EP0862948B1 - Magnetabscheider - Google Patents

Magnetabscheider Download PDF

Info

Publication number
EP0862948B1
EP0862948B1 EP98102052A EP98102052A EP0862948B1 EP 0862948 B1 EP0862948 B1 EP 0862948B1 EP 98102052 A EP98102052 A EP 98102052A EP 98102052 A EP98102052 A EP 98102052A EP 0862948 B1 EP0862948 B1 EP 0862948B1
Authority
EP
European Patent Office
Prior art keywords
housing
pipe
magnetic separator
particles
longitudinal axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98102052A
Other languages
English (en)
French (fr)
Other versions
EP0862948A1 (de
Inventor
Matthias Dr. Franzreb
Siegfried Prof. Dr. Eberle
Wolfgang Dr. Höll
Percy Kampeis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP0862948A1 publication Critical patent/EP0862948A1/de
Application granted granted Critical
Publication of EP0862948B1 publication Critical patent/EP0862948B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/035Open gradient magnetic separators, i.e. separators in which the gap is unobstructed, characterised by the configuration of the gap

Definitions

  • the invention relates to a magnetic separator according to the preamble of the first claim.
  • Such a magnetic separator is from the publication R.P.A.R. van Kleef, H.W. Myron, P. Wyder and M. R. Parker: "Application of Magnetic Flocculation in a Continuous Flow Magnetic Separator ", IEEE TRANSACTIONS ON MAGNETICS, Vol. MAG-20, No. 5 (1984) 1168-1170.
  • the magnetic separator is there from a vertically arranged, cylindrical housing, that is tapered in its lower part; he is with an inlet pipe that protrudes into the housing. How Shown in a schematic is the lower one Provide a baffle plate at the end of the inlet pipe a distance from the mouth of the inlet pipe is attached.
  • the lower part of the housing is conical and runs in a drain pipe.
  • Another drain pipe is as an overflow educated; The cleaned flows through this drain pipe Fluid from the device.
  • the device is between the Pole shoes of a permanent magnet or in the cavity of one electrical coil used, part of the housing the Area of the largest magnetic field gradient at the upper end of the Coil is exposed.
  • the device is used to separate diamagnetic from ferro- and paramagnetic particles in fluids.
  • the withdrawal rate of the ferro- and paramagnetic particles is caused by a non-homogeneous magnetic field as it is on the edge of an electrical Coil occurs, amplified considerably. Under the influence of the inhomogeneous magnetic field, the settling rate is so great that ferro- and paramagnetic particles against the current of the Fluids are pulled down.
  • the magnetic separator will filled with the particle-laden fluid via the inlet pipe, which is deflected on the baffle plate and in the radial direction flows into the housing. In the housing experience ferro- and paramagnetic particle a downward magnetic Force and leave the case through the spout at the bottom End of the conical area. The fluid and possibly contained diamagnetic particles flow upwards and leave the housing through the overflow.
  • this magnetic separator has have so far not been able to prevail in practice. Therefor two effects are primarily responsible. In addition to the desired has an anti-parallel component to the direction of flow the magnetic field in the area of the housing always a certain Proportion that acts perpendicular to the direction of flow. This creates a force on the ferro- and paramagnetic Particles towards the housing wall. The resulting one Part of the particles adhered to the housing wall leads to a gradual narrowing of the cross section and that these particles do not have the conical area with the Reach the outlet pipe. A second problem is that it is because of of the commonly used strong magnetic fields to one Particle agglomeration comes within the housing.
  • the ferro- and paramagnetic particles form a relatively solid, coherent Bed that is not from the incoming suspension is more evenly flowed through. Rather, in addition to compact, areas not flowed through quickly “Channels” on. The flow velocity is within these "channels" greatly increased, making the ferro- and paramagnetic Particles are transported with the fluid and get into the outlet, so that the separation performance deteriorated.
  • EP 0 014 802 B1 relates to a method for separating a heterogeneous catalyst, which is a magnetic or magnetizable Contains metal from a liquid phase.
  • the Document describes a magnetic separator for implementation of the procedure in which the content of the magnetic separator stirred with the help of a stirrer equipped with turbine blades becomes.
  • Another magnetic separator is described in GB 2 215 640 B.
  • the magnetic separator is operated discontinuously.
  • the distribution of the supplied fluid takes place in one of the Magnetic separator used, hollow cylindrical baffle plate, around which the fluid is directed in a spiral.
  • the invention has for its object a magnetic separator to propose of the type mentioned, in which the inflowing particle-laden fluid distributed more evenly in the housing and in Movement is kept so that the particles at most in to a small extent on the housing wall.
  • a magnetic separator mentioned type provided a rotatable inlet pipe.
  • a cross tube on the rotatable inlet pipe Preferably is at least one cross tube on the rotatable inlet pipe appropriate.
  • the cross tube is preferably at a right angle Supply pipe; however, angles other than the right are also possible.
  • the cross pipe should be rotationally symmetrical to the inlet pipe arranged and provided with outflow openings for the fluid, which are arranged along the axis of the cross tube. So that Fluid emerges from the outflow openings, the ends of the Inlet pipe and the cross pipe are closed.
