EP0853631A1 - Gene regulateur extrait d'ustilago maydis - Google Patents
Gene regulateur extrait d'ustilago maydisInfo
- Publication number
- EP0853631A1 EP0853631A1 EP96933423A EP96933423A EP0853631A1 EP 0853631 A1 EP0853631 A1 EP 0853631A1 EP 96933423 A EP96933423 A EP 96933423A EP 96933423 A EP96933423 A EP 96933423A EP 0853631 A1 EP0853631 A1 EP 0853631A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ala
- ser
- arg
- leu
- pro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/145—Fungal isolates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/37—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/37—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
- C07K14/375—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from Basidiomycetes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
- C12N9/2437—Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01004—Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/645—Fungi ; Processes using fungi
Definitions
- the present invention relates to a regulatory gene from the fungus Ustilago maydis, the use of this gene and fungal mutants which carry a mutation in this gene.
- Ustilago maydis the cause of the bump fire in maize, has a two-phase life cycle.
- the haploid stage grows yeast-like and is not pathogenic.
- the dikaryon shows filamentous growth and represents the pathogenic form.
- the fungus has two crossing-type loci.
- the a-lucus, of which two alleles exist, is for the fusion of haploid cells and the formation of the
- the multiallele b locus controls the pathogenicity and sexual development of the fungus. It codes for two homeodomain proteins (bw and bE) that form functional heterodimers.
- a b-locus regulated gene egl 1 codes for an endoglucanase, the expression of which is induced in the filament phase.
- the expression of glucanase egll can be reliably and clearly demonstrated with indicator plates based on carboxymethyl cellulose with Congo red. Therefore, egll is suitable as a reporter gene for the search for genes with regulatory functions for the expression of differentially expressed genes. Since the filamentous phase of Ustilago maydis is pathogenic to maize, the task was to identify genes or gene products which are linked to the regulation of the filamentous phase. Such genes or gene products should represent suitable intervention options for eliminating the pathogenicity.
- a nucleic acid fragment from the fungus Ustilago maydis has now been found which contains a regulatory gene.
- the invention relates to a nucleic acid fragment from the fungus Ustilago Maydis, which is characterized by the Xbal-Bglll fragment shown in FIG. I and is characterized by the nucleic acid sequence between the Bglll and the Xbal interface shown in FIG. III.
- the nucleic acid fragment was isolated as follows:
- a haploid Ustilago maydis strain FBI (al bl) (Banuett, F. and Herskowitz, I. (1989). Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc. Acad. Be. USA 86: 5878-5882), which does not express the endoglucanase egll, was subjected to UV mutagenesis. Screening of the mutants obtained after constitutive egll expression by screening for carboxymethyl cellulose plates and subsequent Congo red staining revealed a mutant with the property sought, ie filament-independent constituent egll expression.
- This regulatory gene or the associated gene product thus represents a possible specific site of action for fungicides.
- possible fungicidal compounds can be easily checked for interaction with the site of action found by using a haploid Ustilago strain that does not contain any endoglucanase expressed, in contact with the potential fungicide and determined whether egll expression takes place. In the positive case, an interaction of the fungicide with the regulatory gene product can be assumed.
- Such a test method can be carried out particularly easily if carboxy-methylcellulose plates which are stained with Congo red are used for the screening for egll expression.
- nucleic acid fragments from other microorganisms which are also able to functionally complement a constitutively expressing Ustilago maydis mutant.
- Such nucleic acid fragments can be easily produced using conventional genetic engineering methods such as hybridization, by starting from the Ustilago nucleic acid fragment as a sample, isolating corresponding clones that hybridize under standard conditions from other organisms and testing them functionally.
- a gene product of the nucleic acid fragment defined above which is represented by the amino acid sequence shown in FIG. IV (SEQ ID NO: 2) and in particular by the nucleic acid III is encoded by the open reading frame beginning with the ATG start codon from position 1847-1849 and ending with the TAG stop codon in position 8714-8716 (SEQ ID NO: 1);
- the strain was in YEPS liquid medium (Tsukuda, T., S., Fotherringham, S. and Holloman, WK (1988). Isolation and characterization of an autonomously replicating sequence from Ustilago maydis. Mol. Cell. Biol. 8 : 3703-3709) inoculated and shaken at 28 ° C. The cultures were centrifuged at a cell count of 1 ⁇ IO 6 to 3 ⁇ IO 6 and resuspended in the same amount of H 2 O bidistilled. 1 ml of this cell suspension was treated with UV in a Petri dish. The irradiation times were chosen so that the survival rates were below 1%. Aliquots of the UV-treated cell suspension were then plated out.
- the screening for mutants was carried out on carboxymethyl cellulose plates (0.5% yeast extract, 0.4% bacto-pentone, 0.4% sucrose, 2% carboxymethyl cellulose, 1.5 Bitek agar).
- the colonies from the UV mutagenesis were replica-plated onto the test plates or, if the colony densities were too high, picked and incubated at 29 ° C. The cells are then used to test for egll
- the mutant was obtained with a compatible wild-type strain (FB2 a2b2, Banuett and Herskowitz, 1989) on CM-Charcoal plates (Holliday, R. (1974). In: Handbook of Genetics, Vol 1, RC King, ed. (New York: Plenum Press), pp. 575-595) crossed to mutations excluded in the b locus. It was found that the mutant shows the same crossing behavior as the parent strain.
- RNA from liquid cultures of the mutant was prepared in YEPS (Schmitt, ME, Brown, TA: and Trumpower, BL (1990).
- YEPS Schott, ME, Brown, TA: and Trumpower, BL (1990).
- Hindlll-Sacl fragment from the open reading frame of the egll gene was used as a probe for the Northern blots (dissertation Stammer "Isolation and characterization of a filament-specific expressed cellulase from Ustilago maydis", Freie (2015) Berlin, 1995).
- Radioactive labeling of DNA with 32 P was Megaprime ® label ling kit (Amersham). It could be shown that egll is expressed in the mutant. The expression of further differentially expressed genes in the mutant could also be demonstrated.
- the mutant obtained is not pathogenic in the haploid state.
- tumor formation and the formation of basidiospores occur when maize plants are infected.
- a compatible strain could be isolated after segregation, which also carries the mutation. Crossing this strain with the mutant originally obtained leads to tumor formation in the plant, but no spores are formed at this cross.
- An imitation Ustilago strain produced in this way can be used, for example, to induce the formation of tumors (galls) in corn plants without the black discoloration caused by spores.
- the mutant was complemented with a cosmid bank that had been produced from genomic DNA of the diploid strain FBD11 (ala2blb2) (Banuett and Herskowitz, 1989 see above).
- PUMcos is a modified pScos 1 vector (Stratagene; Wahl, GM, Lewis, KS, Ruiz, JC, Rothenberg, B. Zhao, J., Evans, GA (1987) Cosmid vectors for rapid genomic walking, restriction mapping , and gene transfer Proc Natl Acad Sei USA 84: 2160-2164).
- pScos a HindIII-Smal fragment of the neomycin resistance gene was replaced with an EcoRV-Smal fragment which mediates carboxin resistance in U. maydis (identified by cbxR in FIG. 1).
- the EcoRV-Smal fragment comes from pCBX122 (Keon, J.P.R., White, G.A., Hargreaves, J.A. 1991). Isolation, characterization and sequence of a gene conferring resistance to the systemic fungieide carboxin from the maize smut pathogen, Ustilago maydis. Curr. Genet. 19: 475-481).
- the mutant was transformed with the cosmid bank. Transformation from U. maydis to Schulz, B., Banuett, F., Dahl, M., Schlesinger, R., Schwarzfer, W., Martin, T., Herskowitz, I. and Kahmann, R. (1990) (The b alleles of U. maydis, whose combinations program pathogenic development, code for poly-peptides containing a homeodomain-related modif. Cell 60: 295-306). Pools of 98 cosmids were transformed.
- the plasmids were isolated from the transformants by boiling miniprep (Sambrook, J., Fritsch, EF and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual (Cold Spring Habor, New York: Cold Spring Harbor Laboratory Press) . A fragment from the rescue plasmid, which consists of U. maydis DNA, was obtained by digestion with EcoRI and Sall. This was radioactively marked and used to screen the individual filters of the cosmid pool with which it was possible to complement. The hydride was carried out at 65 ° C.
- pHLN4 is derived from pHLl (Wang, J., Holden, D.W., and Leong, S.A. (1988). Gene transfer system for the phythopathogenic fungus U. maydis, Proc. Natl. Acad. Sci. USA 85, 865-869). pHLl is a pUC12 derivative that
- Hydromycin resistance gene under the control of U. maydis hsp carries 70 regulatory sequences.
- Notl linkers were cloned in the Sacl site in the polylinker of pHLl. pHLN is described in: Schulz, B., Banuett, F., Dahl, M., Schlesinger, R. Schulfer, W., Martin, T., Herskowitz, I., and Kahmann; R. (1990).
- the b alleles of U. maydis whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60, 295-306.
- both complementing fragments have an overlapping area.
- a 5.4 kb BglII-BamHII fragment and a 3.4 kb BamHI-Xbal fragment were obtained from the Xbal-BglII fragment. Both fragments were cloned into the bluescript vector (Stratagene). The nucleic acid sequence of the 5.4 kb BglII-BamHI insert of clone pl709951 # 3 (FIG. II) and the 3.4 kb BamHI-Xbal insert of clone pl710951 # 9 (FIG. II) were determined by DNA sequencing ( see Figure III).
- GCA CGC AAA ATG TTC CAG CAC CAG CCA TTT CCG CCT CTG GTT TTC GAT 2383 Ala Arg Lys Met Phe Gin His Gin Pro Phe Pro Pro Leu Val Phe Asp
- GCT GCC TAC ACC CGC ATC ATC TTG CCC TTT GAA GAG TTT CTT GCA AAA 3007 Ala Ala Tyr Thr Arg Ile Ile Leu Pro Phe Glu Glu Phe Leu Ala Lys
- GCT GGC AAT CAG GCG CAA GAA GAG CAA ATG TGC GAA ATC TGC CTC CGA 3487 Ala Gly Asn Gin Ala Gin Glu Glu Gin Met Cys Glu Ile Cys Leu Arg
- AAG AAG ACC CTT GCT CTT GGC CCG ACT CCA CCT CTC AAG ACG CTG AGG 4927 Lys Lys Thr Leu Ala Leu Gly Pro Thr Pro Pro Leu Lys Thr Leu Arg
- GAG GAT CTC AGG ACC TTT GTC ACC TGC GCC AAC TCG TGG GTG GAG CGG 5023 Glu Asp Leu Arg Thr Phe Val Thr Cys Ala Asn Ser Trp Val Glu Arg
- GAC CCT GCC GAC GAC CAG AAC AAA CCC AAT GCA CGC AAC TGT ATC TGC 6127 Asp Pro Ala Asp Asp Gin Asn Lys Pro Asn Ala Arg Asn Cys Ile Cys
- TTC AAA TTC CTC CCT CTG GAA TGG GAC GCC ATC GAG GAA GTG GTT GCC 6415 Phe Lys Phe Leu Pro Leu Glu Trp Asp Ala Ile Glu Glu Val Val Ala
- ATC ACC AAA CGT GCG CGT CTC 7231 Ile His Ala Glu Glu Val His Ser Gin Ile Thr Lys Arg Ala Arg Leu 1780 1785 1790 1795
- TCT GCC AAG GCT GAG CCT GTC GCA AAT GGG TCT ACG TTT TCG GCA CTG 8335 Ser Ala Lys Ala Glu Pro Val Ala Asn Gly Ser Thr Phe Ser Ala Leu
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Mycology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Botany (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
L'invention concerne un fragment régulateur d'acide nucléique extrait d'Ustilago maydis et son utilisation.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19536890 | 1995-10-04 | ||
DE19536890A DE19536890A1 (de) | 1995-10-04 | 1995-10-04 | Regulatorisches Gen aus Ustilago maydis |
DE19611758 | 1996-03-25 | ||
DE19611758 | 1996-03-25 | ||
PCT/EP1996/004254 WO1997012911A1 (fr) | 1995-10-04 | 1996-09-30 | Gene regulateur extrait d'ustilago maydis |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0853631A1 true EP0853631A1 (fr) | 1998-07-22 |
Family
ID=26019213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96933423A Withdrawn EP0853631A1 (fr) | 1995-10-04 | 1996-09-30 | Gene regulateur extrait d'ustilago maydis |
Country Status (5)
Country | Link |
---|---|
US (1) | US6103229A (fr) |
EP (1) | EP0853631A1 (fr) |
JP (1) | JPH11514226A (fr) |
AU (1) | AU7216296A (fr) |
WO (1) | WO1997012911A1 (fr) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK91192D0 (da) * | 1992-07-10 | 1992-07-10 | Novo Nordisk As | Protein |
-
1996
- 1996-09-30 JP JP9513964A patent/JPH11514226A/ja active Pending
- 1996-09-30 US US09/051,019 patent/US6103229A/en not_active Expired - Fee Related
- 1996-09-30 WO PCT/EP1996/004254 patent/WO1997012911A1/fr not_active Application Discontinuation
- 1996-09-30 AU AU72162/96A patent/AU7216296A/en not_active Abandoned
- 1996-09-30 EP EP96933423A patent/EP0853631A1/fr not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO9712911A1 * |
Also Published As
Publication number | Publication date |
---|---|
JPH11514226A (ja) | 1999-12-07 |
US6103229A (en) | 2000-08-15 |
WO1997012911A1 (fr) | 1997-04-10 |
AU7216296A (en) | 1997-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69733121T2 (de) | Morphologische mutanten von filamentösen pilzen | |
DE69033633T2 (de) | Verfahren zur Herstellung eines Proteins mittels eines durch Mehrfachkopie-Integrierung eines Expressionsvektors tranformierten Pilzes | |
DE68927344T2 (de) | Hefezellen der Gattung-Schwanniomyces | |
DE69132422T2 (de) | Xylanaseproduktion | |
EP0751995B1 (fr) | Biosynthese de la riboflavine dans des champignons | |
DE69637359T2 (de) | Nucleinsäuresequenz xlnR des Regulators XylR des xylanolytischen Biosyntheseweges aus Aspergillus niger | |
Kronstad et al. | Isolation of metabolic genes and demonstration of gene disruption in the phytopathogenic fungus Ustilago maydis | |
DD267996A5 (de) | Verfahren zum Herstellen von Plasmid Pxx-22 | |
DE69133066T2 (de) | Verfahren zur Expression heterologischer Gene in der Hefe Pichia Pastoris, Expressionsverfahren und transformierte Mikroorganismen | |
DE19620649A1 (de) | Rekombinant hergestellte Lysophospholipase aus Aspergillus | |
DE4238904A1 (de) | Riboflavin-Synthese in Hefen | |
EP0839211B1 (fr) | Procede de production de riboflavine au moyen de micro-organismes a activite d'isocitratlyase modifiee | |
DE69231940T2 (de) | Rekombinant DNS kodierend für eine Endochitinase | |
DE69333304T2 (de) | Erhöhte produktion von sekretierten proteinen durch rekombinante eukaryotische zellen | |
DE68907166T2 (de) | Verfahren zur Herstellung von menschlichem Lysozym. | |
EP0853631A1 (fr) | Gene regulateur extrait d'ustilago maydis | |
DE69504596T2 (de) | Chromosomaler Integrationsvektor | |
EP1504103B1 (fr) | Promoteurs ayant une efficacité de transcription modifiée, derivés de levure methylotrophe hanseluna polymorpha | |
EP1066393B1 (fr) | Systeme d'expression pour la production de proteines | |
EP1196592B1 (fr) | Système d'expression pour la production des protéines dans des champignons | |
DE4425058C2 (de) | Verfahren zur Herstellung einer thermostabilen Glukoamylase | |
DE4420785A1 (de) | Riboflavin-Biosynthese in Pilzen | |
DE19536890A1 (de) | Regulatorisches Gen aus Ustilago maydis | |
Gjermansen | Mutagenesis and genetic transformation of meiotic segregants of lager yeast | |
DE69831242T2 (de) | Erhöhte herstellung von sekretierten proteinen durch rekombinante hefezellen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980320 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20030730 |