EP0872563B1 - Vorrichtung und Verfahren zum Wärmebehandeln - Google Patents

Vorrichtung und Verfahren zum Wärmebehandeln Download PDF

Info

Publication number
EP0872563B1
EP0872563B1 EP98400761A EP98400761A EP0872563B1 EP 0872563 B1 EP0872563 B1 EP 0872563B1 EP 98400761 A EP98400761 A EP 98400761A EP 98400761 A EP98400761 A EP 98400761A EP 0872563 B1 EP0872563 B1 EP 0872563B1
Authority
EP
European Patent Office
Prior art keywords
sleeve
shielding
nozzle
delivery
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP98400761A
Other languages
English (en)
French (fr)
Other versions
EP0872563A1 (de
Inventor
Francis Remy
Bernard Hansz
Vincent Gourlaouen
Christian Coddet
François Pesme
Han Lin Liao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9506378&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0872563(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0872563A1 publication Critical patent/EP0872563A1/de
Application granted granted Critical
Publication of EP0872563B1 publication Critical patent/EP0872563B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B2045/0212Cooling devices, e.g. using gaseous coolants using gaseous coolants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems

Definitions

  • the present invention relates in particular to a device and method for heat treatment of a material and, more particularly, to a device and a surface coating process by applying a thermal spray method with cooling.
  • treatment thermal means any technique for treating a substrate-material using cooling at least part of said substrate material, in particular: surface coating, quenching, nitriding, case hardening, plasma spraying, flame cutting, laser cutting, HVOF projection (for High Velocity Oxy Fuel in English), flame projection ....
  • surface coating quenching, nitriding, case hardening, plasma spraying, flame cutting, laser cutting, HVOF projection (for High Velocity Oxy Fuel in English), flame projection ....
  • a spray jet consisting of hot carrier gas and particles of coated or softened coating material is directed onto the surface of the material to be treated or material-substrate, which surface is cooled before and / or after treatment with a jet of coolant, such as liquid argon or carbon dioxide (CO 2 ).
  • coolant such as liquid argon or carbon dioxide (CO 2 ).
  • So plasma projection is widely used to make coatings on any type of material, such as composite materials, for example resins or plastics, which must be coated with layers thin ceramic or metallic layers.
  • This technique is also used to make protective coatings in the mechanical field, for example for aeronautics or automotive, or in that of energy.
  • the thermal spraying technique involves very high temperatures and calorific values important. Indeed, the projection jet composed, in general, hot carrier gas and particles of coating material must be at a temperature high enough to soften or melt said particles of filler coating material and on the other hand, to obtain a heat treatment effective surface material or workpiece undergo the coating.
  • Said material to be coated or substrate material therefore undergoes considerable heating on the one hand, due to the amount of heat supplied directly by hot gases, and secondly, by coating particles at least partially melted which, when they come into contact with the substrate material, transfer to the latter an amount of significant heat in a very short time.
  • the substrate material undergoes a warming of several hundreds of degrees and a thermal equilibrium is established, on the one hand, by heat exchange with the atmosphere ambient and, on the other hand, by diffusion of heat to across said substrate material and the layer of coating.
  • the thickness of the coating does not may in some cases exceed a few tenths of millimeter, which greatly limits applications industrial possibilities.
  • the coating layer when intended to play the role of thermal barrier, that is to say thermal insulation, it must, in some case, have a thickness well beyond the millimeter what which is therefore not feasible.
  • the properties of the substrate material to be coated also come into line of consideration, in particular, the coefficient thermal expansion and thermal conductivity, which reflects the material's ability to evacuate calories.
  • additional cooling allows, in addition, to apply the projection technique thermal coating of so-called substrate materials "sensitive", on which the temperature can have a harmful influence, such as organic materials or composites, paper or wood, or low metals melting point, such as aluminum or copper.