  • the cross tubes preferably offset from one another on the inlet pipe. With this arrangement, deposits on the To largely prevent housing walls.
  • a further equalization of the fluid flow within of the housing can be achieved in that in the housing one or more gratings installed transversely to the longitudinal axis of the housing become.
  • Another advantage of such grids is that it is in the range of Lattice due to increased collisions to an assembly of fine particles and thus for better retention the fine fraction comes.
  • An embodiment of the magnetic separator is particularly preferred, a conical one at the inlet pipe Clearing device is provided.
  • the conical clearing device is designed in such a way that the particles, which are conical Collect part of the housing, conveyed into the drain pipe become.
  • the magnetic separator according to the invention also contains at least a filtrate drain pipe, preferably in the upper area is arranged. This leaves through the filtrate drain pipe cleaned fluid the magnetic separator while the concentrated Particles are removed from the concentrate drain pipe.
  • the magnetic separator according to the invention is in a device used to generate an electric field.
  • This facility can be an electrical coil or a permanent magnet be with two pole pieces.
  • the middle area of the case should be in the zone of the highest gradients of the magnetic field strength lie.
  • This zone forms a magnetic one for the particles Barrier.
  • For stationary operation of the magnetic separator to achieve it is therefore necessary to accumulate Particles via a drain pipe from the magnetic field area deducted.
  • the problem arises here that also in The course of the concentrate withdrawal the particles a magnetic Must overcome the barrier.
  • the problem is solved that the cross section of the concentrate draw is very small in comparison is chosen for the exit surface of the filtrate, whereby resulting from the high flow rate strong hydrodynamic drag forces the magnetic forces can overcome.
  • Fig. 1 shows a longitudinal section through an embodiment of the magnetic separator according to the invention.
  • a hollow shaft seal 1 is an inlet pipe 2, which is designed as a hollow shaft is rotatably mounted.
  • the hollow shaft seal 1 and filtrate drain pipes 3 are integrated in a flange cover 4, the on a flange ring 5 on the housing 6 of the magnetic separator can be screwed on.
  • the flange cover 4 and the flange ring 5 are sealed by an O-ring 7.
  • the housing 6 is cylindrical; its diameter is chosen so that it is in used the central cavity of an electrical coil can be.
  • the immersion depth of the magnetic separator in the Cavity can be varied by a height adjustment 8.
  • the inlet pipe 2 ends above the bottom of the housing 6, which is conical is shaped. At the top of the conical bottom opens a concentrate drain pipe 9 in the housing. The inlet pipe 2 is closed at its end in the housing. At this The end of the inlet pipe 2 is fixed with a clearing device 10 connected; is an embodiment of the clearing device 10 shown in Fig. 3.
  • a cross pipe 11 is also symmetrical on the inlet pipe 2 sealed ends attached that along its longitudinal axis is provided with outflow openings 12 (see FIG. 2).
  • the cross tube is located in that part of the housing 6 which in immerses the cavity of the electrical coil.
  • the housing 6 is in the area between the cross tube 11 and the flange cover 4 provided with two grids 14 (see Fig. 4) on brackets 13 can be placed.
  • FIG. 2 shows a top view of the magnetic separator shown in FIG. 1.
  • the flange cover 4 is via screw connections 15 connected to the flange ring 5 on the housing 6.
  • the cross tube 11 is placed, along the longitudinal axis of the Outflow openings 12 are rotationally symmetrical.
  • the clearing device 10 is attached to the inlet pipe 2.
  • Fig. 3 shows a differently shaped clearing device 10, the curved Has clearing blades.
  • Fig. 4 shows a grid 14 which from the bracket 13 on the Housing wall 6 is worn.
  • the magnetic separator according to the invention can be operated continuously become.
  • the one loaded with the particles to be separated Fluid flows through the inlet pipe, which is set in slow rotation 2 introduced into the housing 6.
  • Via the outflow openings 12 the fluid is distributed evenly in the cross tube 11; Moreover can thereby avoid deposits on the walls of the housing 6 become.
  • the too contains the conical part forms continuously Operating a sludge zone where the particles are concentrated are.
  • the cleaned fluid leaves the magnetic separator the filtrate drain pipes 3 in the flange cover 4; the particles will due to the magnetic barrier in the area of the largest change in field strength of the magnetic field is retained.
  • Concentrate drain pipe 9 the cross section of which is smaller is as the cross section of the inlet pipe 2. So that in the conical area the formation of deposits on the housing wall can be avoided is at the end of the inlet pipe 2 Broaching device 10 attached to the inlet pipe 2 in Rotation is offset. The blades are angled in the way that they are very close to the conical area Bearing the inner wall of the housing 6. The rotating clearing device 10 effects the transport of the concentrated particles before opening the concentrate drain pipe. In the case of more water Particles such as B. hydroxide slurries, the particles additionally compacted, whereby the solids content in Concentrate drain pipe 9 can be increased.
  • FIG. 3 curved blades shown, the even better Allow the particles to be transported to the concentrate discharge.

