EP0851720B1 - Indirektes Plasmatron - Google Patents

Indirektes Plasmatron Download PDF

Info

Publication number
EP0851720B1
EP0851720B1 EP97810823A EP97810823A EP0851720B1 EP 0851720 B1 EP0851720 B1 EP 0851720B1 EP 97810823 A EP97810823 A EP 97810823A EP 97810823 A EP97810823 A EP 97810823A EP 0851720 B1 EP0851720 B1 EP 0851720B1
Authority
EP
European Patent Office
Prior art keywords
plasma
neutrodes
channel
gas
neutrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97810823A
Other languages
English (en)
French (fr)
Other versions
EP0851720A1 (de
Inventor
Klaus Dr. Landes
Jochen Dipl.-Ing. Zierhut
Ralf Dipl.-Phys. Hartmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Metco AG
Original Assignee
Sulzer Metco AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Metco AG filed Critical Sulzer Metco AG
Publication of EP0851720A1 publication Critical patent/EP0851720A1/de
Application granted granted Critical
Publication of EP0851720B1 publication Critical patent/EP0851720B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3431Coaxial cylindrical electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3463Oblique nozzles

Definitions

  • the invention relates to an indirect plasmatron for treatment of surfaces according to claim 1.
  • plasma generators are made with one a nozzle flowing, electrically non-current-carrying plasma jet referred to, the arc, as opposed to direct Plasmatrons, is not transferred to the workpiece.
  • Plasmatrons are used to generate very high temperature plasmas, which are in the range of up to several 10,000 Kelvin can.
  • the device has an elongated plasma chamber, which is limited by a one-piece body. on the one The front of the plasma chamber is the anode and on the other arranged the cathode.
  • the device outlet nozzle or the plasma chamber is slit-shaped and runs parallel to the longitudinal axis of the plasma chamber.
  • each electrode from a chamber is surrounded, via which an inert gas can be supplied, the thermal stress on the electrodes can be reduced by the latter is flushed with an inert gas, for example argon become.
  • an inert gas for example argon
  • the shape and position of the arc to be influenced.
  • This is for a plasmatron in which the Plasma jet outlet opening parallel to the longitudinal axis of the plasma channel runs, very important because the arc through the gas flow running transversely to the burner axis into a curved Form is forced. Without the effect of a magnetic field the arc is deflected and curved to the extent that it is subject to strong fluctuations and even tears off.
  • Through the Magnetic arrangements can prevent this by using the magnetic fields exert a force on the arc, which the by the flow of the plasma gas exerted on the arc Counteracts force.
  • placement and field strength of the magnets used can depend on operating parameters such as for example, gas volume and gas velocity are taken into account and the arc in a predetermined position being held.
  • the plasmatron consists essentially of a central neutrode arrangement 1, on each side of which there is an electrode body 2, 3, an insulation body 4, 5 and a connecting element 6, 7 connect.
  • the connection elements 6, 7 are used for receiving of electrodes 9, 10, in the present example the left one Electrode 9 the cathode and the right electrode 10 the anode represents.
  • the neutrode arrangement 1 has a plurality of plate-shaped trained neutrodes la to li, which have a plasma channel 8 limit.
  • the two electrodes 9, 10 are coaxial with Longitudinal axis L of the plasma channel 8 is arranged.
  • To the electrical To increase the longitudinal resistance of the neutrode arrangement 1 are individual neutrodes 1a to 1i electrically isolated from each other. Isolation between the neutrodes 1a to 1i inserted insulating washers, which favor a clear Representation are not shown.
  • the neutrode arrangement 1 is on both sides of the electrode body 2, 3 delimited, on the outside of which the insulation body 4, 5 and the connecting element 6, 7.
  • Both electrode bodies 2, 3 are made of an insulating material.
  • Both the neutrodes 1a to 1i are used to cool the plasmatron as well as the two electrode bodies 2, 3 with cooling water channels 16, 21, 31 provided.
  • the two electrodes 9, 10 are also over cooling water channels 38, 39 attached to one inside externally provided cooling water circuit connected.
  • the two electrode bodies 2, 3 each have a central one bore 11, 12 narrowing towards plasma channel 8, into which the respective electrode 9, 10 protrudes in such a way that between the electrode 9, 10 and the bore wall a cavity in Form of an annular channel 19, 20 is formed.
  • These two ring channels 19, 20 are arranged in the insulation bodies 4, 5 Bores 23, 24 each connected to a connection channel 14, 15, through which a gas G can be supplied.
  • 1a shows a front view of the indirect plasmatron. Out this representation it can be seen that the plasma jet outlet opening 40 across the width of five neutrodes 1c to 1g extends.
  • FIG. 2 shows a cross section through the plasmatron or Neutrode 1a along the line A-A in Fig. 1.
  • the neutrode la with a central Cross bore 26 is provided, which is a part of the plasma channel forms and serves to guide the arc.
  • the last neutrodes 1a, 1i of the neutrode stack also the two neutrodes 1b adjoining the inside, 1h each with a hole that part of the plasma channel 8 (Fig. 1) form and stabilization of the arc to serve. All neutrodes are for cooling with cooling channels 16 provided, which is connected to a cooling water circuit become.
  • the neutrode 1c shown in FIG. 3 is instead of one central transverse bore with a slot-shaped recess 33 provided, which also part of the plasma channel 8th (Fig. 1) forms.
  • the recess 33 leading to the outside forms at the same time, part of the plasma jet outlet opening, which in the present example extend over the width of five neutrodes 1c to 1g provided with such recesses 33 (Fig. 1a) extends.
  • the inside of the recess 33 will by a, seen in cross section, semicircular Wall 34 limited. In the center of this semicircular training Wall 34 opens the plasma gas channel 18 into the recess 33.
  • FIG. 3a shows a front view of the section shown in FIG. 3 Neutrode 1c. From this illustration, both the Recess 33 as well as the mouth of the plasma gas channel 18 can be seen.
  • the neutrode 1d shown in FIG. 4 largely corresponds that of Figure 3, with two additional permanent magnets 36, 37 are provided, of which one magnet below and the other are arranged above the recess 33.
  • the North-south axes A of the respective magnets 36 and 37 coincide and run at least approximately under a right one Angle to the longitudinal axis L of the plasma channel 8, the magnets 36, 37, seen in the flow direction of the plasma jet, after the longitudinal axis L of the plasma channel 8 are arranged.
  • This placement will cause the magnetic fields to hit the Arc opposite to the flow of the plasma gas Apply force, causing the arc to be in a predetermined Situation is stabilized.
  • each is unequal Poles of the individual magnets 36, 37 lie opposite one another; thus N-S or S-N.
  • the number of those neutrodes that have a permanent magnet pair can be provided by different operating parameters, such as. Arc current, amount of plasma gas, plasma gas velocity, as well as the geometrical dimensions of the neutrode arrangement etc. are made dependent. As another variation option can use magnets with different field strengths be used. In practice, it has proven useful, about two or three neutrodes with magnets, this number should not be restrictive in any way. Important is also that the neutrodes, in the proposed arrangement the magnet, made of a non-magnetizable material, preferably made of copper or a copper alloy are. The advantage of permanent over electromagnets is u. a. in that no external energy supply is necessary is that the structure can be made more compact and simpler can and that a more targeted influencing of the arc is possible.
  • connection channels 14, 15 become coaxial to the longitudinal axis of the plasma channel 8 an inert gas is supplied, which via the ring channel 19, 20 of the respective electrode body 2, 3 from two sides in flows the plasma channel 8.
  • This gas flows around the two electrodes 9, 10, which has a positive effect on their cooling.
  • this gas shields the electrodes 9, 10 from the actual one Plasma beam, which is particularly important then can if a reactive via the central plasma gas channels 18 Gas is supplied.
  • the base point of the arc which is applied to the electrodes 9, 10, especially that at the anode 10 varies, namely are enlarged, which decreased in a selective manner thermal stress on the electrodes 9, 10 precipitates.
  • the provision of a plurality of central plasma gas channels 18 provided neutrodes 1c to 1g enables the shape of the emerging plasma jet by changing the amount of gas and the gas velocity from plasma gas channel to plasma gas channel 18 is varied.
  • the arc can be stabilized within the plasma channel 8 become. Among other things, this in a constant operating voltage and therefore a constant burner output, a very quiet operation and increased electrode life noticeable.
  • the geometric dimension of the plasmatron in the simplest way can be changed by, for example, the number and / or the Training of neutrodes is changed. For example instead of five with a slot-shaped recess. Neutrodes whose seven are used, increasing the width of the emerging plasma jet would be changed accordingly. It is also conceivable, for example, that neutrodes are used, whose slot-shaped recess is designed differently, or that neutrodes are used, their for arc stabilization provided holes designed differently are.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

Die Erfindung betrifft ein indirektes Plasmatron zur Behandlung von Oberflächen gemäss dem Anspruch 1.
Als indirekte Plasmatrons werden Plasmaerzeuger mit einem aus einer Düse ausströmenden, elektrisch nicht stromführenden Plasmastrahl bezeichnet, wobei der Lichtbogen, im Gegensatz zu direkten Plasmatrons, nicht auf das Werkstück übertragen wird.
Plasmatrons dienen der Erzeugung von Plasmen sehr hoher Temperatur, die im Bereich von bis zu mehreren 10'000 Kelvin liegen kann.
Herkömmliche, indirekte Plasmatrons verfügen üblicherweise über eine Düse, aus der ein im wesentlichen kegelförmiger Plasmastrahl austritt (siehe z.B. EP-A-0 500 491). Die mit einem solchen Plasmatron auf einem Substrat beaufschlagte Fläche weist demzufolge einen kreisrunden Umriss auf. Dies ist in vielen Fällen jedoch unerwünscht, insbesondere dann, wenn grosse, rechteckige Flächen mit dem Plasmatron erwärmt oder beschichtet werden sollen.
Ein weiterer Nachteil, der den bekannten Plasmatrons anhaftet, besteht darin, dass die beaufschlagte Fläche relativ klein ist, da die Öffnung der Austrittsdüse einen beschränkten Durchmesser aufweist und ein vorbestimmter Abstand zwischen Düse und Substrat eingehalten werden muss.
Aus der US-Patentschrift Nr. 5 239 161 ist ein Verfahren sowie eine Vorrichtung zum Beschichten von Substratoberflächen durch Plasmaspritzen bekannt, mittels welchem bzw. welcher die vorgängig erwähnten Nachteile weitgehend behoben werden können. Die Vorrichtung weist dazu eine längliche Plasmakammer auf, welche von einem einteiligen Körper begrenzt wird. Auf der einen Stirnseite der Plasmakammer ist die Anode und auf der anderen die Kathode angeordnet. Die Auslassdüse der Vorrichtung bzw. der Plasmakammer ist schlitzförmig ausgebildet und verläuft parallel zur Längsachse der Plasmakammer. Durch diese Merkmale soll erreicht werden, dass der austretende Plasmastrahl eine im wesentlichen rechteckige Kontur besitzt und relativ breit ist.
Obwohl die Grundidee eines solchen Brenners an und für sich interessant ist, hat sich in der Praxis gezeigt, dass die Vorrichtung keinen zuverlässigen Betrieb ermöglicht und dass insbesondere gravierende Probleme bei der Stabilisierung des Lichtbogens und der Lebensdauer des Plasmabrenners auftreten.
Es ist daher die Aufgabe der Erfindung, ein indirektes Plasmatron derart zu verbessern, dass ein stabiler Lichtbogen aufrechterhalten werden kann und dass die Lebensdauer der Elektroden, insbesondere der Anode, erhöht wird, wobei das Plasmatron sehr flexibel einsetzbar sein soll.
Diese Aufgabe wird durch ein indirektes Plasmatron gelöst, welches die im Anspruch 1 in Kombination aufgeführten Merkmale aufweist.
Durch den kaskadierten Aufbau des indirekten Plasmatrons, dessen Neutrodenanordnung aus einer Mehrzahl von plattenförmigen Neutroden besteht, die gegeneinander isoliert sind, wird sichergestellt, dass der Lichtbogen den Weg durch den Plasmakanal wählt und nicht sukzessive von Neutrode zu Neutrode fliesst. Ein kaskadierter Aufbau der Neutrodenanordnung ermöglicht darüber hinaus, die Breite des Neutrodenstapels und damit die Breite der Austrittsöffnung den Anforderungen entsprechend zu variieren.
Durch das weitere Merkmal, dass jede Elektrode von einer Kammer umgeben ist, über welche ein Inertgas zuführbar ist, kann die thermische Belastung der Elektroden reduziert werden, indem letztere von einem Inert-Gas, beispielsweise Argon, umspült werden. Dies bewirkt einerseits eine verbesserte Kühlung der Elektroden und ermöglicht zum anderen die Beeinflussung des Lichtbogenansatzes an den Elektroden, indem die Fläche des Bogenansatzes durch die Wahl des Gases verändert werden kann. Um einen möglichst diffusen, grossen Fusspunkt zu erhalten, hat sich Argon sehr bewährt.
Schliesslich kann durch den Einsatz eines oder mehrerer Permanentmagneten-Paare die Form und die Position des Lichtbogens beeinflusst werden. Dies ist bei einem Plasmatron, bei dem die Plasmastrahl-Austrittsöffnung parallel zur Längsachse des Plasmakanals verläuft, sehr wichtig, da der Lichtbogen durch die quer zur Brennerachse verlaufende Gasströmung in eine gekrümmte Form gezwungen wird. Ohne die Wirkung eines Magnetfeldes wird der Lichtbogen jeweils soweit ausgelenkt und gekrümmt, dass er starken Schwankungen unterliegt und sogar abreisst. Durch die Magnetanordnungen kann dies verhindert werden, indem die Magnetfelder auf den Lichtbogen eine Kraft ausüben, die der durch die Strömung des Plasmagases auf den Lichtbogen ausgeübten Kraft entgegenwirkt. Durch die Anzahl, Plazierung und Feldstärke der eingesetzten Magnete kann auf Betriebsparameter wie beispielsweise Gasmenge und Gasgeschwindigkeit Rücksicht genommen werden und der Lichtbogen in einer vorbestimmten Position gehalten werden.
Durch die in einem bevorzugten Ausführungsbeispiel vorgeschlagene Ausbildungsform des indirekten Plasmatrons, bei der die in einzelnen Neutroden angeordneten Öffnungen an eine erste Gasquelle anschliessbar sind, und die die Elektroden umgebenden Hohlräume an eine zweite Gasquelle anschliessbar sind, kann eine Trennung zwischen dem die Elektroden umströmenden Gas und dem eigentlichen Plasmagas erreicht werden. Dies hat beispielsweise den Vorteil, dass ein reaktives Gas über die in den Neutroden angeordneten Öffnungen zugeführt werden kann, ohne dass dies negative Auswirkungen auf die Lebensdauer der Elektroden hätte, da die Elektroden mit einem inerten Gas umspült werden können, und dadurch abgeschirmt werden.
Nachfolgend soll ein Ausführungsbeispiel der Erfindung anhand von Zeichnungen näher erläutert werden. In diesen Zeichnungen zeigt:
Fig. 1
einen Längsschnitt durch das indirekte Plasmatron;
Fig. 1a
eine Frontansicht des indirekten Plasmatrons;
Fig. 2
einen ersten Querschnitt durch das indirekte Plasmatron entlang der Linie A-A in Fig. 1;
Fig. 3
einen zweiten Querschnitt durch das indirekte Plasmatron entlang der Linie B-B in Fig. 1;
Fig. 3a
eine Frontansicht einer Neutrode, und
Fig. 4
einen dritten Querschnitt durch das indirekte Plasmatron entlang der Linie C-C in Fig. 1.
Fig. 1 zeigt ein schematisch dargestelltes, indirektes Plasmatron, anhand dessen die im Zusammenhang mit der Erfindung wesentlichen Merkmale näher erläutert werden sollen. Das Plasmatron besteht im wesentlichen aus einer zentralen Neutrodenanordnung 1, an die sich auf beiden Seiten je ein Elektrodenkörper 2, 3, ein Isolationskörper 4, 5 und ein Anschlusselement 6, 7 anschliessen. Die Anschlusselemente 6, 7 dienen der Aufnahme der Elektroden 9, 10, wobei im vorliegenden Beispiel die linke Elektrode 9 die Kathode und die rechte Elektrode 10 die Anode darstellt.
Die Neutrodenanordnung 1 weist eine Vielzahl von plattenförmig ausgebildeten Neutroden la bis li auf, welche einen Plasmakanal 8 begrenzen. Die beiden Elektroden 9, 10 sind koaxial zur Längsachse L des Plasmakanals 8 angeordnet. Um den elektrischen Längs-Widerstand der Neutrodenanordnung 1 zu erhöhen, sind die einzelnen Neutroden 1a bis 1i elektrisch gegeneinander isoliert. Als Isolation dienen zwischen die Neutroden 1a bis 1i eingefügte Isolierscheiben, welche zugunsten einer übersichtlichen Darstellung nicht eingezeichnet sind.
Die Neutrodenanordnung 1 wird auf beiden Seiten vom Elektrodenkörper 2, 3 begrenzt, an den sich nach aussen jeweils der Isolationskörper 4, 5 sowie das Anschlusselement 6, 7 anschliesst.
Beide Elektrodenkörper 2, 3, sind aus einem Isoliermaterial gefertigt.
Zur Kühlung des Plasmatrons sind sowohl die Neutroden 1a bis 1i wie auch die beiden Elektrodenkörper 2, 3 mit Kühlwasserkanälen 16, 21, 31 versehen. Auch die beiden Elektroden 9, 10 sind über in ihrem Innern angebrachte Kühlwasserkanäle 38, 39 an einen extern vorgesehenen Kühlwasserkreislauf angeschlossen.
Von den neun Neutroden 1a bis 1i sind deren fünf 1c bis 1g mit einen zentral in den Plasmakanal 8 mündenden Plasmagaskanal 18 versehen.
Die beiden Elektrodenkörper 2, 3 weisen je eine zentrale, sich zum Plasmakanal 8 hin verengende Bohrung 11, 12 auf, in welche die jeweilige Elektrode 9, 10 derart hineinragt, dass zwischen der Elektrode 9, 10 und der Bohrungswandung ein Hohlraum in Form eines Ringkanals 19, 20 gebildet wird. Diese beiden Ringkanäle 19, 20 sind über in den Isolationskörpern 4, 5 angeordnete Bohrungen 23, 24 mit je einem Anschlusskanal 14, 15 verbunden, über welchen ein Gas G zugeführt werden kann.
Fig. 1a zeigt eine Frontansicht des indirekten Plasmatrons. Aus dieser Darstellung ist ersichtlich, dass sich die Plasmastrahl-Austrittsöffnung 40 über die Breite von fünf Neutroden 1c bis 1g erstreckt.
Figur 2 zeigt einen Querschnitt durch das Plasmatron bzw. eine Neutrode 1a entlang der Linie A-A in Fig. 1. Anhand dieser Darstellung ist ersichtlich, dass die Neutrode la mit einer zentralen Querbohrung 26 versehen ist, welche einen Teil des Plasmakanals bildet und der Führung des Lichtbogens dient. Neben den jeweils letzten Neutroden 1a, 1i des Neutrodenstapels sind auch die beiden sich nach innen anschliessenden Neutroden 1b, 1h mit je einer Bohrung versehen, welche einen Teil des Plasmakanals 8 (Fig. 1) bilden und der Stabilisierung des Lichtbogens dienen. Sämtliche Neutroden sind zur Kühlung mit Kühlkanälen 16 versehen, welche an einem Kühlwasserkreislauf angeschlossen werden. Über die Bohrungen 27 können die einzelnen Neutroden, unter Dazwischenfügen von Isolierplatten, miteinander verbunden und zu der Neutrodenanordnung zusammengefügt werden. Auf die Darstellung der notwendigen Verbindungselemente sowie allenfalls vorhandener Dichtelemente wurde bewusst verzichtet.
Die in der Fig. 3 dargestellte Neutrode 1c ist anstelle einer zentralen Querbohrung mit einer schlitzförmigen Ausnehmung 33 versehen, welche ebenfalls einen Teil des Plasmakanals 8 (Fig. 1) bildet. Die nach aussen führende Ausnehmung 33 bildet gleichzeitig auch einen Teil der Plasmastrahl-Austrittsöffnung, welche sich im vorliegenden Beispiel über die Breite von fünf mit solchen Ausnehmungen 33 versehenen Neutroden 1c bis 1g (Fig. 1a) erstreckt. Die Innenseite der Ausnehmung 33 wird durch eine, im Querschnitt gesehen, halbkreisfömig ausgebildete Wandung 34 begrenzt. Im Zentrum dieser halbkreisfömig ausgebildeten Wandung 34 mündet der Plasmagaskanal 18 in die Ausnehmung 33.
Fig. 3a zeigt eine Frontansicht der in Fig. 3 geschnitten dargestellten Neutrode 1c. Aus dieser Darstellung sind sowohl die Ausnehmung 33 wie auch die Mündung des Plasmagaskanals 18 ersichtlich.
Die in der Figur 4 dargestellte Neutrode ld entspricht weitgehend derjenigen der Figur 3, wobei zusätzlich zwei Permanentmagnete 36, 37 vorgesehen sind, wovon der eine Magnet unterhalb und der andere oberhalb der Ausnehmung 33 angeordnet sind. Die Nord-Süd-Achsen A der jeweiligen Magnete 36 bzw. 37 fallen zusammen und verlaufen zumindest annähernd unter einem rechten Winkel zur Längsachse L des Plasmakanals 8, wobei die Magnete 36, 37, in Strömungsrichtung des Plasmastrahls gesehen, nach der Längsachse L des Plasmakanals 8 angeordnet sind. Durch diese Platzierung wird bewirkt, dass die Magnetfelder auf den Lichtbogen eine der Strömung des Plasmagases entgegengerichtete Kraft ausüben, wodurch der Lichtbogen in einer vorbestimmten Lage stabilisiert wird. Es versteht sich, dass jeweils ungleiche Pole der einzelnen Magnete 36, 37 einander gegenüberliegen; also N-S bzw. S-N.
Die Anzahl derjenigen Neutroden, die mit einem Permanentmagneten-Paar versehen sind, kann von verschiedenen Betriebsparametern, wie z.B. Bogenstrom, Plasmagasmenge, Plasmagasgeschwindigkeit, sowie auch von geometrischen Abmessungen der Neutrodenanordnung usw. abhängig gemacht werden. Als weitere Variationsmöglichkeit können Magnete mit unterschiedlicher Feldstärke verwendet werden. In der Praxis hat sich bewährt, etwa zwei oder drei Neutroden mit Magneten zu versehen, wobei diese Zahl keinesfalls einschränkenden Charakter aufweisen soll. Wichtig ist zudem, dass die Neutroden, bei der vorgeschlagenen Anordnung der Magnete, aus einem nichtmagnetisierbaren Material, vorzugsweise aus Kupfer oder einer Kupferlegierung, gefertigt sind. Der Vorteil von Permanent- gegenüber Elektromagneten besteht u. a. darin, dass keine externe Energiezufuhr notwendig ist, dass der Aufbau kompakter und einfacher gestaltet werden kann und dass eine gezieltere Beeinflussung des Lichtbogens möglich ist.
Nachfolgend sollen einige Erläuterungen zur Wirkungsweise eines mit den erfindungsgemässen Merkmalen versehenen Plasmatrons angefügt werden. Da die prinzipielle Funktionsweise von gattungsgemässen Plasmatrons jedoch bekannt ist, wird nur auf die im Zusammenhang mit der Erfindung wesentlichen Merkmale und Betriebsparameter eingegangen:
Über die in den beiden Anschlusselementen 6, 7 ausgebildeten Anschlusskanäle 14, 15 wird koaxial zur Längsachse des Plasmakanals 8 ein inertes Gas zugeführt, welches über den Ringkanal 19, 20 des jeweiligen Elektrodenkörpers 2, 3 von zwei Seiten in den Plasmakanal 8 strömt. Dieses Gas umspült die beiden Elektroden 9, 10, was sich positiv auf deren Kühlung auswirkt. Zudem schirmt dieses Gas die Elektroden 9, 10 gegenüber dem eigentlichen Plasmastrahl ab, was insbesondere dann wichtig sein kann, wenn über die zentralen Plasmagaskanäle 18 ein reaktives Gas zugeführt wird.
Durch die Wahl des die Elektroden 9, 10 umspülenden Gases kann der Fusspunkt des an den Elektroden 9, 10 ansetzenden Lichtbogens, insbesondere desjenigen an der Anode 10, variiert, namentlich vergrössert, werden, was sich in einer punktuell verringerten thermischen Belastung der Elektroden 9, 10 niederschlägt.
Durch das Vorsehen von getrennten Gaszufuhrkanälen 14, 15, 18, eröffnen sich zudem neue Möglichkeiten. Beispielsweise kann, wie bereits vorgängig erwähnt, über die beiden seitlich in den Plasmakanal mündenden Kanäle 14, 15 ein inertes Gas zugeführt werden, währenddem über die zentralen Plasmagaskanäle 18 der Neutroden 1c bis 1g ein reaktives Gas zugeführt werden kann, ohne dass dies negative Auswirkungen auf die Standzeiten der Elektroden 9, 10 hätte. Durch die Zufuhr eines reaktiven Gases kann ausserdem ein zusätzlicher Leistungsgewinn realisiert werden.
Ein weiterer Leistungsgewinn kann durch die Verwendung von brennbaren Gasen, beispielsweise Butan, erreicht werden, die durch die zentralen Plasmagaskanäle 18 zugeführt werden. Damit steht zusätzlich zu dem vorgängig erwähnten Leistungsgewinn die chemische Energie des exothermen Reaktionsprozesses zur Verfügung.
Das Vorsehen einer Mehrzahl von mit zentralen Plasmagaskanälen 18 versehenen Neutroden 1c bis 1g ermöglicht es, die Form des austretenden Plasmastrahls zu verändern, indem ggf. die Gasmenge und die Gasgeschwindigkeit von Plasmagaskanal zu Plasmagaskanal 18 variiert wird.
Durch die spezifische Anordnung der Permanentmagnete 36, 37 kann der Lichtbogen innerhalb des Plasmakanals 8 stabilisiert werden. Dies macht sich u.a. in einer konstanten Betriebsspannung und damit einer konstanten Brennerleistung, einem sehr leisen Betrieb sowie einer erhöhten Lebensdauer der Elektroden bemerkbar.
Durch den kaskadierten Aufbau der Neutrodenanordnung kann die geometrische Abmessung des Plasmatrons auf einfachste Weise verändert werden, indem beispielsweise die Anzahl und/oder die Ausbildung der Neutroden verändert wird. Beispielsweise könnten anstelle von fünf mit einer schlitzförmigen Ausnehmung versehenen. Neutroden deren sieben verwendet werden, wodurch die Breite des austretenden Plasmastrahls entsprechend verändert würde. Denkbar ist beispielsweise auch, dass Neutroden Verwendung finden, deren schlitzförmige Ausnehmung anders gestaltet ist, oder dass Neutroden verwendet werden, deren zur Lichtbogenstabilisierung vorgesehene Bohrungen unterschiedlich ausgestaltet sind.

Claims (11)

  1. Indirektes Plasmatron zur Behandlung von Oberflächen, mit folgenden Merkmalen :
    es ist ein langgestreckter Plasmakanal (8) vorgesehen, der durch eine Neutrodenanordnung (1) gebildet ist;
    die zur Erzeugung des Lichtbogens erforderlichen Elektroden (9, 10) sind koaxial zur Längsachse (L) des Plasmakanals (8) angeordnet;
    die Neutrodenanordnung (1) umfasst eine Mehrzahl von elektrisch gegeneinander isolierten, plattenförmigen Neutroden (1a bis 1i);
    dadurch gekennzeichnet, daß :
    die Neutrodenanordnung (1) mit einer schlitzförmigen Plasmastrahl-Austrittsöffnung (40) versehen ist, welch letztere parallel zur Längsachse (L) des Plasmakanals (8) verläuft;
    jede Elektrode (9, 10) von einem Hohlraum (19, 20) umgeben ist, über welchen ein Inertgas zuführbar ist, und
    zumindest eine Permanentmagneten-Anordnung (36, 37) vorgesehen ist, deren Magnetfeld auf den Lichtbogen eine der Strömung des Plasmagases entgegengerichtete Kraft ausübt.
  2. Indirektes Plasmatron nach Anspruch 1, dadurch gekennzeichnet, dass zumindest einzelne Neutroden (1c-1g) mit einem Kanal (18) zur Zufuhr eines Gases in den Plasmakanal (8) versehen sind.
  3. Indirektes Plasmatron nach Anspruch 2, dadurch gekennzeichnet, dass die Längsachse des Kanals (18) zur Zufuhr eines Gases unter einem zumindest annähernd rechten Winkel zur Längsachse (L) des Plasmakanals (8) verläuft.
  4. Indirektes Plasmatron nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Neutroden (1a-1i) aus einem nicht magnetisierbaren Material, vorzugsweise aus Kupfer oder einer Kupferlegierung bestehen, und dass zumindest eine Neutrode (1d) mit einem Permanentmagneten-Paar (36, 37) versehen ist.
  5. Indirektes Plasmatron nach Anspruch 4, dadurch gekennzeichnet, dass die Nord-Süd-Achsen der jeweiligen Magnete (36; 37) einer Neutrode zusammenfallen und zumindest annähernd unter einem rechten Winkel zur Längsachse (L) des Plasmakanals (8) verlaufen, wobei die Magnete (36, 37), in Strömungsrichtung des Plasmastrahls gesehen, nach der Längsachse (L) des Plasmakanals (8) angeordnet sind.
  6. Indirektes Plasmatron nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass zumindest drei Neutroden (1a-1i) vorgesehen sind und dass zumindest eine Neutrode (1c-1g) mit einem Kanal (18) zur Zufuhr eines Gases in den Plasmakanal (8) versehen sind.
  7. Indirektes Plasmatron nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die in einzelnen Neutroden (1c-1g) angeordneten Kanäle (18) an eine erste Gasquelle anschliessbar sind, währenddem die die Elektroden umgebenden Hohlräume (19, 20) mit einer zweiten Gasquelle verbindbar sind.
  8. Indirektes Plasmatron nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Mehrzahl der Neutroden (1c-1g), zur Bildung des Plasmakanals (8) und der Plasmastrahl-Austrittsöffnung (40), mit je einer schlitzförmigen Ausnehmung (33) versehen sind, wobei die Kanäle (18) zur Zufuhr eines Gases zentral in die jeweilige Ausnehmung (33) münden.
  9. Indirektes Plasmatron nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Neutrodenanordnung (1) die Plasmastrahl-Austrittsöffnung (40) seitlich begrenzende Neutroden (1a, 1b, 1h, 1i) aufweist, welche mit einer Bohrung (26) versehen sind, die einen Teil des Plasmakanals (8) bilden und den Lichtbogen in einer vorbestimmten Lage stabilisieren.
  10. Indirektes Plasmatron nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anode (10) eine im wesentlichen plane Endfläche aufweist, an welcher der Lichtbogen ansetzt.
  11. Indirektes Plasmatron nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kathode (9) eine Kegel- oder Kegelstampfförmige Spitze aufweist, an welcher der Lichtbogen ansetzt.
EP97810823A 1996-12-23 1997-11-03 Indirektes Plasmatron Expired - Lifetime EP0851720B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH317196 1996-12-23
CH317196 1996-12-23
CH3171/96 1996-12-23

Publications (2)

Publication Number Publication Date
EP0851720A1 EP0851720A1 (de) 1998-07-01
EP0851720B1 true EP0851720B1 (de) 1999-10-06

Family

ID=4250164

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810823A Expired - Lifetime EP0851720B1 (de) 1996-12-23 1997-11-03 Indirektes Plasmatron

Country Status (6)

Country Link
US (1) US5944901A (de)
EP (1) EP0851720B1 (de)
JP (1) JPH10189289A (de)
AT (1) ATE185465T1 (de)
CA (1) CA2225211A1 (de)
DE (1) DE59700524D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10239875B4 (de) * 2002-08-29 2008-11-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur großflächigen Beschichtung von Substraten bei Atmosphärendruckbedingungen
DE102008018589A1 (de) 2008-04-08 2009-11-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Zünden eines Lichtbogens

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10011276A1 (de) * 2000-03-08 2001-09-13 Wolff Walsrode Ag Verwendung eines indirrekten atomosphärischen Plasmatrons zur Oberflächenbehandlung oder Beschichtung bahnförmiger Werkstoffe sowie ein Verfahren zur Behandlung oder Beschichtung bahnförmiger Werkstoffe
DE10011275A1 (de) * 2000-03-08 2001-09-13 Wolff Walsrode Ag Verfahren zur Oberflächenaktivierung bahnförmiger Werkstoffe
DE10011274A1 (de) * 2000-03-08 2001-09-13 Wolff Walsrode Ag Plasmabehandelte bahnförmige Werkstoffe
MXPA03002988A (es) * 2000-10-04 2004-12-06 Dow Corning Ireland Ltd Metodo y aparato para formar un recubrimiento.
DE10146295A1 (de) * 2001-09-19 2003-04-03 Wipak Walsrode Gmbh & Co Kg Verfahren zum Zusammenfügen von Materialien mittels atmosphärischen Plasma
GB0208261D0 (en) * 2002-04-10 2002-05-22 Dow Corning An atmospheric pressure plasma assembly
TW200409669A (en) * 2002-04-10 2004-06-16 Dow Corning Ireland Ltd Protective coating composition
TW200308187A (en) * 2002-04-10 2003-12-16 Dow Corning Ireland Ltd An atmospheric pressure plasma assembly
NL1021185C2 (nl) * 2002-07-30 2004-02-03 Fom Inst Voor Plasmafysica Inrichting voor het behandelen van een oppervlak van een substraat en een plasmabron.
GB0323295D0 (en) * 2003-10-04 2003-11-05 Dow Corning Deposition of thin films
DE102004015216B4 (de) * 2004-03-23 2006-07-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Modul und Verfahren für die Modifizierung von Substratoberflächen bei Atmosphärenbedingungen
KR101157410B1 (ko) * 2004-11-05 2012-06-21 다우 코닝 아일랜드 리미티드 플라즈마 시스템
DE102004059549A1 (de) * 2004-12-10 2006-06-22 Mtu Aero Engines Gmbh Verfahren zur Beschichtung eines Werkstücks
GB0509648D0 (en) * 2005-05-12 2005-06-15 Dow Corning Ireland Ltd Plasma system to deposit adhesion primer layers
TWI498053B (zh) * 2008-12-23 2015-08-21 Ind Tech Res Inst 電漿激發模組
US10304665B2 (en) 2011-09-07 2019-05-28 Nano-Product Engineering, LLC Reactors for plasma-assisted processes and associated methods
US20130129937A1 (en) * 2011-11-23 2013-05-23 United Technologies Corporation Vapor Deposition of Ceramic Coatings
CH712835A1 (de) * 2016-08-26 2018-02-28 Amt Ag Plasmaspritzvorrichtung.
US11834204B1 (en) 2018-04-05 2023-12-05 Nano-Product Engineering, LLC Sources for plasma assisted electric propulsion
CN114189972A (zh) * 2021-12-02 2022-03-15 华中科技大学 一种稳定等离子体放电装置、控制方法和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE763709A (fr) * 1971-03-03 1971-08-02 Soudure Autogene Elect Plasma en rideau.
US4948485A (en) * 1988-11-23 1990-08-14 Plasmacarb Inc. Cascade arc plasma torch and a process for plasma polymerization
DE4105408C1 (de) * 1991-02-21 1992-09-17 Plasma-Technik Ag, Wohlen, Ch
FR2674450B1 (fr) * 1991-03-26 1994-01-21 Agence Spatiale Europeenne Procede pour deposer un revetement sur un substrat par projection au plasma, et dispositif pour la mise en óoeuvre du procede.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10239875B4 (de) * 2002-08-29 2008-11-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur großflächigen Beschichtung von Substraten bei Atmosphärendruckbedingungen
DE102008018589A1 (de) 2008-04-08 2009-11-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Zünden eines Lichtbogens

Also Published As

Publication number Publication date
ATE185465T1 (de) 1999-10-15
JPH10189289A (ja) 1998-07-21
US5944901A (en) 1999-08-31
CA2225211A1 (en) 1998-06-23
DE59700524D1 (de) 1999-11-11
EP0851720A1 (de) 1998-07-01

Similar Documents

Publication Publication Date Title
EP0851720B1 (de) Indirektes Plasmatron
DE2164270C3 (de) Plasmastrahlgenerator
DE4105408C1 (de)
DE3878570T2 (de) Verfahren und apparat zum hochleistungsplasmaspritzen.
DE69233071T3 (de) Lichtbogen-Plasmaschneidvorrichtung
DE69512247T2 (de) Elektrode für einen lichtbogenplasmabrenner
DE68926923T2 (de) Mikrowellenionenquelle
EP2206417B1 (de) Verfahren und vorrichtung zur behandlung oder beschichtung von oberflachen
DE3522888A1 (de) Vorrichtung zum erzeugen eines plasmastrahls
DE9215133U1 (de) Plasmaspritzgerät
DE2254504C2 (de) Winkeldüsenelektrode für Plasmastrahlgeneratoren
DE69203127T2 (de) Verfahren zur Behandlung zum Beispiel einer Substratoberfläche durch Spritzen eines Plasmaflusses und Vorrichtung zur Durchführung des Verfahrens.
DE69312036T2 (de) Wirbel-Lichtbogengenerator und Verfahren zur Steuerung der Lichtbogenlänge
DE3615361A1 (de) Vorrichtung zur oberflaechenbehandlung von werkstuecken
DE2133173A1 (de) Verfahren und Vorrichtung zum Abbeizen von oxydiertem Blech
DE3787804T2 (de) Elektrodenstruktur für einen plasmabrenner vom non-transfer-typ.
DE69609191T2 (de) Vierdüsen-plasmaerzeugungsvorrichtung zur erzeugung eines aktivierter strahles
DE19881726B4 (de) Verfahren zum Sprühen von Plasma
DE1764978C3 (de) Hochfrequenz-Plasmagenerator
DE1589562B2 (de) Verfahren zur Erzeugung eines Plasmastroms hoher Temperatur
DE1440618B2 (de)
DE2135207A1 (de) Werkzeug zum elektrolytischen Bohren von Lochern
DE1539691C2 (de) Verfahren zur Inbetriebnahme des Lichtbogens eines Plasmastrahlerzeugers und Vorrichtung zu seiner Durchführung
DE2900715C2 (de) Plasmastrahlgerät
DE7606728U1 (de) Plasmabrenner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19980806

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

AKX Designation fees paid

Free format text: AT CH DE FR GB IT LI NL SE

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE FR GB IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19990311

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 185465

Country of ref document: AT

Date of ref document: 19991015

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19991013

Year of fee payment: 3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

Ref country code: CH

Ref legal event code: EP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19991018

Year of fee payment: 3

REF Corresponds to:

Ref document number: 59700524

Country of ref document: DE

Date of ref document: 19991111

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20001129

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

EUG Se: european patent has lapsed

Ref document number: 97810823.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011119

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021103

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051103

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160129

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160129

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59700524

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601