  • one of the goals of cooling additional is to allow, by quenching, an evacuation efficient in calories and, in any case, faster that by letting the part to be treated cool down by itself, apart from the hot gas jet.
  • cooling effective also significantly reduces the projection time and therefore costs, given that no need to leave time for the pieces processed to cool by themselves; it was possible, in some cases, to divide the projection time by one factor 10.
  • the cooling air jet disturbs as little as possible the hot jet, that is to say the mixture comprising one or more hot gases and, in general, particles in fusion or softened, in order to avoid a cooling of it, oxidation of the particles of molten coating, contamination of the layer coating ...
  • the temperature of the substrate material is a parameter critical since if its temperature exceeds one some value, we can see a degradation irreversible of said substrate material.
  • An alternative then consists in using as cooling fluid, a refrigerating fluid, such as argon or carbon dioxide (CO 2 ).
  • a refrigerating fluid such as argon or carbon dioxide (CO 2 ).
  • the liquid argon used as a cooling helps maintain the temperature of the substrate material and / or the coating layer at a temperature generally between 0 and 150 ° C, this temperature essentially dependent on pressure liquid argon and the argon gas flow rate used, which ensure atomization of the flow of liquid argon into fine droplets of varying diameter.
  • a cooling efficiency allows layer deposition thick coating, for example of the order 3 mm.
  • liquid argon as coolant causes an increase in production costs and installation of equipment more expensive. From there, use at scale industrial argon, as a cooling, is generally limited to treatment high value added parts.
  • CO 2 is very advantageous because, on the one hand, it makes it possible to obtain similar performances with argon, since the temperature of the material-substrate can be maintained at values of the order room temperature and, on the other hand, its cost is significantly lower than that of argon.
  • Such CO 2 cooling can therefore be applied to the heat treatment of all kinds of parts, whatever their added value.
  • CO 2 cooling is also well suited for obtaining thin coating deposits on substrate materials with a high expansion coefficient, such as aluminum alloys. By soaking in a cryogenic liquid, it is then possible to separate the coating from the support material.
  • CO 2 cooling allows, in particular, the deposition of a coating layer of tungsten carbide / cobalt on a support material, avoiding the formation of carbide harmful for the desired properties, namely in particular the resistance to wear.
  • This CO 2 cooling also allows the chromium / nickel layer to be deposited on aluminum parts, which cannot be achieved using compressed air, since the difference in expansion coefficient between the layer of chrome / nickel coating and the aluminum part requires keeping the temperature below 80 ° C.
  • document EP-A-546359 describes a device heat treatment comprising projection means delivering at least one jet containing at least one carrier gas hot, and cooling means comprising a nozzle delivering coolant, i.e. dioxide carbon, the nozzle being provided with an expansion nozzle forming a sleeve around a part of the nozzle, in which nozzle an expansion of the cooling.
  • coolant i.e. dioxide carbon
  • document EP-A-124432 describes a heat treatment device comprising means for cooling comprising a nozzle delivering a fluid cooling, the nozzle being provided with a nozzle head forming a sleeve around part of the nozzle.
  • the architecture of the nozzle is relatively complex since it includes a first internal passage for supply a coolant and a second internal passage to convey a carrier gas, the first and second passages ending in the free space located between the nozzle and the nozzle head, so as to obtain a mixture of said coolant and carrier gas in said free space.
  • a refrigerant usually carbon dioxide liquid
  • distribution means delivering said fluid, in general, one or more nozzles, within which, liquid carbon dioxide expands and gives rise to a mixture two-phase consisting of carbon dioxide and snow carbonic.
  • the nozzle In order to obtain a laminar jet, the nozzle usually in the form of a geometry tube well determined: size, shape ...
