EP0869915B1 - Verfahren zur herstellung von hochreinem magnesiumhydroxid und magnesiumoxid aus magnesiumalkoxiden - Google Patents

Verfahren zur herstellung von hochreinem magnesiumhydroxid und magnesiumoxid aus magnesiumalkoxiden Download PDF

Info

Publication number
EP0869915B1
EP0869915B1 EP96946244A EP96946244A EP0869915B1 EP 0869915 B1 EP0869915 B1 EP 0869915B1 EP 96946244 A EP96946244 A EP 96946244A EP 96946244 A EP96946244 A EP 96946244A EP 0869915 B1 EP0869915 B1 EP 0869915B1
Authority
EP
European Patent Office
Prior art keywords
magnesium
preceeding
reaction
process according
hydroxy compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96946244A
Other languages
English (en)
French (fr)
Other versions
EP0869915A2 (de
Inventor
Andrea Brasch
Klaus Diblitz
Kai DÖLLING
Tilo Feldbaum
Klaus Noweck
Jan Schiefler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasol Germany GmbH
Original Assignee
Sasol Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasol Germany GmbH filed Critical Sasol Germany GmbH
Publication of EP0869915A2 publication Critical patent/EP0869915A2/de
Application granted granted Critical
Publication of EP0869915B1 publication Critical patent/EP0869915B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/13Saturated ethers containing hydroxy or O-metal groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • C01F5/08Magnesia by thermal decomposition of magnesium compounds by calcining magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/08Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic with only one hydroxy group and one amino group bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention relates to a method for producing Magnesium hydroxide of high purity and from it by calcining recoverable magnesium oxide.
  • magnesium hydroxide Natural occurrence of magnesium hydroxide [CAS no. 1309-48-4] are very rare and are hardly broken down. magnesium hydroxide is nowadays due to precipitation from sea water (W.C. Gilpin, N. Heasman, Chem. Ind. (London), 1977, 567-572 and J.C. Drum, S. Tangney, Trans. J. Br. Ceramic Soc. 77 (1978) No. 4, 10-14) and precipitation from solutions obtained from magnesium salts using calcium hydroxide.
  • a continuous process for the production of high purity Aluminum alcoholates is in DE 3 244 972-C1 described.
  • Aluminum metal with alcohol becomes Implemented aluminum alcoholate. This can be done in aluminum metal existing other metals by filtration and / or distillation, because these metals does not or only significantly more slowly to metal alcoholates implement. This method has so far been possible do not apply to magnesium, as the previously known Magnesium alcoholates not liquid and therefore not filterable are. They are not uncorrupted either meltable and therefore not distillable.
  • GB-A-667 708 proposes a three stage Procedure in which first with a water-soluble C1 or C2 alcohol is converted to magnesium alcoholate. This is implemented in a second implementation by a longer chain Alcohol exchanged, with the C1 or C2 alcohol is removed by distillation. First this magnesium alcoholate is hydrolyzed in step 3.
  • magnesium alkoxyethers from hydroxyethers is known per se, see e.g. U.S. 3,657,361.
  • high-purity magnesium hydroxides with special product properties are accessible when magnesium alkoxy ether are hydrolyzed, however, cannot be derived therefrom.
  • EP 0 244 917 describes a process for the production of soluble metal alkoxides from alkoxy alcohols in organic solvents, however, gives no indication to a process for producing high purity crystalline magnesium hydroxides. with closer Pore distribution and uniform crystallinity.
  • the present invention consists of a process for the continuous or discontinuous production of magnesium hydroxide and / or magnesium oxide in highly pure form by reacting and hydrolyzing magnesium metal and reactive magnesium compounds with hydroxy compounds of the type R 1 -AR-OH and, if appropriate, for producing the magnesium oxide then calcined. Possibly. the reaction takes place together with up to 50% by weight of alcohols of the type R 2 -OH.
  • the hydroxy compounds to be used according to the invention have the general formula R 1 -AR-OH.
  • A stands for an element from the 6th main group of the periodic table (starting with oxygen) or the 5th main group of the periodic table (starting with nitrogen). If A stands for the nitrogen group, A can carry further substituents to saturate its valences, preferably a total of 3 substituents. These can be hydrogen or another hydrocarbon radical R 1 which may be different from the others.
  • Preferred for the heteroatoms A are oxygen and nitrogen, particularly preferred for A is oxygen.
  • R, R 1 and R 2 represent a branched or unbranched, cyclic or acyclic, saturated, unsaturated or aromatic hydrocarbon radical with 1-10 carbon atoms, where R, R 1 and R 2 can be different from one another and R is doubly substituted (divalent) ,
  • R 1 is preferably a saturated alkyl radical with 1-10 carbon atoms, in particular an alkyl radical with 1-5 carbon atoms, this being particularly preferably unbranched.
  • R 2 is preferably a branched or unbranched, cyclic or acyclic, saturated hydrocarbon radical having 4 to 8 carbon atoms, this being particularly preferably unbranched, acyclic and saturated.
  • Preferred for R are branched or unbranched acyclic alkylidene radicals having 1 to 5 carbon atoms, in particular unbranched hydrocarbons having 1 to 3 carbon atoms.