Landscapes

  • Centrifugal Separators (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Cyclones (AREA)
  • Liquid Crystal (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Dry Shavers And Clippers (AREA)

Description

Die Erfindung betrifft einen Magnetabscheider gemäß dem Oberbegriff des ersten Patentanspruchs.
Ein solcher Magnetabscheider ist aus der Veröffentlichung R.P.A.R. van Kleef, H.W. Myron, P. Wyder und M. R. Parker: "Application of Magnetic Flocculation in a Continuous Flow Magnetic Separator", IEEE TRANSACTIONS ON MAGNETICS, Vol. MAG-20, No. 5 (1984) 1168-1170 bekannt. Der Magnetabscheider besteht aus einem senkrecht angeordneten, zylindrischen Gehäuse, das in seinem unteren Teil konisch ausgezogen ist; er ist mit einem Zulaufrohr versehen, das in das Gehäuse hineinragt. Wie in einer schematischen Darstellung gezeigt ist, ist das untere Ende des Zulaufrohrs mit einer Prallplatte versehen, die in einem Abstand zur Mündung des Zulaufrohrs angebracht ist. Der untere Bereich des Gehäuses ist konisch geformt und läuft in ein Ablaufrohr aus. Ein weiteres Ablaufrohr ist als Überlauf ausgebildet; über dieses Ablaufrohr fließt das gereinigte Fluid aus der Vorrichtung. Die Vorrichtung wird zwischen die Polschuhe eines Permanentmagneten oder in den Hohlraum einer elektrischen Spule eingesetzt, wobei ein Teil des Gehäuses dem Bereich des größten Magnetfeldgradienten am oberen Ende der Spule ausgesetzt ist.
Die Vorrichtung dient zur Trennung diamagnetischer von ferro- und paramagnetischen Partikeln in Fluiden. Die Absetzrate der ferro- und paramagnetischen Partikel wird durch ein nicht homogenes magnetisches Feld, wie es am Rand einer elektrischen Spule auftritt, beträchtlich verstärkt. Unter dem Einfluß des inhomogenen Magnetfeldes ist die Absetzrate so groß, daß ferro- und paramagnetische Partikel entgegen dem Strom des Fluids nach unten gezogen werden. Der Magnetabscheider wird über das Zulaufrohr mit dem partikelbeladenen Fluid befüllt, das an der Prallplatte umgelenkt wird und in radialer Richtung in das Gehäuse einströmt. In dem Gehäuse erfahren ferro- und paramagnetische Partikel eine nach unten gerichtete magnetische Kraft und verlassen das Gehäuse über den Auslauf am unteren Ende des konischen Bereichs. Das Fluid und gegebenenfalls enthaltene diamagnetische Partikel strömen nach oben und verlassen das Gehäuse durch den Überlauf.
Trotz seines einfachen Aufbaus hat sich dieser Magnetabscheider bisher in der Praxis nicht durchsetzen können. Hierfür sind vor allem zwei Effekte verantwortlich. Neben der gewünschten, zur Strömungsrichtung antiparallelen Komponente besitzt das Magnetfeld im Bereich des Gehäuses immer einen gewissen Anteil, der senkrecht zur Strömungsrichtung wirkt. Hierdurch kommt es zu einer Kraft auf die ferro- und paramagnetischen Partikel in Richtung auf die Gehäusewand. Die resultierende Anhaftung eines Teils der Partikel an der Gehäusewand führt zu einer allmählichen Querschnittsverengung und dazu, daß diese Partikel nicht den konischen Bereich mit dem Auslaufrohr erreichen. Ein zweites Problem ist, daß es wegen der üblicherweise verwendeten starken Magnetfelder zu einer Partikelagglomeration innerhalb des Gehäuses kommt. Die ferro- und paramagnetischen Partikel bilden ein relativ festes, zusammenhängendes Bett, das von der zulaufenden Suspension nicht mehr gleichmäßig durchströmt wird. Vielmehr treten neben kompakten, nicht durchströmten Bereichen rasch durchströmte "Kanäle" auf. Innerhalb dieser "Kanäle" ist die Strömungsgeschwindigkeit stark erhöht, wodurch die ferro- und paramagnetischen Partikel mit dem Fluid weitertransportiert werden und in den Auslauf gelangen, so daß sich die Abscheideleistung verschlechtert.
Die EP 0 014 802 B1 betrifft ein Verfahren zur Trennung eines heterogenen Katalysators, der ein magnetisches oder magnetisierbares Metall enthält, von einer flüssigen Phase. Die Druckschrift beschreibt einen Magnetabscheider zur Durchführung des Verfahrens, bei der der Inhalt des Magnetabscheiders mit Hilfe eines mit Turbinenschaufeln versehenen Rührers gerührt wird.
Aus der US 4,502,958 ist ein Magnetabscheider mit einem zylindrischen Gehäuse, einem Zulauf, einem Filtratablauf und einem Konzentratablaufrohr bekannt, dessen Innenraum Magnete oder elektrische Spulen enthält. Der Innenraum ist in zwei Abteilungen aufgetrennt und enthält eine Räumvorrichtung.
Ein weiterer Magnetabscheider ist in der GB 2 215 640 B beschrieben. Der Magnetabscheider wird diskontinuierlich betrieben. Die Verteilung des zugeführten Fluids erfolgt an einem in den Magnetabscheider eingesetzten, hohlzylinderförmigen Prallblech, um das das Fluid spiralförmig geleitet wird.
Ein Beitrag zur Theorie magnetischer Abscheidemethoden findet sich in J. Svoboda: "Magnetic Methods for the Treatment of Minerals", Elsevier Science Publishers, Amsterdam 1987, pp. 316-322.
Der Erfindung liegt die Aufgabe zugrunde, einen Magnetabscheider der eingangs genannten Art vorzuschlagen, bei dem das zuströmende partikelbeladene Fluid gleichmäßiger im Gehäuse verteilt und in Bewegung gehalten wird, so daß sich die Partikel allenfalls in geringem Ausmaß an der Gehäusewand absetzen.
Die Aufgabe wird durch die im kennzeichnenden Teil des ersten Patentanspruchs genannten Merkmale gelöst. In den weiteren Ansprüchen sind bevorzugte Ausgestaltungen des erfindungsgemäßen Magnetabscheiders angegeben.
Erfindungsgemäß wird bei einem Magnetabscheider der eingangs genannten Art ein drehbares Zulaufrohr vorgesehen. Vorzugsweise ist an dem drehbaren Zulaufrohr mindestens ein Querrohr angebracht. Das Querrohr sitzt vorzugsweise rechtwinklig am Zulaufrohr; andere Winkel als der rechte sind jedoch ebenso möglich. Das Querrohr sollte rotationssymmetrisch zum Zulaufrohr angeordnet und mit Ausströmöffnungen für das Fluid versehen sein, die entlang der Achse des Querrohrs angeordnet sind. Damit das Fluid aus den Ausströmöffnungen austritt, können die Enden des Zulaufrohrs und des Querrohrs verschlossen werden. Für den Fall, daß mehrere Querrohre vorgesehen sind, werden die Querrohre vorzugsweise gegeneinander versetzt an dem Zulaufrohr angebracht. Mit dieser Anordnung gelingt es, Ablagerungen an den Gehäusewänden weitgehend zu verhindern.
Eine weitergehende Vergleichmäßigung des Fluidstroms innerhalb des Gehäuses kann dadurch erreicht werden, daß in das Gehäuse ein oder mehrere Gitter quer zur Gehäuselängsachse eingebaut werden. Als Gitter eignen sich z. B. Drahtnetze aus einer unmagnetischen Legierung oder einer Keramik mit einer Lochweite von 0,5 bis 2 mm und einer Drahtstärke von ca. 0,25 mm. Ein weiterer Vorteil solcher Gitter ist, daß es im Bereich des Gitters durch vermehrte Kollisionen zu einem Zusammenlagern von Feinstpartikeln und damit zu einer besseren Rückhaltung der Feinfraktion kommt.
Besonders bevorzugt wird eine Ausführungsform des Magnetabscheiders, bei der am Zulaufrohr außerdem eine konische Räumvorrichtung vorgesehen ist. Die konische Räumvorrichtung ist in der Weise gestaltet, daß die Partikel, die sich im konischen Teil des Gehäuses ansammeln, in das Ablaufrohr gefördert werden.
Der erfindungsgemäße Magnetabscheider enthält außerdem mindestens ein Filtratablaufrohr, das vorzugsweise im oberen Bereich angeordnet ist. Durch das Filtratablaufrohr verläßt das gereinigte Fluid den Magnetabscheider, während die aufkonzentrierten Partikel am Konzentratablaufrohr abgezogen werden.
Der erfindungsgemäße Magnetabscheider wird in eine Einrichtung zur Erzeugung eines elektrischen Feldes eingesetzt. Diese Einrichtung kann eine elektrische Spule oder ein Permanentmagnet mit zwei Polschuhen sein. Der mittlere Bereich des Gehäuses soll dabei in der Zone der höchsten Gradienten der Magnetfeldstärke liegen. Diese Zone bildet für die Partikel eine magnetische Barriere. Um einen stationären Betrieb des Magnetabscheiders zu erreichen, ist es daher notwendig, die akkumulierten Partikel über ein Ablaufrohr aus dem Magnetfeldbereich abzuziehen. Hierbei ergibt sich das Problem, daß auch im Verlauf des Konzentratabzugs die Partikel eine magnetische Barriere überwinden müssen. Das Problem wird dadurch gelöst, daß der Querschnitt des Konzentratabzugs sehr klein im Vergleich zur Austrittsfläche des Filtrats gewählt wird, wodurch die aus der hohen Strömungsgeschwindigkeit resultierenden starken hydrodynamischen Widerstandskräfte die Magnetkräfte überwinden können.
Eine Ausführungsform des erfindungsgemäßen Magnetabscheiders wird im folgenden anhand von Figuren näher erläutert.
Es zeigen:
  • Fig. 1 einen Längsschnitt und
  • Fig. 2 eine Aufsicht auf eine Ausführungsform des Magnetabscheiders;
  • Fig. 3 eine Räumvorrichtung;
  • Fig. 4 ein Gitter.
  • Fig. 1 zeigt einen Längsschnitt durch eine Ausführungsform des erfindungsgemäßen Magnetseparators. In einer Hohlwellenabdichtung 1 ist ein Zulaufrohr 2 , das als Hohlwelle ausgebildet ist, drehbar gelagert. Die Hohlwellenabdichtung 1 und Filtratablaufrohre 3 sind in einen Flanschdeckel 4 integriert, der auf einen Flanschring 5 am Gehäuse 6 des Magnetabscheiders aufgeschraubt werden kann. Der Flanschdeckel 4 und der Flanschring 5 sind über einen O-Ring 7 abgedichtet. Das Gehäuse 6 ist zylinderförmig; sein Durchmesser ist so gewählt, daß es in den zentralen Hohlraum einer elektrischen Spule eingesetzt werden kann. Die Eintauchtiefe des Magnetabscheiders in den Hohlraum kann durch eine Höhenverstellung 8 variiert werden.
    Das Zulaufrohr 2 endet über dem Boden des Gehäuses 6, der konisch geformt ist. An der Spitze des konischen Bodens mündet ein Konzentratablaufrohr 9 in das Gehäuse. Das Zulaufrohr 2 ist an seinem im Gehäuse liegenden Ende verschlossen. An diesem Ende ist das Zulaufrohr 2 fest mit einer Räumvorrichtung 10 verbunden; eine Ausführungsform der Räumvorrichtung 10 ist in Fig. 3 dargestellt.
    Am Zulaufrohr 2 ist weiterhin symmetrisch ein Querrohr 11 mit verschlossenen Enden angebracht, das entlang seiner Längsachse mit Ausströmöffungen 12 (siehe Fig. 2) versehen ist. Das Querrohr befindet sich in demjenigen Teil des Gehäuses 6, der in den Hohlraum der elektrischen Spule eintaucht. Das Gehäuse 6 ist im Bereich zwischen dem Querrohr 11 und dem Flanschdeckel 4 mit zwei Gittern 14 (siehe Fig. 4) versehen, die auf Halterungen 13 aufgelegt werden können.
    Fig. 2 zeigt eine Aufsicht auf den in Fig. 1 dargestellten Magnetseparator. Der Flanschdeckel 4 ist über Verschraubungen 15 mit dem Flanschring 5 am Gehäuse 6 verbunden. Am Zulaufrohr 2 ist das Querrohr 11 aufgesetzt, entlang dessen Längsachse die Ausströmöffnungen 12 rotationssymmetrisch angebracht sind. Weiterhin ist am Zulaufrohr 2 die Räumvorrichtung 10 befestigt.
    Fig. 3 zeigt eine anders geformte Räumvorrichtung 10, die gebogene Räumblätter besitzt.
    Fig. 4 zeigt ein Gitter 14, das von der Halterung 13 an der Gehäusewand 6 getragen wird.
    Die nicht genannten Bezugszeichen in den Fig. 2 bis 4 entsprechen denjenigen in Fig. 1.
    Der erfindungsgemäße Magnetabscheider kann kontinuierlich betrieben werden. Das mit den abzutrennenden Partikeln beladene Fluid wird durch das in langsame Drehung versetzte Zulaufrohr 2 in das Gehäuse 6 eingeleitet. Über die Ausströmöffnungen 12 im Querrohr 11 verteilt sich das Fluid gleichmäßig; außerdem können dadurch Ablagerungen an den Wänden des Gehäuses 6 vermieden werden. Im unteren Bereich der Vorrichtung, der auch den konischen Teil enthält, bildet sich im kontinuierlichen Betrieb eine Schlammzone, in der die Partikel aufkonzentriert sind. Das gereinigte Fluid verläßt den Magnetabscheider über die Filtratablaufrohre 3 im Flanschdeckel 4; die Partikel werden durch die magnetische Barriere, die sich im Bereich der größten Feldstärkenänderung des Magnetfelds bildet, zurückgehalten. Das Fluid mit den aufkonzentrierten Partikeln verläßt den Magnetabscheider über ein im konischen Bereich eingeschraubtes Konzentratablaufrohr 9, dessen Querschnitt kleiner ist als der Querschnitt des Zulaufrohrs 2. Damit auch in dem konischen Bereich die Bildung von Ablagerungen an der Gehäusewand vermieden werden kann, ist am Ende des Zulaufrohrs 2 die Räumvorrichtung 10 angebracht, die mit dem Zulaufrohr 2 in Drehung versetzt wird. Die Räumblätter sind in der Weise angewinkelt, daß sie auch im konischen Bereich sehr dicht an der Innenwand des Gehäuses 6 anliegen. Die rotierende Räumvorrichtung 10 bewirkt den Transport der aufkonzentrierten Partikel vor die Öffnung des Konzentratablaufrohrs. Im Falle wasserreicher Partikel wie z. B. Hydroxidschlämmen, werden die Partikel zusätzlich kompaktiert, wodurch der Feststoffgehalt im Konzentratablaufrohr 9 gesteigert werden kann. Alternativ zu den in Fig. 2 gezeigten, planen Räumblättern sind in Fig. 3 gebogene Räumblätter dargestellt, die einen noch besseren Transport der Partikel zum Konzentratabzug hin ermöglichen.

    Claims (4)

    1. Magnetabscheider zum Abtrennen von in einem Fluid suspendierten magnetisierbaren Partikeln in Form eines Konzentrats, in dem die Partikel in dem Fluid aufgeschlämmt sind, mit
      a) einem zylindrischen Gehäuse (6) mit einer Längsachse, das in dem Innenraum einer Einrichtung zur Erzeugung eines magnetischen Feldes sitzt,
      b) einem in das Gehäuse (6) mündenden, entlang der Längsachse angeordneten Zulaufrohr (2) für das Fluid
      c) einem Ablaufrohr (9) für das Konzentrat und
      d) einem Filtratablauf (3)
      dadurch gekennzeichnet, dass
      d) das Zulaufrohr (2) um die Längsachse drehbar mit dem Gehäuse (6) verbunden ist, und
      e) ein Querrohr (11), das am Zulaufrohr (2) aufgesetzt wird, entlang dessen Längsachse Ausströmöffnungen (12) rotationssymmetrisch angebracht sind.
    2. Magnetabscheider nach Anspruch 1, dadurch gekennzeichnet, dass das Querrohr (11) in einem Winkel zur Längsachse am Zulaufrohr (2) angeordnet ist.
    3. Magnetabscheider nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass
      das Gehäuse (6) in einen konischen Bereich ausläuft, der in das Ablaufrohr (9) übergeht, und an dem Zulaufrohr (2) eine konische Räumvorrichtung (10) angebracht ist, die in den konischen Bereich eingesetzt ist und die Partikel in das Ablaufrohr (9) fördert.
    4. Magnetabscheider nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass
      in dem Gehäuse (6) mindestens ein Gitter (14) senkrecht zur Längsachse angebracht ist.
    EP98102052A 1997-03-04 1998-02-06 Magnetabscheider Expired - Lifetime EP0862948B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19708697A DE19708697C1 (de) 1997-03-04 1997-03-04 Magnetabscheider
    DE19708697 1997-03-04

    Publications (2)

    Publication Number Publication Date
    EP0862948A1 EP0862948A1 (de) 1998-09-09
    EP0862948B1 true EP0862948B1 (de) 2002-01-09

    Family

    ID=7822145

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98102052A Expired - Lifetime EP0862948B1 (de) 1997-03-04 1998-02-06 Magnetabscheider

    Country Status (3)

    Country Link
    EP (1) EP0862948B1 (de)
    AT (1) ATE211658T1 (de)
    DE (2) DE19708697C1 (de)

    Families Citing this family (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102004034541B3 (de) * 2004-07-16 2006-02-02 Forschungszentrum Karlsruhe Gmbh Hochgradienten-Magnetabscheider

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE2966843D1 (en) * 1978-12-21 1984-04-26 Ici Plc Liquid phase chemical process with separation of catalyst particles by magnetic flocculation
    JPS5852718B2 (ja) * 1981-12-01 1983-11-24 清進産業株式会社 廃水処理における懸濁物の分離方法と装置
    GB2215640B (en) * 1988-02-15 1992-01-22 Andrew John Ker Reid Magnetic separators

    Also Published As

    Publication number Publication date
    ATE211658T1 (de) 2002-01-15
    DE59802594D1 (de) 2002-02-14
    EP0862948A1 (de) 1998-09-09
    DE19708697C1 (de) 1998-05-07

    Similar Documents

    Publication Publication Date Title
    DE2436080A1 (de) Vorrichtung zum abtrennen eines fluids niedriger dichte von einem fluid hoeherer dichte und/oder feststoffteilchen
    DE2201188C3 (de) Verfahren und Vorrichtung zum Abtrennen von Teilchen aus einer Flüssigkeit in einem Becken
    DE4304268C2 (de) Verfahren und Einlaufvorrichtung zur Beschickung von Flachsandfängen bzw. Absetzbecken und deren Anwendung
    WO2012069387A1 (de) Vorrichtung zum abscheiden von ferromagnetischen partikeln aus einer suspension
    EP0050281B1 (de) Abscheidevorrichtung der Hochgradienten-Magnettrenntechnik
    DE112013005800B4 (de) Einlassgleitfläche und Schaberklinge für eine Magnettrommel
    DE3315429A1 (de) Einrichtung zur wirbelabscheidung von fluessigkeiten mit unterschiedlicher dichte
    EP2981363B1 (de) Vorrichtung und verfahren zum abscheiden von magnetisierbaren partikeln aus einem fluid
    EP2346612B1 (de) Vorrichtung zum abscheiden ferromagnetischer partikel aus einer suspension
    DE102009035416A1 (de) Verfahren zur Abtrennung von magnetisierbaren Partikeln aus einer Suspension und zugehörige Vorrichtung
    DE102008047841B4 (de) Vorrichtung zum Abschneiden ferromagnetischer Partikel aus einer Suspension
    EP3222357B2 (de) Schlammabscheider
    EP0862948B1 (de) Magnetabscheider
    CH625728A5 (de)
    DE8224198U1 (de) Vorrichtung zur verhinderung und aufloesung von kalkansatz in wasserfuehrenden anlagen
    AT518730B1 (de) Vorrichtung zum Trennen von Teilchen unterschiedlicher Leitfähigkeit
    EP0998341A1 (de) Verfahren und vorrichtung zum trennen von stoffen und leiteinrichtung hierfür
    DE19708710C1 (de) Magnetabscheider
    DE3715022A1 (de) Trennvorrichtung zur kontinuierlichen abtrennung fester bestandteile aus einem feststoff-fluessigkeit-gemisch
    DE2058395A1 (de) Siebvorrichtung zum Abscheiden von Feststoffen aus Fluessigkeitsstroemen in Rohrleitungen
    DE4241178C2 (de) Schwimmstoff-Abscheider
    DE202009011215U1 (de) Wasserwirbler
    DE10352038B3 (de) Vorrichtung zur Beschickung von Becken mit zu klärendem Abwasser
    DE2726051B2 (de) Magnetscheider
    DE2649598C2 (de) Fliehkraft-Magnetscheider

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE FR GB IT LI NL SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19980819

    AKX Designation fees paid

    Free format text: AT BE CH DE FR GB IT LI NL SE

    RBV Designated contracting states (corrected)

    Designated state(s): AT BE CH DE FR GB IT LI NL SE

    17Q First examination report despatched

    Effective date: 20000926

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE FR GB IT LI NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020109

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20020109

    REF Corresponds to:

    Ref document number: 211658

    Country of ref document: AT

    Date of ref document: 20020115

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59802594

    Country of ref document: DE

    Date of ref document: 20020214

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020409

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020405

    ET Fr: translation filed
    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20041223

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20041230

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20050128

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20050223

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20050606

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060206

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060206

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20060206

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20061031

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20070423

    Year of fee payment: 10

    BERE Be: lapsed

    Owner name: FORSCHUNGSZENTRUM *KARLSRUHE G.M.B.H.

    Effective date: 20060228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080902