  • This icing of the nozzles is very harmful because it generally causes the formation of a plug which makes the jet of coolant, such as CO 2 , unstable and turbulent, which results, on the one hand, in improper cooling and ineffective of the substrate material and / or of the coating layer and, on the other hand, can cause a harmful disturbance of the thermal spray jet.
  • coolant such as CO 2
  • the aim of the present invention is therefore to solve this problem of icing of the nozzles delivering a cooling fluid, such as CO 2 , and therefore, by the same token, of improving the existing heat treatment devices and methods, by avoiding condensation.
  • the present invention therefore relates to a device heat treatment according to claim 1.
  • the invention relates to a device according to claim 2.
  • the present invention also relates to a method heat treatment, in which a material using a device according to the invention, preferably the heat treatment is a coating of surface, i.e. the application of one or more layers of one or more coating materials on at minus part of the surface of a substrate material or of a room.
  • the invention further relates to a method of heat treatment of a material according to claim 6.
  • the method according to the invention is a surface coating process.
  • the device or method according to the invention can be used in a manufacturing process of a part made of a material chosen by metals, metal alloys, polymers or plastics, organic and mineral materials, for example a room combustion chamber or medical prosthesis.
  • the gas protection either consisting of nitrogen or dry air
  • any gas or mixture gas with a dew point low enough to not not cause icing is likely to be used as such.
  • the present invention can be applied in all fields where cooling by means of a refrigerant, such as CO 2 , is necessary.
  • the cooling nozzles usable in a heat treatment process and shown on the Figures 1 to 4 are commonly accessible nozzles in trade that can be obtained from companies specialized in the marketing of this type of products, such as the companies AGEFKO or SPRAYING SYSTEM.
  • FIG. 1 there is shown a nozzle 3 for distributing carbon dioxide (liquid CO 2 ) conveyed from a place of storage in liquid CO 2 , not shown, to said nozzle 3 by means, in particular, of a pipe. or hollow tube 1, in the direction shown by arrow F.
  • carbon dioxide liquid CO 2
  • the nozzle 3 has a part 4 or downstream end whose section is of substantially cylindrical shape or oval and a part 4 'or upstream end connected to the downstream end 1 'of the pipe 1 by through connection means 2, for example by screwing.
  • this sleeve 5 formed of one or several pieces, is fixed by its proximal end 5a by fixing means 7 on the body of the tube 1 to near its end 1 'and upstream thereof.
  • the fixing means 7 allow also to provide a seal, preventing a harmful entry of atmospheric air at the connection of the proximal end 5a to the tube 1.
  • the other end of the sleeve 5 or distal end 5b is free and comprises a part or part 12 advancing towards the end 4 of the nozzle 3 and making it possible to sheath the shielding gas around said end 4 of the nozzle 3, which prevents ambient humidity from settling there and cause icing.
  • the part 12 can be an attached and fixed part on the end 5b, for example by screwing, or make integral with the end 5b, that is to say that the end 5b and the part 12 are in one piece.
  • the sleeve 5 therefore forms a sort of corolla protective covering the nozzle 3, and makes it possible to maintain the latter under a gaseous protective atmosphere.
  • this sleeve 5 are arranged one or more perforations or orifices 18 making it possible to introduce a dry shielding gas, such as nitrogen or air dry, inside the sleeve 5, so as to create a gas sweep and / or a protective gas atmosphere in the vicinity 15 of the nozzle 3 or of the nozzle part 3 located inside 15 of the protective sleeve 5.
  • a dry shielding gas such as nitrogen or air dry
  • the dry protective gas is brought from a place of storage or production, by means of routing 6, such as pipes, to the orifices 18, of kind of crossing said orifices 18 in the direction indicated by arrow F '.
  • connection means 17 allow fixing said pipe 6 to the sleeve 5 in look of the perforations 18; sealing means 16, like an O-ring, seal this connection by preventing parasitic air inlets atmospheric charged with humidity at the level of said connection.
  • Figure 2 is similar to Figure 1 and from there the common parts, identical or similar, will not not detailed below.
  • Figure 2 has two differences with Figure 1, namely, on the one hand, that the nozzle 3 has a downstream end 4 of flat section or flattened, whereas in the case of FIG. 1, the downstream end 4 or outlet orifice of the nozzle 3 was of substantially circular section.
