EP0856126B1 - Verfahren zur Erzeugung von Sperrdampf für eine Dampfturbine, sowie entsprechende Dampfkraftanlage - Google Patents

Verfahren zur Erzeugung von Sperrdampf für eine Dampfturbine, sowie entsprechende Dampfkraftanlage Download PDF

Info

Publication number
EP0856126B1
EP0856126B1 EP96945485A EP96945485A EP0856126B1 EP 0856126 B1 EP0856126 B1 EP 0856126B1 EP 96945485 A EP96945485 A EP 96945485A EP 96945485 A EP96945485 A EP 96945485A EP 0856126 B1 EP0856126 B1 EP 0856126B1
Authority
EP
European Patent Office
Prior art keywords
steam
turbine
drum
saturated
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96945485A
Other languages
English (en)
French (fr)
Other versions
EP0856126A2 (de
Inventor
Wolfgang Neubert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0856126A2 publication Critical patent/EP0856126A2/de
Application granted granted Critical
Publication of EP0856126B1 publication Critical patent/EP0856126B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/002Steam conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/007Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/005Steam superheating characterised by heating method the heat being supplied by steam

Definitions

  • the invention relates to a method for producing Sperrdamf steam power plant with a from saturated steam. It continues to focus on one Device for performing this method and use of the barrier steam generated by this method.
  • saturated steam When water evaporates, it evaporates by adding heat this in whole or in part.
  • the resulting one Steam is in the thermal with the remaining water Equilibrium and is usually referred to as saturated steam.
  • saturated steam may contain considerable amounts Water components, so that machine parts exposed to saturated steam Damage, for example in the form of corrosion can.
  • thermodynamic Reason is when using steam as process steam in the chemical industry or as a working medium in one Steam power plant requires overheating of saturated steam.
  • the saturated steam is usually first of all Water separated before further heat is supplied to it.
  • a steam power plant working according to the natural circulation principle is usually one arranged in a steam generator Evaporator both on the water and steam side with one Steam drum connected.
  • the water-steam mixture generated in the evaporator is fed to the steam drum, which too serves to separate water and steam.
  • From the steam drum the water is again fed to the evaporator, so that there is complete circulation.
  • the steam In the steam drum the steam is in equilibrium with the water and lies thus as saturated steam.
  • To branch off through evaporation Saturated steam obtained as useful steam is on the steam drum a useful steam outlet arranged.
  • the steam is usually the useful steam of a superheater heating surface fed and overheated there. The one that overheated Steam is then fed to the steam turbine where it is relaxed working.
  • the invention is therefore based on the object of a method and a device for generating barrier steam specify, providing superheated Steam is guaranteed particularly reliably with simple means should be.
  • the invention is based on the consideration that the needed as sealing steam when starting a steam turbine superheated steam is at a lower pressure level can than the available saturated steam. So is one Relaxation of a first partial flow to be used of saturated steam possible. With this throttling of the first Partial current lowers its temperature level. The thus resulting temperature difference between the unthrottled Saturated steam and the throttled first partial flow The saturated steam can therefore cause the first partial flow to overheat be used.
  • the superheated steam generated in terms of its mass flow and its pressure level particularly flexible to the The first partial flow will be able to adapt process requirements advantageously via a controllable throttle valve guided.
  • the relaxed and overheated first partial stream fed to a steam turbine expediently the relaxed and overheated first partial stream fed to a steam turbine.
  • the saturated steam is advantageously from a steam drum the water-steam cycle of a steam turbine.
  • the stated object is achieved according to the invention from saturated steam by means of a heat exchanger, the primary side and over a throttle element connected on the secondary side to a saturated steam reservoir is.
  • the throttle body expediently a controllable throttle valve.
  • the heat exchanger is connected on the secondary side to a steam turbine.
  • the saturated steam reservoir is advantageously one in the water-steam cycle a steam turbine switched steam drum.
  • the stated object is achieved according to the invention by the steam turbine is a separate one connected to the steam drum
  • the sealing steam line opens into the secondary side Heat exchanger connected on the primary side to the steam drum is switched.
  • the advantages achieved with the invention are in particular in that by overheating the relaxed first Partial flow of saturated steam through heat exchange with a second Partial flow of saturated steam a reliable generation of superheated steam guaranteed with particularly simple means is. Especially with a steam power plant with frequent Night shutdowns are therefore a supply to the steam turbine with superheated steam as barrier steam when restarting guaranteed without an additional heating or Overheating device is required.
  • An embodiment of the invention is based on a Drawing explained in more detail.
  • the figure shows schematically a steam power plant.
  • the steam power plant 1 comprises a steam turbine 2, via a turbine shaft 4 with a generator 6 connected is.
  • the steam turbine 2 is on the output side a steam line 10 connected to a condenser 12.
  • the condenser 12 is via a line 14, into which a condensate pump 16 is switched, with a feed water tank 18 connected.
  • the feed water tank 18 is on the output side via a feed line 20 into which a feed water pump 22 is connected to a steam drum 24.
  • For Preheating of the feed water to be supplied from the steam drum 24 S can be a number of preheater heating surfaces, not shown, in line 20 or an economizer.
  • the steam drum 24 is on the water outlet side and on the steam inlet side with one arranged in a steam generator 26 Evaporator 28 connected.
  • the steam generator 26 can be a fossil or nuclear-fired steam generator or a Heat recovery steam generator.
  • a useful steam outlet 30 is arranged, which in a Evaporator 26 arranged superheater 32 to the steam turbine 2 is connected.
  • the steam turbine 2 can comprise one or more pressure stages. Depending on the number of pressure levels and the design of the Water-steam circuit 34 of the steam turbine 2 can additionally to the heating surfaces 28 and 32 shown in the figure additional heating surfaces can be provided.
  • a sealing steam line 40 is connected to the steam drum 24, via which 2 steam can be fed to the steam turbine 2 is.
  • a controllable Throttle valve trained throttle member 42 switched.
  • a heat exchanger in the sealing steam line 40 44 switched on the secondary side.
  • the heat exchanger 44 is on the primary side via a branching off from the sealing steam line 40 Partial flow line 46 connected to the steam drum 24.
  • the steam drum 24 When the steam power plant 1 is operated, the steam drum 24 the water W supplied to the evaporator 28 completely or there partially evaporated and as steam D or water-steam mixture WD returned to the steam drum 24. In the steam drum 24 the steam D is separated from the water W. The steam D is itself in the steam drum 24 with the water W in the thermodynamic Equilibrium and therefore lies as saturated steam in front.
  • Hot useful steam N which is under pressure can be used in the steam drum 24 removed and over the superheater 32 of the steam turbine 2 are fed where he relaxes work-performing.
  • barrier steam SD is supplied to an area between the turbine shaft 4 and the housing of the steam turbine 2, particularly during a startup process.
  • a partial stream t 1 of steam D present as saturated steam is removed from the steam drum 24 serving as a saturated steam reservoir.
  • the partial flow t 1 is throttled via the controllable throttle valve or the throttle member 42 in such a way that its pressure level is adapted to the requirements of the steam turbine 2.
  • the throttling lowers the temperature level of the partial flow t 1 .
  • the partial flow t 1 is overheated by a heat exchange of the unthrottled second partial flow t 2 with the throttled first partial flow t 1 in the heat exchanger 44. This superheated partial flow t 1 can then be fed to the steam turbine 2 as sealing steam SD without it being exposed to a risk of corrosion.
  • the steam power plant 1 is therefore particularly suitable for frequent restarting of the steam turbine 2, in particular after a night standstill.
  • the steam D present in the steam drum 24 as saturated steam has a temperature of approximately 210 ° C.
  • the partial flow t 1 has a temperature of approximately 150 ° C. after it has been throttled.
  • this temperature can be increased to approximately 180 ° C. without the need for an additional superheater device.
  • the overheating of the partial stream t 1 is thus ensured with particularly simple means and particularly reliably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Turbines (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung von Sperrdamf Dampfkraftanlage mit einer aus Sattdampf. Sie richtet sich weiter auf eine Einrichtung zur Durchführung dieses Verfahrens und eine Verwendung des nach diesem Verfahren erzeugten Sperrdampfes.
Bei der Verdampfung von Wasser durch Zuführung von Wärme verdampft dieses ganz oder teilweise. Der dabei entstehende Dampf steht mit dem verbliebenen Wasser im thermischen Gleichgewicht und wird üblicherweise als Sattdampf bezeichnet. Derartiger Sattdampf enthält möglicherweise beträchtliche Wasseranteile, so daß dem Sattdampf ausgesetzte Maschinenteile Schäden, beispielsweise in Form von Korrosion, erleiden können. Aus diesem Grund und/oder aus thermodynamischen Gründen ist bei der Nutzung von Dampf als Prozeßdampf in der chemischen Industrie oder als Arbeitsmedium in einer Dampfkraftanlage eine Überhitzung von Sattdampf erforderlich. Zur Überhitzung wird der Sattdampf üblicherweise zunächst vom Wasser getrennt, bevor ihm weitere Wärme zugeführt wird.
Bei einer nach dem Naturumlaufprinzip arbeitenden Dampfkraftanlage ist üblicherweise ein in einem Dampferzeuger angeordneter Verdampfer sowohl wasser- als auch dampfseitig mit einer Dampftrommel verbunden. Das im Verdampfer erzeugte Wasser-Dampf-Gemisch wird der Dampftrommel zugeleitet, die zu einer Trennung von Wasser und Dampf dient. Aus der Dampftrommel wird das Wasser wiederum dem Verdampfer zugeleitet, so daß ein vollständiger Umlauf gegeben ist. In der Dampftrommel steht der Dampf mit dem Wasser im Gleichgewicht und liegt somit als Sattdampf vor. Zur Abzweigung von durch die Verdampfung gewonnenem Sattdampf als Nutzdampf ist an der Dampftrommel ein Nutzdampfausgang angeordnet. Beim Betrieb der Dampfkraftanlage wird der Nutzdampf üblicherweise einer Überhitzerheizfläche zugeführt und dort überhitzt. Der so überhitzte Dampf wird dann der Dampfturbine zugeführt, wo er sich arbeitsleistend entspannt.
Bei einem Anfahrvorgang der Dampfkraftanlage, beispielsweise nach einem Nachtstillstand, ist es erforderlich, der Dampfturbine Sperrdampf zuzuführen, durch dessen Einleitung in einen Dichtungsbereich zwischen Turbinenwelle und Turbinengehäuse eine Abdichtung des Turbineninneren gegen die Umgebung der Dampfturbine sichergestellt wird. Eine Zuführung von nicht überhitztem Dampf oder Sattdampf als Sperrdampf setzt dabei Strukturteile der Dampfturbine einer erhöhten Gefährdung durch Korrosion oder Spannungsbeanspruchung aus. Insbesondere für eine Dampfkraftanlage, die nach häufigen Nachtstillständen wieder anzufahren ist, ist daher die Zuführung von überhitztem Dampf als Sperrdampf erforderlich. Besonders bei einem Anfahrvorgang nach einem Nachtstillstand ist das Temperaturniveau im Dampferzeuger jedoch oftmals nicht ausreichend hoch, um eine ausreichende Dampfüberhitzung mittels der im Dampferzeuger vorgesehenen Überhitzerheizflächen zu gewährleisten. Gleich oder ähnliche Anforderungen werden häufig auch an den eingangs erwähnten Prozeßdampf gestellt.
Es ist aus der EP 0 605 156 A bekannt, Sperrdampf durch Mischen von Sattdampf und überhitztem Dampf zu erzeugung. Eine Erzeugung von überhitztem Dampf durch drosselung von Stattfampf mit anschließender Überhitzung durch Wärmetausch mit ungedrosseltem Dampf ist allgemein aus der FR 2 253 982 A bekannt.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Einrichtung zur Erzeugung von Sperrdampf anzugeben, wobei die Bereitstellung von überhitztem Dampf mit einfachen Mitteln besonders zuverlässig gewährleistet sein soll.
Bezüglich des Verfahrens wird diese Aufgabe erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.
Die Erfindung geht dabei von der Überlegung aus, daß der als Sperrdampf beim Anfahren einer Dampfturbine benötigte überhitzte Dampf auf einem niedrigeren Druckniveau liegen kann als der zur Verfügung stehende Sattdampf. Somit ist eine Entspannung eines der Nutzung zuzuführenden ersten Teilstromes des Sattdampfes möglich. Bei dieser Drosselung des ersten Teilstromes senkt sich dessen Temperaturniveau ab. Die somit entstehende Temperaturdifferenz zwischen dem nicht gedrosselten Sattdampf und dem gedrosselten ersten Teilstrom des Sattdampfes kann daher zur Überhitzung des ersten Teilstromes herangezogen werden.
Um den erzeugten überhitzten Dampf hinsichtlich seines Massenstromes und seines Druckniveaus besonders flexibel an die Prozeßerfordernisse anpassen zu können, wird der erste Teilstrom vorteilhafterweise über ein regelbares Drosselventil geführt.
Um mit einfachen Mitteln eine besonders lange Lebensdauer einer Dampfturbine auch bei häufigen Nachtstillständen zu gewährleisten, wird zweckmäßigerweise der entspannte und überhitzte erste Teilstrom einer Dampfturbine zugeführt. Zudem wird vorteilhafterweise der Sattdampf aus einer Dampftrommel des Wasser-Dampf-Kreislaufs einer Dampfturbine entnommen.
Bezüglich der Einrichtung zur Erzeugung von überhitztem Dampf aus Sattdampf wird die genannte Aufgabe erfindungsgemäß gelöst mittels eines Wärmetauschers, der primärseitig und über ein Drosselorgan sekundärseitig an ein Sattdampfreservoir angeschlossen ist.
Zur Anpassung des Massenstroms und/oder des Druckniveaus des überhitzten Dampfes an die Prozeßerfordernisse ist das Drosselorgan zweckmäßigerweise ein regelbares Drosselventil.
In weiterer zweckmäßiger Ausgestaltung ist der Wärmetauscher sekundärseitig mit einer Dampfturbine verbunden. Das Sattdampfreservoir ist vorteilhafterweise eine in den Wasser-Dampf-Kreislauf einer Dampfturbine geschaltete Dampftrommel.
Bezüglich der Dampfkraftanlage mit einer Dampfturbine, in deren Wasser-Dampf-Kreislauf eine Dampftrommel geschaltet ist, wird die genannte Aufgabe erfindungsgemäß gelöst, indem in die Dampfturbine eine an die Dampftrommel angeschlossene separate Sperrdampfleitung mündet, in die sekundärseitig ein primärseitig an die Dampftrommel angeschlossener Wärmetauscher geschaltet ist.
Um eine lange Lebensdauer einer Dampfturbine mit besonders einfachen Mitteln und besonders zuverlässig sicherzustellen, wird zweckmäßigerweise der gemäß dem obengenannten Verfahren überhitzte Dampf beim Anfahren der Dampfturbine zu deren Abdichtung verwendet.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß durch die Überhitzung des entspannten ersten Teilstromes des Sattdampfes durch Wärmetausch mit einem zweiten Teilstrom des Sattdampfes eine zuverlässige Erzeugung von überhitztem Dampf mit besonders einfachen Mitteln gewährleistet ist. Insbesondere bei einer Dampfkraftanlage mit häufigen Nachtstillständen ist somit eine Versorgung der Dampfturbine mit überhitztem Dampf als Sperrdampf bei einem Wiederanfahren gewährleistet, ohne daß eine zusätzliche Heiz- oder Überhitzungsvorrichtung erforderlich ist.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigt die Figur schematisch eine Dampfkraftanlage.
Die Dampfkraftanlage 1 gemäß der Figur umfaßt eine Dampfturbine 2, die über eine Turbinenwelle 4 mit einem Generator 6 verbunden ist. Die Dampfturbine 2 ist ausgangsseitig über eine Dampfleitung 10 an einen Kondensator 12 angeschlossen. Der Kondensator 12 ist über eine Leitung 14, in die eine Kondensatpumpe 16 geschaltet ist, mit einem Speisewasserbehälter 18 verbunden. Der Speisewasserbehälter 18 ist ausgangsseitig über eine Zuführungsleitung 20, in die eine Speisewasserpumpe 22 geschaltet ist, an eine Dampftrommel 24 angeschlossen. Zur Vorwärmung von der Dampftrommel 24 zuzuführendem Speisewasser S kann in die Leitung 20 eine Anzahl nicht dargestellter Vorwärmerheizflächen oder ein Economizer geschaltet sein.
Die Dampftrommel 24 ist wasserausgangsseitig und dampfeingangsseitig mit einem in einem Dampferzeuger 26 angeordneten Verdampfer 28 verbunden. Der Dampferzeuger 26 kann dabei ein fossil- oder nuklearbefeuerter Dampferzeuger oder auch ein Abhitzedampferzeuger sein. An der Dampftrommel 24 ist weiterhin ein Nutzdampfausgang 30 angeordnet, der über einen im Verdampfer 26 angeordneten Überhitzer 32 an die Dampfturbine 2 angeschlossen ist.
Die Dampfturbine 2 kann eine oder mehrere Druckstufen umfassen. Je nach Anzahl der Druckstufen und je nach Auslegung des Wasser-Dampf-Kreislaufs 34 der Dampfturbine 2 können zusätzlich zu den in der Figur dargestellten Heizflächen 28 und 32 weitere Heizflächen vorgesehen sein.
An die Dampftrommel 24 ist eine Sperrdampfleitung 40 angeschlossen, über die der Dampfturbine 2 Sperrdampf SD zuführbar ist. In die Sperrdampfleitung 40 ist ein als regelbares Drosselventil ausgebildetes Drosselorgan 42 geschaltet. In Strömungsrichtung des Sperrdampfs SD gesehen nach dem Drosselorgan 42 ist in die Sperrdampfleitung 40 ein Wärmetauscher 44 sekundärseitig geschaltet. Der Wärmetauscher 44 ist primärseitig über eine von der Sperrdampfleitung 40 abzweigende Teilstromleitung 46 an die Dampftrommel 24 angeschlossen.
Beim Betrieb der Dampfkraftanlage 1 wird von der Dampftrommel 24 dem Verdampfer 28 zugeführtes Wasser W dort ganz oder teilweise verdampft und als Dampf D oder Wasser-Dampf-Gemisch WD in die Dampftrommel 24 zurückgeführt. In der Dampftrommel 24 wird der Dampf D vom Wasser W separiert. Der Dampf D befindet sich in der Dampftrommel 24 mit dem Wasser W im thermodynamischen Gleichgewicht und liegt somit als Sattdampf vor.
Unter Überdruck stehender heißer Nutzdampf N kann der Dampftrommel 24 entnommen und über den Überhitzer 32 der Dampfturbine 2 zugeführt werden, wo er sich arbeitsleistend entspannt.
Um eine Abdichtung des Turbineninneren der Dampfturbine 2 gegen deren Umgebung sicherzustellen, wird insbesondere bei einem Anfahrvorgang einem Bereich zwischen der Turbinenwelle 4 und dem Gehäuse der Dampfturbine 2 Sperrdampf SD zugeführt. Dazu wird der als ein Sattdampfreservoir dienenden Dampftrommel 24 ein Teilstrom t1 von als Sattdampf vorliegendem Dampf D entnommen. Der Teilstrom t1 wird über das regelbare Drosselventil oder das Drosselorgan 42 derart gedrosselt, daß sein Druckniveau an die Erfordernisse der Dampfturbine 2 angepaßt ist. Durch die Drosselung senkt sich das Temperaturniveau des Teilstroms t1 ab. Ein zweiter in der Teilstromleitung 46 geführter nicht gedrosselter Teilstrom t2 des als Sattdampf vorliegenden Dampfes D weist somit eine höhere Temperatur auf als der im Drosselorgan 42 gedrosselte erste Teilstrom t1. Durch einen Wärmetausch des nicht gedrosselten zweiten Teilstroms t2 mit dem gedrosselten ersten Teilstrom t1 im Wärmetauscher 44 wird der Teilstrom t1 überhitzt. Dieser überhitzte Teilstrom t1 kann dann der Dampfturbine 2 als Sperrdampf SD zugeführt werden, ohne daß diese einer Gefährdung durch Korrosion ausgesetzt ist.
Die Dampfkraftanlage 1 ist somit besonders geeignet für ein häufiges Wiederanfahren der Dampfturbine 2, insbesondere nach einem Nachtstillstand. Nach einem Nachtstillstand weist der in der Dampftrommel 24 als Sattdampf vorliegende Dampf D eine Temperatur von etwa 210° C auf. Aufgrund von Druck- und Temperaturverlusten in Rohrleitungen und aufgrund der Drosselung durch das Drosselorgan 42 weist der Teilstrom t1 nach seiner Drosselung eine Temperatur von etwa 150° C auf. Durch Wärmetausch mit dem nicht gedrosselten Teilstrom t2 kann diese Temperatur auf etwa 180° C erhöht werden, ohne daß dazu eine zusätzliche Überhitzereinrichtung benötigt wird. Die Überhitzung des Teilstroms t1 ist somit mit besonders einfachen Mitteln und besonders zuverlässig gewährleistet.

Claims (3)

  1. Verfahren zur Erzeugung von Sperrdampf für eine Dampfturbine (2), bei dem ein aus einer Dampftrommel (24) entnommener erster Teilstrom (t1) von Sattdampf gedrosselt wird, bevor er durch Wärmetausch mit einem zweiten Teilstrom (t2) des Sattdampfes überhitzt wird.
  2. Dampfkraftanlage (1) mit einer Dampfturbine (2), in deren Wasser-Dampf-Kreislauf (34) eine Dampftrommel (24) geschaltet ist, wobei in die Dampfturbine (2) eine an die Dampftrommel (24) angeschlossene separate Sperrdampfleitung (40) mündet, in die sekundärseitig über ein Drosselorgan (42) ein primärseitig an die Dampftrommel (24) angeschlossener Wärmetauscher (44) geschaltet ist.
  3. Verwendung des nach dem Verfahren nach Anspruch 1 erzeugten Sperrdampfes zum Anfahren einer Dampfturbine (2) einer Dampfkraftanlage (1).
EP96945485A 1995-10-17 1996-10-08 Verfahren zur Erzeugung von Sperrdampf für eine Dampfturbine, sowie entsprechende Dampfkraftanlage Expired - Lifetime EP0856126B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19538674A DE19538674A1 (de) 1995-10-17 1995-10-17 Verfahren und Einrichtung zur Erzeugung von überhitztem Dampf aus Sattdampf sowie Dampfkraftanlage
DE19538674 1995-10-17
PCT/DE1996/001927 WO1997014285A2 (de) 1995-10-17 1996-10-08 Verfahren und einrichtung zur erzeugung von überhitztem dampf aus sattdampf sowie dampfkraftanlage

Publications (2)

Publication Number Publication Date
EP0856126A2 EP0856126A2 (de) 1998-08-05
EP0856126B1 true EP0856126B1 (de) 2000-02-23

Family

ID=7775097

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96945485A Expired - Lifetime EP0856126B1 (de) 1995-10-17 1996-10-08 Verfahren zur Erzeugung von Sperrdampf für eine Dampfturbine, sowie entsprechende Dampfkraftanlage

Country Status (8)

Country Link
US (1) US6003317A (de)
EP (1) EP0856126B1 (de)
DE (2) DE19538674A1 (de)
ES (1) ES2143803T3 (de)
IN (1) IN190405B (de)
MY (1) MY129600A (de)
TW (1) TW325513B (de)
WO (1) WO1997014285A2 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19919653A1 (de) * 1999-04-29 2000-11-02 Abb Alstom Power Ch Ag Sperrdampfeinspeisung
US6921858B2 (en) * 2002-11-08 2005-07-26 Bechtel Bwxt Idaho, Llc Method and apparatus for pressurizing a liquefied gas
US7325400B2 (en) * 2004-01-09 2008-02-05 Siemens Power Generation, Inc. Rankine cycle and steam power plant utilizing the same
EP1961921A1 (de) * 2007-02-26 2008-08-27 Siemens Aktiengesellschaft Dichtung für eine Strömungsmaschine
US8424281B2 (en) * 2007-08-29 2013-04-23 General Electric Company Method and apparatus for facilitating cooling of a steam turbine component
GB2457266B (en) * 2008-02-07 2012-12-26 Univ City Generating power from medium temperature heat sources
US8347598B2 (en) 2011-03-18 2013-01-08 General Electric Company Apparatus for starting up combined cycle power systems and method for assembling same
DE102012019167A1 (de) * 2012-09-28 2014-04-03 Man Diesel & Turbo Se Sperrdampfsystem
CN104088677B (zh) * 2014-06-25 2016-03-02 北京越麓咨询有限责任公司 一种多级冲动式汽轮机的机内蒸汽再热器
CN108779405B (zh) * 2016-03-14 2020-11-24 托普索公司 用于生产甲烷化气体的方法和设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH367520A (de) * 1959-04-22 1963-02-28 Sulzer Ag Verfahren und Vorrichtung zur Erzeugung von Sperrdampf
DE1105431B (de) * 1959-04-22 1961-04-27 Sulzer Ag Einrichtung zur Lieferung von Sperrdampf fuer Dichtungsstellen in Dampfkraftanlagen,insbesondere Dampfturbinenanlagen
SE373196B (de) * 1973-12-10 1975-01-27 Svenska Maskinverken Ab
US4474010A (en) * 1980-02-15 1984-10-02 Sumitomo Semento Kabushiki Kaisha Method of recovering exhaust gas from boiler in electrical power generating device using combustible material as fuel and apparatus for performing such method
JPS5951109A (ja) * 1982-09-17 1984-03-24 Hitachi Ltd 蒸気原動所の復水器真空保持装置
US4873829A (en) * 1988-08-29 1989-10-17 Williamson Anthony R Steam power plant
JPH03275903A (ja) * 1990-03-23 1991-12-06 Toshiba Corp 蒸気タービンプラントの起動方法およびその方法に使用する復水装置
US5412936A (en) * 1992-12-30 1995-05-09 General Electric Co. Method of effecting start-up of a cold steam turbine system in a combined cycle plant

Also Published As

Publication number Publication date
IN190405B (de) 2003-07-27
DE59604502D1 (de) 2000-03-30
WO1997014285A3 (de) 1997-07-03
MY129600A (en) 2007-04-30
TW325513B (en) 1998-01-21
US6003317A (en) 1999-12-21
WO1997014285A2 (de) 1997-04-24
ES2143803T3 (es) 2000-05-16
EP0856126A2 (de) 1998-08-05
DE19538674A1 (de) 1997-04-24

Similar Documents

Publication Publication Date Title
DE69024517T2 (de) Kraftwerk mit kombiniertem Zyklus
EP0819209B1 (de) Verfahren zum betreiben eines abhitzedampferzeugers sowie danach arbeitender abhitzedampferzeuger
DE2816636C3 (de) Dampferzeugeranlage
EP0778397B1 (de) Verfahren zum Betrieb einer mit einem Abhitzedampferzeuger und einem Dampfverbraucher kombinierten Gasturbogruppe
EP2462378B1 (de) Verfahren zum betreiben eines mit einer dampftemperatur von über 650°c operierenden zwangdurchlaufdampferzeugers sowie zwangdurchlauf-dampferzeuger
EP0523467A1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP2126467A2 (de) Verfahren und vorrichtung zur befeuerten zwischenüberhitzung bei solarer direktverdampfung in einem solarthermischen kraftwerk
EP0856126B1 (de) Verfahren zur Erzeugung von Sperrdampf für eine Dampfturbine, sowie entsprechende Dampfkraftanlage
DE2311066A1 (de) Dampferzeuger fuer ungefeuerte kraftanlage
EP0898641B1 (de) Gas- und dampfturbinenanlage sowie verfahren zu deren betrieb
DE4321081A1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende GuD-Anlage
DE19544226B4 (de) Kombianlage mit Mehrdruckkessel
DE112019002190T5 (de) Kombikraftwerk und Verfahren zum Betreiben desselben
EP0918151B1 (de) Verfahren und Vorrichtung zur Brennstoffvorwärmung einer Feuerungsanlage
EP0826096B1 (de) Verfahren und anordnung zum entgasen eines kondensats
EP0199902A1 (de) Kombinierte Heissluftturbinen-Dampfkraftanlage
EP0981681B1 (de) Gas- und dampfturbinenanlage und verfahren zur kühlung des kühlmittels der gasturbine einer derartigen anlage
EP0582898A1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Gud-Anlage
EP0777036A1 (de) Chemische Fahrweise eines Wasser/Dampf-Kreislaufes
EP0840837B1 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage
DE4446862A1 (de) Verfahren zur Kühlung des Kühlmittels einer Gasturbine und Vorrichtung zur Durchführung des Verfahrens
EP0158629B1 (de) Dampfkreislauf für Dampfkraftanlagen
EP3017152A2 (de) Gas-und-dampf-kombikraftwerk mit einem abhitzedampferzeuger und einer brennstoffvorwärmung
DE19944920B4 (de) Kombikraftwerk mit Einspritzvorrichtung zum Einspritzen von Wasser in den Frischdampf
DE4409811C1 (de) Verfahren zum Betreiben eines Abhitzedampferzeugers sowie danach arbeitender Abhitzedampferzeuger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980406

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE ES FR GB IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: METHOD FOR PRODUCING GLAND STEAM, AND CORRESPONDING STEAM POWER STATION

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: METHOD FOR PRODUCING GLAND STEAM, AND CORRESPONDING STEAM POWER STATION

17Q First examination report despatched

Effective date: 19990713

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59604502

Country of ref document: DE

Date of ref document: 20000330

ITF It: translation for a ep patent filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2143803

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141017

Year of fee payment: 19

Ref country code: ES

Payment date: 20141124

Year of fee payment: 19

Ref country code: GB

Payment date: 20141013

Year of fee payment: 19

Ref country code: SE

Payment date: 20141016

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20141003

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141029

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141219

Year of fee payment: 19

Ref country code: CH

Payment date: 20150112

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59604502

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151008

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20151101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151008

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151008

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151101

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151102

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151009

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20161128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151009