  • the invention is based on the process step for the continuous or discontinuous production of liquid magnesium alkoxides by reacting suitable hydroxy compounds with magnesium compounds and / or magnesium metal which are reactive towards these.
  • a suitable reactive magnesium compound is, for example, magnesium hydride.
  • magnesium metal is particularly preferred.
  • the invention further includes continuous or discontinuous hydrolysis of these liquid magnesium alkoxides, especially magnesium alkoxyether and Magnesium alkoxyamines, more difficult to dissolve after separation Impurities e.g. by filtration, centrifugation or decanting to produce the high-purity magnesium hydroxide, with good phase separation between the water-magnesium hydroxide mixture and the alcohol components after hydrolysis by adding foreign metal ions for salting out suitable compounds such as in particular from 0.1 to 10% by weight of ammonium hydrogen carbonate to the hydrolysis water is reached.
  • suitable compounds such as in particular from 0.1 to 10% by weight of ammonium hydrogen carbonate to the hydrolysis water is reached.
  • the above-mentioned hydroxy compounds of the type R 1 -AR-OH can be used alone (one compound) or as a mixture (several compounds of the type R 1 -AR-OH).
  • compounds of higher viscosity are formed in the reaction according to the invention, the settling of the impurities in the form of poorly soluble solids is hindered.
  • a 1 to 5-fold excess of the hydroxy compounds can be selected to lower the viscosity and thus also to make it easier to filter, it also being possible to use alcohols of the R 2 -OH type or to increase their proportion.
  • the viscosity of the liquid / solution is particularly preferably adjusted by the subsequent addition of alcohols of the type R 2 -OH.
  • Some of the hydroxy compounds of the R 1 -AR-OH type used in the reaction can be replaced by other alcohols, namely those of the R 2 -OH type, before or after the reaction.
  • the proportion of alcohols of the type R 2 -OH must not exceed 50% by weight of the total of all starting materials or solvents to be used.
  • the implementation of the hydroxy compounds with the magnesium compounds can in principle also be admixed with Solvents take place, these solvents the Increase manufacturing effort because you post this the implementation must remove again. More importantly, that due to external solvents the material properties of the magnesium hydroxides in terms of Purity and uniformity of the pore distribution and Crystallinity are adversely affected. Farther The magnesium compounds are often converted into other solvents and workup solid and insoluble, so that it is only in a non-polar again Solvent must be absorbed before the solution can be subjected to hydrolysis. Implementation in other solvents lead to amorphous magnesium hydroxides.
  • suitable magnesium alkoxy compounds are, for example the test products (VP.) Bis (ethylglykolato) -Magnesium (VP. 1), bis (n-butylglycolato) magnesium (VP. 2), magnesium bis (N, N-dimethylamino-1-propanolate) (VP. 3), magnesium bis (N, N-dimethylaminoethanolate) (VP. 4) or magnesium bis (2-ethylaminoethanolate) (VP.5) or magnesium bis (1-methoxy-2-propanolate) (VP.6).
  • VP. Bis (ethylglykolato) -Magnesium
  • VP. 2 magnesium bis (N, N-dimethylaminoethanolate)
  • VP.5 magnesium bis (1-methoxy-2-propanolate
  • the magnesium hydroxide produced according to the invention has a high purity.
  • the alkali and alkaline earth metal contents which are particularly disadvantageous for use in catalysis, are very low.
  • Table 1 shows the results of trace element determination using ICP.
  • purchased magnesium hydroxide "purest” and gastric oxide in pa quality are used.
  • Magnesium oxides or magnesium hydroxides are defined as “highly pure” in the sense of the invention with the following limit values: limits connection Fe [Ppm] Si [Ppm] Ti [Ppm] Mn [Ppm] Zn [Ppm] ga [Ppm] N / A [Ppm] Ca [Ppm] ⁇ 50 ⁇ 50 ⁇ 10 ⁇ 10 ⁇ 10 ⁇ 50 ⁇ 50
  • a further increase in purity compared to the values from Table 1 can be achieved by using double-distilled water and vessels made of inert material.
  • the hydrolysis by "only" deionized water slightly increases the Fe, Mn, Ti, Na and Ca content in the Mg (OH) 2 (compound a) compared to the magnesium alkoxide compound (Mg alkoxide) used.
  • FIG. 1 shows the X-ray diffractogram of a magnesium hydroxide shown according to the invention.
  • the line spectrum in FIG. 1 shows the X-ray diffractogram from the JCPDS file (entry no. 7-0239 Mg (OH) 2 , brucite, syn).
  • the metal oxides are produced by calcining.
  • the compounds according to the invention were calcined in an oven at temperatures between 550 ° C and 1500 ° C spent over a period of 3 h to 24 h. That so The metal oxide produced has the same high purity like the metal hydroxide according to the invention.
  • Table 4 shows the values for some physical data of the magnesium hydroxide produced according to the invention.
  • Physical data of the test product VP.1 H 2 0 alcoholate [G / g] surface [m 2 / g] pore volume [Ml / g] pore radius [ ⁇ ] hydrolysis [PH] hydrolysis T [° C] 1.15: 1 142 0.71 1)
  • 78 4 90 Legend: 1) : Measurement using mercury porosimetry (Porosimeter Autopore II 9220, Micromeritics) 2) : Measurement using nitrogen porosimetry (ASAP 2010, Mikromeritics)
  • ICP inductively coupled plasma spectroscopy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Magnesiumhydroxid hoher Reinheit sowie daraus durch Kalzinieren gewinnbares Magnesiumoxid.
Natürliche Vorkommen von Magnesiumhydroxid [CAS-Nr. 1309-48-4] sind sehr selten und werden kaum abgebaut. Magnesiumhydroxid wird heutzutage durch Ausfällung aus Seewasser (W. C. Gilpin, N. Heasman, Chem. Ind. (London), 1977, 567-572 sowie J. C. Drum, S. Tangney, Trans. J. Br. Ceramic Soc. 77 (1978) No. 4, 10-14) und Ausfällung aus Lösungen von Magnesiumsalzen mittels Calciumhydroxid gewonnen.
Die oben genannten Herstellungsverfahren haben den Nachteil, daß das derart gewonnene Magnesiumhydroxid für viele katalytische Anwendungen oder zur Herstellung von speziellen Keramiken nur unzureichend geeignet ist. Dies liegt besonders an den nicht zu vermeidenden Verunreinigungen durch andere Metalle, was insbesondere katalytische Anwendungen ausschließt.
Ein kontinuierliches Verfahren zur Herstellung von hochreinen Aluminiumalkoholaten ist in der DE 3 244 972-C1 beschrieben. Dabei wird Aluminiummetall mit Alkohol zum Aluminiumalkoholat umgesetzt. Dieses kann von im Aluminiummetall vorliegenden weiteren Metallen durch Filtration und/oder Destillation befreit werden, da diese Metalle sich nicht oder nur erheblich langsamer zu Metallalkoholaten umsetzen. Dieses Verfahren läßt sich jedoch bisher nicht auf Magnesium anwenden, da die bisher bekannten Magnesiümalkoholate nicht flüssig und daher nicht filtrierbar sind. Sie sind ebenfalls nicht unzersetzt schmelzbar und daher auch nicht destillierbar.
Verfahren zur Herstellung reiner Magnesiumhydroxide sind bekannt. GB-A-667 708 schlägt zum Beispiel ein dreistufiges Verfahren vor, in dem zunächst mit einem wasserlöslichen C1-oder C2- Alkohol zum Magnesiumalkoholat umgesetzt wird. Dieser wird in einer zweite Umsetzung durch einen längerkettigen Alkohol ausgetauscht, wobei der C1- oder C2- Alkohol durch Destillation entfernt wird. Erst dieses Magnesiumalkoholat wird in Schritt 3 hydrolysiert.
Die Herstellung von Magnesiumalkoxyethern aus Hydroxyethern ist an sich bekannt, siehe z.B. die US 3,657,361. Ein Hinweis, daß hochreine Magnesiumhydroxide mit besonderen Produkteigenschaften zugänglich sind, wenn Magnesiumalkoxyether hydrolysiert werden, ist daraus jedoch nicht entnehmbar.
Die EP 0 244 917 beschreibt ein Verfahren zur Herstellung von löslichen Metallalkoxiden aus Alkoxyalkoholen in organischen Lösungsmitteln, gibt jedoch keinen Hinweis auf eine Verfahren zur Herstellung von hochreinen kristallinen Magnesiumhydroxiden. mit enger Porenverteilung und einheitlicher Kristallinität.
Der Erfindung lag die Aufgabe zugrunde, ein Verfahren zur Herstellung von Magnesiumhydroxid zu entwickeln, das die nachfolgenden Merkmale aufweist:
  • Das erfindungsgemäß hergestellte Magnesiumhydroxid soll von hoher Reinheit, enger Porenverteilung und einheitlicher Kristallinität sein.
  • Die Ausgangsstoffe sollen preiswert und leicht verfügbar sein.
  • Der Herstellungsprozeß soll kontinuierlich und diskontinuierlich durchführbar sein.
Überraschenderweise wurde nun gefunden, daß mit dem nachstehend beschriebenen Verfahren diese Aufgaben ohne weiteres gelöst werden können.
Die vorliegende Erfindung besteht aus einem Verfahren zur kontinuierlichen oder diskontinuierlichen Herstellung von Magnesiumhydroxid und/oder Magnesiumoxid in hochreiner Form, indem man Magnesiummetall und reaktive Magnesiumverbindungen mit Hydroxy-Verbindungen des Typs R1-A-R-OH umsetzt und hydrolysiert und ggf. zur Herstellung des Magnesiumoxids anschließend kalziniert. Ggf. erfolgt die Umsetzung zusammen mit bis zu 50 Gew.% Alkoholen des Typs R2-OH .
Die erfindungsgemäß zu verwendenden Hydroxy-Verbindungen weisen die allgemeine Formel R1-A-R-OH auf. A steht für ein Element aus der 6. Hauptgruppe des Periodensystems (beginnend mit Sauerstoff) oder der 5. Hauptgruppe des Periodensystems (beginnend mit Stickstoff). Steht A für die Stickstoff-Gruppe, so kann A zur Absättigung seiner Valenzen weitere Substituenten tragen, bevorzugt insgesamt 3 Substituenten. Diese können Wasserstoff oder ein weiterer ggf. von den anderen verschiedener Kohlenwasserstoffrest R1 sein. Bevorzugt für die Heteroatome A sind Sauerstoff und Stickstoff, besonders bevorzugt für A ist Sauerstoff.
R, R1 und R2 stehen für einen verzweigten oder unverzweigten, cyclischen oder acyclischen, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffrest mit 1 - 10 Kohlenstoffatomen, wobei R, R1 und R2 voneinander verschieden sein können und R zweifach substituiert (divalent) ist.
Bevorzugt ist R1 ein gesättigter Alkylrest mit 1 - 10 Kohlenstoffatomen, insbesondere ein Alkylrest mit 1 - 5 Kohlenstoffatomen, wobei dieser besonders bevorzugt unverzweigt ist. Bevorzugt ist R2 ein verzweigter oder unverzweigter, cyclischer oder acyclischer, gesättigter Kohlenwasserstoffrest mit 4 - 8 Kohlenstoffatomen wobei dieser besonders bevorzugt unverzweigt, acyklisch und gesättigt ist. Bevorzugt sind für R verzweigte oder unverzweigte acyclische Alkylidenreste mit 1 - 5 Kohlenstoffatomen, insbesondere unverzweigte Kohlenwasserstoffe mit 1 bis 3 Kohlenstoffatomen.
Der Erfindung zugrunde liegt der Verfahrensschritt zur kontinuierlichen oder diskontinuierlichen Herstellung von flüssigen Magnesiumalkoxiden durch Umsetzung von geeigneten Hydroxy-Verbindungen mit gegenüber diesen reaktiven Magnesiumverbindungen und/oder Magnesiummetall. Eine geeignete reaktive Magnesiumverbindung ist z.B. Magnesiumhydrid. Der Einsatz von Magnesiummetall ist besonders bevorzugt. Überraschend hat sich gezeigt, daß organische Verbindungen des Typs R1-A-R-OH nach Umsetzung mit Magnesium bzw. reaktiven Magnesiumverbindungen zu schon bei Raumtemperatur flüssigen Magnesiumalkoxiden führen.
Die Erfindung beinhaltet weiter die kontinuierliche oder diskontinuierliche Hydrolyse dieser flüssigen Magnesiumalkoxide, insbesondere Magnesiumalkoxyether und Magnesiumalkoxyamine, nach Abtrennung schwerer löslicher Verunreinigungen z.B. durch Filtration, Zentrifugieren oder Dekantieren zur Darstellung des hochreinen Magnesiumhydroxids, wobei eine gute Phasentrennung zwischen dem Wasser-Magnesiumhydroxid-Gemisch und den Alkoholkomponeneten nach der Hydrolyse durch den Zusatz fremdmetallionenfreier zum Aussalzen geeigneter Verbindungen wie insbesondere von 0,1 bis 10 Gew.% Ammoniumhydrogencarbonat zum Hydrolysewasser erreicht wird.
Die oben genannten Hydroxy-Verbindungen des Typs R1-A-R-OH können alleine (eine Verbindung) oder als Gemisch (mehrere Verbindungen des Typs R1-A-R-OH) eingesetzt werden. Insbesondere wenn bei der erfindungsgemäßen Umsetzung höherviskose Verbindungen entstehen, wird das Absetzen der Verunreinigungen in Form von schwerlöslichen Feststoffen behindert. Dann kann, unter anderem zur Erniedrigung der Viskosität und damit auch zur leichteren Filtrierbarkeit, ein 1- bis 5-facher Überschuß der Hydroxy-Verbindungen gewählt werden, wobei man dabei auch Alkohole vom Typ R2-OH einsetzen bzw. deren Anteil erhöhen kann. Besonders bevorzugt geschieht die Einstellung der Viskosität der Flüssigkeit/Lösung durch die nachträgliche Zugabe von Alkoholen des Typs R2-OH.
Ein Teil der bei der Umsetzung eingesetzten Hydroxy-Verbindungen vom Typ R1-A-R-OH kann vor oder nach der Umsetzung durch andere Alkohole, nämlich solche vom Typ R2-OH ersetzt werden. Der Anteil der Alkohole vom Typ R2-OH darf jedoch insgesamt 50 Gew.% der Gesamtheit aller einzusetzenden Edukte bzw. Lösungsmittel nicht überschreiten.
Die Umsetzung der Hydroxy-Verbindungen mit den Magnesiumverbindungen kann prinzipiell auch unter Beimischung von Lösungsmitteln erfolgen, wobei diese Lösungsmittel den Aufwand bei der Herstellung erhöhen, weil man diese nach der Umsetzung wieder entfernen muß. Wichtiger ist jedoch, daß bedingt durch Fremdlösungsmittel die Materialeigenschaften der Magnesiumhydroxide hinsichtlich der Reinheit und Einheitlichkeit der Porenverteilung und Kristallinität ungünstig beeinflußt werden. Weiterhin werden die Magnesiumverbindungen oft nach Umsetzung in anderen Lösungsmitteln und Aufarbeitung fest und unlöslich, so daß sie erst wieder in einem unpolaren Lösungsmittel aufgenommen werden müssen, bevor die Lösung einer Hydrolyse unterworfen werden kann. Die Umsetzung in anderen Lösungsmittel führt zu amorphen Magnesiumhydroxiden.
Erfindungsgemäß zur Herstellung von hochreinem Magnesiumhydroxid geeignete Magnesiumalkoxy-Verbindungen sind beispielsweise die Versuchsprodukte (VP.) Bis(ethylglykolato)-Magnesium (VP. 1), Bis(n-butylglykolato)-Magnesium (VP. 2), Magnesium-bis(N,N-dimethylamino-1-propanolat) (VP. 3), Magnesium-bis(N,N-dimethylaminoethanolat) (VP. 4) oder Magnesium-bis(2-ethylaminoethanolat) (VP.5) oder Magnesium-bis(1-Methoxy-2-propanolat) (VP.6).
Das erfindungsgemäß hergestellte Magnesiumhydroxid besitzt eine hohe Reinheit. Insbesondere sind die für die Anwendung in der Katalyse besonders nachteiligen Alkaliund Erdalkalimetallgehalte sehr gering. In Tabelle 1 sind die Ergebnisse der Spurenelementbestimmung mittels ICP dargelegt. Zum Vergleich sind käuflich erworbenes Magnesiumhydroxid "reinst" und Magenesiumoxid in p. a. Qualität herangezogen.
Spurenelementbestimmung mittels ICP
Verbindung Fe
[ppm]
Si
[ppm]
Ti
[ppm]
Mn
[ppm]
Zn
[ppm]
Ga
[ppm]
Na
[ppm]
Ca
[ppm]
Magnesium 286 46 3 8 23 <5 23 9
Mg-alkoxid <2 <2 <1 <1 <2 <5 <2 <1
Mg(OH)2 a 12 <2 3 3 <2 <5 14 6
Mg(OH)2 b 52 699 1 7 2 <5 58 2290
MgO   c 9 51 1 6 2 4 1375 168
MgO   d 15 7 3 3 <2 <5 16 10
Legende: a:   erfindungsgemäß hergest. Magnesiumhydroxid
b:   Vergleichssubstanz Qualität "reinst" (von E. Merck AG, Darmstadt)
c:   Vergleichssubstanz Qualität "p.a." (von Riedel de Haën AG, Hannover)
Mg-alkoxid:   Bis(ethylglykolato)-magnesium
d:   erfindungsgemäß hergest. MgO aus Mg(OH)2
Aus dem Vergleich der Daten für die Verunreinigungen des Magnesiummetalls und der daraus hergestellten Magnesiumalkoxid-Verbindung wird ersichtlich, daß eine sehr effektive Abtrennung von Verunreinigungen z.B. von anderen Metallen gelingt. Als "hochrein" im Sinne der Erfindung werden Magnesiumoxide bzw. Magnesiumhydroxide mit folgenden Grenzwerten definiert:
Grenzwerte
Verbindung Fe
[ppm]
Si
[ppm]
Ti
[ppm]
Mn
[ppm]
Zn
[ppm]
Ga
[ppm]
Na
[ppm]
Ca
[ppm]
<50 <50 <10 <10 <10 <10 <50 <50
insbesondere mit den Grenzwerten aus Tabelle 3, wobei der niedrige Grenzwert für die Alkali- und Erdalkaliionen, insbesondere Na und Ca ausschlaggebend ist, weil er diese Materialien für viele katalytische Anwendungen, die gegenüber Alkali- und Erdalkalifremdionen sensibel sind, prädestiniert:
Grenzwerte
Verbindung Fe
[ppm]
Si
[ppm]
Ti
[ppm]
Mn
[ppm]
Zn
[ppm]
Ga
[ppm]
Na
[ppm]
Ca
[ppm]
<20 <20 <5 <5 <5 <5 <20 <20
Eine weitere Erhöhung der Reinheit gegenüber den Werten aus Tabelle 1 kann durch Verwendung von bidestilliertem Wasser und Gefäßen aus inertem Material erzielt werden. Die Hydrolyse durch "lediglich" deionisiertes Wasser erhöht den Fe-, Mn-, Ti-, Na- und Ca- Gehalt in dem Mg(OH)2 (Verbindung a) geringfügig im Vergleich zur eingesetzten Magnesiumalkoxid-Verbindung (Mg-alkoxid).
In Figur 1 ist das Röntgendiffraktogramm eines erfindungsgemäß dargestellten Magnesiumhydroxids dargestellt. Das Strichspektrum in Figur 1 gibt zum Vergleich das Röntgendiffraktogramm aus der JCPDS-Kartei (Eintrag Nr. 7-0239 Mg(OH)2, Brucit, syn) wieder.
Aus den erfindungsgemäß hergestellten Verbindungen lassen sich durch Kalzinieren die Metalloxide herstellen. Zum Kalzinieren wurden die erfindungsgemäßen Verbindungen in einen Ofen bei Temperaturen zwischen 550 °C und 1500 °C über einen Zeitraum von 3 h bis 24 h verbracht. Das so hergestellte Metalloxid weist die gleiche hohe Reinheit wie das erfindungsgemäße Metallhydroxid auf.
In Tabelle 4 sind die Werte für einige physikalische Daten des erfindungsgemäß hergestellten Magnesiumhydroxids aufgeführt.
Physikalische Daten des Versuchsproduktes VP.1
H20:Alkoholat
[g/g]
Oberfläche
[m2/g]
Porenvolumen
[ml/g]
Porenradius
[Å]
Hydrolysewasser
[pH]
Hydrolysewasser
T [°C]
1,15:1 142 0,71 1) 94 7 90
2 : 1 123 0,62 1) 68 7 90
4 : 1 142 0,62 2) 88 7 90
4 : 1 97 0,76 1) 283 1 90
4 : 1 131 0,40 1) 78 4 90
Legende:
1): Messung mittels Quecksilberporosimetrie (Porosimeter Autopore II 9220, Micromeritics)
2): Messung mittels Stickstoffporosimetrie (ASAP 2010, Mikromeritics)
Geht man davon aus, daß der Porenradius mit den Kristallitgrößen korreliert, so wird ersichtlich, daß in Abhängigkeit vom pH-Wert des Hydrolysewassers, der z.B. durch Zugabe von Ammoniak zum Hydrolysewasser eingestellt werden kann, der gewünschte Porenradius und damit auch die gewünschte Kristallitgröße des erfindungsgemäß hergestelltem Magnesiumhydroxids erhalten werden kann.
Die Verteilung der Porenradien der erfindungsgemmäß hergestellten Magnesiumhydroxid- und Magnesiumoxidproben ist wesentlich enger und einheitlicher (monomodale Verteilungen) als die herkömmlicher kommerziell erhältlicher Magnesiumhydroxide/oxide. Die Porenradienverteilung beider Produkte, Magnesiumhydroxid und Magnesiumoxid, ist in den Figuren 2 und 3 vergleichend dargestellt. Enge wohldefinierte Porenradien sind für katalytische Anwendungen von Bedeutung.
Zur Analyse der erfindungsgemäß hergestellten Verbindungen wurden die Verunreinigungen durch Spurenelemente mittels induktiv gekoppelter Plasmaspektroskopie (ICP) bestimmt. Die Bestimmung der kristallinen Phasen erfolgte durch Pulverdiffraktometrie. Oberflächen wurden mittels BET (3-Punkt Methode) ermittelt, Porenvolumina und Porenradien zusätzlich mittels Quecksilberporosimetrie sowie mittels Stickstoffporosimetrie. Zum Kalzinieren wurden die erfindungsgemäßen Verbindungen in einem Muffelofen Temperaturen zwischen 550 °C und 1500 °C ausgesetzt. Zur Hydrolyse wurde deionisiertes Wasser verwendet.
Beispiel 1 Umsetzung mit Ethylglycol (stöchiometrische Menge an CH3-CH2-O-CH2-CH2-OH) ammoniakalische Hydrolyse (VP. 1)
In einen 1000 ml Dreihalskolben wurden 20 g Magnesium-Granulat vorgelegt. Dazu wurden 48,4 g Ethylglycol gegeben. Die Mischung wurde erhitzt. Bei ca. 125 °C begann die Umsetzung des Metalls mit dem Ethylglycol, erkennbar an der Entwicklung von Wasserstoff und einem Temperaturanstieg auf ca. 140 °C. Man tropfte nun mittels eines Tropftrichters weitere 100 g Ethylglycol über einen Zeitraum von 30 min. zu. Das flüssige Reaktionsgemisch wurde filtriert. 100 g des Filtrats wurden in drei aliquoten Teilen in einer Vorlage (H2O : Alkoholat = 4 : 1) bestehend aus 400 g deionisiertem Wasser (enthielt 0,2 Gew.%-. Ammoniak) hydrolysiert (T = 90 °C). Es entstand sofort ein weißer Niederschlag. Der freiwerdende Alkohol wurde abdestilliert. Der so erhaltene Slurry (Aufschlämmung) wurde sprühgetrocknet. Die Ausbeute betrug entsprechend 98 % der Theorie.
Beispiel 1a Umsetzung mit Ethylglycol (VP. 1)
In einen 1000 ml Dreihalskolben wurden 20 g Magnesium-Granulat vorgelegt. Dazu wurden 50 g Ethylglycol gegeben. Die Mischung wurde erhitzt. Bei ca. 125 °C begann die Umsetzung des Metalls mit dem Ethylglycol, erkennbar an der Entwicklung von Wasserstoff und einem Temperaturanstieg auf ca. 140 °C. Man tropfte nun mittels eines Tropftrichters weitere 236 g Ethylglycol über einen Zeitraum von 50 min. zu. Das Reaktionsgemisch wurde filtriert. 100 g des Filtrats wurden in drei aliquoten Teilen in einer Vorlage (H2O : Alkoholat = 4 : 1) bestehend aus 400 g deionisiertem Wasser (enthält 0,2 Gew.%. Ammoniak) hydrolysiert (T = 90 °C). Es entstand sofort ein weißer Niederschlag. Der freiwerdende Alkohol wurde abdestilliert. Der so erhaltene Slurry wurde sprühgetrocknet. Die Ausbeute beträgt entsprechend 98 % der Theorie.
Beispiel 2 Umsetzung mit Ethylglycol und Hexanol, ammoniakalische Hydrolyse (VP. 1)
In einen 1000 ml Dreihalskolben wurden 20 g Magnesium-Granulate vorgelegt. Dazu gibt man 20 g eines Hexanol/Ethylglycol (50 : 50 Gew.%). Die Mischung wurde erhitzt. Bei ca. 125 °C begann die Umsetzung des Metalls mit dem Ethylglycol/Hexanol-Gemisch, erkennbar an der Entwicklung von Wasserstoff und einem Temperaturanstieg auf ca. 140 °C. Man tropfte nun mittels eines Tropftrichters 266 g des Ethylglycols/Hexanols über einen Zeitraum von 50 min. zu. Das Reaktionsgemisch war selbst bei Raumtemperatur noch flüssig und wird filtriert. 100 g des Filtrats wurden in drei aliquoten Teilen in einer Vorlage (H2O : Alkoholat = 4 : 1) bestehend aus 400 g deionisiertem Wasser (enthält 0,2 Gew.%-. Ammoniak) hydrolysiert (T = 90 °C). Es entstand sofort ein weißer Niederschlag. Der freiwerdende Alkohol wurde abdestilliert. Der so erhaltene Slurry wurde sprühgetrocknet. Die Ausbeute betrug entsprechend 98 % der Theorie.
Beispiel 3 Umsetzung mit n-Butylglycol (CH3-CH2-CH2-CH2-O-CH2-CH2-OH) ammoniakalische Hydrolyse (VP. 2)
In einen 1000 ml Dreihalskolben wurden 15 g Magnesium-Granulat vorgelegt. Dazu wurden 15 g n-Butylglykol gegeben. Die Mischung wurde erhitzt. Bei ca. 150 °C begann die Umsetzung des Metalls mit dem n-Butylglykol, erkennbar an der Entwicklung von Wasserstoff. Die Reaktionstemperatur pegelte sich bei ca. 180 °C ein. Man tropfte nun mittels eines Tropftrichters weitere 252 g n-Butylglykol über einen Zeitraum von 90 min. zu. Das Reaktionsgemisch wurde filtriert. 100 g des Filtrats wurden in drei aliquoten Teilen in einer Vorlage (H2O : Alkoholat = 4 : 1) bestehend aus 400 g deionisiertem Wasser (enthält 0,2 Gew.%- Ammoniak) hydrolysiert (T = 90 °C). Es entstand sofort ein weißer Niederschlag. Der freiwerdende Alkohol wurde abdestilliert. Der so erhaltene Slurry wurde sprühgetrocknet. Die Ausbeute betrug entsprechend 98 % der Theorie.
Beispiel 3a Umsetzung mit n-Butylglycol, Hydrolyse ohne Ammoniak (stöchiometrische Menge an n-Butylglykol) (VP. 2)
In einen 1000 ml Dreihalskolben wurden 15 g Magnesium-Granulate vorgelegt. Dazu wurden 25,7 g n-Butylglykol gegeben. Die Mischung wurde erhitzt. Bei ca. 155 - 160 °C begann die Umsetzung des Metalls mit dem n-Butylglykol, erkennbar an der Entwicklung von Wasserstoff. Man tropfte nun mittels eines Tropftrichters weitere 120 g n-Butylglykol über einen Zeitraum von 90 min. zu. Das flüssige Reaktionsgemisch wurde filtriert. 100 g des Filtrats wurde in drei aliquoten Teilen in einer Vorlage (H2O : Alkoholat = 4 : 1) bestehend aus 400 g deionisiertem Wasser hydrolysiert (T = 90 °C). Es entstand sofort ein weißer Niederschlag. Der freiwerdende Alkohol wurde abdestilliert. Der so erhaltene Slurry wurde sprühgetrocknet. Die Ausbeute betrug entsprechend 98 % der Theorie.
Beispiel 3b Umsetzung mit n-Butylglycol, Hydrolyse ohne Ammoniak (VP. 2)
In einen 1000 ml Dreihalskolben wurden 15 g Magnesium-Granulate vorgelegt. Dazu wurden 15 g n-Butylglykol gegeben. Die Mischung wurde erhitzt. Bei ca. 155-160 °C begann die Umsetzung der Metalle mit dem n-Butylglykol, erkennbar an der Entwicklung von Wasserstoff. Man tropfte nun mittels eines Tropftrichters weitere 252 g n-Butylglykol über einen Zeitraum von 90 min. zu. Das Reaktionsgemisch wurde filtriert. 100 g des Filtrats wurden in drei.aliquoten Teilen in einer Vorlage (H2O : Alkoholat = 4 : 1) bestehend aus 400 g deionisiertem Wasser hydrolysiert (T = 90 °C). Es entstand sofort ein weißer Niederschlag. Der überstehende Alkohol wurde abdekantiert. Der freiwerdende Alkohol wurde abdestilliert. Der so erhaltene Slurry wurde sprühgetrocknet. Die Ausbeute betrug entsprechend 98 % der Theorie.
Beispiel 4 Umsetzung mit 3-Dimethylamino-1-propanol (VP. 3)
In einen 1000 ml Dreihalskolben wurden 15 g Magnesium-Granulate vorgelegt. Dazu wurden 50 g 3-Dimethylamino-1-propanol gegeben. Die Mischung wurde erhitzt. Bei ca. 150 - 160 °C begann die Umsetzung der Metalle mit 3-Dimethylamino-1-propanol, erkennbar an der Entwicklung von Wasserstoff. Man tropfte nun mittels eines Tropftrichters weitere 197 g 3-Dimethylamino-1-propanol über einen Zeitraum von 6 h zu. Das Reaktionsgemisch wurde filtriert. 100 g des Filtrats werden in drei aliquoten Teilen in einer Vorlage (H2O : Alkoholat 4 : 1) bestehend aus 400 g deionisiertem Wasser hydrolysiert (T = 90 °C). Es entstand sofort ein weißer Niederschlag. Der freiwerdende Alkohol wurde abdestilliert. Der so erhaltene Slurry wurde sprühgetrocknet. Die Ausbeute betrug entsprechend 95% der Theorie.
Beispiel 5 Umsetzung mit 2-(Dimethylamino)ethanol (VP. 4)
In einen 1000 ml Dreihalskolben wurden 15 g Magnesium-Granulate vorgelegt. Dazu wurden 50 g 2-Dimethylaminoethanol gegeben. Die Mischung wurde erhitzt. Bei ca. 135 - 145 °C beginnt die Umsetzung der Metalle mit 2-Dimethylaminoethanol, erkennbar an der Entwicklung von Wasserstoff. Man tropfte nun mittels eines Tropftrichters weitere 321 g 2-Dimethylaminoethanol über einen Zeitraum von 5 h zu. Das Reaktionsgemisch wurde filtriert. 100 g des Filtrats wurden in drei aliquoten Teilen in einer Vorlage (H2O : Alkoholat 4 : 1) bestehend aus 400 g deionisiertem Wasser hydrolysiert (T = 90 °C). Es entstand sofort ein weißer Niederschlag. Der freiwerdende Alkohol wurde abdestilliert. Der so erhaltene Slurry wurde sprühgetrocknet. Die Ausbeute betrug entsprechend 96 % der Theorie.
Beispiel 6 Umsetzung mit 2-Ethylamino-ethanol (VP. 5)
In einen 1000 ml Dreihalskolben wurden 15 g Magnesium-Granulate vorgelegt. Dazu gab man 50 g 2-Ethylamino-ethanol. Die Mischung wurde erhitzt. Bei ca. 150 - 160 °C beginnt die Umsetzung der Metalle mit 2-Ethylamino-ethanol, erkennbar an der Entwicklung von Wasserstoff. Man tropfte nun mittels eines Tropftrichters weitere 123 g 2-Ethylaminoethanol über einen Zeitraum von 4 h zu. Das Reaktionsgemisch wurde filtriert. 100 g des Filtrats wurden in drei aliquoten Teilen in einer Vorlage (H2O : Alkoholat = 4 : 1) bestehend aus 400 g deionisiertem Wasser hydrolysiert (T = 90 °C). Es entstand sofort ein weißer Niederschlag. Der freiwerdende Alkohol wird abdestilliert. Der so erhaltene Slurry wurde sprühgetrocknet. Die Ausbeute betrug entsprechend 94 % der Theorie.
Beispiel 7 Umsetzung mit 1-(Methoxy)propan-2-ol (VP. 6)
In einen 500 ml Dreihalskolben wurden 10 g Magnesium-Granulate vorgelegt. Dazu gab man 15 g 1-Methoxy-2-propanol. Die Mischung wurde erhitzt. Bei ca. 120 °C begann die Umsetzung des Metalls mit 1-Methoxy-2-propanol, erkennbar an der Entwicklung von Wasserstoff. Man tropfte nun mittels eines Tropftrichters weitere 59,1 g 1-Methoxy-2-propanol über einen Zeitraum von 5 h zu. Das Reaktionsgemisch wurde filtriert. 50 g des Filtrats wurden in drei aliquoten Teilen in einer Vorlage (H2O : Alkoholat = 4 : 1) bestehend aus 200 g deionisiertem Wasser hydrolysiert (T = 90 °C). Es entstand sofort ein weißer Niederschlag. Der freiwerdende Alkohol wird abdestilliert. Der so erhaltene Slurry wurde sprühgetrocknet. Die Ausbeute betrug entsprechend 80 % der Theorie.

Claims (10)

  1. Verfahren zur Herstellung von hochreinem Magnesiumhydroxid, dadurch gekennzeichnet, daß man Magnesiummetall und/oder reaktive Magnesiumverbindungen
    mit einer oder mehreren Hydroxy-Verbindungen des Typs R1-A-R-OH oder
    neben den Hydroxy-Verbindungen des Typs R1-A-R-OH (I) zusammen mit bis zu 50 Gew.%, bezogen auf die Gesamtheit aller eingesetzten Edukte oder Lösungsmittel, eines oder mehrerer Alkohole des Typs R2-OH wobei
    (a) A für ein Element aus der Hauptgruppe 6 (Sauerstoff-Gruppe) oder Hauptgruppe 5 (Stickstoff-Gruppe) des Periodensystems steht, wobei wenn A für ein Element der Hauptgruppe 5 steht, A weitere Substituenten R1 oder Wasserstoff trägt, die untereinander verschieden sein können, und
    (b) R, R1 und R2 für einen verzweigten oder unverzweigten, cyclischen oder acyclischen, gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffrest mit 1 - 10 Kohlenstoffatomen steht, wobei R, R1 und R2 voneinander verschieden sein können und R zweifach substituiert ist,
    zu flüssigen / gelösten Magnesiumalkoxiden umsetzt und nach Abtrennung schwerer löslicher Verunreinigungen hydrolysiert.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man Magnesiummetall einsetzt.
  3. Verfahren gemäß einem der vorhergehen Ansprüche, wobei R und R1 für einen verzweigten oder unverzweigten, gesättigten Kohlenwasserstoffrest mit 1 bis 5 Kohlenstoffatomen steht, wobei R und R1 voneinander verschieden sein können und R zweifach substituiert ist.
  4. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß R2 für einen unverzweigten, acyclischen und gesättigten Kohlenwasserstoffrest mit 4 bis 8 Kohlenstoffatomen steht.
  5. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man einen 1 bis 5-fachen Überschuß der Hydroxy-Verbindungen einsetzt, bezogen auf das stöchiometrische Verhältnis der Hydroxy-Gruppen zu den Mg-Valenzen.
  6. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man ohne Zusatz von Lösungsmitteln im wesentlichen ausschließlich mit/in den Hydroxy-Verbindungen der Formel R1-A-R-OH (I) oder den Hydroxy-Verbindungen der Formel R1-A-R-OH (I) und R2-OH (II) zu den Magnesiumhydroxiden umsetzt.
  7. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man die Hydroxy-Verbindungen der Formel R2-OH (II) erst nach Umsetzung des Metalls / der Metallverbindung mit den Hydroxy-Verbindungen der Formel R1-A-R-OH (I) zugibt.
  8. Verfahren zur Herstellung von Magnesiumoxiden, dadurch gekennzeichnet, daß man die Magnesiumhydroxide gemäß einem der vorhergehenden Ansprüche kalziniert.
  9. Verwendung des gemäß einem der Ansprüche 1 bis 8 hergestellten Magnesiumhydroxids oder Magnesiumoxids als Katalysator und/oder Katalysatorträgermaterial für katalytische Prozesse bzw. zur Herstellung derselben.
  10. Verwendung des gemäß einem der Ansprüche 1 bis 8 hergestellten Magnesiumhydroxids oder Magnesiumoxids als Ausgangsmaterial zur Herstellung von keramischen Werkstoffen oder keramischen Formkörpern.
EP96946244A 1995-12-27 1996-12-19 Verfahren zur herstellung von hochreinem magnesiumhydroxid und magnesiumoxid aus magnesiumalkoxiden Expired - Lifetime EP0869915B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19548863 1995-12-27
DE19548863A DE19548863A1 (de) 1995-12-27 1995-12-27 Verfahren zur Herstellung von hochreinem Magnesiumhydroxid und Magnesiumoxid aus Magnesiumalkoxiden
PCT/DE1996/002483 WO1997024304A2 (de) 1995-12-27 1996-12-19 Verfahren zur herstellung von hochreinem magnesiumhydroxid und magnesiumoxid aus magnesiumalkoxiden

Publications (2)

Publication Number Publication Date
EP0869915A2 EP0869915A2 (de) 1998-10-14
EP0869915B1 true EP0869915B1 (de) 2004-04-07

Family

ID=7781511

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96946244A Expired - Lifetime EP0869915B1 (de) 1995-12-27 1996-12-19 Verfahren zur herstellung von hochreinem magnesiumhydroxid und magnesiumoxid aus magnesiumalkoxiden

Country Status (9)

Country Link
US (1) US6569399B2 (de)
EP (1) EP0869915B1 (de)
JP (1) JP2000515841A (de)
AT (1) ATE263735T1 (de)
DE (2) DE19548863A1 (de)
DK (1) DK0869915T3 (de)
ES (1) ES2217341T3 (de)
PT (1) PT869915E (de)
WO (1) WO1997024304A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255981A (ja) * 2001-03-02 2002-09-11 Showa Denko Kk カルシウム含量が低減されたアスコルビン酸−2−リン酸エステルマグネシウム塩
FR2876497B1 (fr) * 2004-10-13 2007-03-23 Commissariat Energie Atomique Revetement a base de mgo pour l'isolation electrique de substrats semi-conducteurs et procede de fabrication
US7686986B2 (en) * 2006-01-05 2010-03-30 Headwaters Technology Innovation, Llc Magnesium hydroxide nanoparticles, methods of making same and compositions incorporating same
JP5415215B2 (ja) * 2009-10-02 2014-02-12 タテホ化学工業株式会社 分散性に優れる酸化マグネシウム粉末及びその製造方法
US20130325992A1 (en) * 2010-08-05 2013-12-05 Solariat, Inc. Methods and apparatus for determining outcomes of on-line conversations and similar discourses through analysis of expressions of sentiment during the conversations
CN110342552B (zh) * 2019-08-16 2021-12-10 大连环球矿产股份有限公司 一种化学法制备活性微纳米氢氧化镁阻燃剂的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2478593A (en) * 1949-08-09 Production of dead-burned magnesia
GB667708A (en) * 1949-03-15 1952-03-05 Standard Oil Dev Co Improvements in or relating to preparation of catalytic and adsorbent magnesia-containing materials
US2920105A (en) * 1957-12-13 1960-01-05 Texaco Inc Preparation of hyperbasic sulfonates
US3471259A (en) * 1967-01-30 1969-10-07 Asahi Glass Co Ltd Method of manufacturing a magnesia clinker
DE1806549B2 (de) * 1968-11-02 1974-06-12 Dynamit Nobel Ag, 5210 Troisdorf Verfahren zur Herstellung von Magnesium-Alkohol-Verbindungen
NL7101982A (de) * 1970-05-12 1971-11-16
US3946102A (en) * 1972-12-11 1976-03-23 Owens-Illinois, Inc. Liquid octa 2-lower alkoxy ethoxides of aluminum and (magnesium or calcium)
GB1551819A (en) * 1975-05-23 1979-09-05 Exxon Research Engineering Co Production of basic magnesium detergent additives
US4104180A (en) 1975-05-23 1978-08-01 Exxon Research & Engineering Co. Production of overbased metal phenates
SU1002243A1 (ru) * 1981-12-05 1983-03-07 Львовский Ордена Ленина Политехнический Институт Им.Ленинского Комсомола Способ получени гидроокиси магни
DE3244972C1 (de) 1982-12-04 1984-02-09 Condea Chemie GmbH, 2212 Brunsbüttel Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Aluminiumalkoholaten
US4609755A (en) * 1983-10-20 1986-09-02 Allied Colloids Limited Synthesis of vinyl esters
US4837190A (en) * 1986-05-09 1989-06-06 Akzo America Inc. Organic solvent soluble polyvalent metal alkoxy alkoxides
US4698323A (en) * 1986-09-29 1987-10-06 Stauffer Chemical Company Transition metal catalyst component containing magnesium alkoxy alkoxides
US5023071A (en) * 1988-10-05 1991-06-11 Akzo America Inc. Process for forming metal oxide powders from the metal alkoxide

Also Published As

Publication number Publication date
JP2000515841A (ja) 2000-11-28
DE59610972D1 (de) 2004-05-13
WO1997024304A3 (de) 1997-08-14
US6569399B2 (en) 2003-05-27
EP0869915A2 (de) 1998-10-14
ES2217341T3 (es) 2004-11-01
PT869915E (pt) 2004-08-31
US20020015677A1 (en) 2002-02-07
WO1997024304A2 (de) 1997-07-10
DE19548863A1 (de) 1997-07-03
DK0869915T3 (da) 2004-06-21
ATE263735T1 (de) 2004-04-15

Similar Documents

Publication Publication Date Title
EP1025045B1 (de) Böhmitische tonerden und aus diesen erhältliche phasenreine hochtemperaturstabile und hochporöse aluminiumoxide
EP0524436B1 (de) Verfahren zur Herstellung von gesintertem Material auf Basis von alpha-Aluminiumoxid, insbesondere für Schleifmittel
DE2906444C2 (de)
EP0807086A1 (de) Verfahren zur herstellung von hydrotalciten sowie deren metalloxiden
EP0318111B1 (de) Verfahren zur Herstellung von Bariumtitanat in Pulverform
DE3613011A1 (de) Verfahren zur herstellung von sinterbaren metalloxidkeramikpulvern
EP0869915B1 (de) Verfahren zur herstellung von hochreinem magnesiumhydroxid und magnesiumoxid aus magnesiumalkoxiden
DE112019002838T5 (de) Zinkoxidvaristor
EP0126425A2 (de) Eisenoxid-Chromoxid-Katalysator für die Hochtemparatur-CO-Konvertierung
WO1998034874A1 (de) Carbonitrid-pulver, verfahren zu ihrer herstellung sowie deren verwendung
EP0634990B1 (de) Chromfreier katalysator auf basis eisenoxid zur konvertierung von kohlenmonoxid
EP0372382A2 (de) Sinterfähiges Keramikpulver, Verfahren zu seiner Herstellung, daraus hergestellte Siliziumnitridkeramik, Verfahren zu deren Herstellung sowie deren Verwendung
DE102013226579A1 (de) Keramikwerkstoff
DE4343029B4 (de) Dielektrische keramische Zusammensetzung für die Hochfrequenz
DE4116523A1 (de) Verfahren zur herstellung von (alpha)-al(pfeil abwaerts)2(pfeil abwaerts)o(pfeil abwaerts)3(pfeil abwaerts)
EP4234515A2 (de) Polykristalliner keramischer festkörper und verfahren zur herstellung eines polykristallinen keramischen festkörpers
DE4217819C1 (de)
EP0121043B1 (de) Verfahren zur Herstellung feinverteilter Dispersionen von Metalloxiden in Aluminiumhydroxid
DE102020106964A1 (de) Chromfreier hydrierkatalysator mit erhoehter wasser- und saeurestabilitaet
WO1998015375A1 (de) Pulverförmige zubereitung von wasserempfindlichen anorganischen substanzen, ihre herstellung und verwendung
DE10332776A1 (de) Verfahren zur Herstellung von Aluminiumtrihydraten mit hohem Porenvolumen, nach diesem Verfahren hergestellte Aluminiumtrihydrate und deren Verwendung
DE2704073A1 (de) Verfahren zur entfernung von sulfationen aus extrahierter phosphorsaeure
DE2149640A1 (de) Verfahren zur Herstellung eines hochreinen Spinells entsprechend der Spinellformel MgAl2O4
DE2125855A1 (en) Metal alkoxides prodn - products used as starting - materials for highly pure spinels and refractories
DE102019131569A1 (de) Chromfreier wasser- und saeurestabiler katalysator fuer hydrierungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980604

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB IT LI NL PT SE

17Q First examination report despatched

Effective date: 20001122

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SASOL GERMANY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB IT LI NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59610972

Country of ref document: DE

Date of ref document: 20040513

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040701

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20040629

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2217341

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041219

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050110

BERE Be: lapsed

Owner name: *SASOL GERMANY G.M.B.H.

Effective date: 20041231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20061206

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061215

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20061218

Year of fee payment: 11

Ref country code: GB

Payment date: 20061218

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20061220

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20061227

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20061228

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061231

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070227

Year of fee payment: 11

BERE Be: lapsed

Owner name: *SASOL GERMANY G.M.B.H.

Effective date: 20041231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20061221

Year of fee payment: 11

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20080619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071219

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071219

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071220

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080102

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20071220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071219