  • the part 12 of FIG. 1 has been replaced by a flat 12 'piece or 12' plate, within which is an orifice 13 (see Figure 3 and Figure 4), in which is housed the downstream end 4 of the nozzle 3.
  • a plate 12 ' constitutes a mechanical barrier making it possible to limit the atmospheric air inlets inside 15 of the sleeve 5.
  • care must be taken to keep minus a passage 14a, 14b, 14c and 14d intended to allow creating a sweeping gas flow around the end 4 of the nozzle 3 and / or to evacuate the excess gas dry protection contained inside 15 of the sleeve 5.
  • the gas sweeping carried out using dry gas, for example nitrogen or dry air, on the end 4 of the nozzle 3 creates a flow of gas which is evacuated by the orifice (s) 14a, 14b, 14c and 14d without disturbing the distribution of coolant, such as CO 2 , by the nozzle 3 and prevents atmospheric air from entering inside 15 of the sleeve 5 and of being deposited on part 4 of nozzle 3, causing icing there.
  • dry gas for example nitrogen or dry air
  • the plate 12 ' is, in this case, held on the end 5b of the sleeve 5 by holding means 12 "by screwing.
  • Figure 3 shows a schematic top view from the downstream end 4 of the nozzle 3 shown in the Figure 2. More specifically, we see the sleeve 5 surrounding the nozzle 3 whose downstream end 4 is shaped flattened.
  • the plate 12 ' is fixed by the means of holding 12 "at the sleeve 5 and / or at the end 4 of the nozzle 3 and has a perforation 13, in which is inserted said end 4 of the nozzle 3.
  • the gas dry protection contained inside the sleeve 5 is evacuated through the orifices 14a, 14b, 14c and 14d while preventing thus the atmospheric air to penetrate inside said sleeve 5.
  • the arrangement, in particular the part 12, shown in Figure 1 is not limited to substantially circular section nozzles and that it can also be suitable for nozzles with a flat section, such as that shown in Figure 2.
  • the arrangement constituted by the plate 12 'of Figure 2 is not limited to flat section nozzles, but can be adapted to circular section nozzles, such as that shown in FIG. 1, with an adaptation to the range of one skilled in the art.
  • FIG. 4 which is in all respects analogous to the Figure 3, except that the nozzle shown this time, not a flat section, but a substantially circular section 4, such as that of the nozzle 3 shown in FIG. 1.
  • nozzles having one end of circular shape and those at the end flattened, make it possible to obtain liquid jets refrigerant of different shapes and are therefore used for different applications.
  • a heat treatment device provided with a round jet cooling nozzle (circular end) and delivering a CO 2 type coolant was used.
  • the nozzle is equipped at its downstream end with a protective sleeve into which gas is introduced protection, so to create a sweep on the part downstream of the carbon dioxide spray nozzle.
  • the shielding gas used is industrial compressed air, which is previously filtered mainly to remove moisture, but also the fat from compression.
  • a sweep of said nozzle is carried out by means of compressed dry air and filtered.
  • This device gives complete satisfaction at the start, that is, for the first 5-10 minutes no icing of the downstream end of the nozzle is observed. However, after this time, a slight condensation on the downstream end of the nozzle appears from by saturation in humidity of the filter used for purify the compressed air serving as a protective gas.
  • This example 2 is completely analogous to the example 1, except that in this case the gas protection used is not dry compressed air, but nitrogen gas, which is, on the one hand, easier to handle and, on the other hand, does not require filtering.
  • N45 nitrogen has maximum water and oxygen of the order of 5 ppm (part per million in volume) while standard N25 nitrogen has a content maximum water of the order of 40 ppm and its content oxygen is variable.
  • standard nitrogen N25 or nitrogen N45 can be used effectively to form a gas protection against icing of the nozzles distributing a refrigerant, such as CO2, used in processes heat treatment.
  • this example 2 confirms that the slight condensation appeared on the nozzle in example 1 is good the result of saturation of the filter with humidity.
  • the shielding gas is delivered at a flow rate of the order of 15 l / min and at a pressure of approximately 1.2 ⁇ 10 5 Pa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles (AREA)
  • Furnace Details (AREA)

Claims (10)

  1. Vorrichtung zur thermischen Behandlung, enthaltend Kühleinrichtungen (1, 2, 3, 4, 4') mit:
    Verteilungseinrichtungen (3, 4, 4'), die mindestens eine Kühlflüssigkeit liefern und bei denen es sich um eine oder mehrere Verteilerdüsen (3) handelt, und
    Schutzeinrichtungen (5, 5a, 5b, 12, 12'), die eine die Verteilerdüse bzw. Verteilerdüsen (3) zumindest teilweise umgebende Hülse (5) enthalten und an Zufuhreinrichtungen (6, 16, 17) für mindestens einen Schutzgasstrom so angeschlossen sind, daß die Aufrechterhaltung einer Schutzgasatmosphäre auf mindestens einem Teil der Verteilungseinrichtungen (3, 4, 4') gewährleistet ist, wobei die Hülse (5) mindestens eine Öffnung (18) enthält, durch die der von den Zufuhreinrichtungen (6, 16, 17) transportierte Schutzgasstrom eingespeist wird,
       dadurch gekennzeichnet, daß sich die Öffnung (18) in der Seitenwand der Hülse (5) befindet.
  2. Vorrichtung, enthaltend:
    Spritzeinrichtungen, die mindestens einen Strahl, der mindestens ein heißes Transportgas enthält, liefern,
    Kühleinrichtungen (1, 2, 3, 4, 4') mit Verteilungseinrichtungen (3, 4, 4'), die mindestens eine Kühlflüssigkeit liefern und bei denen es sich um eine oder mehrere Verteilerdüsen (3) handelt, und
    Schutzeinrichtungen (5, 5a, 5b, 12, 12'), die eine die Verteilerdüse bzw. Verteilerdüsen (3) zumindest teilweise umgebende Hülse (5) enthalten und an Zufuhreinrichtungen (6, 16, 17) für mindestens einen Schutzgasstrom so angeschlossen sind, daß die Aufrechterhaltung einer Schutzgasatmosphäre auf mindestens einem Teil der Verteilungseinrichtungen (3, 4, 4') gewährleistet ist, wobei die Hülse (5) mindestens eine Öffnung (18) enthält, durch die der von den Zufuhreinrichtungen (6, 16, 17) transportierte Schutzgasstrom eingespeist wird,
       dadurch gekennzeichnet, daß sich die Öffnung (18) in der Seitenwand der Hülse (5) befindet.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Hülse (5) über ein proximales Ende (5a) an den Verteilungseinrichtungen (3, 4, 4') befestigt ist, vorzugsweise oberhalb der Düse (3).
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Hülse (5) ein freies distales Ende (5b) aufweist, das vorzugsweise eine Verengung (12) aufweist.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Hülse (5) ein distales Ende (5b) aufweist, das durch eine Verschlußeinrichtung (12, 12') teilweise verschlossen ist.
  6. Verfahren zur thermischen Behandlung eines Materials, bei dem man:
    zumindest auf einen Teil der Oberfläche des Materials mindestens einen Strahl, der mindestens ein heißes Transportgas enthält, aufspritzt,
    zumindest einen Teil des Materials mit Hilfe mindestens einer eine Kühlflüssigkeit liefernden Verteilerdüse, die zumindest teilweise von Schutzeinrichtungen, die eine Hülse enthalten, welche mindestens eine sich in der Seitenwand der Hülse befindende Öffnung enthält, umgeben wird, kühlt,
    mit Hilfe mindestens eines Schutzgases mindestens einen Teil der Verteilerdüse unter einer Schutzgasatmosphäre hält, indem man die Düse mit dem Schutzgasstrom spült, wobei man den Schutzgasstrom durch mindestens eine sich in der Seitenwand der Hülse befindende Öffnung so in die Hülse einspeist, daß das Innere der Schutzhülse mit Schutzgas gespült wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der Spritzstrahl außerdem auch noch Teilchen aus einem zumindest teilweise geschmolzenen Material oder erweichte Teilchen, vorzugsweise aus einem Material aus der Gruppe bestehend aus Metallen, Metall-Legierungen, Keramiken, Kunststoffen, Siliciumdioxid und Metalloxiden, enthält.
  8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß man mit mindestens einem trockenen Gas und vorzugsweise einem Gas aus der Gruppe bestehend aus trockener Luft, Stickstoff, Helium, Argon und deren Gemischen spült.
  9. Oberflächenbeschichtungsverfahren, bei dem man eine Vorrichtung nach einem der Ansprüche 1 bis 5 oder ein Verfahren nach einem der Ansprüche 6 bis 8 anwendet.
  10. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 5 bei einem Verfahren zur thermischen Behandlung eines Werkstücks aus einem Material aus der Gruppe bestehend aus Metallen, Metall-Legierungen, Polymeren, organischen Materialien und anorganischen Materialien.
EP98400761A 1997-04-28 1998-03-31 Vorrichtung und Verfahren zum Wärmebehandeln Revoked EP0872563B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9705230A FR2762667B1 (fr) 1997-04-28 1997-04-28 Dispositif et procede de traitement thermique
FR9705230 1997-04-28

Publications (2)

Publication Number Publication Date
EP0872563A1 EP0872563A1 (de) 1998-10-21
EP0872563B1 true EP0872563B1 (de) 2000-05-24

Family

ID=9506378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98400761A Revoked EP0872563B1 (de) 1997-04-28 1998-03-31 Vorrichtung und Verfahren zum Wärmebehandeln

Country Status (8)

Country Link
US (1) US5989647A (de)
EP (1) EP0872563B1 (de)
JP (1) JPH1144489A (de)
CA (1) CA2235423A1 (de)
DE (1) DE69800158T2 (de)
ES (1) ES2147039T3 (de)
FR (1) FR2762667B1 (de)
GR (1) GR3033691T3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060652A1 (de) * 2006-08-14 2009-05-20 Nakayama Steel Works, Ltd. Verfahren und vorrichtung zur bildung eines amorphen beschichtungsfilms
DE102008064083A1 (de) 2008-12-19 2010-06-24 Messer Group Gmbh Vorrichtung und Verfahren zum Kühlen von Oberflächen

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE512588C2 (sv) 1998-08-06 2000-04-03 Aga Ab Metod och anordning för punktkylning av yta
US6495966B2 (en) * 1999-09-08 2002-12-17 Matsushita Electric Industrial Co., Ltd. Field emission display including a resistor
DE19947823A1 (de) * 1999-10-05 2001-04-12 Linde Gas Ag Expansionskühldüse
FR2808585B1 (fr) * 2000-05-03 2002-06-28 Carboxyque Francaise Dispositif de refroidissement en ligne
US20020018851A1 (en) * 2000-06-21 2002-02-14 Edward Chang Manufacturing method for surgical implants having a layer of bioactive ceramic coating
US6675622B2 (en) 2001-05-01 2004-01-13 Air Products And Chemicals, Inc. Process and roll stand for cold rolling of a metal strip
KR20040101948A (ko) * 2004-05-31 2004-12-03 (주)케이.씨.텍 표면세정용 승화성 고체입자 분사용 노즐 및 이를 이용한 세정방법
KR101186761B1 (ko) * 2006-08-28 2012-10-08 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 극저온 액체 분사용 분사 장치 및 이 장치와 관련된 분사 방법
DE102006061977A1 (de) 2006-12-21 2008-06-26 Forschungszentrum Jülich GmbH Verfahren und Vorrichtung für thermisches Spritzverfahren
US20080196416A1 (en) * 2007-02-16 2008-08-21 John Martin Girard Method and system for liquid cryogen injection in mixing or blending devices
US20090000710A1 (en) * 2007-06-28 2009-01-01 Caterpillar Inc. Quenching process utilizing compressed air
WO2010019144A1 (en) * 2008-08-14 2010-02-18 Praxair Technology, Inc. System and method for liquid cryogen injection in missing or blending devices
KR100994483B1 (ko) * 2010-07-21 2010-11-16 이돈구 수류안마장치
US8978396B2 (en) * 2012-06-22 2015-03-17 L'air Liquide Societe, Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Vent ice prevention method
US8997504B2 (en) * 2012-12-12 2015-04-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Vent ice prevention method
MX2014012688A (es) * 2013-11-29 2015-05-28 Müller Martini Holding AG Un metodo para aplicar una sustancia fluida.
DE102014114394B3 (de) * 2014-10-02 2015-11-05 Voestalpine Stahl Gmbh Verfahren zum Erzeugen eines gehärteten Stahlblechs
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
CN106399892A (zh) * 2016-11-30 2017-02-15 国家电网公司 一种热喷涂方法及其设备
CN112513310A (zh) 2018-05-24 2021-03-16 通用汽车环球科技运作有限责任公司 改善压制硬化钢的强度和延性的方法
CN112534078A (zh) 2018-06-19 2021-03-19 通用汽车环球科技运作有限责任公司 具有增强的机械性质的低密度压制硬化钢
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
EP4084930A1 (de) 2019-12-31 2022-11-09 Cold Jet LLC Verfahren und vorrichtung für erhöhten strahlstrom
CN111471841B (zh) * 2020-04-17 2021-12-03 广东万润利模具技术有限公司 一种高精度热风式表面热处理控制系统
WO2022042330A1 (zh) * 2020-08-27 2022-03-03 四川航天川南火工技术有限公司 一种火药燃气冷却装置
CN116212609B (zh) * 2023-04-18 2023-09-22 江苏顺仕净化设备有限公司 一种机械加工车间用空气净化装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1452062A (en) * 1972-10-10 1976-10-06 Boc International Ltd Metal treatment
US4068495A (en) * 1976-03-31 1978-01-17 The United States Of America As Represented By The United States National Aeronautics And Space Administration Closed loop spray cooling apparatus
DE2615022C2 (de) * 1976-04-07 1978-03-02 Agefko Kohlensaeure-Industrie Gmbh, 4000 Duesseldorf Verfahren zum Beschichten einer Oberfläche mittels eines Strahles aus erhitztem Gas und geschmolzenem Material
FR2545007B1 (fr) * 1983-04-29 1986-12-26 Commissariat Energie Atomique Procede et dispositif pour le revetement d'une piece par projection de plasma
DE3566088D1 (en) * 1984-03-12 1988-12-15 Commissariat Energie Atomique Treatment of a surface of a part to improve the adhesion of a coating deposited on the part particularly by hot projection
DE59108883D1 (de) * 1990-09-07 1997-12-11 Sulzer Metco Ag Apparatur zur plasmathermischen Bearbeitung von Werkstückoberflächen
DE4141020A1 (de) * 1991-12-12 1993-06-17 Linde Ag Verfahren zum beschichten einer oberflaeche mittels einer thermischen spritzmethode mit nachfolgender kuehlung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060652A1 (de) * 2006-08-14 2009-05-20 Nakayama Steel Works, Ltd. Verfahren und vorrichtung zur bildung eines amorphen beschichtungsfilms
EP2060652A4 (de) * 2006-08-14 2010-11-17 Nakayama Steel Works Ltd Verfahren und vorrichtung zur bildung eines amorphen beschichtungsfilms
DE102008064083A1 (de) 2008-12-19 2010-06-24 Messer Group Gmbh Vorrichtung und Verfahren zum Kühlen von Oberflächen

Also Published As

Publication number Publication date
GR3033691T3 (en) 2000-10-31
DE69800158T2 (de) 2000-11-23
EP0872563A1 (de) 1998-10-21
FR2762667A1 (fr) 1998-10-30
FR2762667B1 (fr) 1999-05-28
CA2235423A1 (fr) 1998-10-28
US5989647A (en) 1999-11-23
DE69800158D1 (de) 2000-06-29
JPH1144489A (ja) 1999-02-16
ES2147039T3 (es) 2000-08-16

Similar Documents

Publication Publication Date Title
EP0872563B1 (de) Vorrichtung und Verfahren zum Wärmebehandeln
EP2501888B1 (de) Herstellungsverfahren einer isolierverglasung
EP0755720B1 (de) Vorrichtung zur Zerstäubung einer Flüssigkeit
FR2772118A1 (fr) Procede de combustion et bruleur a pulverisation de combustible mettant en oeuvre un tel procede
EP2401245B1 (de) Vorrichtung enthaltend ein beschichtetes keramikrohr und einen schrumpfring
FR2642672A1 (fr) Appareil et procede de pulverisation sous plasma par un laser a flux axial
WO2008142222A1 (fr) Procédé de revêtement d'un substrat et installation de dépôt sous vide d'alliage métallique
FR2528908A1 (fr) Bandage externe etanche a l'air revetu de matiere ceramique pour les moteurs a turbine a gaz
EP0479678B1 (de) Verfahren zur Beschichtung von Verglasungen durch ein Verfahren zur thermischen Spritzung
EP0506552A1 (de) Verfahren zur Behandlung zum Beispiel einer Substratoberfläche durch Spritzen eines Plasmaflusses und Vorrichtung zur Durchführung des Verfahrens
EP0965792B1 (de) Brenner mit verbesserter Einspritzdüse und Herstellungsverfahren für diese Einspritzdüse
CA1200689A (fr) Embout de lance de gunitage a chaud
EP3320129B1 (de) Maschine zur additiven fertigung, die eine vorrichtung enthält, die in-situ ein verfahren zur entfernung von oxiden auf der oberfläche der knötchen eines metallpulvers vor der verwendung des pulvers in der additiven fertigung mittels fusion
CA2766493A1 (fr) Revetement de protection thermique pour une piece de turbomachine et son procede de realisation
EP1014761B1 (de) Kanalelement für Gasbehandlungsvorrichtung und Vorrichtung die ein solches Kanalelement enthält
EP0077857B1 (de) Emaillieren von Substraten durch Fluorglas
CH617499A5 (en) Support for electromagnetic brake or clutch
WO1998026104A1 (fr) Procede et dispositif pour la realisation d'un revetement sur un substrat
LU86174A1 (fr) Procede de formation d'une masse refractaire et lance de projection de particules refractaires et de particules oxydables exothermiquement
EP0406208B1 (de) Vorrichtung zum Vorheizen einer Giessdüse für geschmolzenes Metall und mit dieser Vorrichtung ausgerüstete Metallgiesseinrichtung
FR2479847A1 (fr) Structure de paroi pour la region de gazeification d'un gazogene
EP2371994B1 (de) Beschichtungsverfahren einer Beschichtung aus rostfreiem Stahl auf einem Kupfersubstrat
WO1995007768A1 (fr) Procede pour la realisation de materiaux ou revetements composites et installation pour sa mise en ×uvre
FR2730426A1 (fr) Buse de pulverisation de liquide cryogenique
FR2715168A1 (fr) Procédé pour déposer, à la température ambiante, une couche de métal ou de semi-métal et leur oxyde sur un substrat.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE DK ES FR GR IT LI NL SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LIAO, HAN LIN

Inventor name: PESME, FRANCOIS

Inventor name: CODDET, CHRISTIAN

Inventor name: GOURLAOUEN, VINCENT

Inventor name: HANSZ, BERNARD

Inventor name: REMY, FRANCIS

17P Request for examination filed

Effective date: 19990421

AKX Designation fees paid

Free format text: BE CH DE DK ES FR GR IT LI NL SE

17Q First examination report despatched

Effective date: 19990614

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE DK ES FR GR IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 69800158

Country of ref document: DE

Date of ref document: 20000629

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2147039

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20010228

Year of fee payment: 4

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010309

Year of fee payment: 4

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 20010226

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AKTIENGESELLSCHAFT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020211

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020214

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020218

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020221

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020225

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020308

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

BERE Be: lapsed

Owner name: S.A. L'*AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 20020331

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20020927

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC