Dispositif et procede de traitement thermique
FR9705230 1997-04-28

Publications (2)

Publication Number Publication Date
EP0872563A1 EP0872563A1 (fr) 1998-10-21
EP0872563B1 true EP0872563B1 (fr) 2000-05-24

Family

ID=9506378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98400761A Revoked EP0872563B1 (fr) 1997-04-28 1998-03-31 Dispositif et procédé de traitement thermique

Country Status (8)

Country Link
US (1) US5989647A (fr)
EP (1) EP0872563B1 (fr)
JP (1) JPH1144489A (fr)
CA (1) CA2235423A1 (fr)
DE (1) DE69800158T2 (fr)
ES (1) ES2147039T3 (fr)
FR (1) FR2762667B1 (fr)
GR (1) GR3033691T3 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060652A1 (fr) * 2006-08-14 2009-05-20 Nakayama Steel Works, Ltd. Procédé et dispositif de formage de film de revêtement amorphe
DE102008064083A1 (de) 2008-12-19 2010-06-24 Messer Group Gmbh Vorrichtung und Verfahren zum Kühlen von Oberflächen

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE512588C2 (sv) * 1998-08-06 2000-04-03 Aga Ab Metod och anordning för punktkylning av yta
US6495966B2 (en) * 1999-09-08 2002-12-17 Matsushita Electric Industrial Co., Ltd. Field emission display including a resistor
DE19947823A1 (de) * 1999-10-05 2001-04-12 Linde Gas Ag Expansionskühldüse
FR2808585B1 (fr) * 2000-05-03 2002-06-28 Carboxyque Francaise Dispositif de refroidissement en ligne
US20020018851A1 (en) * 2000-06-21 2002-02-14 Edward Chang Manufacturing method for surgical implants having a layer of bioactive ceramic coating
US6675622B2 (en) * 2001-05-01 2004-01-13 Air Products And Chemicals, Inc. Process and roll stand for cold rolling of a metal strip
KR20040101948A (ko) * 2004-05-31 2004-12-03 (주)케이.씨.텍 표면세정용 승화성 고체입자 분사용 노즐 및 이를 이용한 세정방법
CN101511490B (zh) * 2006-08-28 2015-09-09 气体产品与化学公司 喷射低温液体的喷射装置和与该装置相关的喷射方法
DE102006061977A1 (de) 2006-12-21 2008-06-26 Forschungszentrum Jülich GmbH Verfahren und Vorrichtung für thermisches Spritzverfahren
US20080196416A1 (en) * 2007-02-16 2008-08-21 John Martin Girard Method and system for liquid cryogen injection in mixing or blending devices
US20090000710A1 (en) * 2007-06-28 2009-01-01 Caterpillar Inc. Quenching process utilizing compressed air
WO2010019144A1 (fr) * 2008-08-14 2010-02-18 Praxair Technology, Inc. Système et procédé pour l'injection de cryogène liquide dans des dispositifs manquants ou de mélange
KR100994483B1 (ko) * 2010-07-21 2010-11-16 이돈구 수류안마장치
US8978396B2 (en) * 2012-06-22 2015-03-17 L'air Liquide Societe, Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Vent ice prevention method
US8997504B2 (en) * 2012-12-12 2015-04-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Vent ice prevention method
MX2014012688A (es) * 2013-11-29 2015-05-28 Müller Martini Holding AG Un metodo para aplicar una sustancia fluida.
DE102014114394B3 (de) * 2014-10-02 2015-11-05 Voestalpine Stahl Gmbh Verfahren zum Erzeugen eines gehärteten Stahlblechs
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
CN106399892A (zh) * 2016-11-30 2017-02-15 国家电网公司 一种热喷涂方法及其设备
US11613789B2 (en) 2018-05-24 2023-03-28 GM Global Technology Operations LLC Method for improving both strength and ductility of a press-hardening steel
WO2019241902A1 (fr) 2018-06-19 2019-12-26 GM Global Technology Operations LLC Acier à faible densité trempé à la presse ayant des propriétés mécaniques améliorées
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
WO2021138545A1 (fr) 2019-12-31 2021-07-08 Cold Jet, Llc Procédé et appareil pour un flux de soufflage amélioré
CN111471841B (zh) * 2020-04-17 2021-12-03 广东万润利模具技术有限公司 一种高精度热风式表面热处理控制系统
WO2022042330A1 (fr) * 2020-08-27 2022-03-03 四川航天川南火工技术有限公司 Appareil de refroidissement de gaz de poudre
CN116212609B (zh) * 2023-04-18 2023-09-22 江苏顺仕净化设备有限公司 一种机械加工车间用空气净化装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1452062A (en) * 1972-10-10 1976-10-06 Boc International Ltd Metal treatment
US4068495A (en) * 1976-03-31 1978-01-17 The United States Of America As Represented By The United States National Aeronautics And Space Administration Closed loop spray cooling apparatus
DE2615022C2 (de) * 1976-04-07 1978-03-02 Agefko Kohlensaeure-Industrie Gmbh, 4000 Duesseldorf Verfahren zum Beschichten einer Oberfläche mittels eines Strahles aus erhitztem Gas und geschmolzenem Material
FR2545007B1 (fr) * 1983-04-29 1986-12-26 Commissariat Energie Atomique Procede et dispositif pour le revetement d'une piece par projection de plasma
DE3566088D1 (en) * 1984-03-12 1988-12-15 Commissariat Energie Atomique Treatment of a surface of a part to improve the adhesion of a coating deposited on the part particularly by hot projection
DE59108883D1 (de) * 1990-09-07 1997-12-11 Sulzer Metco Ag Apparatur zur plasmathermischen Bearbeitung von Werkstückoberflächen
DE4141020A1 (de) * 1991-12-12 1993-06-17 Linde Ag Verfahren zum beschichten einer oberflaeche mittels einer thermischen spritzmethode mit nachfolgender kuehlung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060652A1 (fr) * 2006-08-14 2009-05-20 Nakayama Steel Works, Ltd. Procédé et dispositif de formage de film de revêtement amorphe
EP2060652A4 (fr) * 2006-08-14 2010-11-17 Nakayama Steel Works Ltd Procédé et dispositif de formage de film de revêtement amorphe
DE102008064083A1 (de) 2008-12-19 2010-06-24 Messer Group Gmbh Vorrichtung und Verfahren zum Kühlen von Oberflächen

Also Published As

Publication number Publication date
GR3033691T3 (en) 2000-10-31
FR2762667B1 (fr) 1999-05-28
FR2762667A1 (fr) 1998-10-30
US5989647A (en) 1999-11-23
JPH1144489A (ja) 1999-02-16
EP0872563A1 (fr) 1998-10-21
DE69800158D1 (de) 2000-06-29
ES2147039T3 (es) 2000-08-16
DE69800158T2 (de) 2000-11-23
CA2235423A1 (fr) 1998-10-28

Similar Documents

Publication Publication Date Title
EP0872563B1 (fr) Dispositif et procédé de traitement thermique
EP2501888B1 (fr) Procédé de fabrication d'un vitrage isolant
EP0755720B1 (fr) Dispositif de pulvérisation d'un produit liquide
FR2772118A1 (fr) Procede de combustion et bruleur a pulverisation de combustible mettant en oeuvre un tel procede
EP2401245B1 (fr) Dispositif comportant un tube céramique revetu et une frette
WO2008142222A1 (fr) Procédé de revêtement d'un substrat et installation de dépôt sous vide d'alliage métallique
FR2495262A1 (fr) Siege fixe, comportant un canal de refroidissement, pour joint mecanique tournant
FR2463752A1 (fr) Poudre pour la formation d'un enduit a proprietes thermiques
EP0479678B1 (fr) Procédé de revêtement de vitrages par un procédé de projection thermique
EP0506552A1 (fr) Procédé pour traiter par exemple la surface d'un substrat par projection d'un flux de plasma, et dispositif pour la mise en oeuvre du procédé
EP0965792B1 (fr) Brûleur à injecteur perfectionné et procédé de fabrication de cet injecteur
CA1200689A (fr) Embout de lance de gunitage a chaud
EP3320129B1 (fr) Machine de fabrication additive contenant un dispositif mettant en oeuvre in-situ un procédé permettant de retirer les oxydes présents à la surface des nodules d'une poudre métallique avant l'utilisation de celle-ci dans la fabrication additive par fusion
CA2766493A1 (fr) Revetement de protection thermique pour une piece de turbomachine et son procede de realisation
EP1014761B1 (fr) Elément de canalisation pour dispositif de traitement de gaz et dispositif incorporant un tel élément de canalisation
CH617499A5 (en) Support for electromagnetic brake or clutch
WO1998026104A1 (fr) Procede et dispositif pour la realisation d'un revetement sur un substrat
LU86174A1 (fr) Procede de formation d'une masse refractaire et lance de projection de particules refractaires et de particules oxydables exothermiquement
EP0406208B1 (fr) Dispositif de préchauffage d'une busette de coulée d'un métal en fusion et installation de coulée d'un métal équipée de ce dispositif
FR2479847A1 (fr) Structure de paroi pour la region de gazeification d'un gazogene
EP2371994B1 (fr) Procédé pour réaliser un revêtement d'acier inoxydable sur une matrice en cuivre
WO1995007768A1 (fr) Procede pour la realisation de materiaux ou revetements composites et installation pour sa mise en ×uvre
FR2730426A1 (fr) Buse de pulverisation de liquide cryogenique
FR2715168A1 (fr) Procédé pour déposer, à la température ambiante, une couche de métal ou de semi-métal et leur oxyde sur un substrat.
FR3037059A1 (fr) Four a injection sonique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE DK ES FR GR IT LI NL SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LIAO, HAN LIN

Inventor name: PESME, FRANCOIS

Inventor name: CODDET, CHRISTIAN

Inventor name: GOURLAOUEN, VINCENT

Inventor name: HANSZ, BERNARD

Inventor name: REMY, FRANCIS

17P Request for examination filed

Effective date: 19990421

AKX Designation fees paid

Free format text: BE CH DE DK ES FR GR IT LI NL SE

17Q First examination report despatched

Effective date: 19990614

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE DK ES FR GR IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 69800158

Country of ref document: DE

Date of ref document: 20000629

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2147039

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20010228

Year of fee payment: 4

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010309

Year of fee payment: 4

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 20010226

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AKTIENGESELLSCHAFT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020211

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020214

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020218

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020221

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020225

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020308

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

BERE Be: lapsed

Owner name: S.A. L'*AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 20020331

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20020927

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC